linux/drivers/staging/panel/panel.c
<<
>>
Prefs
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *      - make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/module.h>
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/signal.h>
  44#include <linux/sched.h>
  45#include <linux/spinlock.h>
  46#include <linux/interrupt.h>
  47#include <linux/miscdevice.h>
  48#include <linux/slab.h>
  49#include <linux/ioport.h>
  50#include <linux/fcntl.h>
  51#include <linux/init.h>
  52#include <linux/delay.h>
  53#include <linux/kernel.h>
  54#include <linux/ctype.h>
  55#include <linux/parport.h>
  56#include <linux/list.h>
  57#include <linux/notifier.h>
  58#include <linux/reboot.h>
  59#include <generated/utsrelease.h>
  60
  61#include <linux/io.h>
  62#include <linux/uaccess.h>
  63
  64#define LCD_MINOR               156
  65#define KEYPAD_MINOR            185
  66
  67#define PANEL_VERSION           "0.9.5"
  68
  69#define LCD_MAXBYTES            256     /* max burst write */
  70
  71#define KEYPAD_BUFFER           64
  72
  73/* poll the keyboard this every second */
  74#define INPUT_POLL_TIME         (HZ/50)
  75/* a key starts to repeat after this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_START        (10)
  77/* a key repeats this times INPUT_POLL_TIME */
  78#define KEYPAD_REP_DELAY        (2)
  79
  80/* keep the light on this times INPUT_POLL_TIME for each flash */
  81#define FLASH_LIGHT_TEMPO       (200)
  82
  83/* converts an r_str() input to an active high, bits string : 000BAOSE */
  84#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  85
  86#define PNL_PBUSY               0x80    /* inverted input, active low */
  87#define PNL_PACK                0x40    /* direct input, active low */
  88#define PNL_POUTPA              0x20    /* direct input, active high */
  89#define PNL_PSELECD             0x10    /* direct input, active high */
  90#define PNL_PERRORP             0x08    /* direct input, active low */
  91
  92#define PNL_PBIDIR              0x20    /* bi-directional ports */
  93/* high to read data in or-ed with data out */
  94#define PNL_PINTEN              0x10
  95#define PNL_PSELECP             0x08    /* inverted output, active low */
  96#define PNL_PINITP              0x04    /* direct output, active low */
  97#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  98#define PNL_PSTROBE             0x01    /* inverted output */
  99
 100#define PNL_PD0                 0x01
 101#define PNL_PD1                 0x02
 102#define PNL_PD2                 0x04
 103#define PNL_PD3                 0x08
 104#define PNL_PD4                 0x10
 105#define PNL_PD5                 0x20
 106#define PNL_PD6                 0x40
 107#define PNL_PD7                 0x80
 108
 109#define PIN_NONE                0
 110#define PIN_STROBE              1
 111#define PIN_D0                  2
 112#define PIN_D1                  3
 113#define PIN_D2                  4
 114#define PIN_D3                  5
 115#define PIN_D4                  6
 116#define PIN_D5                  7
 117#define PIN_D6                  8
 118#define PIN_D7                  9
 119#define PIN_AUTOLF              14
 120#define PIN_INITP               16
 121#define PIN_SELECP              17
 122#define PIN_NOT_SET             127
 123
 124#define LCD_FLAG_S              0x0001
 125#define LCD_FLAG_ID             0x0002
 126#define LCD_FLAG_B              0x0004  /* blink on */
 127#define LCD_FLAG_C              0x0008  /* cursor on */
 128#define LCD_FLAG_D              0x0010  /* display on */
 129#define LCD_FLAG_F              0x0020  /* large font mode */
 130#define LCD_FLAG_N              0x0040  /* 2-rows mode */
 131#define LCD_FLAG_L              0x0080  /* backlight enabled */
 132
 133#define LCD_ESCAPE_LEN          24      /* max chars for LCD escape command */
 134#define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
 135
 136/* macros to simplify use of the parallel port */
 137#define r_ctr(x)        (parport_read_control((x)->port))
 138#define r_dtr(x)        (parport_read_data((x)->port))
 139#define r_str(x)        (parport_read_status((x)->port))
 140#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 141#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 142
 143/* this defines which bits are to be used and which ones to be ignored */
 144/* logical or of the output bits involved in the scan matrix */
 145static __u8 scan_mask_o;
 146/* logical or of the input bits involved in the scan matrix */
 147static __u8 scan_mask_i;
 148
 149typedef __u64 pmask_t;
 150
 151enum input_type {
 152        INPUT_TYPE_STD,
 153        INPUT_TYPE_KBD,
 154};
 155
 156enum input_state {
 157        INPUT_ST_LOW,
 158        INPUT_ST_RISING,
 159        INPUT_ST_HIGH,
 160        INPUT_ST_FALLING,
 161};
 162
 163struct logical_input {
 164        struct list_head list;
 165        pmask_t mask;
 166        pmask_t value;
 167        enum input_type type;
 168        enum input_state state;
 169        __u8 rise_time, fall_time;
 170        __u8 rise_timer, fall_timer, high_timer;
 171
 172        union {
 173                struct {        /* valid when type == INPUT_TYPE_STD */
 174                        void (*press_fct)(int);
 175                        void (*release_fct)(int);
 176                        int press_data;
 177                        int release_data;
 178                } std;
 179                struct {        /* valid when type == INPUT_TYPE_KBD */
 180                        /* strings can be non null-terminated */
 181                        char press_str[sizeof(void *) + sizeof(int)];
 182                        char repeat_str[sizeof(void *) + sizeof(int)];
 183                        char release_str[sizeof(void *) + sizeof(int)];
 184                } kbd;
 185        } u;
 186};
 187
 188static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 189
 190/* physical contacts history
 191 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 192 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 193 * corresponds to the ground.
 194 * Within each group, bits are stored in the same order as read on the port :
 195 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 196 * So, each __u64 (or pmask_t) is represented like this :
 197 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 198 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 199 */
 200
 201/* what has just been read from the I/O ports */
 202static pmask_t phys_read;
 203/* previous phys_read */
 204static pmask_t phys_read_prev;
 205/* stabilized phys_read (phys_read|phys_read_prev) */
 206static pmask_t phys_curr;
 207/* previous phys_curr */
 208static pmask_t phys_prev;
 209/* 0 means that at least one logical signal needs be computed */
 210static char inputs_stable;
 211
 212/* these variables are specific to the keypad */
 213static char keypad_buffer[KEYPAD_BUFFER];
 214static int keypad_buflen;
 215static int keypad_start;
 216static char keypressed;
 217static wait_queue_head_t keypad_read_wait;
 218
 219/* lcd-specific variables */
 220
 221/* contains the LCD config state */
 222static unsigned long int lcd_flags;
 223/* contains the LCD X offset */
 224static unsigned long int lcd_addr_x;
 225/* contains the LCD Y offset */
 226static unsigned long int lcd_addr_y;
 227/* current escape sequence, 0 terminated */
 228static char lcd_escape[LCD_ESCAPE_LEN + 1];
 229/* not in escape state. >=0 = escape cmd len */
 230static int lcd_escape_len = -1;
 231
 232/*
 233 * Bit masks to convert LCD signals to parallel port outputs.
 234 * _d_ are values for data port, _c_ are for control port.
 235 * [0] = signal OFF, [1] = signal ON, [2] = mask
 236 */
 237#define BIT_CLR         0
 238#define BIT_SET         1
 239#define BIT_MSK         2
 240#define BIT_STATES      3
 241/*
 242 * one entry for each bit on the LCD
 243 */
 244#define LCD_BIT_E       0
 245#define LCD_BIT_RS      1
 246#define LCD_BIT_RW      2
 247#define LCD_BIT_BL      3
 248#define LCD_BIT_CL      4
 249#define LCD_BIT_DA      5
 250#define LCD_BITS        6
 251
 252/*
 253 * each bit can be either connected to a DATA or CTRL port
 254 */
 255#define LCD_PORT_C      0
 256#define LCD_PORT_D      1
 257#define LCD_PORTS       2
 258
 259static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 260
 261/*
 262 * LCD protocols
 263 */
 264#define LCD_PROTO_PARALLEL      0
 265#define LCD_PROTO_SERIAL        1
 266#define LCD_PROTO_TI_DA8XX_LCD  2
 267
 268/*
 269 * LCD character sets
 270 */
 271#define LCD_CHARSET_NORMAL      0
 272#define LCD_CHARSET_KS0074      1
 273
 274/*
 275 * LCD types
 276 */
 277#define LCD_TYPE_NONE           0
 278#define LCD_TYPE_OLD            1
 279#define LCD_TYPE_KS0074         2
 280#define LCD_TYPE_HANTRONIX      3
 281#define LCD_TYPE_NEXCOM         4
 282#define LCD_TYPE_CUSTOM         5
 283
 284/*
 285 * keypad types
 286 */
 287#define KEYPAD_TYPE_NONE        0
 288#define KEYPAD_TYPE_OLD         1
 289#define KEYPAD_TYPE_NEW         2
 290#define KEYPAD_TYPE_NEXCOM      3
 291
 292/*
 293 * panel profiles
 294 */
 295#define PANEL_PROFILE_CUSTOM    0
 296#define PANEL_PROFILE_OLD       1
 297#define PANEL_PROFILE_NEW       2
 298#define PANEL_PROFILE_HANTRONIX 3
 299#define PANEL_PROFILE_NEXCOM    4
 300#define PANEL_PROFILE_LARGE     5
 301
 302/*
 303 * Construct custom config from the kernel's configuration
 304 */
 305#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 306#define DEFAULT_PARPORT         0
 307#define DEFAULT_LCD             LCD_TYPE_OLD
 308#define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
 309#define DEFAULT_LCD_WIDTH       40
 310#define DEFAULT_LCD_BWIDTH      40
 311#define DEFAULT_LCD_HWIDTH      64
 312#define DEFAULT_LCD_HEIGHT      2
 313#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 314
 315#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 316#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 317#define DEFAULT_LCD_PIN_RW      PIN_INITP
 318#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 319#define DEFAULT_LCD_PIN_SDA     PIN_D0
 320#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 321#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 322
 323#ifdef CONFIG_PANEL_PROFILE
 324#undef DEFAULT_PROFILE
 325#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 326#endif
 327
 328#ifdef CONFIG_PANEL_PARPORT
 329#undef DEFAULT_PARPORT
 330#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 331#endif
 332
 333#if DEFAULT_PROFILE == 0        /* custom */
 334#ifdef CONFIG_PANEL_KEYPAD
 335#undef DEFAULT_KEYPAD
 336#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
 337#endif
 338
 339#ifdef CONFIG_PANEL_LCD
 340#undef DEFAULT_LCD
 341#define DEFAULT_LCD CONFIG_PANEL_LCD
 342#endif
 343
 344#ifdef CONFIG_PANEL_LCD_WIDTH
 345#undef DEFAULT_LCD_WIDTH
 346#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 347#endif
 348
 349#ifdef CONFIG_PANEL_LCD_BWIDTH
 350#undef DEFAULT_LCD_BWIDTH
 351#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 352#endif
 353
 354#ifdef CONFIG_PANEL_LCD_HWIDTH
 355#undef DEFAULT_LCD_HWIDTH
 356#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 357#endif
 358
 359#ifdef CONFIG_PANEL_LCD_HEIGHT
 360#undef DEFAULT_LCD_HEIGHT
 361#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 362#endif
 363
 364#ifdef CONFIG_PANEL_LCD_PROTO
 365#undef DEFAULT_LCD_PROTO
 366#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 367#endif
 368
 369#ifdef CONFIG_PANEL_LCD_PIN_E
 370#undef DEFAULT_LCD_PIN_E
 371#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 372#endif
 373
 374#ifdef CONFIG_PANEL_LCD_PIN_RS
 375#undef DEFAULT_LCD_PIN_RS
 376#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 377#endif
 378
 379#ifdef CONFIG_PANEL_LCD_PIN_RW
 380#undef DEFAULT_LCD_PIN_RW
 381#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 382#endif
 383
 384#ifdef CONFIG_PANEL_LCD_PIN_SCL
 385#undef DEFAULT_LCD_PIN_SCL
 386#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 387#endif
 388
 389#ifdef CONFIG_PANEL_LCD_PIN_SDA
 390#undef DEFAULT_LCD_PIN_SDA
 391#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 392#endif
 393
 394#ifdef CONFIG_PANEL_LCD_PIN_BL
 395#undef DEFAULT_LCD_PIN_BL
 396#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 397#endif
 398
 399#ifdef CONFIG_PANEL_LCD_CHARSET
 400#undef DEFAULT_LCD_CHARSET
 401#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 402#endif
 403
 404#endif /* DEFAULT_PROFILE == 0 */
 405
 406/* global variables */
 407static int keypad_open_cnt;     /* #times opened */
 408static int lcd_open_cnt;        /* #times opened */
 409static struct pardevice *pprt;
 410
 411static int lcd_initialized;
 412static int keypad_initialized;
 413
 414static int light_tempo;
 415
 416static char lcd_must_clear;
 417static char lcd_left_shift;
 418static char init_in_progress;
 419
 420static void (*lcd_write_cmd)(int);
 421static void (*lcd_write_data)(int);
 422static void (*lcd_clear_fast)(void);
 423
 424static DEFINE_SPINLOCK(pprt_lock);
 425static struct timer_list scan_timer;
 426
 427MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 428
 429static int parport = -1;
 430module_param(parport, int, 0000);
 431MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 432
 433static int lcd_height = -1;
 434module_param(lcd_height, int, 0000);
 435MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 436
 437static int lcd_width = -1;
 438module_param(lcd_width, int, 0000);
 439MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 440
 441static int lcd_bwidth = -1;     /* internal buffer width (usually 40) */
 442module_param(lcd_bwidth, int, 0000);
 443MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 444
 445static int lcd_hwidth = -1;     /* hardware buffer width (usually 64) */
 446module_param(lcd_hwidth, int, 0000);
 447MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 448
 449static int lcd_enabled = -1;
 450module_param(lcd_enabled, int, 0000);
 451MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 452
 453static int keypad_enabled = -1;
 454module_param(keypad_enabled, int, 0000);
 455MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 456
 457static int lcd_type = -1;
 458module_param(lcd_type, int, 0000);
 459MODULE_PARM_DESC(lcd_type,
 460                 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
 461
 462static int lcd_proto = -1;
 463module_param(lcd_proto, int, 0000);
 464MODULE_PARM_DESC(lcd_proto,
 465                "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 466
 467static int lcd_charset = -1;
 468module_param(lcd_charset, int, 0000);
 469MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 470
 471static int keypad_type = -1;
 472module_param(keypad_type, int, 0000);
 473MODULE_PARM_DESC(keypad_type,
 474                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 475
 476static int profile = DEFAULT_PROFILE;
 477module_param(profile, int, 0000);
 478MODULE_PARM_DESC(profile,
 479                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 480                 "4=16x2 nexcom; default=40x2, old kp");
 481
 482/*
 483 * These are the parallel port pins the LCD control signals are connected to.
 484 * Set this to 0 if the signal is not used. Set it to its opposite value
 485 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 486 * pin has not been explicitly specified.
 487 *
 488 * WARNING! no check will be performed about collisions with keypad !
 489 */
 490
 491static int lcd_e_pin  = PIN_NOT_SET;
 492module_param(lcd_e_pin, int, 0000);
 493MODULE_PARM_DESC(lcd_e_pin,
 494                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 495
 496static int lcd_rs_pin = PIN_NOT_SET;
 497module_param(lcd_rs_pin, int, 0000);
 498MODULE_PARM_DESC(lcd_rs_pin,
 499                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 500
 501static int lcd_rw_pin = PIN_NOT_SET;
 502module_param(lcd_rw_pin, int, 0000);
 503MODULE_PARM_DESC(lcd_rw_pin,
 504                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 505
 506static int lcd_bl_pin = PIN_NOT_SET;
 507module_param(lcd_bl_pin, int, 0000);
 508MODULE_PARM_DESC(lcd_bl_pin,
 509                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 510
 511static int lcd_da_pin = PIN_NOT_SET;
 512module_param(lcd_da_pin, int, 0000);
 513MODULE_PARM_DESC(lcd_da_pin,
 514                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 515
 516static int lcd_cl_pin = PIN_NOT_SET;
 517module_param(lcd_cl_pin, int, 0000);
 518MODULE_PARM_DESC(lcd_cl_pin,
 519                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 520
 521static const unsigned char *lcd_char_conv;
 522
 523/* for some LCD drivers (ks0074) we need a charset conversion table. */
 524static const unsigned char lcd_char_conv_ks0074[256] = {
 525        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 526        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 527        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 528        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 529        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 530        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 531        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 532        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 533        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 534        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 535        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 536        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 537        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 538        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 539        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 540        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 541        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 542        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 543        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 544        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 545        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 546        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 547        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 548        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 549        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 550        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 551        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 552        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 553        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 554        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 555        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 556        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 557        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 558};
 559
 560static const char old_keypad_profile[][4][9] = {
 561        {"S0", "Left\n", "Left\n", ""},
 562        {"S1", "Down\n", "Down\n", ""},
 563        {"S2", "Up\n", "Up\n", ""},
 564        {"S3", "Right\n", "Right\n", ""},
 565        {"S4", "Esc\n", "Esc\n", ""},
 566        {"S5", "Ret\n", "Ret\n", ""},
 567        {"", "", "", ""}
 568};
 569
 570/* signals, press, repeat, release */
 571static const char new_keypad_profile[][4][9] = {
 572        {"S0", "Left\n", "Left\n", ""},
 573        {"S1", "Down\n", "Down\n", ""},
 574        {"S2", "Up\n", "Up\n", ""},
 575        {"S3", "Right\n", "Right\n", ""},
 576        {"S4s5", "", "Esc\n", "Esc\n"},
 577        {"s4S5", "", "Ret\n", "Ret\n"},
 578        {"S4S5", "Help\n", "", ""},
 579        /* add new signals above this line */
 580        {"", "", "", ""}
 581};
 582
 583/* signals, press, repeat, release */
 584static const char nexcom_keypad_profile[][4][9] = {
 585        {"a-p-e-", "Down\n", "Down\n", ""},
 586        {"a-p-E-", "Ret\n", "Ret\n", ""},
 587        {"a-P-E-", "Esc\n", "Esc\n", ""},
 588        {"a-P-e-", "Up\n", "Up\n", ""},
 589        /* add new signals above this line */
 590        {"", "", "", ""}
 591};
 592
 593static const char (*keypad_profile)[4][9] = old_keypad_profile;
 594
 595/* FIXME: this should be converted to a bit array containing signals states */
 596static struct {
 597        unsigned char e;  /* parallel LCD E (data latch on falling edge) */
 598        unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
 599        unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
 600        unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
 601        unsigned char cl; /* serial LCD clock (latch on rising edge) */
 602        unsigned char da; /* serial LCD data */
 603} bits;
 604
 605static void init_scan_timer(void);
 606
 607/* sets data port bits according to current signals values */
 608static int set_data_bits(void)
 609{
 610        int val, bit;
 611
 612        val = r_dtr(pprt);
 613        for (bit = 0; bit < LCD_BITS; bit++)
 614                val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
 615
 616        val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
 617            | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
 618            | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
 619            | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
 620            | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
 621            | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
 622
 623        w_dtr(pprt, val);
 624        return val;
 625}
 626
 627/* sets ctrl port bits according to current signals values */
 628static int set_ctrl_bits(void)
 629{
 630        int val, bit;
 631
 632        val = r_ctr(pprt);
 633        for (bit = 0; bit < LCD_BITS; bit++)
 634                val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
 635
 636        val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
 637            | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
 638            | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
 639            | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
 640            | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
 641            | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
 642
 643        w_ctr(pprt, val);
 644        return val;
 645}
 646
 647/* sets ctrl & data port bits according to current signals values */
 648static void panel_set_bits(void)
 649{
 650        set_data_bits();
 651        set_ctrl_bits();
 652}
 653
 654/*
 655 * Converts a parallel port pin (from -25 to 25) to data and control ports
 656 * masks, and data and control port bits. The signal will be considered
 657 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 658 *
 659 * Result will be used this way :
 660 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 661 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 662 */
 663static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 664{
 665        int d_bit, c_bit, inv;
 666
 667        d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
 668        d_val[2] = c_val[2] = 0xFF;
 669
 670        if (pin == 0)
 671                return;
 672
 673        inv = (pin < 0);
 674        if (inv)
 675                pin = -pin;
 676
 677        d_bit = c_bit = 0;
 678
 679        switch (pin) {
 680        case PIN_STROBE:        /* strobe, inverted */
 681                c_bit = PNL_PSTROBE;
 682                inv = !inv;
 683                break;
 684        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 685                d_bit = 1 << (pin - 2);
 686                break;
 687        case PIN_AUTOLF:        /* autofeed, inverted */
 688                c_bit = PNL_PAUTOLF;
 689                inv = !inv;
 690                break;
 691        case PIN_INITP:         /* init, direct */
 692                c_bit = PNL_PINITP;
 693                break;
 694        case PIN_SELECP:        /* select_in, inverted */
 695                c_bit = PNL_PSELECP;
 696                inv = !inv;
 697                break;
 698        default:                /* unknown pin, ignore */
 699                break;
 700        }
 701
 702        if (c_bit) {
 703                c_val[2] &= ~c_bit;
 704                c_val[!inv] = c_bit;
 705        } else if (d_bit) {
 706                d_val[2] &= ~d_bit;
 707                d_val[!inv] = d_bit;
 708        }
 709}
 710
 711/* sleeps that many milliseconds with a reschedule */
 712static void long_sleep(int ms)
 713{
 714
 715        if (in_interrupt())
 716                mdelay(ms);
 717        else {
 718                current->state = TASK_INTERRUPTIBLE;
 719                schedule_timeout((ms * HZ + 999) / 1000);
 720        }
 721}
 722
 723/* send a serial byte to the LCD panel. The caller is responsible for locking
 724   if needed. */
 725static void lcd_send_serial(int byte)
 726{
 727        int bit;
 728
 729        /* the data bit is set on D0, and the clock on STROBE.
 730         * LCD reads D0 on STROBE's rising edge. */
 731        for (bit = 0; bit < 8; bit++) {
 732                bits.cl = BIT_CLR;      /* CLK low */
 733                panel_set_bits();
 734                bits.da = byte & 1;
 735                panel_set_bits();
 736                udelay(2);  /* maintain the data during 2 us before CLK up */
 737                bits.cl = BIT_SET;      /* CLK high */
 738                panel_set_bits();
 739                udelay(1);  /* maintain the strobe during 1 us */
 740                byte >>= 1;
 741        }
 742}
 743
 744/* turn the backlight on or off */
 745static void lcd_backlight(int on)
 746{
 747        if (lcd_bl_pin == PIN_NONE)
 748                return;
 749
 750        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 751        spin_lock_irq(&pprt_lock);
 752        bits.bl = on;
 753        panel_set_bits();
 754        spin_unlock_irq(&pprt_lock);
 755}
 756
 757/* send a command to the LCD panel in serial mode */
 758static void lcd_write_cmd_s(int cmd)
 759{
 760        spin_lock_irq(&pprt_lock);
 761        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 762        lcd_send_serial(cmd & 0x0F);
 763        lcd_send_serial((cmd >> 4) & 0x0F);
 764        udelay(40);             /* the shortest command takes at least 40 us */
 765        spin_unlock_irq(&pprt_lock);
 766}
 767
 768/* send data to the LCD panel in serial mode */
 769static void lcd_write_data_s(int data)
 770{
 771        spin_lock_irq(&pprt_lock);
 772        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 773        lcd_send_serial(data & 0x0F);
 774        lcd_send_serial((data >> 4) & 0x0F);
 775        udelay(40);             /* the shortest data takes at least 40 us */
 776        spin_unlock_irq(&pprt_lock);
 777}
 778
 779/* send a command to the LCD panel in 8 bits parallel mode */
 780static void lcd_write_cmd_p8(int cmd)
 781{
 782        spin_lock_irq(&pprt_lock);
 783        /* present the data to the data port */
 784        w_dtr(pprt, cmd);
 785        udelay(20);     /* maintain the data during 20 us before the strobe */
 786
 787        bits.e = BIT_SET;
 788        bits.rs = BIT_CLR;
 789        bits.rw = BIT_CLR;
 790        set_ctrl_bits();
 791
 792        udelay(40);     /* maintain the strobe during 40 us */
 793
 794        bits.e = BIT_CLR;
 795        set_ctrl_bits();
 796
 797        udelay(120);    /* the shortest command takes at least 120 us */
 798        spin_unlock_irq(&pprt_lock);
 799}
 800
 801/* send data to the LCD panel in 8 bits parallel mode */
 802static void lcd_write_data_p8(int data)
 803{
 804        spin_lock_irq(&pprt_lock);
 805        /* present the data to the data port */
 806        w_dtr(pprt, data);
 807        udelay(20);     /* maintain the data during 20 us before the strobe */
 808
 809        bits.e = BIT_SET;
 810        bits.rs = BIT_SET;
 811        bits.rw = BIT_CLR;
 812        set_ctrl_bits();
 813
 814        udelay(40);     /* maintain the strobe during 40 us */
 815
 816        bits.e = BIT_CLR;
 817        set_ctrl_bits();
 818
 819        udelay(45);     /* the shortest data takes at least 45 us */
 820        spin_unlock_irq(&pprt_lock);
 821}
 822
 823/* send a command to the TI LCD panel */
 824static void lcd_write_cmd_tilcd(int cmd)
 825{
 826        spin_lock_irq(&pprt_lock);
 827        /* present the data to the control port */
 828        w_ctr(pprt, cmd);
 829        udelay(60);
 830        spin_unlock_irq(&pprt_lock);
 831}
 832
 833/* send data to the TI LCD panel */
 834static void lcd_write_data_tilcd(int data)
 835{
 836        spin_lock_irq(&pprt_lock);
 837        /* present the data to the data port */
 838        w_dtr(pprt, data);
 839        udelay(60);
 840        spin_unlock_irq(&pprt_lock);
 841}
 842
 843static void lcd_gotoxy(void)
 844{
 845        lcd_write_cmd(0x80      /* set DDRAM address */
 846                      | (lcd_addr_y ? lcd_hwidth : 0)
 847                      /* we force the cursor to stay at the end of the
 848                         line if it wants to go farther */
 849                      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
 850                         (lcd_hwidth - 1) : lcd_bwidth - 1));
 851}
 852
 853static void lcd_print(char c)
 854{
 855        if (lcd_addr_x < lcd_bwidth) {
 856                if (lcd_char_conv != NULL)
 857                        c = lcd_char_conv[(unsigned char)c];
 858                lcd_write_data(c);
 859                lcd_addr_x++;
 860        }
 861        /* prevents the cursor from wrapping onto the next line */
 862        if (lcd_addr_x == lcd_bwidth)
 863                lcd_gotoxy();
 864}
 865
 866/* fills the display with spaces and resets X/Y */
 867static void lcd_clear_fast_s(void)
 868{
 869        int pos;
 870        lcd_addr_x = lcd_addr_y = 0;
 871        lcd_gotoxy();
 872
 873        spin_lock_irq(&pprt_lock);
 874        for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 875                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 876                lcd_send_serial(' ' & 0x0F);
 877                lcd_send_serial((' ' >> 4) & 0x0F);
 878                udelay(40);     /* the shortest data takes at least 40 us */
 879        }
 880        spin_unlock_irq(&pprt_lock);
 881
 882        lcd_addr_x = lcd_addr_y = 0;
 883        lcd_gotoxy();
 884}
 885
 886/* fills the display with spaces and resets X/Y */
 887static void lcd_clear_fast_p8(void)
 888{
 889        int pos;
 890        lcd_addr_x = lcd_addr_y = 0;
 891        lcd_gotoxy();
 892
 893        spin_lock_irq(&pprt_lock);
 894        for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 895                /* present the data to the data port */
 896                w_dtr(pprt, ' ');
 897
 898                /* maintain the data during 20 us before the strobe */
 899                udelay(20);
 900
 901                bits.e = BIT_SET;
 902                bits.rs = BIT_SET;
 903                bits.rw = BIT_CLR;
 904                set_ctrl_bits();
 905
 906                /* maintain the strobe during 40 us */
 907                udelay(40);
 908
 909                bits.e = BIT_CLR;
 910                set_ctrl_bits();
 911
 912                /* the shortest data takes at least 45 us */
 913                udelay(45);
 914        }
 915        spin_unlock_irq(&pprt_lock);
 916
 917        lcd_addr_x = lcd_addr_y = 0;
 918        lcd_gotoxy();
 919}
 920
 921/* fills the display with spaces and resets X/Y */
 922static void lcd_clear_fast_tilcd(void)
 923{
 924        int pos;
 925        lcd_addr_x = lcd_addr_y = 0;
 926        lcd_gotoxy();
 927
 928        spin_lock_irq(&pprt_lock);
 929        for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 930                /* present the data to the data port */
 931                w_dtr(pprt, ' ');
 932                udelay(60);
 933        }
 934
 935        spin_unlock_irq(&pprt_lock);
 936
 937        lcd_addr_x = lcd_addr_y = 0;
 938        lcd_gotoxy();
 939}
 940
 941/* clears the display and resets X/Y */
 942static void lcd_clear_display(void)
 943{
 944        lcd_write_cmd(0x01);    /* clear display */
 945        lcd_addr_x = lcd_addr_y = 0;
 946        /* we must wait a few milliseconds (15) */
 947        long_sleep(15);
 948}
 949
 950static void lcd_init_display(void)
 951{
 952
 953        lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
 954            | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
 955
 956        long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
 957
 958        lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
 959        long_sleep(10);
 960        lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
 961        long_sleep(10);
 962        lcd_write_cmd(0x30);    /* 8bits, 1 line, small fonts */
 963        long_sleep(10);
 964
 965        lcd_write_cmd(0x30      /* set font height and lines number */
 966                      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
 967                      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
 968            );
 969        long_sleep(10);
 970
 971        lcd_write_cmd(0x08);    /* display off, cursor off, blink off */
 972        long_sleep(10);
 973
 974        lcd_write_cmd(0x08      /* set display mode */
 975                      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
 976                      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
 977                      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
 978            );
 979
 980        lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
 981
 982        long_sleep(10);
 983
 984        /* entry mode set : increment, cursor shifting */
 985        lcd_write_cmd(0x06);
 986
 987        lcd_clear_display();
 988}
 989
 990/*
 991 * These are the file operation function for user access to /dev/lcd
 992 * This function can also be called from inside the kernel, by
 993 * setting file and ppos to NULL.
 994 *
 995 */
 996
 997static inline int handle_lcd_special_code(void)
 998{
 999        /* LCD special codes */
1000
1001        int processed = 0;
1002
1003        char *esc = lcd_escape + 2;
1004        int oldflags = lcd_flags;
1005
1006        /* check for display mode flags */
1007        switch (*esc) {
1008        case 'D':       /* Display ON */
1009                lcd_flags |= LCD_FLAG_D;
1010                processed = 1;
1011                break;
1012        case 'd':       /* Display OFF */
1013                lcd_flags &= ~LCD_FLAG_D;
1014                processed = 1;
1015                break;
1016        case 'C':       /* Cursor ON */
1017                lcd_flags |= LCD_FLAG_C;
1018                processed = 1;
1019                break;
1020        case 'c':       /* Cursor OFF */
1021                lcd_flags &= ~LCD_FLAG_C;
1022                processed = 1;
1023                break;
1024        case 'B':       /* Blink ON */
1025                lcd_flags |= LCD_FLAG_B;
1026                processed = 1;
1027                break;
1028        case 'b':       /* Blink OFF */
1029                lcd_flags &= ~LCD_FLAG_B;
1030                processed = 1;
1031                break;
1032        case '+':       /* Back light ON */
1033                lcd_flags |= LCD_FLAG_L;
1034                processed = 1;
1035                break;
1036        case '-':       /* Back light OFF */
1037                lcd_flags &= ~LCD_FLAG_L;
1038                processed = 1;
1039                break;
1040        case '*':
1041                /* flash back light using the keypad timer */
1042                if (scan_timer.function != NULL) {
1043                        if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1044                                lcd_backlight(1);
1045                        light_tempo = FLASH_LIGHT_TEMPO;
1046                }
1047                processed = 1;
1048                break;
1049        case 'f':       /* Small Font */
1050                lcd_flags &= ~LCD_FLAG_F;
1051                processed = 1;
1052                break;
1053        case 'F':       /* Large Font */
1054                lcd_flags |= LCD_FLAG_F;
1055                processed = 1;
1056                break;
1057        case 'n':       /* One Line */
1058                lcd_flags &= ~LCD_FLAG_N;
1059                processed = 1;
1060                break;
1061        case 'N':       /* Two Lines */
1062                lcd_flags |= LCD_FLAG_N;
1063                break;
1064        case 'l':       /* Shift Cursor Left */
1065                if (lcd_addr_x > 0) {
1066                        /* back one char if not at end of line */
1067                        if (lcd_addr_x < lcd_bwidth)
1068                                lcd_write_cmd(0x10);
1069                        lcd_addr_x--;
1070                }
1071                processed = 1;
1072                break;
1073        case 'r':       /* shift cursor right */
1074                if (lcd_addr_x < lcd_width) {
1075                        /* allow the cursor to pass the end of the line */
1076                        if (lcd_addr_x <
1077                            (lcd_bwidth - 1))
1078                                lcd_write_cmd(0x14);
1079                        lcd_addr_x++;
1080                }
1081                processed = 1;
1082                break;
1083        case 'L':       /* shift display left */
1084                lcd_left_shift++;
1085                lcd_write_cmd(0x18);
1086                processed = 1;
1087                break;
1088        case 'R':       /* shift display right */
1089                lcd_left_shift--;
1090                lcd_write_cmd(0x1C);
1091                processed = 1;
1092                break;
1093        case 'k': {     /* kill end of line */
1094                int x;
1095                for (x = lcd_addr_x; x < lcd_bwidth; x++)
1096                        lcd_write_data(' ');
1097
1098                /* restore cursor position */
1099                lcd_gotoxy();
1100                processed = 1;
1101                break;
1102        }
1103        case 'I':       /* reinitialize display */
1104                lcd_init_display();
1105                lcd_left_shift = 0;
1106                processed = 1;
1107                break;
1108        case 'G': {
1109                /* Generator : LGcxxxxx...xx; must have <c> between '0'
1110                 * and '7', representing the numerical ASCII code of the
1111                 * redefined character, and <xx...xx> a sequence of 16
1112                 * hex digits representing 8 bytes for each character.
1113                 * Most LCDs will only use 5 lower bits of the 7 first
1114                 * bytes.
1115                 */
1116
1117                unsigned char cgbytes[8];
1118                unsigned char cgaddr;
1119                int cgoffset;
1120                int shift;
1121                char value;
1122                int addr;
1123
1124                if (strchr(esc, ';') == NULL)
1125                        break;
1126
1127                esc++;
1128
1129                cgaddr = *(esc++) - '0';
1130                if (cgaddr > 7) {
1131                        processed = 1;
1132                        break;
1133                }
1134
1135                cgoffset = 0;
1136                shift = 0;
1137                value = 0;
1138                while (*esc && cgoffset < 8) {
1139                        shift ^= 4;
1140                        if (*esc >= '0' && *esc <= '9')
1141                                value |= (*esc - '0') << shift;
1142                        else if (*esc >= 'A' && *esc <= 'Z')
1143                                value |= (*esc - 'A' + 10) << shift;
1144                        else if (*esc >= 'a' && *esc <= 'z')
1145                                value |= (*esc - 'a' + 10) << shift;
1146                        else {
1147                                esc++;
1148                                continue;
1149                        }
1150
1151                        if (shift == 0) {
1152                                cgbytes[cgoffset++] = value;
1153                                value = 0;
1154                        }
1155
1156                        esc++;
1157                }
1158
1159                lcd_write_cmd(0x40 | (cgaddr * 8));
1160                for (addr = 0; addr < cgoffset; addr++)
1161                        lcd_write_data(cgbytes[addr]);
1162
1163                /* ensures that we stop writing to CGRAM */
1164                lcd_gotoxy();
1165                processed = 1;
1166                break;
1167        }
1168        case 'x':       /* gotoxy : LxXXX[yYYY]; */
1169        case 'y':       /* gotoxy : LyYYY[xXXX]; */
1170                if (strchr(esc, ';') == NULL)
1171                        break;
1172
1173                while (*esc) {
1174                        if (*esc == 'x') {
1175                                esc++;
1176                                if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1177                                        break;
1178                        } else if (*esc == 'y') {
1179                                esc++;
1180                                if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1181                                        break;
1182                        } else
1183                                break;
1184                }
1185
1186                lcd_gotoxy();
1187                processed = 1;
1188                break;
1189        }
1190
1191        /* Check whether one flag was changed */
1192        if (oldflags != lcd_flags) {
1193                /* check whether one of B,C,D flags were changed */
1194                if ((oldflags ^ lcd_flags) &
1195                    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1196                        /* set display mode */
1197                        lcd_write_cmd(0x08
1198                                      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1199                                      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1200                                      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1201                /* check whether one of F,N flags was changed */
1202                else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1203                        lcd_write_cmd(0x30
1204                                      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1205                                      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1206                /* check whether L flag was changed */
1207                else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1208                        if (lcd_flags & (LCD_FLAG_L))
1209                                lcd_backlight(1);
1210                        else if (light_tempo == 0)
1211                                /* switch off the light only when the tempo
1212                                   lighting is gone */
1213                                lcd_backlight(0);
1214                }
1215        }
1216
1217        return processed;
1218}
1219
1220static ssize_t lcd_write(struct file *file,
1221                         const char *buf, size_t count, loff_t *ppos)
1222{
1223        const char *tmp = buf;
1224        char c;
1225
1226        for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1227                if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1228                        /* let's be a little nice with other processes
1229                           that need some CPU */
1230                        schedule();
1231
1232                if (ppos == NULL && file == NULL)
1233                        /* let's not use get_user() from the kernel ! */
1234                        c = *tmp;
1235                else if (get_user(c, tmp))
1236                        return -EFAULT;
1237
1238                /* first, we'll test if we're in escape mode */
1239                if ((c != '\n') && lcd_escape_len >= 0) {
1240                        /* yes, let's add this char to the buffer */
1241                        lcd_escape[lcd_escape_len++] = c;
1242                        lcd_escape[lcd_escape_len] = 0;
1243                } else {
1244                        /* aborts any previous escape sequence */
1245                        lcd_escape_len = -1;
1246
1247                        switch (c) {
1248                        case LCD_ESCAPE_CHAR:
1249                                /* start of an escape sequence */
1250                                lcd_escape_len = 0;
1251                                lcd_escape[lcd_escape_len] = 0;
1252                                break;
1253                        case '\b':
1254                                /* go back one char and clear it */
1255                                if (lcd_addr_x > 0) {
1256                                        /* check if we're not at the
1257                                           end of the line */
1258                                        if (lcd_addr_x < lcd_bwidth)
1259                                                /* back one char */
1260                                                lcd_write_cmd(0x10);
1261                                        lcd_addr_x--;
1262                                }
1263                                /* replace with a space */
1264                                lcd_write_data(' ');
1265                                /* back one char again */
1266                                lcd_write_cmd(0x10);
1267                                break;
1268                        case '\014':
1269                                /* quickly clear the display */
1270                                lcd_clear_fast();
1271                                break;
1272                        case '\n':
1273                                /* flush the remainder of the current line and
1274                                   go to the beginning of the next line */
1275                                for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1276                                        lcd_write_data(' ');
1277                                lcd_addr_x = 0;
1278                                lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1279                                lcd_gotoxy();
1280                                break;
1281                        case '\r':
1282                                /* go to the beginning of the same line */
1283                                lcd_addr_x = 0;
1284                                lcd_gotoxy();
1285                                break;
1286                        case '\t':
1287                                /* print a space instead of the tab */
1288                                lcd_print(' ');
1289                                break;
1290                        default:
1291                                /* simply print this char */
1292                                lcd_print(c);
1293                                break;
1294                        }
1295                }
1296
1297                /* now we'll see if we're in an escape mode and if the current
1298                   escape sequence can be understood. */
1299                if (lcd_escape_len >= 2) {
1300                        int processed = 0;
1301
1302                        if (!strcmp(lcd_escape, "[2J")) {
1303                                /* clear the display */
1304                                lcd_clear_fast();
1305                                processed = 1;
1306                        } else if (!strcmp(lcd_escape, "[H")) {
1307                                /* cursor to home */
1308                                lcd_addr_x = lcd_addr_y = 0;
1309                                lcd_gotoxy();
1310                                processed = 1;
1311                        }
1312                        /* codes starting with ^[[L */
1313                        else if ((lcd_escape_len >= 3) &&
1314                                 (lcd_escape[0] == '[') &&
1315                                 (lcd_escape[1] == 'L')) {
1316                                processed = handle_lcd_special_code();
1317                        }
1318
1319                        /* LCD special escape codes */
1320                        /* flush the escape sequence if it's been processed
1321                           or if it is getting too long. */
1322                        if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1323                                lcd_escape_len = -1;
1324                } /* escape codes */
1325        }
1326
1327        return tmp - buf;
1328}
1329
1330static int lcd_open(struct inode *inode, struct file *file)
1331{
1332        if (lcd_open_cnt)
1333                return -EBUSY;  /* open only once at a time */
1334
1335        if (file->f_mode & FMODE_READ)  /* device is write-only */
1336                return -EPERM;
1337
1338        if (lcd_must_clear) {
1339                lcd_clear_display();
1340                lcd_must_clear = 0;
1341        }
1342        lcd_open_cnt++;
1343        return nonseekable_open(inode, file);
1344}
1345
1346static int lcd_release(struct inode *inode, struct file *file)
1347{
1348        lcd_open_cnt--;
1349        return 0;
1350}
1351
1352static const struct file_operations lcd_fops = {
1353        .write   = lcd_write,
1354        .open    = lcd_open,
1355        .release = lcd_release,
1356        .llseek  = no_llseek,
1357};
1358
1359static struct miscdevice lcd_dev = {
1360        LCD_MINOR,
1361        "lcd",
1362        &lcd_fops
1363};
1364
1365/* public function usable from the kernel for any purpose */
1366static void panel_lcd_print(const char *s)
1367{
1368        if (lcd_enabled && lcd_initialized)
1369                lcd_write(NULL, s, strlen(s), NULL);
1370}
1371
1372/* initialize the LCD driver */
1373static void lcd_init(void)
1374{
1375        switch (lcd_type) {
1376        case LCD_TYPE_OLD:
1377                /* parallel mode, 8 bits */
1378                if (lcd_proto < 0)
1379                        lcd_proto = LCD_PROTO_PARALLEL;
1380                if (lcd_charset < 0)
1381                        lcd_charset = LCD_CHARSET_NORMAL;
1382                if (lcd_e_pin == PIN_NOT_SET)
1383                        lcd_e_pin = PIN_STROBE;
1384                if (lcd_rs_pin == PIN_NOT_SET)
1385                        lcd_rs_pin = PIN_AUTOLF;
1386
1387                if (lcd_width < 0)
1388                        lcd_width = 40;
1389                if (lcd_bwidth < 0)
1390                        lcd_bwidth = 40;
1391                if (lcd_hwidth < 0)
1392                        lcd_hwidth = 64;
1393                if (lcd_height < 0)
1394                        lcd_height = 2;
1395                break;
1396        case LCD_TYPE_KS0074:
1397                /* serial mode, ks0074 */
1398                if (lcd_proto < 0)
1399                        lcd_proto = LCD_PROTO_SERIAL;
1400                if (lcd_charset < 0)
1401                        lcd_charset = LCD_CHARSET_KS0074;
1402                if (lcd_bl_pin == PIN_NOT_SET)
1403                        lcd_bl_pin = PIN_AUTOLF;
1404                if (lcd_cl_pin == PIN_NOT_SET)
1405                        lcd_cl_pin = PIN_STROBE;
1406                if (lcd_da_pin == PIN_NOT_SET)
1407                        lcd_da_pin = PIN_D0;
1408
1409                if (lcd_width < 0)
1410                        lcd_width = 16;
1411                if (lcd_bwidth < 0)
1412                        lcd_bwidth = 40;
1413                if (lcd_hwidth < 0)
1414                        lcd_hwidth = 16;
1415                if (lcd_height < 0)
1416                        lcd_height = 2;
1417                break;
1418        case LCD_TYPE_NEXCOM:
1419                /* parallel mode, 8 bits, generic */
1420                if (lcd_proto < 0)
1421                        lcd_proto = LCD_PROTO_PARALLEL;
1422                if (lcd_charset < 0)
1423                        lcd_charset = LCD_CHARSET_NORMAL;
1424                if (lcd_e_pin == PIN_NOT_SET)
1425                        lcd_e_pin = PIN_AUTOLF;
1426                if (lcd_rs_pin == PIN_NOT_SET)
1427                        lcd_rs_pin = PIN_SELECP;
1428                if (lcd_rw_pin == PIN_NOT_SET)
1429                        lcd_rw_pin = PIN_INITP;
1430
1431                if (lcd_width < 0)
1432                        lcd_width = 16;
1433                if (lcd_bwidth < 0)
1434                        lcd_bwidth = 40;
1435                if (lcd_hwidth < 0)
1436                        lcd_hwidth = 64;
1437                if (lcd_height < 0)
1438                        lcd_height = 2;
1439                break;
1440        case LCD_TYPE_CUSTOM:
1441                /* customer-defined */
1442                if (lcd_proto < 0)
1443                        lcd_proto = DEFAULT_LCD_PROTO;
1444                if (lcd_charset < 0)
1445                        lcd_charset = DEFAULT_LCD_CHARSET;
1446                /* default geometry will be set later */
1447                break;
1448        case LCD_TYPE_HANTRONIX:
1449                /* parallel mode, 8 bits, hantronix-like */
1450        default:
1451                if (lcd_proto < 0)
1452                        lcd_proto = LCD_PROTO_PARALLEL;
1453                if (lcd_charset < 0)
1454                        lcd_charset = LCD_CHARSET_NORMAL;
1455                if (lcd_e_pin == PIN_NOT_SET)
1456                        lcd_e_pin = PIN_STROBE;
1457                if (lcd_rs_pin == PIN_NOT_SET)
1458                        lcd_rs_pin = PIN_SELECP;
1459
1460                if (lcd_width < 0)
1461                        lcd_width = 16;
1462                if (lcd_bwidth < 0)
1463                        lcd_bwidth = 40;
1464                if (lcd_hwidth < 0)
1465                        lcd_hwidth = 64;
1466                if (lcd_height < 0)
1467                        lcd_height = 2;
1468                break;
1469        }
1470
1471        /* this is used to catch wrong and default values */
1472        if (lcd_width <= 0)
1473                lcd_width = DEFAULT_LCD_WIDTH;
1474        if (lcd_bwidth <= 0)
1475                lcd_bwidth = DEFAULT_LCD_BWIDTH;
1476        if (lcd_hwidth <= 0)
1477                lcd_hwidth = DEFAULT_LCD_HWIDTH;
1478        if (lcd_height <= 0)
1479                lcd_height = DEFAULT_LCD_HEIGHT;
1480
1481        if (lcd_proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1482                lcd_write_cmd = lcd_write_cmd_s;
1483                lcd_write_data = lcd_write_data_s;
1484                lcd_clear_fast = lcd_clear_fast_s;
1485
1486                if (lcd_cl_pin == PIN_NOT_SET)
1487                        lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1488                if (lcd_da_pin == PIN_NOT_SET)
1489                        lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1490
1491        } else if (lcd_proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1492                lcd_write_cmd = lcd_write_cmd_p8;
1493                lcd_write_data = lcd_write_data_p8;
1494                lcd_clear_fast = lcd_clear_fast_p8;
1495
1496                if (lcd_e_pin == PIN_NOT_SET)
1497                        lcd_e_pin = DEFAULT_LCD_PIN_E;
1498                if (lcd_rs_pin == PIN_NOT_SET)
1499                        lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1500                if (lcd_rw_pin == PIN_NOT_SET)
1501                        lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1502        } else {
1503                lcd_write_cmd = lcd_write_cmd_tilcd;
1504                lcd_write_data = lcd_write_data_tilcd;
1505                lcd_clear_fast = lcd_clear_fast_tilcd;
1506        }
1507
1508        if (lcd_bl_pin == PIN_NOT_SET)
1509                lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1510
1511        if (lcd_e_pin == PIN_NOT_SET)
1512                lcd_e_pin = PIN_NONE;
1513        if (lcd_rs_pin == PIN_NOT_SET)
1514                lcd_rs_pin = PIN_NONE;
1515        if (lcd_rw_pin == PIN_NOT_SET)
1516                lcd_rw_pin = PIN_NONE;
1517        if (lcd_bl_pin == PIN_NOT_SET)
1518                lcd_bl_pin = PIN_NONE;
1519        if (lcd_cl_pin == PIN_NOT_SET)
1520                lcd_cl_pin = PIN_NONE;
1521        if (lcd_da_pin == PIN_NOT_SET)
1522                lcd_da_pin = PIN_NONE;
1523
1524        if (lcd_charset < 0)
1525                lcd_charset = DEFAULT_LCD_CHARSET;
1526
1527        if (lcd_charset == LCD_CHARSET_KS0074)
1528                lcd_char_conv = lcd_char_conv_ks0074;
1529        else
1530                lcd_char_conv = NULL;
1531
1532        if (lcd_bl_pin != PIN_NONE)
1533                init_scan_timer();
1534
1535        pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1536                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1537        pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1538                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1539        pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1540                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1541        pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1542                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1543        pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1544                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1545        pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1546                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1547
1548        /* before this line, we must NOT send anything to the display.
1549         * Since lcd_init_display() needs to write data, we have to
1550         * enable mark the LCD initialized just before. */
1551        lcd_initialized = 1;
1552        lcd_init_display();
1553
1554        /* display a short message */
1555#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1556#ifdef CONFIG_PANEL_BOOT_MESSAGE
1557        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1558#endif
1559#else
1560        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1561                        PANEL_VERSION);
1562#endif
1563        lcd_addr_x = lcd_addr_y = 0;
1564        /* clear the display on the next device opening */
1565        lcd_must_clear = 1;
1566        lcd_gotoxy();
1567}
1568
1569/*
1570 * These are the file operation function for user access to /dev/keypad
1571 */
1572
1573static ssize_t keypad_read(struct file *file,
1574                           char *buf, size_t count, loff_t *ppos)
1575{
1576
1577        unsigned i = *ppos;
1578        char *tmp = buf;
1579
1580        if (keypad_buflen == 0) {
1581                if (file->f_flags & O_NONBLOCK)
1582                        return -EAGAIN;
1583
1584                if (wait_event_interruptible(keypad_read_wait,
1585                                             keypad_buflen != 0))
1586                        return -EINTR;
1587        }
1588
1589        for (; count-- > 0 && (keypad_buflen > 0);
1590             ++i, ++tmp, --keypad_buflen) {
1591                put_user(keypad_buffer[keypad_start], tmp);
1592                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1593        }
1594        *ppos = i;
1595
1596        return tmp - buf;
1597}
1598
1599static int keypad_open(struct inode *inode, struct file *file)
1600{
1601
1602        if (keypad_open_cnt)
1603                return -EBUSY;  /* open only once at a time */
1604
1605        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1606                return -EPERM;
1607
1608        keypad_buflen = 0;      /* flush the buffer on opening */
1609        keypad_open_cnt++;
1610        return 0;
1611}
1612
1613static int keypad_release(struct inode *inode, struct file *file)
1614{
1615        keypad_open_cnt--;
1616        return 0;
1617}
1618
1619static const struct file_operations keypad_fops = {
1620        .read    = keypad_read,         /* read */
1621        .open    = keypad_open,         /* open */
1622        .release = keypad_release,      /* close */
1623        .llseek  = default_llseek,
1624};
1625
1626static struct miscdevice keypad_dev = {
1627        KEYPAD_MINOR,
1628        "keypad",
1629        &keypad_fops
1630};
1631
1632static void keypad_send_key(const char *string, int max_len)
1633{
1634        if (init_in_progress)
1635                return;
1636
1637        /* send the key to the device only if a process is attached to it. */
1638        if (keypad_open_cnt > 0) {
1639                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1640                        keypad_buffer[(keypad_start + keypad_buflen++) %
1641                                      KEYPAD_BUFFER] = *string++;
1642                }
1643                wake_up_interruptible(&keypad_read_wait);
1644        }
1645}
1646
1647/* this function scans all the bits involving at least one logical signal,
1648 * and puts the results in the bitfield "phys_read" (one bit per established
1649 * contact), and sets "phys_read_prev" to "phys_read".
1650 *
1651 * Note: to debounce input signals, we will only consider as switched a signal
1652 * which is stable across 2 measures. Signals which are different between two
1653 * reads will be kept as they previously were in their logical form (phys_prev).
1654 * A signal which has just switched will have a 1 in
1655 * (phys_read ^ phys_read_prev).
1656 */
1657static void phys_scan_contacts(void)
1658{
1659        int bit, bitval;
1660        char oldval;
1661        char bitmask;
1662        char gndmask;
1663
1664        phys_prev = phys_curr;
1665        phys_read_prev = phys_read;
1666        phys_read = 0;          /* flush all signals */
1667
1668        /* keep track of old value, with all outputs disabled */
1669        oldval = r_dtr(pprt) | scan_mask_o;
1670        /* activate all keyboard outputs (active low) */
1671        w_dtr(pprt, oldval & ~scan_mask_o);
1672
1673        /* will have a 1 for each bit set to gnd */
1674        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1675        /* disable all matrix signals */
1676        w_dtr(pprt, oldval);
1677
1678        /* now that all outputs are cleared, the only active input bits are
1679         * directly connected to the ground
1680         */
1681
1682        /* 1 for each grounded input */
1683        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1684
1685        /* grounded inputs are signals 40-44 */
1686        phys_read |= (pmask_t) gndmask << 40;
1687
1688        if (bitmask != gndmask) {
1689                /* since clearing the outputs changed some inputs, we know
1690                 * that some input signals are currently tied to some outputs.
1691                 * So we'll scan them.
1692                 */
1693                for (bit = 0; bit < 8; bit++) {
1694                        bitval = 1 << bit;
1695
1696                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1697                                continue;
1698
1699                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1700                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1701                        phys_read |= (pmask_t) bitmask << (5 * bit);
1702                }
1703                w_dtr(pprt, oldval);    /* disable all outputs */
1704        }
1705        /* this is easy: use old bits when they are flapping,
1706         * use new ones when stable */
1707        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1708                    (phys_read & ~(phys_read ^ phys_read_prev));
1709}
1710
1711static inline int input_state_high(struct logical_input *input)
1712{
1713#if 0
1714        /* FIXME:
1715         * this is an invalid test. It tries to catch
1716         * transitions from single-key to multiple-key, but
1717         * doesn't take into account the contacts polarity.
1718         * The only solution to the problem is to parse keys
1719         * from the most complex to the simplest combinations,
1720         * and mark them as 'caught' once a combination
1721         * matches, then unmatch it for all other ones.
1722         */
1723
1724        /* try to catch dangerous transitions cases :
1725         * someone adds a bit, so this signal was a false
1726         * positive resulting from a transition. We should
1727         * invalidate the signal immediately and not call the
1728         * release function.
1729         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1730         */
1731        if (((phys_prev & input->mask) == input->value)
1732            && ((phys_curr & input->mask) > input->value)) {
1733                input->state = INPUT_ST_LOW; /* invalidate */
1734                return 1;
1735        }
1736#endif
1737
1738        if ((phys_curr & input->mask) == input->value) {
1739                if ((input->type == INPUT_TYPE_STD) &&
1740                    (input->high_timer == 0)) {
1741                        input->high_timer++;
1742                        if (input->u.std.press_fct != NULL)
1743                                input->u.std.press_fct(input->u.std.press_data);
1744                } else if (input->type == INPUT_TYPE_KBD) {
1745                        /* will turn on the light */
1746                        keypressed = 1;
1747
1748                        if (input->high_timer == 0) {
1749                                char *press_str = input->u.kbd.press_str;
1750                                if (press_str[0]) {
1751                                        int s = sizeof(input->u.kbd.press_str);
1752                                        keypad_send_key(press_str, s);
1753                                }
1754                        }
1755
1756                        if (input->u.kbd.repeat_str[0]) {
1757                                char *repeat_str = input->u.kbd.repeat_str;
1758                                if (input->high_timer >= KEYPAD_REP_START) {
1759                                        int s = sizeof(input->u.kbd.repeat_str);
1760                                        input->high_timer -= KEYPAD_REP_DELAY;
1761                                        keypad_send_key(repeat_str, s);
1762                                }
1763                                /* we will need to come back here soon */
1764                                inputs_stable = 0;
1765                        }
1766
1767                        if (input->high_timer < 255)
1768                                input->high_timer++;
1769                }
1770                return 1;
1771        } else {
1772                /* else signal falling down. Let's fall through. */
1773                input->state = INPUT_ST_FALLING;
1774                input->fall_timer = 0;
1775        }
1776        return 0;
1777}
1778
1779static inline void input_state_falling(struct logical_input *input)
1780{
1781#if 0
1782        /* FIXME !!! same comment as in input_state_high */
1783        if (((phys_prev & input->mask) == input->value)
1784            && ((phys_curr & input->mask) > input->value)) {
1785                input->state = INPUT_ST_LOW;    /* invalidate */
1786                return;
1787        }
1788#endif
1789
1790        if ((phys_curr & input->mask) == input->value) {
1791                if (input->type == INPUT_TYPE_KBD) {
1792                        /* will turn on the light */
1793                        keypressed = 1;
1794
1795                        if (input->u.kbd.repeat_str[0]) {
1796                                char *repeat_str = input->u.kbd.repeat_str;
1797                                if (input->high_timer >= KEYPAD_REP_START) {
1798                                        int s = sizeof(input->u.kbd.repeat_str);
1799                                        input->high_timer -= KEYPAD_REP_DELAY;
1800                                        keypad_send_key(repeat_str, s);
1801                                }
1802                                /* we will need to come back here soon */
1803                                inputs_stable = 0;
1804                        }
1805
1806                        if (input->high_timer < 255)
1807                                input->high_timer++;
1808                }
1809                input->state = INPUT_ST_HIGH;
1810        } else if (input->fall_timer >= input->fall_time) {
1811                /* call release event */
1812                if (input->type == INPUT_TYPE_STD) {
1813                        void (*release_fct)(int) = input->u.std.release_fct;
1814                        if (release_fct != NULL)
1815                                release_fct(input->u.std.release_data);
1816                } else if (input->type == INPUT_TYPE_KBD) {
1817                        char *release_str = input->u.kbd.release_str;
1818                        if (release_str[0]) {
1819                                int s = sizeof(input->u.kbd.release_str);
1820                                keypad_send_key(release_str, s);
1821                        }
1822                }
1823
1824                input->state = INPUT_ST_LOW;
1825        } else {
1826                input->fall_timer++;
1827                inputs_stable = 0;
1828        }
1829}
1830
1831static void panel_process_inputs(void)
1832{
1833        struct list_head *item;
1834        struct logical_input *input;
1835
1836        keypressed = 0;
1837        inputs_stable = 1;
1838        list_for_each(item, &logical_inputs) {
1839                input = list_entry(item, struct logical_input, list);
1840
1841                switch (input->state) {
1842                case INPUT_ST_LOW:
1843                        if ((phys_curr & input->mask) != input->value)
1844                                break;
1845                        /* if all needed ones were already set previously,
1846                         * this means that this logical signal has been
1847                         * activated by the releasing of another combined
1848                         * signal, so we don't want to match.
1849                         * eg: AB -(release B)-> A -(release A)-> 0 :
1850                         *     don't match A.
1851                         */
1852                        if ((phys_prev & input->mask) == input->value)
1853                                break;
1854                        input->rise_timer = 0;
1855                        input->state = INPUT_ST_RISING;
1856                        /* no break here, fall through */
1857                case INPUT_ST_RISING:
1858                        if ((phys_curr & input->mask) != input->value) {
1859                                input->state = INPUT_ST_LOW;
1860                                break;
1861                        }
1862                        if (input->rise_timer < input->rise_time) {
1863                                inputs_stable = 0;
1864                                input->rise_timer++;
1865                                break;
1866                        }
1867                        input->high_timer = 0;
1868                        input->state = INPUT_ST_HIGH;
1869                        /* no break here, fall through */
1870                case INPUT_ST_HIGH:
1871                        if (input_state_high(input))
1872                                break;
1873                        /* no break here, fall through */
1874                case INPUT_ST_FALLING:
1875                        input_state_falling(input);
1876                }
1877        }
1878}
1879
1880static void panel_scan_timer(void)
1881{
1882        if (keypad_enabled && keypad_initialized) {
1883                if (spin_trylock_irq(&pprt_lock)) {
1884                        phys_scan_contacts();
1885
1886                        /* no need for the parport anymore */
1887                        spin_unlock_irq(&pprt_lock);
1888                }
1889
1890                if (!inputs_stable || phys_curr != phys_prev)
1891                        panel_process_inputs();
1892        }
1893
1894        if (lcd_enabled && lcd_initialized) {
1895                if (keypressed) {
1896                        if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1897                                lcd_backlight(1);
1898                        light_tempo = FLASH_LIGHT_TEMPO;
1899                } else if (light_tempo > 0) {
1900                        light_tempo--;
1901                        if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1902                                lcd_backlight(0);
1903                }
1904        }
1905
1906        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1907}
1908
1909static void init_scan_timer(void)
1910{
1911        if (scan_timer.function != NULL)
1912                return;         /* already started */
1913
1914        init_timer(&scan_timer);
1915        scan_timer.expires = jiffies + INPUT_POLL_TIME;
1916        scan_timer.data = 0;
1917        scan_timer.function = (void *)&panel_scan_timer;
1918        add_timer(&scan_timer);
1919}
1920
1921/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1922 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1923 * corresponding to out and in bits respectively.
1924 * returns 1 if ok, 0 if error (in which case, nothing is written).
1925 */
1926static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
1927                           char *imask, char *omask)
1928{
1929        static char sigtab[10] = "EeSsPpAaBb";
1930        char im, om;
1931        pmask_t m, v;
1932
1933        om = im = m = v = 0ULL;
1934        while (*name) {
1935                int in, out, bit, neg;
1936                for (in = 0; (in < sizeof(sigtab)) &&
1937                             (sigtab[in] != *name); in++)
1938                        ;
1939                if (in >= sizeof(sigtab))
1940                        return 0;       /* input name not found */
1941                neg = (in & 1); /* odd (lower) names are negated */
1942                in >>= 1;
1943                im |= (1 << in);
1944
1945                name++;
1946                if (isdigit(*name)) {
1947                        out = *name - '0';
1948                        om |= (1 << out);
1949                } else if (*name == '-')
1950                        out = 8;
1951                else
1952                        return 0;       /* unknown bit name */
1953
1954                bit = (out * 5) + in;
1955
1956                m |= 1ULL << bit;
1957                if (!neg)
1958                        v |= 1ULL << bit;
1959                name++;
1960        }
1961        *mask = m;
1962        *value = v;
1963        if (imask)
1964                *imask |= im;
1965        if (omask)
1966                *omask |= om;
1967        return 1;
1968}
1969
1970/* tries to bind a key to the signal name <name>. The key will send the
1971 * strings <press>, <repeat>, <release> for these respective events.
1972 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1973 */
1974static struct logical_input *panel_bind_key(const char *name, const char *press,
1975                                            const char *repeat,
1976                                            const char *release)
1977{
1978        struct logical_input *key;
1979
1980        key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1981        if (!key)
1982                return NULL;
1983
1984        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1985                             &scan_mask_o)) {
1986                kfree(key);
1987                return NULL;
1988        }
1989
1990        key->type = INPUT_TYPE_KBD;
1991        key->state = INPUT_ST_LOW;
1992        key->rise_time = 1;
1993        key->fall_time = 1;
1994
1995        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1996        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1997        strncpy(key->u.kbd.release_str, release,
1998                sizeof(key->u.kbd.release_str));
1999        list_add(&key->list, &logical_inputs);
2000        return key;
2001}
2002
2003#if 0
2004/* tries to bind a callback function to the signal name <name>. The function
2005 * <press_fct> will be called with the <press_data> arg when the signal is
2006 * activated, and so on for <release_fct>/<release_data>
2007 * Returns the pointer to the new signal if ok, NULL if the signal could not
2008 * be bound.
2009 */
2010static struct logical_input *panel_bind_callback(char *name,
2011                                                 void (*press_fct)(int),
2012                                                 int press_data,
2013                                                 void (*release_fct)(int),
2014                                                 int release_data)
2015{
2016        struct logical_input *callback;
2017
2018        callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2019        if (!callback)
2020                return NULL;
2021
2022        memset(callback, 0, sizeof(struct logical_input));
2023        if (!input_name2mask(name, &callback->mask, &callback->value,
2024                             &scan_mask_i, &scan_mask_o))
2025                return NULL;
2026
2027        callback->type = INPUT_TYPE_STD;
2028        callback->state = INPUT_ST_LOW;
2029        callback->rise_time = 1;
2030        callback->fall_time = 1;
2031        callback->u.std.press_fct = press_fct;
2032        callback->u.std.press_data = press_data;
2033        callback->u.std.release_fct = release_fct;
2034        callback->u.std.release_data = release_data;
2035        list_add(&callback->list, &logical_inputs);
2036        return callback;
2037}
2038#endif
2039
2040static void keypad_init(void)
2041{
2042        int keynum;
2043        init_waitqueue_head(&keypad_read_wait);
2044        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
2045
2046        /* Let's create all known keys */
2047
2048        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2049                panel_bind_key(keypad_profile[keynum][0],
2050                               keypad_profile[keynum][1],
2051                               keypad_profile[keynum][2],
2052                               keypad_profile[keynum][3]);
2053        }
2054
2055        init_scan_timer();
2056        keypad_initialized = 1;
2057}
2058
2059/**************************************************/
2060/* device initialization                          */
2061/**************************************************/
2062
2063static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2064                            void *unused)
2065{
2066        if (lcd_enabled && lcd_initialized) {
2067                switch (code) {
2068                case SYS_DOWN:
2069                        panel_lcd_print
2070                            ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2071                        break;
2072                case SYS_HALT:
2073                        panel_lcd_print
2074                            ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2075                        break;
2076                case SYS_POWER_OFF:
2077                        panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2078                        break;
2079                default:
2080                        break;
2081                }
2082        }
2083        return NOTIFY_DONE;
2084}
2085
2086static struct notifier_block panel_notifier = {
2087        panel_notify_sys,
2088        NULL,
2089        0
2090};
2091
2092static void panel_attach(struct parport *port)
2093{
2094        if (port->number != parport)
2095                return;
2096
2097        if (pprt) {
2098                pr_err("%s: port->number=%d parport=%d, already registered!\n",
2099                       __func__, port->number, parport);
2100                return;
2101        }
2102
2103        pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2104                                       NULL,
2105                                       /*PARPORT_DEV_EXCL */
2106                                       0, (void *)&pprt);
2107        if (pprt == NULL) {
2108                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2109                       __func__, port->number, parport);
2110                return;
2111        }
2112
2113        if (parport_claim(pprt)) {
2114                pr_err("could not claim access to parport%d. Aborting.\n",
2115                       parport);
2116                goto err_unreg_device;
2117        }
2118
2119        /* must init LCD first, just in case an IRQ from the keypad is
2120         * generated at keypad init
2121         */
2122        if (lcd_enabled) {
2123                lcd_init();
2124                if (misc_register(&lcd_dev))
2125                        goto err_unreg_device;
2126        }
2127
2128        if (keypad_enabled) {
2129                keypad_init();
2130                if (misc_register(&keypad_dev))
2131                        goto err_lcd_unreg;
2132        }
2133        return;
2134
2135err_lcd_unreg:
2136        if (lcd_enabled)
2137                misc_deregister(&lcd_dev);
2138err_unreg_device:
2139        parport_unregister_device(pprt);
2140        pprt = NULL;
2141}
2142
2143static void panel_detach(struct parport *port)
2144{
2145        if (port->number != parport)
2146                return;
2147
2148        if (!pprt) {
2149                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2150                       __func__, port->number, parport);
2151                return;
2152        }
2153
2154        if (keypad_enabled && keypad_initialized) {
2155                misc_deregister(&keypad_dev);
2156                keypad_initialized = 0;
2157        }
2158
2159        if (lcd_enabled && lcd_initialized) {
2160                misc_deregister(&lcd_dev);
2161                lcd_initialized = 0;
2162        }
2163
2164        parport_release(pprt);
2165        parport_unregister_device(pprt);
2166        pprt = NULL;
2167}
2168
2169static struct parport_driver panel_driver = {
2170        .name = "panel",
2171        .attach = panel_attach,
2172        .detach = panel_detach,
2173};
2174
2175/* init function */
2176static int panel_init(void)
2177{
2178        /* for backwards compatibility */
2179        if (keypad_type < 0)
2180                keypad_type = keypad_enabled;
2181
2182        if (lcd_type < 0)
2183                lcd_type = lcd_enabled;
2184
2185        if (parport < 0)
2186                parport = DEFAULT_PARPORT;
2187
2188        /* take care of an eventual profile */
2189        switch (profile) {
2190        case PANEL_PROFILE_CUSTOM:
2191                /* custom profile */
2192                if (keypad_type < 0)
2193                        keypad_type = DEFAULT_KEYPAD;
2194                if (lcd_type < 0)
2195                        lcd_type = DEFAULT_LCD;
2196                break;
2197        case PANEL_PROFILE_OLD:
2198                /* 8 bits, 2*16, old keypad */
2199                if (keypad_type < 0)
2200                        keypad_type = KEYPAD_TYPE_OLD;
2201                if (lcd_type < 0)
2202                        lcd_type = LCD_TYPE_OLD;
2203                if (lcd_width < 0)
2204                        lcd_width = 16;
2205                if (lcd_hwidth < 0)
2206                        lcd_hwidth = 16;
2207                break;
2208        case PANEL_PROFILE_NEW:
2209                /* serial, 2*16, new keypad */
2210                if (keypad_type < 0)
2211                        keypad_type = KEYPAD_TYPE_NEW;
2212                if (lcd_type < 0)
2213                        lcd_type = LCD_TYPE_KS0074;
2214                break;
2215        case PANEL_PROFILE_HANTRONIX:
2216                /* 8 bits, 2*16 hantronix-like, no keypad */
2217                if (keypad_type < 0)
2218                        keypad_type = KEYPAD_TYPE_NONE;
2219                if (lcd_type < 0)
2220                        lcd_type = LCD_TYPE_HANTRONIX;
2221                break;
2222        case PANEL_PROFILE_NEXCOM:
2223                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2224                if (keypad_type < 0)
2225                        keypad_type = KEYPAD_TYPE_NEXCOM;
2226                if (lcd_type < 0)
2227                        lcd_type = LCD_TYPE_NEXCOM;
2228                break;
2229        case PANEL_PROFILE_LARGE:
2230                /* 8 bits, 2*40, old keypad */
2231                if (keypad_type < 0)
2232                        keypad_type = KEYPAD_TYPE_OLD;
2233                if (lcd_type < 0)
2234                        lcd_type = LCD_TYPE_OLD;
2235                break;
2236        }
2237
2238        lcd_enabled = (lcd_type > 0);
2239        keypad_enabled = (keypad_type > 0);
2240
2241        switch (keypad_type) {
2242        case KEYPAD_TYPE_OLD:
2243                keypad_profile = old_keypad_profile;
2244                break;
2245        case KEYPAD_TYPE_NEW:
2246                keypad_profile = new_keypad_profile;
2247                break;
2248        case KEYPAD_TYPE_NEXCOM:
2249                keypad_profile = nexcom_keypad_profile;
2250                break;
2251        default:
2252                keypad_profile = NULL;
2253                break;
2254        }
2255
2256        /* tells various subsystems about the fact that we are initializing */
2257        init_in_progress = 1;
2258
2259        if (parport_register_driver(&panel_driver)) {
2260                pr_err("could not register with parport. Aborting.\n");
2261                return -EIO;
2262        }
2263
2264        if (!lcd_enabled && !keypad_enabled) {
2265                /* no device enabled, let's release the parport */
2266                if (pprt) {
2267                        parport_release(pprt);
2268                        parport_unregister_device(pprt);
2269                        pprt = NULL;
2270                }
2271                parport_unregister_driver(&panel_driver);
2272                pr_err("driver version " PANEL_VERSION " disabled.\n");
2273                return -ENODEV;
2274        }
2275
2276        register_reboot_notifier(&panel_notifier);
2277
2278        if (pprt)
2279                pr_info("driver version " PANEL_VERSION
2280                        " registered on parport%d (io=0x%lx).\n", parport,
2281                        pprt->port->base);
2282        else
2283                pr_info("driver version " PANEL_VERSION
2284                        " not yet registered\n");
2285        /* tells various subsystems about the fact that initialization
2286           is finished */
2287        init_in_progress = 0;
2288        return 0;
2289}
2290
2291static int __init panel_init_module(void)
2292{
2293        return panel_init();
2294}
2295
2296static void __exit panel_cleanup_module(void)
2297{
2298        unregister_reboot_notifier(&panel_notifier);
2299
2300        if (scan_timer.function != NULL)
2301                del_timer(&scan_timer);
2302
2303        if (pprt != NULL) {
2304                if (keypad_enabled) {
2305                        misc_deregister(&keypad_dev);
2306                        keypad_initialized = 0;
2307                }
2308
2309                if (lcd_enabled) {
2310                        panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2311                                        "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2312                        misc_deregister(&lcd_dev);
2313                        lcd_initialized = 0;
2314                }
2315
2316                /* TODO: free all input signals */
2317                parport_release(pprt);
2318                parport_unregister_device(pprt);
2319                pprt = NULL;
2320        }
2321        parport_unregister_driver(&panel_driver);
2322}
2323
2324module_init(panel_init_module);
2325module_exit(panel_cleanup_module);
2326MODULE_AUTHOR("Willy Tarreau");
2327MODULE_LICENSE("GPL");
2328
2329/*
2330 * Local variables:
2331 *  c-indent-level: 4
2332 *  tab-width: 8
2333 * End:
2334 */
2335