linux/drivers/staging/rtl8723au/hal/rtl8723a_hal_init.c
<<
>>
Prefs
   1/******************************************************************************
   2 *
   3 * Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of version 2 of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12 * more details.
  13 *
  14 ******************************************************************************/
  15#define _HAL_INIT_C_
  16
  17#include <linux/firmware.h>
  18#include <drv_types.h>
  19#include <rtw_efuse.h>
  20
  21#include <rtl8723a_hal.h>
  22
  23static void _FWDownloadEnable(struct rtw_adapter *padapter, bool enable)
  24{
  25        u8 tmp;
  26
  27        if (enable) {
  28                /*  8051 enable */
  29                tmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
  30                rtw_write8(padapter, REG_SYS_FUNC_EN + 1, tmp | 0x04);
  31
  32                /*  MCU firmware download enable. */
  33                tmp = rtw_read8(padapter, REG_MCUFWDL);
  34                rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
  35
  36                /*  8051 reset */
  37                tmp = rtw_read8(padapter, REG_MCUFWDL + 2);
  38                rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7);
  39        } else {
  40                /*  MCU firmware download disable. */
  41                tmp = rtw_read8(padapter, REG_MCUFWDL);
  42                rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe);
  43
  44                /*  Reserved for fw extension. */
  45                rtw_write8(padapter, REG_MCUFWDL + 1, 0x00);
  46        }
  47}
  48
  49static int _BlockWrite(struct rtw_adapter *padapter, void *buffer, u32 buffSize)
  50{
  51        int ret = _SUCCESS;
  52        /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
  53        u32 blockSize_p1 = 4;
  54        /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
  55        u32 blockSize_p2 = 8;
  56        /*  Phase #3 : Use 1-byte, the remnant of FW image. */
  57        u32 blockSize_p3 = 1;
  58        u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
  59        u32 remainSize_p1 = 0, remainSize_p2 = 0;
  60        u8 *bufferPtr = (u8 *) buffer;
  61        u32 i = 0, offset = 0;
  62
  63        blockSize_p1 = 254;
  64
  65        /* 3 Phase #1 */
  66        blockCount_p1 = buffSize / blockSize_p1;
  67        remainSize_p1 = buffSize % blockSize_p1;
  68
  69        if (blockCount_p1) {
  70                RT_TRACE(_module_hal_init_c_, _drv_notice_,
  71                         ("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) "
  72                          "blockCount_p1(%d) remainSize_p1(%d)\n",
  73                          buffSize, blockSize_p1, blockCount_p1,
  74                          remainSize_p1));
  75        }
  76
  77        for (i = 0; i < blockCount_p1; i++) {
  78                ret = rtw_writeN(padapter,
  79                                 (FW_8723A_START_ADDRESS + i * blockSize_p1),
  80                                 blockSize_p1, (bufferPtr + i * blockSize_p1));
  81                if (ret == _FAIL)
  82                        goto exit;
  83        }
  84
  85        /* 3 Phase #2 */
  86        if (remainSize_p1) {
  87                offset = blockCount_p1 * blockSize_p1;
  88
  89                blockCount_p2 = remainSize_p1 / blockSize_p2;
  90                remainSize_p2 = remainSize_p1 % blockSize_p2;
  91
  92                if (blockCount_p2) {
  93                        RT_TRACE(_module_hal_init_c_, _drv_notice_,
  94                                 ("_BlockWrite: [P2] buffSize_p2(%d) "
  95                                  "blockSize_p2(%d) blockCount_p2(%d) "
  96                                  "remainSize_p2(%d)\n",
  97                                  (buffSize - offset), blockSize_p2,
  98                                  blockCount_p2, remainSize_p2));
  99                }
 100
 101                for (i = 0; i < blockCount_p2; i++) {
 102                        ret = rtw_writeN(padapter,
 103                                         (FW_8723A_START_ADDRESS + offset +
 104                                          i * blockSize_p2), blockSize_p2,
 105                                         (bufferPtr + offset +
 106                                          i * blockSize_p2));
 107
 108                        if (ret == _FAIL)
 109                                goto exit;
 110                }
 111        }
 112
 113        /* 3 Phase #3 */
 114        if (remainSize_p2) {
 115                offset = (blockCount_p1 * blockSize_p1) +
 116                        (blockCount_p2 * blockSize_p2);
 117
 118                blockCount_p3 = remainSize_p2 / blockSize_p3;
 119
 120                RT_TRACE(_module_hal_init_c_, _drv_notice_,
 121                         ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) "
 122                          "blockCount_p3(%d)\n",
 123                          (buffSize - offset), blockSize_p3, blockCount_p3));
 124
 125                for (i = 0; i < blockCount_p3; i++) {
 126                        ret = rtw_write8(padapter,
 127                                         (FW_8723A_START_ADDRESS + offset + i),
 128                                         *(bufferPtr + offset + i));
 129
 130                        if (ret == _FAIL)
 131                                goto exit;
 132                }
 133        }
 134
 135exit:
 136        return ret;
 137}
 138
 139static int
 140_PageWrite(struct rtw_adapter *padapter, u32 page, void *buffer, u32 size)
 141{
 142        u8 value8;
 143        u8 u8Page = (u8) (page & 0x07);
 144
 145        value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page;
 146        rtw_write8(padapter, REG_MCUFWDL + 2, value8);
 147
 148        return _BlockWrite(padapter, buffer, size);
 149}
 150
 151static int _WriteFW(struct rtw_adapter *padapter, void *buffer, u32 size)
 152{
 153        /*  Since we need dynamic decide method of dwonload fw, so we
 154            call this function to get chip version. */
 155        /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
 156        int ret = _SUCCESS;
 157        u32 pageNums, remainSize;
 158        u32 page, offset;
 159        u8 *bufferPtr = (u8 *) buffer;
 160
 161        pageNums = size / MAX_PAGE_SIZE;
 162        /* RT_ASSERT((pageNums <= 4),
 163           ("Page numbers should not greater then 4 \n")); */
 164        remainSize = size % MAX_PAGE_SIZE;
 165
 166        for (page = 0; page < pageNums; page++) {
 167                offset = page * MAX_PAGE_SIZE;
 168                ret = _PageWrite(padapter, page, bufferPtr + offset,
 169                                 MAX_PAGE_SIZE);
 170
 171                if (ret == _FAIL)
 172                        goto exit;
 173        }
 174        if (remainSize) {
 175                offset = pageNums * MAX_PAGE_SIZE;
 176                page = pageNums;
 177                ret = _PageWrite(padapter, page, bufferPtr + offset,
 178                                 remainSize);
 179
 180                if (ret == _FAIL)
 181                        goto exit;
 182        }
 183        RT_TRACE(_module_hal_init_c_, _drv_info_,
 184                 ("_WriteFW Done- for Normal chip.\n"));
 185
 186exit:
 187        return ret;
 188}
 189
 190static s32 _FWFreeToGo(struct rtw_adapter *padapter)
 191{
 192        u32 counter = 0;
 193        u32 value32;
 194
 195        /*  polling CheckSum report */
 196        do {
 197                value32 = rtw_read32(padapter, REG_MCUFWDL);
 198                if (value32 & FWDL_ChkSum_rpt)
 199                        break;
 200        } while (counter++ < POLLING_READY_TIMEOUT_COUNT);
 201
 202        if (counter >= POLLING_READY_TIMEOUT_COUNT) {
 203                RT_TRACE(_module_hal_init_c_, _drv_err_,
 204                         ("%s: chksum report fail! REG_MCUFWDL:0x%08x\n",
 205                          __func__, value32));
 206                return _FAIL;
 207        }
 208        RT_TRACE(_module_hal_init_c_, _drv_info_,
 209                 ("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __func__,
 210                  value32));
 211
 212        value32 = rtw_read32(padapter, REG_MCUFWDL);
 213        value32 |= MCUFWDL_RDY;
 214        value32 &= ~WINTINI_RDY;
 215        rtw_write32(padapter, REG_MCUFWDL, value32);
 216
 217        /*  polling for FW ready */
 218        counter = 0;
 219        do {
 220                value32 = rtw_read32(padapter, REG_MCUFWDL);
 221                if (value32 & WINTINI_RDY) {
 222                        RT_TRACE(_module_hal_init_c_, _drv_info_,
 223                                 ("%s: Polling FW ready success!! "
 224                                  "REG_MCUFWDL:0x%08x\n",
 225                                  __func__, value32));
 226                        return _SUCCESS;
 227                }
 228                udelay(5);
 229        } while (counter++ < POLLING_READY_TIMEOUT_COUNT);
 230
 231        RT_TRACE(_module_hal_init_c_, _drv_err_,
 232                 ("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n",
 233                  __func__, value32));
 234        return _FAIL;
 235}
 236
 237#define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
 238
 239void rtl8723a_FirmwareSelfReset(struct rtw_adapter *padapter)
 240{
 241        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
 242        u8 u1bTmp;
 243        u8 Delay = 100;
 244
 245        if (!(IS_FW_81xxC(padapter) &&
 246              ((pHalData->FirmwareVersion < 0x21) ||
 247               (pHalData->FirmwareVersion == 0x21 &&
 248                pHalData->FirmwareSubVersion < 0x01)))) {
 249                /*  after 88C Fw v33.1 */
 250                /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
 251                rtw_write8(padapter, REG_HMETFR + 3, 0x20);
 252
 253                u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
 254                while (u1bTmp & BIT2) {
 255                        Delay--;
 256                        if (Delay == 0)
 257                                break;
 258                        udelay(50);
 259                        u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
 260                }
 261                RT_TRACE(_module_hal_init_c_, _drv_info_,
 262                         ("-%s: 8051 reset success (%d)\n", __func__,
 263                          Delay));
 264
 265                if ((Delay == 0)) {
 266                        /* force firmware reset */
 267                        u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
 268                        rtw_write8(padapter, REG_SYS_FUNC_EN + 1,
 269                                   u1bTmp & (~BIT2));
 270                }
 271        }
 272}
 273
 274/*  */
 275/*      Description: */
 276/*              Download 8192C firmware code. */
 277/*  */
 278/*  */
 279s32 rtl8723a_FirmwareDownload(struct rtw_adapter *padapter)
 280{
 281        s32 rtStatus = _SUCCESS;
 282        u8 writeFW_retry = 0;
 283        unsigned long fwdl_start_time;
 284        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
 285        struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
 286        struct device *device = dvobj_to_dev(dvobj);
 287        struct rt_8723a_firmware_hdr *pFwHdr = NULL;
 288        const struct firmware *fw;
 289        char *fw_name;
 290        u8 *firmware_buf = NULL;
 291        u8 *buf;
 292        int fw_size;
 293        static int log_version;
 294
 295        RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
 296
 297        if (IS_8723A_A_CUT(pHalData->VersionID)) {
 298                fw_name = "rtlwifi/rtl8723aufw.bin";
 299                RT_TRACE(_module_hal_init_c_, _drv_info_,
 300                         ("rtl8723a_FirmwareDownload: R8723FwImageArray_UMC "
 301                          "for RTL8723A A CUT\n"));
 302        } else if (IS_8723A_B_CUT(pHalData->VersionID)) {
 303                /*  WLAN Fw. */
 304                if (padapter->registrypriv.wifi_spec == 1) {
 305                        fw_name = "rtlwifi/rtl8723aufw_B_NoBT.bin";
 306                        DBG_8723A(" Rtl8723_FwUMCBCutImageArrayWithoutBT for "
 307                                  "RTL8723A B CUT\n");
 308                } else {
 309#ifdef CONFIG_8723AU_BT_COEXIST
 310                        fw_name = "rtlwifi/rtl8723aufw_B.bin";
 311                        DBG_8723A(" Rtl8723_FwUMCBCutImageArrayWithBT for "
 312                                  "RTL8723A B CUT\n");
 313#else
 314                        fw_name = "rtlwifi/rtl8723aufw_B_NoBT.bin";
 315                        DBG_8723A(" Rtl8723_FwUMCBCutImageArrayWithoutBT for "
 316                                  "RTL8723A B CUT\n");
 317#endif
 318                }
 319        } else {
 320                /*  <Roger_TODO> We should download proper RAM Code here
 321                    to match the ROM code. */
 322                RT_TRACE(_module_hal_init_c_, _drv_err_,
 323                         ("%s: unknow version!\n", __func__));
 324                rtStatus = _FAIL;
 325                goto Exit;
 326        }
 327
 328        pr_info("rtl8723au: Loading firmware %s\n", fw_name);
 329        if (request_firmware(&fw, fw_name, device)) {
 330                pr_err("rtl8723au: request_firmware load failed\n");
 331                rtStatus = _FAIL;
 332                goto Exit;
 333        }
 334        if (!fw) {
 335                pr_err("rtl8723au: Firmware %s not available\n", fw_name);
 336                rtStatus = _FAIL;
 337                goto Exit;
 338        }
 339        firmware_buf = kzalloc(fw->size, GFP_KERNEL);
 340        if (!firmware_buf) {
 341                rtStatus = _FAIL;
 342                goto Exit;
 343        }
 344        memcpy(firmware_buf, fw->data, fw->size);
 345        buf = firmware_buf;
 346        fw_size = fw->size;
 347        release_firmware(fw);
 348
 349        /*  To Check Fw header. Added by tynli. 2009.12.04. */
 350        pFwHdr = (struct rt_8723a_firmware_hdr *)firmware_buf;
 351
 352        pHalData->FirmwareVersion = le16_to_cpu(pFwHdr->Version);
 353        pHalData->FirmwareSubVersion = pFwHdr->Subversion;
 354        pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
 355
 356        DBG_8723A("%s: fw_ver =%d fw_subver =%d sig = 0x%x\n",
 357                  __func__, pHalData->FirmwareVersion,
 358                  pHalData->FirmwareSubVersion, pHalData->FirmwareSignature);
 359
 360        if (!log_version++)
 361                pr_info("%sFirmware Version %d, SubVersion %d, Signature "
 362                        "0x%x\n", DRIVER_PREFIX, pHalData->FirmwareVersion,
 363                        pHalData->FirmwareSubVersion,
 364                        pHalData->FirmwareSignature);
 365
 366        if (IS_FW_HEADER_EXIST(pFwHdr)) {
 367                /*  Shift 32 bytes for FW header */
 368                buf = buf + 32;
 369                fw_size = fw_size - 32;
 370        }
 371
 372        /*  Suggested by Filen. If 8051 is running in RAM code, driver should
 373            inform Fw to reset by itself, */
 374        /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
 375        if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) {
 376                /* 8051 RAM code */
 377                rtl8723a_FirmwareSelfReset(padapter);
 378                rtw_write8(padapter, REG_MCUFWDL, 0x00);
 379        }
 380
 381        _FWDownloadEnable(padapter, true);
 382        fwdl_start_time = jiffies;
 383        while (1) {
 384                /* reset the FWDL chksum */
 385                rtw_write8(padapter, REG_MCUFWDL,
 386                           rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);
 387
 388                rtStatus = _WriteFW(padapter, buf, fw_size);
 389
 390                if (rtStatus == _SUCCESS ||
 391                    (jiffies_to_msecs(jiffies - fwdl_start_time) > 500 &&
 392                     writeFW_retry++ >= 3))
 393                        break;
 394
 395                DBG_8723A("%s writeFW_retry:%u, time after fwdl_start_time:"
 396                          "%ums\n", __func__, writeFW_retry,
 397                          jiffies_to_msecs(jiffies - fwdl_start_time));
 398        }
 399        _FWDownloadEnable(padapter, false);
 400        if (_SUCCESS != rtStatus) {
 401                DBG_8723A("DL Firmware failed!\n");
 402                goto Exit;
 403        }
 404
 405        rtStatus = _FWFreeToGo(padapter);
 406        if (_SUCCESS != rtStatus) {
 407                RT_TRACE(_module_hal_init_c_, _drv_err_,
 408                         ("DL Firmware failed!\n"));
 409                goto Exit;
 410        }
 411        RT_TRACE(_module_hal_init_c_, _drv_info_,
 412                 ("Firmware is ready to run!\n"));
 413
 414Exit:
 415        kfree(firmware_buf);
 416        return rtStatus;
 417}
 418
 419void rtl8723a_InitializeFirmwareVars(struct rtw_adapter *padapter)
 420{
 421        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
 422
 423        /*  Init Fw LPS related. */
 424        padapter->pwrctrlpriv.bFwCurrentInPSMode = false;
 425
 426        /*  Init H2C counter. by tynli. 2009.12.09. */
 427        pHalData->LastHMEBoxNum = 0;
 428}
 429
 430static void rtl8723a_free_hal_data(struct rtw_adapter *padapter)
 431{
 432
 433        kfree(padapter->HalData);
 434        padapter->HalData = NULL;
 435
 436}
 437
 438/*  */
 439/*                              Efuse related code */
 440/*  */
 441static u8
 442hal_EfuseSwitchToBank(struct rtw_adapter *padapter, u8 bank)
 443{
 444        u8 bRet = false;
 445        u32 value32 = 0;
 446
 447        DBG_8723A("%s: Efuse switch bank to %d\n", __func__, bank);
 448        value32 = rtw_read32(padapter, EFUSE_TEST);
 449        bRet = true;
 450        switch (bank) {
 451        case 0:
 452                value32 = (value32 & ~EFUSE_SEL_MASK) |
 453                        EFUSE_SEL(EFUSE_WIFI_SEL_0);
 454                break;
 455        case 1:
 456                value32 = (value32 & ~EFUSE_SEL_MASK) |
 457                        EFUSE_SEL(EFUSE_BT_SEL_0);
 458                break;
 459        case 2:
 460                value32 = (value32 & ~EFUSE_SEL_MASK) |
 461                        EFUSE_SEL(EFUSE_BT_SEL_1);
 462                break;
 463        case 3:
 464                value32 = (value32 & ~EFUSE_SEL_MASK) |
 465                        EFUSE_SEL(EFUSE_BT_SEL_2);
 466                break;
 467        default:
 468                value32 = (value32 & ~EFUSE_SEL_MASK) |
 469                        EFUSE_SEL(EFUSE_WIFI_SEL_0);
 470                bRet = false;
 471                break;
 472        }
 473        rtw_write32(padapter, EFUSE_TEST, value32);
 474
 475        return bRet;
 476}
 477
 478static void
 479Hal_GetEfuseDefinition(struct rtw_adapter *padapter,
 480                       u8 efuseType, u8 type, void *pOut)
 481{
 482        u8 *pu1Tmp;
 483        u16 *pu2Tmp;
 484        u8 *pMax_section;
 485
 486        switch (type) {
 487        case TYPE_EFUSE_MAX_SECTION:
 488                pMax_section = (u8 *) pOut;
 489
 490                if (efuseType == EFUSE_WIFI)
 491                        *pMax_section = EFUSE_MAX_SECTION_8723A;
 492                else
 493                        *pMax_section = EFUSE_BT_MAX_SECTION;
 494                break;
 495
 496        case TYPE_EFUSE_REAL_CONTENT_LEN:
 497                pu2Tmp = (u16 *) pOut;
 498
 499                if (efuseType == EFUSE_WIFI)
 500                        *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723A;
 501                else
 502                        *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
 503                break;
 504
 505        case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
 506                pu2Tmp = (u16 *) pOut;
 507
 508                if (efuseType == EFUSE_WIFI)
 509                        *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723A -
 510                                   EFUSE_OOB_PROTECT_BYTES);
 511                else
 512                        *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN -
 513                                   EFUSE_PROTECT_BYTES_BANK);
 514                break;
 515
 516        case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
 517                pu2Tmp = (u16 *) pOut;
 518
 519                if (efuseType == EFUSE_WIFI)
 520                        *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723A -
 521                                   EFUSE_OOB_PROTECT_BYTES);
 522                else
 523                        *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN -
 524                                   (EFUSE_PROTECT_BYTES_BANK * 3));
 525                break;
 526
 527        case TYPE_EFUSE_MAP_LEN:
 528                pu2Tmp = (u16 *) pOut;
 529
 530                if (efuseType == EFUSE_WIFI)
 531                        *pu2Tmp = EFUSE_MAP_LEN_8723A;
 532                else
 533                        *pu2Tmp = EFUSE_BT_MAP_LEN;
 534                break;
 535
 536        case TYPE_EFUSE_PROTECT_BYTES_BANK:
 537                pu1Tmp = (u8 *) pOut;
 538
 539                if (efuseType == EFUSE_WIFI)
 540                        *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
 541                else
 542                        *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
 543                break;
 544
 545        case TYPE_EFUSE_CONTENT_LEN_BANK:
 546                pu2Tmp = (u16 *) pOut;
 547
 548                if (efuseType == EFUSE_WIFI)
 549                        *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723A;
 550                else
 551                        *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
 552                break;
 553
 554        default:
 555                pu1Tmp = (u8 *) pOut;
 556                *pu1Tmp = 0;
 557                break;
 558        }
 559}
 560
 561#define VOLTAGE_V25             0x03
 562#define LDOE25_SHIFT    28
 563
 564static void
 565Hal_EfusePowerSwitch(struct rtw_adapter *padapter, u8 bWrite, u8 PwrState)
 566{
 567        u8 tempval;
 568        u16 tmpV16;
 569
 570        if (PwrState == true) {
 571                rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
 572
 573                /*  1.2V Power: From VDDON with Power
 574                    Cut(0x0000h[15]), defualt valid */
 575                tmpV16 = rtw_read16(padapter, REG_SYS_ISO_CTRL);
 576                if (!(tmpV16 & PWC_EV12V)) {
 577                        tmpV16 |= PWC_EV12V;
 578                        rtw_write16(padapter, REG_SYS_ISO_CTRL, tmpV16);
 579                }
 580                /*  Reset: 0x0000h[28], default valid */
 581                tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
 582                if (!(tmpV16 & FEN_ELDR)) {
 583                        tmpV16 |= FEN_ELDR;
 584                        rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
 585                }
 586
 587                /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock
 588                    from ANA, default valid */
 589                tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
 590                if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
 591                        tmpV16 |= (LOADER_CLK_EN | ANA8M);
 592                        rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
 593                }
 594
 595                if (bWrite == true) {
 596                        /*  Enable LDO 2.5V before read/write action */
 597                        tempval = rtw_read8(padapter, EFUSE_TEST + 3);
 598                        tempval &= 0x0F;
 599                        tempval |= (VOLTAGE_V25 << 4);
 600                        rtw_write8(padapter, EFUSE_TEST + 3, (tempval | 0x80));
 601                }
 602        } else {
 603                rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
 604
 605                if (bWrite == true) {
 606                        /*  Disable LDO 2.5V after read/write action */
 607                        tempval = rtw_read8(padapter, EFUSE_TEST + 3);
 608                        rtw_write8(padapter, EFUSE_TEST + 3, (tempval & 0x7F));
 609                }
 610        }
 611}
 612
 613static void
 614hal_ReadEFuse_WiFi(struct rtw_adapter *padapter,
 615                   u16 _offset, u16 _size_byte, u8 *pbuf)
 616{
 617        u8 *efuseTbl = NULL;
 618        u16 eFuse_Addr = 0;
 619        u8 offset, wden;
 620        u8 efuseHeader, efuseExtHdr, efuseData;
 621        u16 i, total, used;
 622
 623        /*  Do NOT excess total size of EFuse table.
 624            Added by Roger, 2008.11.10. */
 625        if ((_offset + _size_byte) > EFUSE_MAP_LEN_8723A) {
 626                DBG_8723A("%s: Invalid offset(%#x) with read bytes(%#x)!!\n",
 627                          __func__, _offset, _size_byte);
 628                return;
 629        }
 630
 631        efuseTbl = (u8 *) kmalloc(EFUSE_MAP_LEN_8723A, GFP_KERNEL);
 632        if (efuseTbl == NULL) {
 633                DBG_8723A("%s: alloc efuseTbl fail!\n", __func__);
 634                return;
 635        }
 636        /*  0xff will be efuse default value instead of 0x00. */
 637        memset(efuseTbl, 0xFF, EFUSE_MAP_LEN_8723A);
 638
 639        /*  switch bank back to bank 0 for later BT and wifi use. */
 640        hal_EfuseSwitchToBank(padapter, 0);
 641
 642        while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
 643                ReadEFuseByte23a(padapter, eFuse_Addr++, &efuseHeader);
 644                if (efuseHeader == 0xFF) {
 645                        DBG_8723A("%s: data end at address =%#x\n", __func__,
 646                                  eFuse_Addr);
 647                        break;
 648                }
 649
 650                /*  Check PG header for section num. */
 651                if (EXT_HEADER(efuseHeader)) {  /* extended header */
 652                        offset = GET_HDR_OFFSET_2_0(efuseHeader);
 653
 654                        ReadEFuseByte23a(padapter, eFuse_Addr++, &efuseExtHdr);
 655                        if (ALL_WORDS_DISABLED(efuseExtHdr)) {
 656                                continue;
 657                        }
 658
 659                        offset |= ((efuseExtHdr & 0xF0) >> 1);
 660                        wden = (efuseExtHdr & 0x0F);
 661                } else {
 662                        offset = ((efuseHeader >> 4) & 0x0f);
 663                        wden = (efuseHeader & 0x0f);
 664                }
 665
 666                if (offset < EFUSE_MAX_SECTION_8723A) {
 667                        u16 addr;
 668                        /*  Get word enable value from PG header */
 669
 670                        addr = offset * PGPKT_DATA_SIZE;
 671                        for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
 672                                /* Check word enable condition in the section */
 673                                if (!(wden & (0x01 << i))) {
 674                                        ReadEFuseByte23a(padapter, eFuse_Addr++,
 675                                                      &efuseData);
 676                                        efuseTbl[addr] = efuseData;
 677
 678                                        ReadEFuseByte23a(padapter, eFuse_Addr++,
 679                                                      &efuseData);
 680                                        efuseTbl[addr + 1] = efuseData;
 681                                }
 682                                addr += 2;
 683                        }
 684                } else {
 685                        DBG_8723A(KERN_ERR "%s: offset(%d) is illegal!!\n",
 686                                  __func__, offset);
 687                        eFuse_Addr += Efuse_CalculateWordCnts23a(wden) * 2;
 688                }
 689        }
 690
 691        /*  Copy from Efuse map to output pointer memory!!! */
 692        for (i = 0; i < _size_byte; i++)
 693                pbuf[i] = efuseTbl[_offset + i];
 694
 695        /*  Calculate Efuse utilization */
 696        EFUSE_GetEfuseDefinition23a(padapter, EFUSE_WIFI,
 697                                 TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total);
 698        used = eFuse_Addr - 1;
 699        rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
 700
 701        kfree(efuseTbl);
 702}
 703
 704static void
 705hal_ReadEFuse_BT(struct rtw_adapter *padapter,
 706                 u16 _offset, u16 _size_byte, u8 *pbuf)
 707{
 708        u8 *efuseTbl;
 709        u8 bank;
 710        u16 eFuse_Addr;
 711        u8 efuseHeader, efuseExtHdr, efuseData;
 712        u8 offset, wden;
 713        u16 i, total, used;
 714
 715        /*  Do NOT excess total size of EFuse table.
 716            Added by Roger, 2008.11.10. */
 717        if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
 718                DBG_8723A("%s: Invalid offset(%#x) with read bytes(%#x)!!\n",
 719                          __func__, _offset, _size_byte);
 720                return;
 721        }
 722
 723        efuseTbl = kmalloc(EFUSE_BT_MAP_LEN, GFP_KERNEL);
 724        if (efuseTbl == NULL) {
 725                DBG_8723A("%s: efuseTbl malloc fail!\n", __func__);
 726                return;
 727        }
 728        /*  0xff will be efuse default value instead of 0x00. */
 729        memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
 730
 731        EFUSE_GetEfuseDefinition23a(padapter, EFUSE_BT,
 732                                 TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total);
 733
 734        for (bank = 1; bank < EFUSE_MAX_BANK; bank++) {
 735                if (hal_EfuseSwitchToBank(padapter, bank) == false) {
 736                        DBG_8723A("%s: hal_EfuseSwitchToBank Fail!!\n",
 737                                  __func__);
 738                        goto exit;
 739                }
 740
 741                eFuse_Addr = 0;
 742
 743                while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
 744                        ReadEFuseByte23a(padapter, eFuse_Addr++, &efuseHeader);
 745                        if (efuseHeader == 0xFF)
 746                                break;
 747
 748                        /*  Check PG header for section num. */
 749                        if (EXT_HEADER(efuseHeader)) {  /* extended header */
 750                                offset = GET_HDR_OFFSET_2_0(efuseHeader);
 751
 752                                ReadEFuseByte23a(padapter, eFuse_Addr++,
 753                                              &efuseExtHdr);
 754                                if (ALL_WORDS_DISABLED(efuseExtHdr)) {
 755                                        continue;
 756                                }
 757
 758                                offset |= ((efuseExtHdr & 0xF0) >> 1);
 759                                wden = (efuseExtHdr & 0x0F);
 760                        } else {
 761                                offset = ((efuseHeader >> 4) & 0x0f);
 762                                wden = (efuseHeader & 0x0f);
 763                        }
 764
 765                        if (offset < EFUSE_BT_MAX_SECTION) {
 766                                u16 addr;
 767
 768                                /*  Get word enable value from PG header */
 769
 770                                addr = offset * PGPKT_DATA_SIZE;
 771                                for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
 772                                        /*  Check word enable condition in
 773                                            the section */
 774                                        if (!(wden & (0x01 << i))) {
 775                                                ReadEFuseByte23a(padapter,
 776                                                              eFuse_Addr++,
 777                                                              &efuseData);
 778                                                efuseTbl[addr] = efuseData;
 779
 780                                                ReadEFuseByte23a(padapter,
 781                                                              eFuse_Addr++,
 782                                                              &efuseData);
 783                                                efuseTbl[addr + 1] = efuseData;
 784                                        }
 785                                        addr += 2;
 786                                }
 787                        } else {
 788                                DBG_8723A(KERN_ERR
 789                                          "%s: offset(%d) is illegal!!\n",
 790                                          __func__, offset);
 791                                eFuse_Addr += Efuse_CalculateWordCnts23a(wden) * 2;
 792                        }
 793                }
 794
 795                if ((eFuse_Addr - 1) < total) {
 796                        DBG_8723A("%s: bank(%d) data end at %#x\n",
 797                                  __func__, bank, eFuse_Addr - 1);
 798                        break;
 799                }
 800        }
 801
 802        /*  switch bank back to bank 0 for later BT and wifi use. */
 803        hal_EfuseSwitchToBank(padapter, 0);
 804
 805        /*  Copy from Efuse map to output pointer memory!!! */
 806        for (i = 0; i < _size_byte; i++)
 807                pbuf[i] = efuseTbl[_offset + i];
 808
 809        /*  */
 810        /*  Calculate Efuse utilization. */
 811        /*  */
 812        EFUSE_GetEfuseDefinition23a(padapter, EFUSE_BT,
 813                                 TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total);
 814        used = (EFUSE_BT_REAL_BANK_CONTENT_LEN * (bank - 1)) + eFuse_Addr - 1;
 815        rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *) &used);
 816
 817exit:
 818        kfree(efuseTbl);
 819}
 820
 821static void
 822Hal_ReadEFuse(struct rtw_adapter *padapter,
 823              u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf)
 824{
 825        if (efuseType == EFUSE_WIFI)
 826                hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf);
 827        else
 828                hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf);
 829}
 830
 831static u16
 832hal_EfuseGetCurrentSize_WiFi(struct rtw_adapter *padapter)
 833{
 834        u16 efuse_addr = 0;
 835        u8 hoffset = 0, hworden = 0;
 836        u8 efuse_data, word_cnts = 0;
 837
 838        rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *) &efuse_addr);
 839
 840        DBG_8723A("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
 841
 842        /*  switch bank back to bank 0 for later BT and wifi use. */
 843        hal_EfuseSwitchToBank(padapter, 0);
 844
 845        while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
 846                if (efuse_OneByteRead23a(padapter, efuse_addr, &efuse_data) ==
 847                    false) {
 848                        DBG_8723A(KERN_ERR "%s: efuse_OneByteRead23a Fail! "
 849                                  "addr = 0x%X !!\n", __func__, efuse_addr);
 850                        break;
 851                }
 852
 853                if (efuse_data == 0xFF)
 854                        break;
 855
 856                if (EXT_HEADER(efuse_data)) {
 857                        hoffset = GET_HDR_OFFSET_2_0(efuse_data);
 858                        efuse_addr++;
 859                        efuse_OneByteRead23a(padapter, efuse_addr, &efuse_data);
 860                        if (ALL_WORDS_DISABLED(efuse_data)) {
 861                                continue;
 862                        }
 863
 864                        hoffset |= ((efuse_data & 0xF0) >> 1);
 865                        hworden = efuse_data & 0x0F;
 866                } else {
 867                        hoffset = (efuse_data >> 4) & 0x0F;
 868                        hworden = efuse_data & 0x0F;
 869                }
 870
 871                word_cnts = Efuse_CalculateWordCnts23a(hworden);
 872                efuse_addr += (word_cnts * 2) + 1;
 873        }
 874
 875        rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BYTES, (u8 *) &efuse_addr);
 876
 877        DBG_8723A("%s: CurrentSize =%d\n", __func__, efuse_addr);
 878
 879        return efuse_addr;
 880}
 881
 882static u16
 883hal_EfuseGetCurrentSize_BT(struct rtw_adapter *padapter)
 884{
 885        u16 btusedbytes;
 886        u16 efuse_addr;
 887        u8 bank, startBank;
 888        u8 hoffset = 0, hworden = 0;
 889        u8 efuse_data, word_cnts = 0;
 890        u16 retU2 = 0;
 891
 892        rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *) &btusedbytes);
 893
 894        efuse_addr = (u16) ((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
 895        startBank = (u8) (1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
 896
 897        DBG_8723A("%s: start from bank =%d addr = 0x%X\n", __func__, startBank,
 898                  efuse_addr);
 899
 900        EFUSE_GetEfuseDefinition23a(padapter, EFUSE_BT,
 901                                 TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2);
 902
 903        for (bank = startBank; bank < EFUSE_MAX_BANK; bank++) {
 904                if (hal_EfuseSwitchToBank(padapter, bank) == false) {
 905                        DBG_8723A(KERN_ERR "%s: switch bank(%d) Fail!!\n",
 906                                  __func__, bank);
 907                        bank = EFUSE_MAX_BANK;
 908                        break;
 909                }
 910
 911                /*  only when bank is switched we have to reset
 912                    the efuse_addr. */
 913                if (bank != startBank)
 914                        efuse_addr = 0;
 915
 916                while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
 917                        if (efuse_OneByteRead23a(padapter, efuse_addr,
 918                                              &efuse_data) == false) {
 919                                DBG_8723A(KERN_ERR "%s: efuse_OneByteRead23a Fail!"
 920                                          " addr = 0x%X !!\n",
 921                                          __func__, efuse_addr);
 922                                bank = EFUSE_MAX_BANK;
 923                                break;
 924                        }
 925
 926                        if (efuse_data == 0xFF)
 927                                break;
 928
 929                        if (EXT_HEADER(efuse_data)) {
 930                                hoffset = GET_HDR_OFFSET_2_0(efuse_data);
 931                                efuse_addr++;
 932                                efuse_OneByteRead23a(padapter, efuse_addr,
 933                                                  &efuse_data);
 934                                if (ALL_WORDS_DISABLED(efuse_data)) {
 935                                        efuse_addr++;
 936                                        continue;
 937                                }
 938
 939                                hoffset |= ((efuse_data & 0xF0) >> 1);
 940                                hworden = efuse_data & 0x0F;
 941                        } else {
 942                                hoffset = (efuse_data >> 4) & 0x0F;
 943                                hworden = efuse_data & 0x0F;
 944                        }
 945                        word_cnts = Efuse_CalculateWordCnts23a(hworden);
 946                        /* read next header */
 947                        efuse_addr += (word_cnts * 2) + 1;
 948                }
 949
 950                /*  Check if we need to check next bank efuse */
 951                if (efuse_addr < retU2) {
 952                        break;  /*  don't need to check next bank. */
 953                }
 954        }
 955
 956        retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
 957        rtw_hal_set_hwreg23a(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&retU2);
 958
 959        DBG_8723A("%s: CurrentSize =%d\n", __func__, retU2);
 960        return retU2;
 961}
 962
 963static u16
 964Hal_EfuseGetCurrentSize(struct rtw_adapter *pAdapter, u8 efuseType)
 965{
 966        u16 ret = 0;
 967
 968        if (efuseType == EFUSE_WIFI)
 969                ret = hal_EfuseGetCurrentSize_WiFi(pAdapter);
 970        else
 971                ret = hal_EfuseGetCurrentSize_BT(pAdapter);
 972
 973        return ret;
 974}
 975
 976static u8
 977Hal_EfuseWordEnableDataWrite(struct rtw_adapter *padapter,
 978                             u16 efuse_addr, u8 word_en, u8 *data)
 979{
 980        u16 tmpaddr = 0;
 981        u16 start_addr = efuse_addr;
 982        u8 badworden = 0x0F;
 983        u8 tmpdata[PGPKT_DATA_SIZE];
 984
 985        memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
 986
 987        if (!(word_en & BIT(0))) {
 988                tmpaddr = start_addr;
 989                efuse_OneByteWrite23a(padapter, start_addr++, data[0]);
 990                efuse_OneByteWrite23a(padapter, start_addr++, data[1]);
 991
 992                efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[0]);
 993                efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[1]);
 994                if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
 995                        badworden &= (~BIT(0));
 996                }
 997        }
 998        if (!(word_en & BIT(1))) {
 999                tmpaddr = start_addr;
1000                efuse_OneByteWrite23a(padapter, start_addr++, data[2]);
1001                efuse_OneByteWrite23a(padapter, start_addr++, data[3]);
1002
1003                efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[2]);
1004                efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[3]);
1005                if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1006                        badworden &= (~BIT(1));
1007                }
1008        }
1009        if (!(word_en & BIT(2))) {
1010                tmpaddr = start_addr;
1011                efuse_OneByteWrite23a(padapter, start_addr++, data[4]);
1012                efuse_OneByteWrite23a(padapter, start_addr++, data[5]);
1013
1014                efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[4]);
1015                efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[5]);
1016                if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1017                        badworden &= (~BIT(2));
1018                }
1019        }
1020        if (!(word_en & BIT(3))) {
1021                tmpaddr = start_addr;
1022                efuse_OneByteWrite23a(padapter, start_addr++, data[6]);
1023                efuse_OneByteWrite23a(padapter, start_addr++, data[7]);
1024
1025                efuse_OneByteRead23a(padapter, tmpaddr, &tmpdata[6]);
1026                efuse_OneByteRead23a(padapter, tmpaddr + 1, &tmpdata[7]);
1027                if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1028                        badworden &= (~BIT(3));
1029                }
1030        }
1031
1032        return badworden;
1033}
1034
1035static s32
1036Hal_EfusePgPacketRead(struct rtw_adapter *padapter, u8 offset, u8 *data)
1037{
1038        u8 efuse_data, word_cnts = 0;
1039        u16 efuse_addr = 0;
1040        u8 hoffset = 0, hworden = 0;
1041        u8 i;
1042        u8 max_section = 0;
1043        s32 ret;
1044
1045        if (data == NULL)
1046                return false;
1047
1048        EFUSE_GetEfuseDefinition23a(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION,
1049                                 &max_section);
1050        if (offset > max_section) {
1051                DBG_8723A("%s: Packet offset(%d) is illegal(>%d)!\n",
1052                          __func__, offset, max_section);
1053                return false;
1054        }
1055
1056        memset(data, 0xFF, PGPKT_DATA_SIZE);
1057        ret = true;
1058
1059        /*  */
1060        /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the
1061            end of Efuse by CP. */
1062        /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1063        /*  By pass right now. 2009.02.19. */
1064        /*  */
1065        while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1066                if (efuse_OneByteRead23a(padapter, efuse_addr++, &efuse_data) ==
1067                    false) {
1068                        ret = false;
1069                        break;
1070                }
1071
1072                if (efuse_data == 0xFF)
1073                        break;
1074
1075                if (EXT_HEADER(efuse_data)) {
1076                        hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1077                        efuse_OneByteRead23a(padapter, efuse_addr++, &efuse_data);
1078                        if (ALL_WORDS_DISABLED(efuse_data)) {
1079                                DBG_8723A("%s: Error!! All words disabled!\n",
1080                                          __func__);
1081                                continue;
1082                        }
1083
1084                        hoffset |= ((efuse_data & 0xF0) >> 1);
1085                        hworden = efuse_data & 0x0F;
1086                } else {
1087                        hoffset = (efuse_data >> 4) & 0x0F;
1088                        hworden = efuse_data & 0x0F;
1089                }
1090
1091                if (hoffset == offset) {
1092                        for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1093                                /* Check word enable condition in the section */
1094                                if (!(hworden & (0x01 << i))) {
1095                                        ReadEFuseByte23a(padapter, efuse_addr++,
1096                                                      &efuse_data);
1097                                        data[i * 2] = efuse_data;
1098
1099                                        ReadEFuseByte23a(padapter, efuse_addr++,
1100                                                      &efuse_data);
1101                                        data[(i * 2) + 1] = efuse_data;
1102                                }
1103                        }
1104                } else {
1105                        word_cnts = Efuse_CalculateWordCnts23a(hworden);
1106                        efuse_addr += word_cnts * 2;
1107                }
1108        }
1109
1110        return ret;
1111}
1112
1113static u8
1114hal_EfusePgCheckAvailableAddr(struct rtw_adapter *pAdapter, u8 efuseType)
1115{
1116        u16 max_available = 0;
1117        u16 current_size;
1118
1119        EFUSE_GetEfuseDefinition23a(pAdapter, efuseType,
1120                                 TYPE_AVAILABLE_EFUSE_BYTES_TOTAL,
1121                                 &max_available);
1122
1123        current_size = Efuse_GetCurrentSize23a(pAdapter, efuseType);
1124        if (current_size >= max_available) {
1125                DBG_8723A("%s: Error!! current_size(%d)>max_available(%d)\n",
1126                          __func__, current_size, max_available);
1127                return false;
1128        }
1129        return true;
1130}
1131
1132static void
1133hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData,
1134                        struct pg_pkt_struct *pTargetPkt)
1135{
1136        memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1137        pTargetPkt->offset = offset;
1138        pTargetPkt->word_en = word_en;
1139        efuse_WordEnableDataRead23a(word_en, pData, pTargetPkt->data);
1140        pTargetPkt->word_cnts = Efuse_CalculateWordCnts23a(pTargetPkt->word_en);
1141}
1142
1143static u8
1144hal_EfusePartialWriteCheck(struct rtw_adapter *padapter, u8 efuseType,
1145                           u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1146{
1147        u8 bRet = false;
1148        u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1149        u8 efuse_data = 0;
1150
1151        EFUSE_GetEfuseDefinition23a(padapter, efuseType,
1152                                 TYPE_AVAILABLE_EFUSE_BYTES_TOTAL,
1153                                 &efuse_max_available_len);
1154        EFUSE_GetEfuseDefinition23a(padapter, efuseType,
1155                                 TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max);
1156
1157        if (efuseType == EFUSE_WIFI) {
1158                rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES,
1159                                  (u8 *) &startAddr);
1160        } else {
1161                rtw23a_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES,
1162                                  (u8 *) &startAddr);
1163        }
1164        startAddr %= efuse_max;
1165
1166        while (1) {
1167                if (startAddr >= efuse_max_available_len) {
1168                        bRet = false;
1169                        DBG_8723A("%s: startAddr(%d) >= efuse_max_available_"
1170                                  "len(%d)\n", __func__, startAddr,
1171                                  efuse_max_available_len);
1172                        break;
1173                }
1174
1175                if (efuse_OneByteRead23a(padapter, startAddr, &efuse_data) &&
1176                    (efuse_data != 0xFF)) {
1177                        bRet = false;
1178                        DBG_8723A("%s: Something Wrong! last bytes(%#X = 0x%02X) "
1179                                  "is not 0xFF\n", __func__,
1180                                  startAddr, efuse_data);
1181                        break;
1182                } else {
1183                        /*  not used header, 0xff */
1184                        *pAddr = startAddr;
1185                        bRet = true;
1186                        break;
1187                }
1188        }
1189
1190        return bRet;
1191}
1192
1193static u8
1194hal_EfusePgPacketWrite1ByteHeader(struct rtw_adapter *pAdapter, u8 efuseType,
1195                                  u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1196{
1197        u8 pg_header = 0, tmp_header = 0;
1198        u16 efuse_addr = *pAddr;
1199        u8 repeatcnt = 0;
1200
1201        pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1202
1203        do {
1204                efuse_OneByteWrite23a(pAdapter, efuse_addr, pg_header);
1205                efuse_OneByteRead23a(pAdapter, efuse_addr, &tmp_header);
1206                if (tmp_header != 0xFF)
1207                        break;
1208                if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1209                        DBG_8723A("%s: Repeat over limit for pg_header!!\n",
1210                                  __func__);
1211                        return false;
1212                }
1213        } while (1);
1214
1215        if (tmp_header != pg_header) {
1216                DBG_8723A(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X "
1217                          "read = 0x%02X)\n", __func__,
1218                          pg_header, tmp_header);
1219                return false;
1220        }
1221
1222        *pAddr = efuse_addr;
1223
1224        return true;
1225}
1226
1227static u8
1228hal_EfusePgPacketWrite2ByteHeader(struct rtw_adapter *padapter, u8 efuseType,
1229                                  u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1230{
1231        u16 efuse_addr, efuse_max_available_len = 0;
1232        u8 pg_header = 0, tmp_header = 0;
1233        u8 repeatcnt = 0;
1234
1235        EFUSE_GetEfuseDefinition23a(padapter, efuseType,
1236                                 TYPE_AVAILABLE_EFUSE_BYTES_BANK,
1237                                 &efuse_max_available_len);
1238
1239        efuse_addr = *pAddr;
1240        if (efuse_addr >= efuse_max_available_len) {
1241                DBG_8723A("%s: addr(%d) over avaliable(%d)!!\n", __func__,
1242                          efuse_addr, efuse_max_available_len);
1243                return false;
1244        }
1245
1246        pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1247
1248        do {
1249                efuse_OneByteWrite23a(padapter, efuse_addr, pg_header);
1250                efuse_OneByteRead23a(padapter, efuse_addr, &tmp_header);
1251                if (tmp_header != 0xFF)
1252                        break;
1253                if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1254                        DBG_8723A("%s: Repeat over limit for pg_header!!\n",
1255                                  __func__);
1256                        return false;
1257                }
1258        } while (1);
1259
1260        if (tmp_header != pg_header) {
1261                DBG_8723A(KERN_ERR
1262                          "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n",
1263                          __func__, pg_header, tmp_header);
1264                return false;
1265        }
1266
1267        /*  to write ext_header */
1268        efuse_addr++;
1269        pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1270
1271        do {
1272                efuse_OneByteWrite23a(padapter, efuse_addr, pg_header);
1273                efuse_OneByteRead23a(padapter, efuse_addr, &tmp_header);
1274                if (tmp_header != 0xFF)
1275                        break;
1276                if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1277                        DBG_8723A("%s: Repeat over limit for ext_header!!\n",
1278                                  __func__);
1279                        return false;
1280                }
1281        } while (1);
1282
1283        if (tmp_header != pg_header) {  /* offset PG fail */
1284                DBG_8723A(KERN_ERR
1285                          "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n",
1286                          __func__, pg_header, tmp_header);
1287                return false;
1288        }
1289
1290        *pAddr = efuse_addr;
1291
1292        return true;
1293}
1294
1295static u8
1296hal_EfusePgPacketWriteHeader(struct rtw_adapter *padapter, u8 efuseType,
1297                             u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1298{
1299        u8 bRet = false;
1300
1301        if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) {
1302                bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType,
1303                                                         pAddr, pTargetPkt);
1304        } else {
1305                bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType,
1306                                                         pAddr, pTargetPkt);
1307        }
1308
1309        return bRet;
1310}
1311
1312static u8
1313hal_EfusePgPacketWriteData(struct rtw_adapter *pAdapter, u8 efuseType,
1314                           u16 *pAddr, struct pg_pkt_struct *pTargetPkt)
1315{
1316        u16 efuse_addr;
1317        u8 badworden;
1318
1319        efuse_addr = *pAddr;
1320        badworden =
1321            Efuse_WordEnableDataWrite23a(pAdapter, efuse_addr + 1,
1322                                      pTargetPkt->word_en, pTargetPkt->data);
1323        if (badworden != 0x0F) {
1324                DBG_8723A("%s: Fail!!\n", __func__);
1325                return false;
1326        }
1327
1328        return true;
1329}
1330
1331static s32
1332Hal_EfusePgPacketWrite(struct rtw_adapter *padapter,
1333                       u8 offset, u8 word_en, u8 *pData)
1334{
1335        struct pg_pkt_struct targetPkt;
1336        u16 startAddr = 0;
1337        u8 efuseType = EFUSE_WIFI;
1338
1339        if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType))
1340                return false;
1341
1342        hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1343
1344        if (!hal_EfusePartialWriteCheck(padapter, efuseType,
1345                                        &startAddr, &targetPkt))
1346                return false;
1347
1348        if (!hal_EfusePgPacketWriteHeader(padapter, efuseType,
1349                                          &startAddr, &targetPkt))
1350                return false;
1351
1352        if (!hal_EfusePgPacketWriteData(padapter, efuseType,
1353                                        &startAddr, &targetPkt))
1354                return false;
1355
1356        return true;
1357}
1358
1359static bool
1360Hal_EfusePgPacketWrite_BT(struct rtw_adapter *pAdapter,
1361                          u8 offset, u8 word_en, u8 *pData)
1362{
1363        struct pg_pkt_struct targetPkt;
1364        u16 startAddr = 0;
1365        u8 efuseType = EFUSE_BT;
1366
1367        if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType))
1368                return false;
1369
1370        hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1371
1372        if (!hal_EfusePartialWriteCheck(pAdapter, efuseType,
1373                                        &startAddr, &targetPkt))
1374                return false;
1375
1376        if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType,
1377                                          &startAddr, &targetPkt))
1378                return false;
1379
1380        if (!hal_EfusePgPacketWriteData(pAdapter, efuseType,
1381                                        &startAddr, &targetPkt))
1382                return false;
1383
1384        return true;
1385}
1386
1387static struct hal_version ReadChipVersion8723A(struct rtw_adapter *padapter)
1388{
1389        u32 value32;
1390        struct hal_version ChipVersion;
1391        struct hal_data_8723a *pHalData;
1392
1393        pHalData = GET_HAL_DATA(padapter);
1394
1395        value32 = rtw_read32(padapter, REG_SYS_CFG);
1396        ChipVersion.ICType = CHIP_8723A;
1397        ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1398        ChipVersion.RFType = RF_TYPE_1T1R;
1399        ChipVersion.VendorType =
1400                ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1401        ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT;   /*  IC version (CUT) */
1402
1403        /*  For regulator mode. by tynli. 2011.01.14 */
1404        pHalData->RegulatorMode = ((value32 & SPS_SEL) ?
1405                                   RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1406
1407        value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1408        /*  ROM code version. */
1409        ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);
1410
1411        /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1412        pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1413        value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1414        pHalData->MultiFunc |=
1415                ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1416        pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1417        pHalData->MultiFunc |=
1418                ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1419        pHalData->PolarityCtl =
1420                ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT :
1421                 RT_POLARITY_LOW_ACT);
1422        dump_chip_info23a(ChipVersion);
1423        pHalData->VersionID = ChipVersion;
1424
1425        if (IS_1T2R(ChipVersion))
1426                pHalData->rf_type = RF_1T2R;
1427        else if (IS_2T2R(ChipVersion))
1428                pHalData->rf_type = RF_2T2R;
1429        else
1430                pHalData->rf_type = RF_1T1R;
1431
1432        MSG_8723A("RF_Type is %x!!\n", pHalData->rf_type);
1433
1434        return ChipVersion;
1435}
1436
1437static void rtl8723a_read_chip_version(struct rtw_adapter *padapter)
1438{
1439        ReadChipVersion8723A(padapter);
1440}
1441
1442/*  */
1443/*  */
1444/*  20100209 Joseph: */
1445/*  This function is used only for 92C to set REG_BCN_CTRL(0x550) register. */
1446/*  We just reserve the value of the register in variable
1447    pHalData->RegBcnCtrlVal and then operate */
1448/*  the value of the register via atomic operation. */
1449/*  This prevents from race condition when setting this register. */
1450/*  The value of pHalData->RegBcnCtrlVal is initialized in
1451    HwConfigureRTL8192CE() function. */
1452/*  */
1453void SetBcnCtrlReg23a(struct rtw_adapter *padapter, u8 SetBits, u8 ClearBits)
1454{
1455        struct hal_data_8723a *pHalData;
1456        u32 addr;
1457        u8 *pRegBcnCtrlVal;
1458
1459        pHalData = GET_HAL_DATA(padapter);
1460        pRegBcnCtrlVal = (u8 *)&pHalData->RegBcnCtrlVal;
1461
1462        addr = REG_BCN_CTRL;
1463
1464        *pRegBcnCtrlVal = rtw_read8(padapter, addr);
1465        *pRegBcnCtrlVal |= SetBits;
1466        *pRegBcnCtrlVal &= ~ClearBits;
1467
1468        rtw_write8(padapter, addr, *pRegBcnCtrlVal);
1469}
1470
1471void rtl8723a_InitBeaconParameters(struct rtw_adapter *padapter)
1472{
1473        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
1474
1475        rtw_write16(padapter, REG_BCN_CTRL, 0x1010);
1476        pHalData->RegBcnCtrlVal = 0x1010;
1477
1478        /*  TODO: Remove these magic number */
1479        rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);       /*  ms */
1480        /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1481        /*  so don't set this register on STA mode. */
1482        if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1483                rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
1484        /*  2ms */
1485        rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
1486
1487        /*  Suggested by designer timchen. Change beacon AIFS to the
1488            largest number beacause test chip does not contension before
1489            sending beacon. by tynli. 2009.11.03 */
1490        rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1491}
1492
1493static void ResumeTxBeacon(struct rtw_adapter *padapter)
1494{
1495        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
1496
1497        /*  2010.03.01. Marked by tynli. No need to call workitem beacause
1498            we record the value */
1499        /*  which should be read from register to a global variable. */
1500
1501        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
1502
1503        pHalData->RegFwHwTxQCtrl |= BIT(6);
1504        rtw_write8(padapter, REG_FWHW_TXQ_CTRL + 2, pHalData->RegFwHwTxQCtrl);
1505        rtw_write8(padapter, REG_TBTT_PROHIBIT + 1, 0xff);
1506        pHalData->RegReg542 |= BIT(0);
1507        rtw_write8(padapter, REG_TBTT_PROHIBIT + 2, pHalData->RegReg542);
1508}
1509
1510static void StopTxBeacon(struct rtw_adapter *padapter)
1511{
1512        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
1513
1514        /*  2010.03.01. Marked by tynli. No need to call workitem beacause
1515            we record the value */
1516        /*  which should be read from register to a global variable. */
1517
1518        RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
1519
1520        pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1521        rtw_write8(padapter, REG_FWHW_TXQ_CTRL + 2, pHalData->RegFwHwTxQCtrl);
1522        rtw_write8(padapter, REG_TBTT_PROHIBIT + 1, 0x64);
1523        pHalData->RegReg542 &= ~BIT(0);
1524        rtw_write8(padapter, REG_TBTT_PROHIBIT + 2, pHalData->RegReg542);
1525
1526        CheckFwRsvdPageContent23a(padapter); /*  2010.06.23. Added by tynli. */
1527}
1528
1529static void _BeaconFunctionEnable(struct rtw_adapter *padapter, u8 Enable,
1530                                  u8 Linked)
1531{
1532        SetBcnCtrlReg23a(padapter, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB,
1533                      0);
1534        rtw_write8(padapter, REG_RD_CTRL + 1, 0x6F);
1535}
1536
1537static void rtl8723a_SetBeaconRelatedRegisters(struct rtw_adapter *padapter)
1538{
1539        u32 value32;
1540        struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1541        struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1542
1543        /* reset TSF, enable update TSF, correcting TSF On Beacon */
1544
1545        /* REG_BCN_INTERVAL */
1546        /* REG_BCNDMATIM */
1547        /* REG_ATIMWND */
1548        /* REG_TBTT_PROHIBIT */
1549        /* REG_DRVERLYINT */
1550        /* REG_BCN_MAX_ERR */
1551        /* REG_BCNTCFG (0x510) */
1552        /* REG_DUAL_TSF_RST */
1553        /* REG_BCN_CTRL (0x550) */
1554
1555        /*  */
1556        /*  ATIM window */
1557        /*  */
1558        rtw_write16(padapter, REG_ATIMWND, 2);
1559
1560        /*  */
1561        /*  Beacon interval (in unit of TU). */
1562        /*  */
1563        rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1564
1565        rtl8723a_InitBeaconParameters(padapter);
1566
1567        rtw_write8(padapter, REG_SLOT, 0x09);
1568
1569        /*  */
1570        /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1571        /*  */
1572        value32 = rtw_read32(padapter, REG_TCR);
1573        value32 &= ~TSFRST;
1574        rtw_write32(padapter, REG_TCR, value32);
1575
1576        value32 |= TSFRST;
1577        rtw_write32(padapter, REG_TCR, value32);
1578
1579        /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1580        if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE |
1581                          WIFI_ADHOC_MASTER_STATE | WIFI_AP_STATE) == true) {
1582                rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1583                rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1584        }
1585
1586        _BeaconFunctionEnable(padapter, true, true);
1587
1588        ResumeTxBeacon(padapter);
1589        SetBcnCtrlReg23a(padapter, DIS_BCNQ_SUB, 0);
1590}
1591
1592static void rtl8723a_GetHalODMVar(struct rtw_adapter *Adapter,
1593                                  enum hal_odm_variable eVariable,
1594                                  void *pValue1, bool bSet)
1595{
1596        switch (eVariable) {
1597        case HAL_ODM_STA_INFO:
1598                break;
1599        default:
1600                break;
1601        }
1602}
1603
1604static void rtl8723a_SetHalODMVar(struct rtw_adapter *Adapter,
1605                                  enum hal_odm_variable eVariable,
1606                                  void *pValue1, bool bSet)
1607{
1608        struct hal_data_8723a *pHalData = GET_HAL_DATA(Adapter);
1609        struct dm_odm_t *podmpriv = &pHalData->odmpriv;
1610        switch (eVariable) {
1611        case HAL_ODM_STA_INFO:
1612        {
1613                struct sta_info *psta = (struct sta_info *)pValue1;
1614
1615                if (bSet) {
1616                        DBG_8723A("Set STA_(%d) info\n", psta->mac_id);
1617                        ODM_CmnInfoPtrArrayHook23a(podmpriv,
1618                                                ODM_CMNINFO_STA_STATUS,
1619                                                psta->mac_id, psta);
1620                } else {
1621                        DBG_8723A("Clean STA_(%d) info\n", psta->mac_id);
1622                                ODM_CmnInfoPtrArrayHook23a(podmpriv,
1623                                                        ODM_CMNINFO_STA_STATUS,
1624                                                        psta->mac_id, NULL);
1625                }
1626        }
1627                break;
1628        case HAL_ODM_P2P_STATE:
1629                ODM_CmnInfoUpdate23a(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet);
1630                break;
1631        case HAL_ODM_WIFI_DISPLAY_STATE:
1632                ODM_CmnInfoUpdate23a(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet);
1633                break;
1634        default:
1635                break;
1636        }
1637}
1638
1639static void hal_notch_filter_8723a(struct rtw_adapter *adapter, bool enable)
1640{
1641        if (enable) {
1642                DBG_8723A("Enable notch filter\n");
1643                rtw_write8(adapter, rOFDM0_RxDSP + 1,
1644                           rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT1);
1645        } else {
1646                DBG_8723A("Disable notch filter\n");
1647                rtw_write8(adapter, rOFDM0_RxDSP + 1,
1648                           rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT1);
1649        }
1650}
1651
1652s32 c2h_id_filter_ccx_8723a(u8 id)
1653{
1654        s32 ret = false;
1655        if (id == C2H_CCX_TX_RPT)
1656                ret = true;
1657
1658        return ret;
1659}
1660
1661static s32 c2h_handler_8723a(struct rtw_adapter *padapter,
1662                             struct c2h_evt_hdr *c2h_evt)
1663{
1664        s32 ret = _SUCCESS;
1665        u8 i = 0;
1666
1667        if (c2h_evt == NULL) {
1668                DBG_8723A("%s c2h_evt is NULL\n", __func__);
1669                ret = _FAIL;
1670                goto exit;
1671        }
1672
1673        switch (c2h_evt->id) {
1674        case C2H_DBG:
1675                RT_TRACE(_module_hal_init_c_, _drv_info_,
1676                         ("C2HCommandHandler: %s\n", c2h_evt->payload));
1677                break;
1678
1679        case C2H_CCX_TX_RPT:
1680                handle_txrpt_ccx_8723a(padapter, c2h_evt->payload);
1681                break;
1682        case C2H_EXT_RA_RPT:
1683                break;
1684        case C2H_HW_INFO_EXCH:
1685                RT_TRACE(_module_hal_init_c_, _drv_info_,
1686                         ("[BT], C2H_HW_INFO_EXCH\n"));
1687                for (i = 0; i < c2h_evt->plen; i++) {
1688                        RT_TRACE(_module_hal_init_c_, _drv_info_,
1689                                 ("[BT], tmpBuf[%d]= 0x%x\n", i,
1690                                  c2h_evt->payload[i]));
1691                }
1692                break;
1693
1694        case C2H_C2H_H2C_TEST:
1695                RT_TRACE(_module_hal_init_c_, _drv_info_,
1696                         ("[BT], C2H_H2C_TEST\n"));
1697                RT_TRACE(_module_hal_init_c_, _drv_info_,
1698                         ("[BT], tmpBuf[0]/[1]/[2]/[3]/[4]= 0x%x/ 0x%x/ "
1699                          "0x%x/ 0x%x/ 0x%x\n", c2h_evt->payload[0],
1700                          c2h_evt->payload[1], c2h_evt->payload[2],
1701                          c2h_evt->payload[3], c2h_evt->payload[4]));
1702                break;
1703
1704#ifdef CONFIG_8723AU_BT_COEXIST
1705        case C2H_BT_INFO:
1706                DBG_8723A("%s ,  Got  C2H_BT_INFO \n", __func__);
1707                BT_FwC2hBtInfo(padapter, c2h_evt->payload, c2h_evt->plen);
1708                break;
1709#endif
1710
1711        default:
1712                ret = _FAIL;
1713                break;
1714        }
1715
1716exit:
1717        return ret;
1718}
1719
1720void rtl8723a_set_hal_ops(struct hal_ops *pHalFunc)
1721{
1722        pHalFunc->free_hal_data = &rtl8723a_free_hal_data;
1723
1724        pHalFunc->dm_init = &rtl8723a_init_dm_priv;
1725        pHalFunc->dm_deinit = &rtl8723a_deinit_dm_priv;
1726
1727        pHalFunc->read_chip_version = &rtl8723a_read_chip_version;
1728
1729        pHalFunc->set_bwmode_handler = &PHY_SetBWMode23a8723A;
1730        pHalFunc->set_channel_handler = &PHY_SwChnl8723A;
1731
1732        pHalFunc->hal_dm_watchdog = &rtl8723a_HalDmWatchDog;
1733
1734        pHalFunc->SetBeaconRelatedRegistersHandler =
1735                &rtl8723a_SetBeaconRelatedRegisters;
1736
1737        pHalFunc->Add_RateATid = &rtl8723a_add_rateatid;
1738        pHalFunc->run_thread = &rtl8723a_start_thread;
1739        pHalFunc->cancel_thread = &rtl8723a_stop_thread;
1740
1741        pHalFunc->read_bbreg = &PHY_QueryBBReg;
1742        pHalFunc->write_bbreg = &PHY_SetBBReg;
1743        pHalFunc->read_rfreg = &PHY_QueryRFReg;
1744        pHalFunc->write_rfreg = &PHY_SetRFReg;
1745
1746        /*  Efuse related function */
1747        pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
1748        pHalFunc->ReadEFuse = &Hal_ReadEFuse;
1749        pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
1750        pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
1751        pHalFunc->Efuse_PgPacketRead23a = &Hal_EfusePgPacketRead;
1752        pHalFunc->Efuse_PgPacketWrite23a = &Hal_EfusePgPacketWrite;
1753        pHalFunc->Efuse_WordEnableDataWrite23a = &Hal_EfuseWordEnableDataWrite;
1754        pHalFunc->Efuse_PgPacketWrite23a_BT = &Hal_EfusePgPacketWrite_BT;
1755
1756        pHalFunc->sreset_init_value23a = &sreset_init_value23a;
1757        pHalFunc->sreset_reset_value23a = &sreset_reset_value23a;
1758        pHalFunc->silentreset = &sreset_reset;
1759        pHalFunc->sreset_xmit_status_check = &rtl8723a_sreset_xmit_status_check;
1760        pHalFunc->sreset_linked_status_check =
1761                &rtl8723a_sreset_linked_status_check;
1762        pHalFunc->sreset_get_wifi_status23a = &sreset_get_wifi_status23a;
1763        pHalFunc->sreset_inprogress = &sreset_inprogress;
1764        pHalFunc->GetHalODMVarHandler = &rtl8723a_GetHalODMVar;
1765        pHalFunc->SetHalODMVarHandler = &rtl8723a_SetHalODMVar;
1766
1767        pHalFunc->hal_notch_filter = &hal_notch_filter_8723a;
1768
1769        pHalFunc->c2h_handler = c2h_handler_8723a;
1770        pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723a;
1771}
1772
1773void rtl8723a_InitAntenna_Selection(struct rtw_adapter *padapter)
1774{
1775        struct hal_data_8723a *pHalData;
1776        u8 val;
1777
1778        pHalData = GET_HAL_DATA(padapter);
1779
1780        val = rtw_read8(padapter, REG_LEDCFG2);
1781        /*  Let 8051 take control antenna settting */
1782        val |= BIT(7);          /*  DPDT_SEL_EN, 0x4C[23] */
1783        rtw_write8(padapter, REG_LEDCFG2, val);
1784}
1785
1786void rtl8723a_CheckAntenna_Selection(struct rtw_adapter *padapter)
1787{
1788        struct hal_data_8723a *pHalData;
1789        u8 val;
1790
1791        pHalData = GET_HAL_DATA(padapter);
1792
1793        val = rtw_read8(padapter, REG_LEDCFG2);
1794        /*  Let 8051 take control antenna settting */
1795        if (!(val & BIT(7))) {
1796                val |= BIT(7);  /*  DPDT_SEL_EN, 0x4C[23] */
1797                rtw_write8(padapter, REG_LEDCFG2, val);
1798        }
1799}
1800
1801void rtl8723a_DeinitAntenna_Selection(struct rtw_adapter *padapter)
1802{
1803        struct hal_data_8723a *pHalData;
1804        u8 val;
1805
1806        pHalData = GET_HAL_DATA(padapter);
1807        val = rtw_read8(padapter, REG_LEDCFG2);
1808        /*  Let 8051 take control antenna settting */
1809        val &= ~BIT(7);         /*  DPDT_SEL_EN, clear 0x4C[23] */
1810        rtw_write8(padapter, REG_LEDCFG2, val);
1811}
1812
1813void rtl8723a_init_default_value(struct rtw_adapter *padapter)
1814{
1815        struct hal_data_8723a *pHalData;
1816        struct dm_priv *pdmpriv;
1817        u8 i;
1818
1819        pHalData = GET_HAL_DATA(padapter);
1820        pdmpriv = &pHalData->dmpriv;
1821
1822        /*  init default value */
1823        pHalData->fw_ractrl = false;
1824        pHalData->bIQKInitialized = false;
1825        if (!padapter->pwrctrlpriv.bkeepfwalive)
1826                pHalData->LastHMEBoxNum = 0;
1827
1828        pHalData->bIQKInitialized = false;
1829
1830        /*  init dm default value */
1831        pdmpriv->TM_Trigger = 0;        /* for IQK */
1832/*      pdmpriv->binitialized = false; */
1833/*      pdmpriv->prv_traffic_idx = 3; */
1834/*      pdmpriv->initialize = 0; */
1835
1836        pdmpriv->ThermalValue_HP_index = 0;
1837        for (i = 0; i < HP_THERMAL_NUM; i++)
1838                pdmpriv->ThermalValue_HP[i] = 0;
1839
1840        /*  init Efuse variables */
1841        pHalData->EfuseUsedBytes = 0;
1842        pHalData->BTEfuseUsedBytes = 0;
1843}
1844
1845u8 GetEEPROMSize8723A(struct rtw_adapter *padapter)
1846{
1847        u8 size = 0;
1848        u32 cr;
1849
1850        cr = rtw_read16(padapter, REG_9346CR);
1851        /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
1852        size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
1853
1854        MSG_8723A("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
1855
1856        return size;
1857}
1858
1859/*  */
1860/*  */
1861/*  LLT R/W/Init function */
1862/*  */
1863/*  */
1864static s32 _LLTWrite(struct rtw_adapter *padapter, u32 address, u32 data)
1865{
1866        s32 status = _SUCCESS;
1867        s32 count = 0;
1868        u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
1869                    _LLT_OP(_LLT_WRITE_ACCESS);
1870        u16 LLTReg = REG_LLT_INIT;
1871
1872        rtw_write32(padapter, LLTReg, value);
1873
1874        /* polling */
1875        do {
1876                value = rtw_read32(padapter, LLTReg);
1877                if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
1878                        break;
1879                }
1880
1881                if (count > POLLING_LLT_THRESHOLD) {
1882                        RT_TRACE(_module_hal_init_c_, _drv_err_,
1883                                 ("Failed to polling write LLT done at "
1884                                  "address %d!\n", address));
1885                        status = _FAIL;
1886                        break;
1887                }
1888        } while (count++);
1889
1890        return status;
1891}
1892
1893s32 InitLLTTable23a(struct rtw_adapter *padapter, u32 boundary)
1894{
1895        s32 status = _SUCCESS;
1896        u32 i;
1897        u32 txpktbuf_bndy = boundary;
1898        u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;
1899
1900        for (i = 0; i < (txpktbuf_bndy - 1); i++) {
1901                status = _LLTWrite(padapter, i, i + 1);
1902                if (_SUCCESS != status) {
1903                        return status;
1904                }
1905        }
1906
1907        /*  end of list */
1908        status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
1909        if (_SUCCESS != status) {
1910                return status;
1911        }
1912
1913        /*  Make the other pages as ring buffer */
1914        /*  This ring buffer is used as beacon buffer if we config this
1915            MAC as two MAC transfer. */
1916        /*  Otherwise used as local loopback buffer. */
1917        for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
1918                status = _LLTWrite(padapter, i, (i + 1));
1919                if (_SUCCESS != status) {
1920                        return status;
1921                }
1922        }
1923
1924        /*  Let last entry point to the start entry of ring buffer */
1925        status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
1926        if (_SUCCESS != status) {
1927                return status;
1928        }
1929
1930        return status;
1931}
1932
1933static void _DisableGPIO(struct rtw_adapter *padapter)
1934{
1935/***************************************
1936j. GPIO_PIN_CTRL 0x44[31:0]= 0x000
1937k.Value = GPIO_PIN_CTRL[7:0]
1938l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write external PIN level
1939m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
1940n. LEDCFG 0x4C[15:0] = 0x8080
1941***************************************/
1942        u32 value32;
1943        u32 u4bTmp;
1944
1945        /* 1. Disable GPIO[7:0] */
1946        rtw_write16(padapter, REG_GPIO_PIN_CTRL + 2, 0x0000);
1947        value32 = rtw_read32(padapter, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
1948        u4bTmp = value32 & 0x000000FF;
1949        value32 |= ((u4bTmp << 8) | 0x00FF0000);
1950        rtw_write32(padapter, REG_GPIO_PIN_CTRL, value32);
1951
1952        /*  */
1953        /*  <Roger_Notes> For RTL8723u multi-function configuration which
1954            was autoload from Efuse offset 0x0a and 0x0b, */
1955        /*  WLAN HW GPIO[9], GPS HW GPIO[10] and BT HW GPIO[11]. */
1956        /*  Added by Roger, 2010.10.07. */
1957        /*  */
1958        /* 2. Disable GPIO[8] and GPIO[12] */
1959
1960        /*  Configure all pins as input mode. */
1961        rtw_write16(padapter, REG_GPIO_IO_SEL_2, 0x0000);
1962        value32 = rtw_read32(padapter, REG_GPIO_PIN_CTRL_2) & 0xFFFF001F;
1963        u4bTmp = value32 & 0x0000001F;
1964        /*  Set pin 8, 10, 11 and pin 12 to output mode. */
1965        value32 |= ((u4bTmp << 8) | 0x001D0000);
1966        rtw_write32(padapter, REG_GPIO_PIN_CTRL_2, value32);
1967
1968        /* 3. Disable LED0 & 1 */
1969        rtw_write16(padapter, REG_LEDCFG0, 0x8080);
1970}                               /* end of _DisableGPIO() */
1971
1972static void _DisableRFAFEAndResetBB8192C(struct rtw_adapter *padapter)
1973{
1974/**************************************
1975a.      TXPAUSE 0x522[7:0] = 0xFF               Pause MAC TX queue
1976b.      RF path 0 offset 0x00 = 0x00            disable RF
1977c.      APSD_CTRL 0x600[7:0] = 0x40
1978d.      SYS_FUNC_EN 0x02[7:0] = 0x16            reset BB state machine
1979e.      SYS_FUNC_EN 0x02[7:0] = 0x14            reset BB state machine
1980***************************************/
1981        u8 eRFPath = 0, value8 = 0;
1982
1983        rtw_write8(padapter, REG_TXPAUSE, 0xFF);
1984
1985        PHY_SetRFReg(padapter, (enum RF_RADIO_PATH) eRFPath, 0x0, bMaskByte0, 0x0);
1986
1987        value8 |= APSDOFF;
1988        rtw_write8(padapter, REG_APSD_CTRL, value8);    /* 0x40 */
1989
1990        /*  Set BB reset at first */
1991        value8 = 0;
1992        value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
1993        rtw_write8(padapter, REG_SYS_FUNC_EN, value8);  /* 0x16 */
1994
1995        /*  Set global reset. */
1996        value8 &= ~FEN_BB_GLB_RSTn;
1997        rtw_write8(padapter, REG_SYS_FUNC_EN, value8);  /* 0x14 */
1998
1999        /*  2010/08/12 MH We need to set BB/GLBAL reset to save power
2000            for SS mode. */
2001
2002/*      RT_TRACE(COMP_INIT, DBG_LOUD, ("======> RF off and reset BB.\n")); */
2003}
2004
2005static void _DisableRFAFEAndResetBB(struct rtw_adapter *padapter)
2006{
2007        _DisableRFAFEAndResetBB8192C(padapter);
2008}
2009
2010static void _ResetDigitalProcedure1_92C(struct rtw_adapter *padapter,
2011                                        bool bWithoutHWSM)
2012{
2013        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2014
2015        if (IS_FW_81xxC(padapter) && (pHalData->FirmwareVersion <= 0x20)) {
2016        /*****************************
2017        f.      MCUFWDL 0x80[7:0]= 0            reset MCU ready status
2018        g.      SYS_FUNC_EN 0x02[10]= 0         reset MCU register, (8051 reset)
2019        h.      SYS_FUNC_EN 0x02[15-12]= 5      reset MAC register, DCORE
2020        i.     SYS_FUNC_EN 0x02[10]= 1          enable MCU register,
2021                                                (8051 enable)
2022        ******************************/
2023                u16 valu16 = 0;
2024                rtw_write8(padapter, REG_MCUFWDL, 0);
2025
2026                valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
2027                /* reset MCU , 8051 */
2028                rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 & (~FEN_CPUEN)));
2029
2030                valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN) & 0x0FFF;
2031                rtw_write16(padapter, REG_SYS_FUNC_EN,
2032                            (valu16 | (FEN_HWPDN | FEN_ELDR))); /* reset MAC */
2033
2034                valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
2035                /* enable MCU , 8051 */
2036                rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 | FEN_CPUEN));
2037        } else {
2038                u8 retry_cnts = 0;
2039
2040                /*  2010/08/12 MH For USB SS, we can not stop 8051 when we
2041                    are trying to enter IPS/HW&SW radio off. For
2042                    S3/S4/S5/Disable, we can stop 8051 because */
2043                /*  we will init FW when power on again. */
2044                /* if (!pDevice->RegUsbSS) */
2045                /*  If we want to SS mode, we can not reset 8051. */
2046                if (rtw_read8(padapter, REG_MCUFWDL) & BIT1) {
2047                        /* IF fw in RAM code, do reset */
2048                        if (padapter->bFWReady) {
2049                                /*  2010/08/25 MH Accordign to RD alfred's
2050                                    suggestion, we need to disable other */
2051                                /*  HRCV INT to influence 8051 reset. */
2052                                rtw_write8(padapter, REG_FWIMR, 0x20);
2053                                /*  2011/02/15 MH According to Alex's
2054                                    suggestion, close mask to prevent
2055                                    incorrect FW write operation. */
2056                                rtw_write8(padapter, REG_FTIMR, 0x00);
2057                                rtw_write8(padapter, REG_FSIMR, 0x00);
2058
2059                                /* 8051 reset by self */
2060                                rtw_write8(padapter, REG_HMETFR + 3, 0x20);
2061
2062                                while ((retry_cnts++ < 100) &&
2063                                       (FEN_CPUEN &
2064                                        rtw_read16(padapter, REG_SYS_FUNC_EN))) {
2065                                        udelay(50);     /* us */
2066                                }
2067
2068                                if (retry_cnts >= 100) {
2069                                        /* Reset MAC and Enable 8051 */
2070                                        rtw_write8(padapter,
2071                                                   REG_SYS_FUNC_EN + 1, 0x50);
2072                                        mdelay(10);
2073                                }
2074                        }
2075                }
2076                /* Reset MAC and Enable 8051 */
2077                rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x54);
2078                rtw_write8(padapter, REG_MCUFWDL, 0);
2079        }
2080
2081        if (bWithoutHWSM) {
2082        /*****************************
2083                Without HW auto state machine
2084        g.      SYS_CLKR 0x08[15:0] = 0x30A3            disable MAC clock
2085        h.      AFE_PLL_CTRL 0x28[7:0] = 0x80           disable AFE PLL
2086        i.      AFE_XTAL_CTRL 0x24[15:0] = 0x880F       gated AFE DIG_CLOCK
2087        j.      SYS_ISO_CTRL 0x00[7:0] = 0xF9           isolated digital to PON
2088        ******************************/
2089                /* modify to 0x70A3 by Scott. */
2090                rtw_write16(padapter, REG_SYS_CLKR, 0x70A3);
2091                rtw_write8(padapter, REG_AFE_PLL_CTRL, 0x80);
2092                rtw_write16(padapter, REG_AFE_XTAL_CTRL, 0x880F);
2093                rtw_write8(padapter, REG_SYS_ISO_CTRL, 0xF9);
2094        } else {
2095                /*  Disable all RF/BB power */
2096                rtw_write8(padapter, REG_RF_CTRL, 0x00);
2097        }
2098}
2099
2100static void _ResetDigitalProcedure1(struct rtw_adapter *padapter,
2101                                    bool bWithoutHWSM)
2102{
2103        _ResetDigitalProcedure1_92C(padapter, bWithoutHWSM);
2104}
2105
2106static void _ResetDigitalProcedure2(struct rtw_adapter *padapter)
2107{
2108/*****************************
2109k.      SYS_FUNC_EN 0x03[7:0] = 0x44            disable ELDR runction
2110l.      SYS_CLKR 0x08[15:0] = 0x3083            disable ELDR clock
2111m.      SYS_ISO_CTRL 0x01[7:0] = 0x83           isolated ELDR to PON
2112******************************/
2113        /* modify to 0x70a3 by Scott. */
2114        rtw_write16(padapter, REG_SYS_CLKR, 0x70a3);
2115        /* modify to 0x82 by Scott. */
2116        rtw_write8(padapter, REG_SYS_ISO_CTRL + 1, 0x82);
2117}
2118
2119static void _DisableAnalog(struct rtw_adapter *padapter, bool bWithoutHWSM)
2120{
2121        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2122        u16 value16 = 0;
2123        u8 value8 = 0;
2124
2125        if (bWithoutHWSM) {
2126        /*****************************
2127        n.      LDOA15_CTRL 0x20[7:0] = 0x04    disable A15 power
2128        o.      LDOV12D_CTRL 0x21[7:0] = 0x54   disable digital core power
2129        r.      When driver call disable, the ASIC will turn off remaining
2130                clock automatically
2131        ******************************/
2132
2133                rtw_write8(padapter, REG_LDOA15_CTRL, 0x04);
2134                /* rtw_write8(padapter, REG_LDOV12D_CTRL, 0x54); */
2135
2136                value8 = rtw_read8(padapter, REG_LDOV12D_CTRL);
2137                value8 &= (~LDV12_EN);
2138                rtw_write8(padapter, REG_LDOV12D_CTRL, value8);
2139/*              RT_TRACE(COMP_INIT, DBG_LOUD,
2140                (" REG_LDOV12D_CTRL Reg0x21:0x%02x.\n", value8)); */
2141        }
2142
2143        /*****************************
2144        h.      SPS0_CTRL 0x11[7:0] = 0x23              enter PFM mode
2145        i.      APS_FSMCO 0x04[15:0] = 0x4802           set USB suspend
2146        ******************************/
2147        value8 = 0x23;
2148        if (IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID))
2149                value8 |= BIT3;
2150
2151        rtw_write8(padapter, REG_SPS0_CTRL, value8);
2152
2153        if (bWithoutHWSM) {
2154                /* value16 |= (APDM_HOST | FSM_HSUS |/PFM_ALDN); */
2155                /*  2010/08/31 According to Filen description, we need to
2156                    use HW to shut down 8051 automatically. */
2157                /*  Becasue suspend operatione need the asistance of 8051
2158                    to wait for 3ms. */
2159                value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
2160        } else {
2161                value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
2162        }
2163
2164        rtw_write16(padapter, REG_APS_FSMCO, value16);  /* 0x4802 */
2165
2166        rtw_write8(padapter, REG_RSV_CTRL, 0x0e);
2167}
2168
2169/*  HW Auto state machine */
2170s32 CardDisableHWSM(struct rtw_adapter *padapter, u8 resetMCU)
2171{
2172        int rtStatus = _SUCCESS;
2173
2174        if (padapter->bSurpriseRemoved) {
2175                return rtStatus;
2176        }
2177        /*  RF Off Sequence ==== */
2178        _DisableRFAFEAndResetBB(padapter);
2179
2180        /*   ==== Reset digital sequence   ====== */
2181        _ResetDigitalProcedure1(padapter, false);
2182
2183        /*   ==== Pull GPIO PIN to balance level and LED control ====== */
2184        _DisableGPIO(padapter);
2185
2186        /*   ==== Disable analog sequence === */
2187        _DisableAnalog(padapter, false);
2188
2189        RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2190                 ("======> Card disable finished.\n"));
2191
2192        return rtStatus;
2193}
2194
2195/*  without HW Auto state machine */
2196s32 CardDisableWithoutHWSM(struct rtw_adapter *padapter)
2197{
2198        s32 rtStatus = _SUCCESS;
2199
2200        /* RT_TRACE(COMP_INIT, DBG_LOUD,
2201           ("======> Card Disable Without HWSM .\n")); */
2202        if (padapter->bSurpriseRemoved) {
2203                return rtStatus;
2204        }
2205
2206        /*  RF Off Sequence ==== */
2207        _DisableRFAFEAndResetBB(padapter);
2208
2209        /*   ==== Reset digital sequence   ====== */
2210        _ResetDigitalProcedure1(padapter, true);
2211
2212        /*   ==== Pull GPIO PIN to balance level and LED control ====== */
2213        _DisableGPIO(padapter);
2214
2215        /*   ==== Reset digital sequence   ====== */
2216        _ResetDigitalProcedure2(padapter);
2217
2218        /*   ==== Disable analog sequence === */
2219        _DisableAnalog(padapter, true);
2220
2221        /* RT_TRACE(COMP_INIT, DBG_LOUD,
2222           ("<====== Card Disable Without HWSM .\n")); */
2223        return rtStatus;
2224}
2225
2226void Hal_InitPGData(struct rtw_adapter *padapter, u8 *PROMContent)
2227{
2228        struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2229
2230        if (false == pEEPROM->bautoload_fail_flag) {    /*  autoload OK. */
2231                if (!pEEPROM->EepromOrEfuse) {
2232                        /*  Read EFUSE real map to shadow. */
2233                        EFUSE_ShadowMapUpdate23a(padapter, EFUSE_WIFI);
2234                        memcpy((void *)PROMContent,
2235                               (void *)pEEPROM->efuse_eeprom_data,
2236                               HWSET_MAX_SIZE);
2237                }
2238        } else {                /* autoload fail */
2239                RT_TRACE(_module_hci_hal_init_c_, _drv_notice_,
2240                         ("AutoLoad Fail reported from CR9346!!\n"));
2241/*              pHalData->AutoloadFailFlag = true; */
2242                /* update to default value 0xFF */
2243                if (false == pEEPROM->EepromOrEfuse)
2244                        EFUSE_ShadowMapUpdate23a(padapter, EFUSE_WIFI);
2245                memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data,
2246                       HWSET_MAX_SIZE);
2247        }
2248}
2249
2250void Hal_EfuseParseIDCode(struct rtw_adapter *padapter, u8 *hwinfo)
2251{
2252        struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2253/*      struct hal_data_8723a   *pHalData = GET_HAL_DATA(padapter); */
2254        u16 EEPROMId;
2255
2256        /*  Checl 0x8129 again for making sure autoload status!! */
2257        EEPROMId = le16_to_cpu(*((u16 *) hwinfo));
2258        if (EEPROMId != RTL_EEPROM_ID) {
2259                DBG_8723A("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2260                pEEPROM->bautoload_fail_flag = true;
2261        } else {
2262                pEEPROM->bautoload_fail_flag = false;
2263        }
2264
2265        RT_TRACE(_module_hal_init_c_, _drv_info_,
2266                 ("EEPROM ID = 0x%04x\n", EEPROMId));
2267}
2268
2269static void Hal_EEValueCheck(u8 EEType, void *pInValue, void *pOutValue)
2270{
2271        switch (EEType) {
2272        case EETYPE_TX_PWR:
2273        {
2274                u8 *pIn, *pOut;
2275                pIn = (u8 *) pInValue;
2276                pOut = (u8 *) pOutValue;
2277                if (*pIn >= 0 && *pIn <= 63) {
2278                        *pOut = *pIn;
2279                } else {
2280                        RT_TRACE(_module_hci_hal_init_c_, _drv_err_,
2281                                 ("EETYPE_TX_PWR, value =%d is invalid, set "
2282                                  "to default = 0x%x\n",
2283                                  *pIn, EEPROM_Default_TxPowerLevel));
2284                        *pOut = EEPROM_Default_TxPowerLevel;
2285                }
2286        }
2287                break;
2288        default:
2289                break;
2290        }
2291}
2292
2293static void
2294Hal_ReadPowerValueFromPROM_8723A(struct txpowerinfo *pwrInfo,
2295                                 u8 *PROMContent, bool AutoLoadFail)
2296{
2297        u32 rfPath, eeAddr, group, rfPathMax = 1;
2298
2299        memset(pwrInfo, 0, sizeof(*pwrInfo));
2300
2301        if (AutoLoadFail) {
2302                for (group = 0; group < MAX_CHNL_GROUP; group++) {
2303                        for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2304                                pwrInfo->CCKIndex[rfPath][group] =
2305                                        EEPROM_Default_TxPowerLevel;
2306                                pwrInfo->HT40_1SIndex[rfPath][group] =
2307                                        EEPROM_Default_TxPowerLevel;
2308                                pwrInfo->HT40_2SIndexDiff[rfPath][group] =
2309                                        EEPROM_Default_HT40_2SDiff;
2310                                pwrInfo->HT20IndexDiff[rfPath][group] =
2311                                        EEPROM_Default_HT20_Diff;
2312                                pwrInfo->OFDMIndexDiff[rfPath][group] =
2313                                        EEPROM_Default_LegacyHTTxPowerDiff;
2314                                pwrInfo->HT40MaxOffset[rfPath][group] =
2315                                        EEPROM_Default_HT40_PwrMaxOffset;
2316                                pwrInfo->HT20MaxOffset[rfPath][group] =
2317                                        EEPROM_Default_HT20_PwrMaxOffset;
2318                        }
2319                }
2320                pwrInfo->TSSI_A[0] = EEPROM_Default_TSSI;
2321                return;
2322        }
2323
2324        for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2325                for (group = 0; group < MAX_CHNL_GROUP; group++) {
2326                        eeAddr =
2327                            EEPROM_CCK_TX_PWR_INX_8723A + (rfPath * 3) + group;
2328                        /* pwrInfo->CCKIndex[rfPath][group] =
2329                           PROMContent[eeAddr]; */
2330                        Hal_EEValueCheck(EETYPE_TX_PWR, &PROMContent[eeAddr],
2331                                         &pwrInfo->CCKIndex[rfPath][group]);
2332                        eeAddr = EEPROM_HT40_1S_TX_PWR_INX_8723A +
2333                                (rfPath * 3) + group;
2334                        /* pwrInfo->HT40_1SIndex[rfPath][group] =
2335                           PROMContent[eeAddr]; */
2336                        Hal_EEValueCheck(EETYPE_TX_PWR, &PROMContent[eeAddr],
2337                                         &pwrInfo->HT40_1SIndex[rfPath][group]);
2338                }
2339        }
2340
2341        for (group = 0; group < MAX_CHNL_GROUP; group++) {
2342                for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2343                        pwrInfo->HT40_2SIndexDiff[rfPath][group] = 0;
2344                        pwrInfo->HT20IndexDiff[rfPath][group] =
2345                                (PROMContent
2346                                 [EEPROM_HT20_TX_PWR_INX_DIFF_8723A +
2347                                  group] >> (rfPath * 4)) & 0xF;
2348                        /* 4bit sign number to 8 bit sign number */
2349                        if (pwrInfo->HT20IndexDiff[rfPath][group] & BIT3)
2350                                pwrInfo->HT20IndexDiff[rfPath][group] |= 0xF0;
2351
2352                        pwrInfo->OFDMIndexDiff[rfPath][group] =
2353                                (PROMContent[EEPROM_OFDM_TX_PWR_INX_DIFF_8723A +
2354                                             group] >> (rfPath * 4)) & 0xF;
2355
2356                        pwrInfo->HT40MaxOffset[rfPath][group] =
2357                                (PROMContent[EEPROM_HT40_MAX_PWR_OFFSET_8723A +
2358                                             group] >> (rfPath * 4)) & 0xF;
2359
2360                        pwrInfo->HT20MaxOffset[rfPath][group] =
2361                                (PROMContent[EEPROM_HT20_MAX_PWR_OFFSET_8723A +
2362                                             group] >> (rfPath * 4)) & 0xF;
2363                }
2364        }
2365
2366        pwrInfo->TSSI_A[0] = PROMContent[EEPROM_TSSI_A_8723A];
2367}
2368
2369static u8 Hal_GetChnlGroup(u8 chnl)
2370{
2371        u8 group = 0;
2372
2373        if (chnl < 3)           /*  Cjanel 1-3 */
2374                group = 0;
2375        else if (chnl < 9)      /*  Channel 4-9 */
2376                group = 1;
2377        else                    /*  Channel 10-14 */
2378                group = 2;
2379
2380        return group;
2381}
2382
2383void
2384Hal_EfuseParsetxpowerinfo_8723A(struct rtw_adapter *padapter,
2385                                u8 *PROMContent, bool AutoLoadFail)
2386{
2387        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2388        struct txpowerinfo pwrInfo;
2389        u8 rfPath, ch, group, rfPathMax = 1;
2390        u8 pwr, diff;
2391
2392        Hal_ReadPowerValueFromPROM_8723A(&pwrInfo, PROMContent, AutoLoadFail);
2393        for (rfPath = 0; rfPath < rfPathMax; rfPath++) {
2394                for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2395                        group = Hal_GetChnlGroup(ch);
2396
2397                        pHalData->TxPwrLevelCck[rfPath][ch] =
2398                                pwrInfo.CCKIndex[rfPath][group];
2399                        pHalData->TxPwrLevelHT40_1S[rfPath][ch] =
2400                                pwrInfo.HT40_1SIndex[rfPath][group];
2401
2402                        pHalData->TxPwrHt20Diff[rfPath][ch] =
2403                                pwrInfo.HT20IndexDiff[rfPath][group];
2404                        pHalData->TxPwrLegacyHtDiff[rfPath][ch] =
2405                                pwrInfo.OFDMIndexDiff[rfPath][group];
2406                        pHalData->PwrGroupHT20[rfPath][ch] =
2407                                pwrInfo.HT20MaxOffset[rfPath][group];
2408                        pHalData->PwrGroupHT40[rfPath][ch] =
2409                                pwrInfo.HT40MaxOffset[rfPath][group];
2410
2411                        pwr = pwrInfo.HT40_1SIndex[rfPath][group];
2412                        diff = pwrInfo.HT40_2SIndexDiff[rfPath][group];
2413
2414                        pHalData->TxPwrLevelHT40_2S[rfPath][ch] =
2415                            (pwr > diff) ? (pwr - diff) : 0;
2416                }
2417        }
2418        for (rfPath = 0; rfPath < RF_PATH_MAX; rfPath++) {
2419                for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2420                        RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2421                                 ("RF(%u)-Ch(%u) [CCK / HT40_1S / HT40_2S] = "
2422                                  "[0x%x / 0x%x / 0x%x]\n",
2423                                  rfPath, ch,
2424                                  pHalData->TxPwrLevelCck[rfPath][ch],
2425                                  pHalData->TxPwrLevelHT40_1S[rfPath][ch],
2426                                  pHalData->TxPwrLevelHT40_2S[rfPath][ch]));
2427
2428                }
2429        }
2430        for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2431                RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2432                         ("RF-A Ht20 to HT40 Diff[%u] = 0x%x(%d)\n", ch,
2433                          pHalData->TxPwrHt20Diff[RF_PATH_A][ch],
2434                          pHalData->TxPwrHt20Diff[RF_PATH_A][ch]));
2435        }
2436        for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++)
2437                RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2438                         ("RF-A Legacy to Ht40 Diff[%u] = 0x%x\n", ch,
2439                          pHalData->TxPwrLegacyHtDiff[RF_PATH_A][ch]));
2440        for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
2441                RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2442                         ("RF-B Ht20 to HT40 Diff[%u] = 0x%x(%d)\n", ch,
2443                          pHalData->TxPwrHt20Diff[RF_PATH_B][ch],
2444                          pHalData->TxPwrHt20Diff[RF_PATH_B][ch]));
2445        }
2446        for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++)
2447                RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2448                         ("RF-B Legacy to HT40 Diff[%u] = 0x%x\n", ch,
2449                          pHalData->TxPwrLegacyHtDiff[RF_PATH_B][ch]));
2450        if (!AutoLoadFail) {
2451                struct registry_priv *registry_par = &padapter->registrypriv;
2452                if (registry_par->regulatory_tid == 0xff) {
2453                        if (PROMContent[RF_OPTION1_8723A] == 0xff)
2454                                pHalData->EEPROMRegulatory = 0;
2455                        else
2456                                pHalData->EEPROMRegulatory =
2457                                        PROMContent[RF_OPTION1_8723A] & 0x7;
2458                } else {
2459                        pHalData->EEPROMRegulatory =
2460                            registry_par->regulatory_tid;
2461                }
2462        } else {
2463                pHalData->EEPROMRegulatory = 0;
2464        }
2465        RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2466                 ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2467
2468        if (!AutoLoadFail)
2469                pHalData->bTXPowerDataReadFromEEPORM = true;
2470}
2471
2472void
2473Hal_EfuseParseBTCoexistInfo_8723A(struct rtw_adapter *padapter,
2474                                  u8 *hwinfo, bool AutoLoadFail)
2475{
2476        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2477        u8 tempval;
2478        u32 tmpu4;
2479
2480        if (!AutoLoadFail) {
2481                tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2482                if (tmpu4 & BT_FUNC_EN)
2483                        pHalData->EEPROMBluetoothCoexist = 1;
2484                else
2485                        pHalData->EEPROMBluetoothCoexist = 0;
2486                pHalData->EEPROMBluetoothType = BT_RTL8723A;
2487
2488                /*  The following need to be checked with newer version of */
2489                /*  eeprom spec */
2490                tempval = hwinfo[RF_OPTION4_8723A];
2491                pHalData->EEPROMBluetoothAntNum = (tempval & 0x1);
2492                pHalData->EEPROMBluetoothAntIsolation = ((tempval & 0x10) >> 4);
2493                pHalData->EEPROMBluetoothRadioShared = ((tempval & 0x20) >> 5);
2494        } else {
2495                pHalData->EEPROMBluetoothCoexist = 0;
2496                pHalData->EEPROMBluetoothType = BT_RTL8723A;
2497                pHalData->EEPROMBluetoothAntNum = Ant_x2;
2498                pHalData->EEPROMBluetoothAntIsolation = 0;
2499                pHalData->EEPROMBluetoothRadioShared = BT_Radio_Shared;
2500        }
2501#ifdef CONFIG_8723AU_BT_COEXIST
2502        BT_InitHalVars(padapter);
2503#endif
2504}
2505
2506void
2507Hal_EfuseParseEEPROMVer(struct rtw_adapter *padapter,
2508                        u8 *hwinfo, bool AutoLoadFail)
2509{
2510        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2511
2512        if (!AutoLoadFail)
2513                pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723A];
2514        else
2515                pHalData->EEPROMVersion = 1;
2516        RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2517                 ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2518                  pHalData->EEPROMVersion));
2519}
2520
2521void
2522rtl8723a_EfuseParseChnlPlan(struct rtw_adapter *padapter,
2523                            u8 *hwinfo, bool AutoLoadFail)
2524{
2525        padapter->mlmepriv.ChannelPlan =
2526                hal_com_get_channel_plan23a(padapter, hwinfo ?
2527                                         hwinfo[EEPROM_ChannelPlan_8723A]:0xFF,
2528                                         padapter->registrypriv.channel_plan,
2529                                         RT_CHANNEL_DOMAIN_WORLD_WIDE_13,
2530                                         AutoLoadFail);
2531
2532        DBG_8723A("mlmepriv.ChannelPlan = 0x%02x\n",
2533                  padapter->mlmepriv.ChannelPlan);
2534}
2535
2536void
2537Hal_EfuseParseCustomerID(struct rtw_adapter *padapter,
2538                         u8 *hwinfo, bool AutoLoadFail)
2539{
2540        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2541
2542        if (!AutoLoadFail) {
2543                pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723A];
2544                pHalData->EEPROMSubCustomerID =
2545                    hwinfo[EEPROM_SubCustomID_8723A];
2546        } else {
2547                pHalData->EEPROMCustomerID = 0;
2548                pHalData->EEPROMSubCustomerID = 0;
2549        }
2550        RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2551                 ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2552        RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2553                 ("EEPROM SubCustomer ID: 0x%02x\n",
2554                  pHalData->EEPROMSubCustomerID));
2555}
2556
2557void
2558Hal_EfuseParseAntennaDiversity(struct rtw_adapter *padapter,
2559                               u8 *hwinfo, bool AutoLoadFail)
2560{
2561}
2562
2563void
2564Hal_EfuseParseRateIndicationOption(struct rtw_adapter *padapter,
2565                                   u8 *hwinfo, bool AutoLoadFail)
2566{
2567}
2568
2569void
2570Hal_EfuseParseXtal_8723A(struct rtw_adapter *pAdapter,
2571                         u8 *hwinfo, u8 AutoLoadFail)
2572{
2573        struct hal_data_8723a *pHalData = GET_HAL_DATA(pAdapter);
2574
2575        if (!AutoLoadFail) {
2576                pHalData->CrystalCap = hwinfo[EEPROM_XTAL_K_8723A];
2577                if (pHalData->CrystalCap == 0xFF)
2578                        pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723A;
2579        } else {
2580                pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723A;
2581        }
2582        RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
2583                 ("%s: CrystalCap = 0x%2x\n", __func__,
2584                  pHalData->CrystalCap));
2585}
2586
2587void
2588Hal_EfuseParseThermalMeter_8723A(struct rtw_adapter *padapter,
2589                                 u8 *PROMContent, u8 AutoloadFail)
2590{
2591        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
2592
2593        /*  */
2594        /*  ThermalMeter from EEPROM */
2595        /*  */
2596        if (false == AutoloadFail)
2597                pHalData->EEPROMThermalMeter =
2598                    PROMContent[EEPROM_THERMAL_METER_8723A];
2599        else
2600                pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter;
2601
2602        if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoloadFail)) {
2603                pHalData->bAPKThermalMeterIgnore = true;
2604                pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter;
2605        }
2606
2607        DBG_8723A("%s: ThermalMeter = 0x%x\n", __func__,
2608                  pHalData->EEPROMThermalMeter);
2609}
2610
2611void Hal_InitChannelPlan23a(struct rtw_adapter *padapter)
2612{
2613}
2614
2615static void rtl8723a_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2616{
2617        u16 *usPtr = (u16 *) ptxdesc;
2618        u32 count = 16;         /*  (32 bytes / 2 bytes per XOR) => 16 times */
2619        u32 index;
2620        u16 checksum = 0;
2621
2622        /*  Clear first */
2623        ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2624
2625        for (index = 0; index < count; index++) {
2626                checksum ^= le16_to_cpu(*(usPtr + index));
2627        }
2628
2629        ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2630}
2631
2632static void fill_txdesc_sectype(struct pkt_attrib *pattrib,
2633                                struct txdesc_8723a *ptxdesc)
2634{
2635        if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2636                switch (pattrib->encrypt) {
2637                        /*  SEC_TYPE */
2638                case _WEP40_:
2639                case _WEP104_:
2640                case _TKIP_:
2641                case _TKIP_WTMIC_:
2642                        ptxdesc->sectype = 1;
2643                        break;
2644
2645                case _AES_:
2646                        ptxdesc->sectype = 3;
2647                        break;
2648
2649                case _NO_PRIVACY_:
2650                default:
2651                        break;
2652                }
2653        }
2654}
2655
2656static void fill_txdesc_vcs(struct pkt_attrib *pattrib,
2657                            struct txdesc_8723a *ptxdesc)
2658{
2659        /* DBG_8723A("cvs_mode =%d\n", pattrib->vcs_mode); */
2660
2661        switch (pattrib->vcs_mode) {
2662        case RTS_CTS:
2663                ptxdesc->rtsen = 1;
2664                break;
2665
2666        case CTS_TO_SELF:
2667                ptxdesc->cts2self = 1;
2668                break;
2669
2670        case NONE_VCS:
2671        default:
2672                break;
2673        }
2674
2675        if (pattrib->vcs_mode) {
2676                ptxdesc->hw_rts_en = 1; /*  ENABLE HW RTS */
2677
2678                /*  Set RTS BW */
2679                if (pattrib->ht_en) {
2680                        if (pattrib->bwmode & HT_CHANNEL_WIDTH_40)
2681                                ptxdesc->rts_bw = 1;
2682
2683                        switch (pattrib->ch_offset) {
2684                        case HAL_PRIME_CHNL_OFFSET_DONT_CARE:
2685                                ptxdesc->rts_sc = 0;
2686                                break;
2687
2688                        case HAL_PRIME_CHNL_OFFSET_LOWER:
2689                                ptxdesc->rts_sc = 1;
2690                                break;
2691
2692                        case HAL_PRIME_CHNL_OFFSET_UPPER:
2693                                ptxdesc->rts_sc = 2;
2694                                break;
2695
2696                        default:
2697                                ptxdesc->rts_sc = 3;    /*  Duplicate */
2698                                break;
2699                        }
2700                }
2701        }
2702}
2703
2704static void fill_txdesc_phy(struct pkt_attrib *pattrib,
2705                            struct txdesc_8723a *ptxdesc)
2706{
2707        if (pattrib->ht_en) {
2708                if (pattrib->bwmode & HT_CHANNEL_WIDTH_40)
2709                        ptxdesc->data_bw = 1;
2710
2711                switch (pattrib->ch_offset) {
2712                case HAL_PRIME_CHNL_OFFSET_DONT_CARE:
2713                        ptxdesc->data_sc = 0;
2714                        break;
2715
2716                case HAL_PRIME_CHNL_OFFSET_LOWER:
2717                        ptxdesc->data_sc = 1;
2718                        break;
2719
2720                case HAL_PRIME_CHNL_OFFSET_UPPER:
2721                        ptxdesc->data_sc = 2;
2722                        break;
2723
2724                default:
2725                        ptxdesc->data_sc = 3;   /*  Duplicate */
2726                        break;
2727                }
2728        }
2729}
2730
2731static void rtl8723a_fill_default_txdesc(struct xmit_frame *pxmitframe,
2732                                         u8 *pbuf)
2733{
2734        struct rtw_adapter *padapter;
2735        struct hal_data_8723a *pHalData;
2736        struct dm_priv *pdmpriv;
2737        struct mlme_ext_priv *pmlmeext;
2738        struct mlme_ext_info *pmlmeinfo;
2739        struct pkt_attrib *pattrib;
2740        struct txdesc_8723a *ptxdesc;
2741        s32 bmcst;
2742
2743        padapter = pxmitframe->padapter;
2744        pHalData = GET_HAL_DATA(padapter);
2745        pdmpriv = &pHalData->dmpriv;
2746        pmlmeext = &padapter->mlmeextpriv;
2747        pmlmeinfo = &pmlmeext->mlmext_info;
2748
2749        pattrib = &pxmitframe->attrib;
2750        bmcst = is_multicast_ether_addr(pattrib->ra);
2751
2752        ptxdesc = (struct txdesc_8723a *)pbuf;
2753
2754        if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2755                ptxdesc->macid = pattrib->mac_id;       /*  CAM_ID(MAC_ID) */
2756
2757                if (pattrib->ampdu_en == true)
2758                        ptxdesc->agg_en = 1;    /*  AGG EN */
2759                else
2760                        ptxdesc->bk = 1;        /*  AGG BK */
2761
2762                ptxdesc->qsel = pattrib->qsel;
2763                ptxdesc->rate_id = pattrib->raid;
2764
2765                fill_txdesc_sectype(pattrib, ptxdesc);
2766
2767                ptxdesc->seq = pattrib->seqnum;
2768
2769                if ((pattrib->ether_type != 0x888e) &&
2770                    (pattrib->ether_type != 0x0806) &&
2771                    (pattrib->dhcp_pkt != 1)) {
2772                        /*  Non EAP & ARP & DHCP type data packet */
2773
2774                        fill_txdesc_vcs(pattrib, ptxdesc);
2775                        fill_txdesc_phy(pattrib, ptxdesc);
2776
2777                        ptxdesc->rtsrate = 8;   /*  RTS Rate = 24M */
2778                        ptxdesc->data_ratefb_lmt = 0x1F;
2779                        ptxdesc->rts_ratefb_lmt = 0xF;
2780
2781                        /*  use REG_INIDATA_RATE_SEL value */
2782                        ptxdesc->datarate =
2783                                pdmpriv->INIDATA_RATE[pattrib->mac_id];
2784
2785                } else {
2786                        /*  EAP data packet and ARP packet. */
2787                        /*  Use the 1M data rate to send the EAP/ARP packet. */
2788                        /*  This will maybe make the handshake smooth. */
2789
2790                        ptxdesc->bk = 1;        /*  AGG BK */
2791                        ptxdesc->userate = 1;   /*  driver uses rate */
2792                        if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2793                                ptxdesc->data_short = 1;
2794                        ptxdesc->datarate = MRateToHwRate23a(pmlmeext->tx_rate);
2795                }
2796        } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2797/*              RT_TRACE(_module_hal_xmit_c_, _drv_notice_,
2798                ("%s: MGNT_FRAMETAG\n", __func__)); */
2799
2800                ptxdesc->macid = pattrib->mac_id;       /*  CAM_ID(MAC_ID) */
2801                ptxdesc->qsel = pattrib->qsel;
2802                ptxdesc->rate_id = pattrib->raid;       /*  Rate ID */
2803                ptxdesc->seq = pattrib->seqnum;
2804                ptxdesc->userate = 1;   /*  driver uses rate, 1M */
2805                ptxdesc->rty_lmt_en = 1;        /*  retry limit enable */
2806                ptxdesc->data_rt_lmt = 6;       /*  retry limit = 6 */
2807
2808                /* CCX-TXRPT ack for xmit mgmt frames. */
2809                if (pxmitframe->ack_report)
2810                        ptxdesc->ccx = 1;
2811
2812                ptxdesc->datarate = MRateToHwRate23a(pmlmeext->tx_rate);
2813        } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
2814                RT_TRACE(_module_hal_xmit_c_, _drv_warning_,
2815                         ("%s: TXAGG_FRAMETAG\n", __func__));
2816        } else {
2817                RT_TRACE(_module_hal_xmit_c_, _drv_warning_,
2818                         ("%s: frame_tag = 0x%x\n", __func__,
2819                          pxmitframe->frame_tag));
2820
2821                ptxdesc->macid = 4;     /*  CAM_ID(MAC_ID) */
2822                ptxdesc->rate_id = 6;   /*  Rate ID */
2823                ptxdesc->seq = pattrib->seqnum;
2824                ptxdesc->userate = 1;   /*  driver uses rate */
2825                ptxdesc->datarate = MRateToHwRate23a(pmlmeext->tx_rate);
2826        }
2827
2828        ptxdesc->pktlen = pattrib->last_txcmdsz;
2829        ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2830        if (bmcst)
2831                ptxdesc->bmc = 1;
2832        ptxdesc->ls = 1;
2833        ptxdesc->fs = 1;
2834        ptxdesc->own = 1;
2835
2836        /*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
2837        /*  (1) The sequence number of each non-Qos frame / broadcast /
2838         *   multicast / mgnt frame should be controled by Hw because Fw
2839         * will also send null data which we cannot control when Fw LPS enable.
2840         *  --> default enable non-Qos data sequense number.
2841         2010.06.23. by tynli. */
2842        /*  (2) Enable HW SEQ control for beacon packet,
2843         * because we use Hw beacon. */
2844        /*  (3) Use HW Qos SEQ to control the seq num of Ext port
2845         * non-Qos packets. */
2846        /*  2010.06.23. Added by tynli. */
2847        if (!pattrib->qos_en) {
2848                /*  Hw set sequence number */
2849                ptxdesc->hwseq_en = 1;  /*  HWSEQ_EN */
2850                ptxdesc->hwseq_sel = 0; /*  HWSEQ_SEL */
2851        }
2852}
2853
2854/*
2855 *      Description:
2856 *
2857 *      Parameters:
2858 *              pxmitframe      xmitframe
2859 *              pbuf            where to fill tx desc
2860 */
2861void rtl8723a_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2862{
2863        struct tx_desc *pdesc;
2864
2865        pdesc = (struct tx_desc *)pbuf;
2866        memset(pdesc, 0, sizeof(struct tx_desc));
2867
2868        rtl8723a_fill_default_txdesc(pxmitframe, pbuf);
2869
2870        pdesc->txdw0 = cpu_to_le32(pdesc->txdw0);
2871        pdesc->txdw1 = cpu_to_le32(pdesc->txdw1);
2872        pdesc->txdw2 = cpu_to_le32(pdesc->txdw2);
2873        pdesc->txdw3 = cpu_to_le32(pdesc->txdw3);
2874        pdesc->txdw4 = cpu_to_le32(pdesc->txdw4);
2875        pdesc->txdw5 = cpu_to_le32(pdesc->txdw5);
2876        pdesc->txdw6 = cpu_to_le32(pdesc->txdw6);
2877        pdesc->txdw7 = cpu_to_le32(pdesc->txdw7);
2878        rtl8723a_cal_txdesc_chksum(pdesc);
2879}
2880
2881/*
2882 *  Description: In normal chip, we should send some packet to Hw which
2883 *  will be used by Fw in FW LPS mode. The function is to fill the Tx
2884 * descriptor of this packets, then
2885 */
2886/*                      Fw can tell Hw to send these packet derectly. */
2887/*  Added by tynli. 2009.10.15. */
2888/*  */
2889void rtl8723a_fill_fake_txdesc(struct rtw_adapter *padapter, u8 *pDesc,
2890                               u32 BufferLen, u8 IsPsPoll, u8 IsBTQosNull)
2891{
2892        struct tx_desc *ptxdesc;
2893
2894        /*  Clear all status */
2895        ptxdesc = (struct tx_desc *)pDesc;
2896        memset(pDesc, 0, TXDESC_SIZE);
2897
2898        /* offset 0 */
2899        /* own, bFirstSeg, bLastSeg; */
2900        ptxdesc->txdw0 |= cpu_to_le32(OWN | FSG | LSG);
2901
2902        /* 32 bytes for TX Desc */
2903        ptxdesc->txdw0 |= cpu_to_le32(((TXDESC_SIZE + OFFSET_SZ) <<
2904                                       OFFSET_SHT) & 0x00ff0000);
2905
2906        /*  Buffer size + command header */
2907        ptxdesc->txdw0 |= cpu_to_le32(BufferLen & 0x0000ffff);
2908
2909        /* offset 4 */
2910        /*  Fixed queue of Mgnt queue */
2911        ptxdesc->txdw1 |= cpu_to_le32((QSLT_MGNT << QSEL_SHT) & 0x00001f00);
2912
2913        /* Set NAVUSEHDR to prevent Ps-poll AId filed to be changed
2914           to error vlaue by Hw. */
2915        if (IsPsPoll) {
2916                ptxdesc->txdw1 |= cpu_to_le32(NAVUSEHDR);
2917        } else {
2918                /*  Hw set sequence number */
2919                ptxdesc->txdw4 |= cpu_to_le32(BIT(7));
2920                /* set bit3 to 1. Suugested by TimChen. 2009.12.29. */
2921                ptxdesc->txdw3 |= cpu_to_le32((8 << 28));
2922        }
2923
2924        if (true == IsBTQosNull) {
2925                ptxdesc->txdw2 |= cpu_to_le32(BIT(23)); /*  BT NULL */
2926        }
2927
2928        /* offset 16 */
2929        ptxdesc->txdw4 |= cpu_to_le32(BIT(8));  /* driver uses rate */
2930
2931        /*  USB interface drop packet if the checksum of descriptor isn't
2932            correct. */
2933        /*  Using this checksum can let hardware recovery from packet bulk
2934            out error (e.g. Cancel URC, Bulk out error.). */
2935        rtl8723a_cal_txdesc_chksum(ptxdesc);
2936}
2937
2938static void hw_var_set_opmode(struct rtw_adapter *padapter, u8 mode)
2939{
2940        u8 val8;
2941
2942        if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2943                StopTxBeacon(padapter);
2944
2945                /*  disable atim wnd */
2946                val8 = DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM;
2947                SetBcnCtrlReg23a(padapter, val8, ~val8);
2948        } else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_) */) {
2949                ResumeTxBeacon(padapter);
2950
2951                val8 = DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB;
2952                SetBcnCtrlReg23a(padapter, val8, ~val8);
2953        } else if (mode == _HW_STATE_AP_) {
2954#ifdef CONFIG_8723AU_BT_COEXIST
2955                /*  add NULL Data and BT NULL Data Packets to FW RSVD Page */
2956                rtl8723a_set_BTCoex_AP_mode_FwRsvdPkt_cmd(padapter);
2957#endif
2958
2959                ResumeTxBeacon(padapter);
2960
2961                val8 = DIS_TSF_UDT | DIS_BCNQ_SUB;
2962                SetBcnCtrlReg23a(padapter, val8, ~val8);
2963
2964                /*  Set RCR */
2965                /* rtw_write32(padapter, REG_RCR, 0x70002a8e);
2966                   CBSSID_DATA must set to 0 */
2967                /* CBSSID_DATA must set to 0 */
2968                rtw_write32(padapter, REG_RCR, 0x7000228e);
2969                /*  enable to rx data frame */
2970                rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2971                /*  enable to rx ps-poll */
2972                rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2973
2974                /*  Beacon Control related register for first time */
2975                rtw_write8(padapter, REG_BCNDMATIM, 0x02);      /*  2ms */
2976                rtw_write8(padapter, REG_DRVERLYINT, 0x05);     /*  5ms */
2977                rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms for port0 */
2978                rtw_write16(padapter, REG_BCNTCFG, 0x00);
2979                rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2980                /*  +32767 (~32ms) */
2981                rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);
2982
2983                /*  reset TSF */
2984                rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2985
2986                /*  enable BCN Function */
2987                /*  don't enable update TSF (due to TSF update when
2988                    beacon/probe rsp are received) */
2989                val8 = DIS_TSF_UDT | EN_BCN_FUNCTION |
2990                       EN_TXBCN_RPT | DIS_BCNQ_SUB;
2991                SetBcnCtrlReg23a(padapter, val8, ~val8);
2992        }
2993
2994        val8 = rtw_read8(padapter, MSR);
2995        val8 = (val8 & 0xC) | mode;
2996        rtw_write8(padapter, MSR, val8);
2997}
2998
2999static void hw_var_set_macaddr(struct rtw_adapter *padapter, u8 *val)
3000{
3001        u8 idx = 0;
3002        u32 reg_macid;
3003
3004        reg_macid = REG_MACID;
3005
3006        for (idx = 0; idx < 6; idx++)
3007                rtw_write8(padapter, (reg_macid + idx), val[idx]);
3008}
3009
3010static void hw_var_set_bssid(struct rtw_adapter *padapter, u8 *val)
3011{
3012        u8 idx = 0;
3013        u32 reg_bssid;
3014
3015        reg_bssid = REG_BSSID;
3016
3017        for (idx = 0; idx < 6; idx++)
3018                rtw_write8(padapter, (reg_bssid + idx), val[idx]);
3019}
3020
3021static void hw_var_set_correct_tsf(struct rtw_adapter *padapter)
3022{
3023        u64 tsf;
3024        u32 reg_tsftr;
3025        struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
3026        struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
3027
3028        /* tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue %
3029           (pmlmeinfo->bcn_interval*1024)) - 1024; us */
3030        tsf = pmlmeext->TSFValue -
3031                rtw_modular6423a(pmlmeext->TSFValue,
3032                              (pmlmeinfo->bcn_interval * 1024)) - 1024; /* us */
3033
3034        if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) ||
3035            ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE)) {
3036                /* pHalData->RegTxPause |= STOP_BCNQ;BIT(6) */
3037                /* rtw_write8(padapter, REG_TXPAUSE,
3038                   (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6))); */
3039                StopTxBeacon(padapter);
3040        }
3041
3042        reg_tsftr = REG_TSFTR;
3043
3044        /*  disable related TSF function */
3045        SetBcnCtrlReg23a(padapter, 0, EN_BCN_FUNCTION);
3046
3047        rtw_write32(padapter, reg_tsftr, tsf);
3048        rtw_write32(padapter, reg_tsftr + 4, tsf >> 32);
3049
3050        /* enable related TSF function */
3051        SetBcnCtrlReg23a(padapter, EN_BCN_FUNCTION, 0);
3052
3053        if (((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE) ||
3054            ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE))
3055                ResumeTxBeacon(padapter);
3056}
3057
3058static void hw_var_set_mlme_disconnect(struct rtw_adapter *padapter)
3059{
3060        /*  reject all data frames */
3061        rtw_write16(padapter, REG_RXFLTMAP2, 0);
3062
3063        /*  reset TSF */
3064        rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3065
3066        /*  disable update TSF */
3067        SetBcnCtrlReg23a(padapter, DIS_TSF_UDT, 0);
3068}
3069
3070static void hw_var_set_mlme_join(struct rtw_adapter *padapter, u8 type)
3071{
3072        u8 RetryLimit = 0x30;
3073
3074        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
3075        struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
3076
3077        if (type == 0) {        /*  prepare to join */
3078                u32 v32;
3079
3080                /*  enable to rx data frame.Accept all data frame */
3081                /* rtw_write32(padapter, REG_RCR,
3082                   rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3083                rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3084
3085                v32 = rtw_read32(padapter, REG_RCR);
3086                v32 |= RCR_CBSSID_DATA | RCR_CBSSID_BCN;
3087                rtw_write32(padapter, REG_RCR, v32);
3088
3089                if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3090                        RetryLimit =
3091                            (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
3092                else            /*  Ad-hoc Mode */
3093                        RetryLimit = 0x7;
3094        } else if (type == 1) { /*  joinbss_event callback when join res < 0 */
3095                /*  config RCR to receive different BSSID & not to
3096                    receive data frame during linking */
3097                rtw_write16(padapter, REG_RXFLTMAP2, 0);
3098        } else if (type == 2) { /*  sta add event callback */
3099                /*  enable update TSF */
3100                SetBcnCtrlReg23a(padapter, 0, DIS_TSF_UDT);
3101
3102                if (check_fwstate(pmlmepriv,
3103                                  WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3104                        /*  fixed beacon issue for 8191su........... */
3105                        rtw_write8(padapter, 0x542, 0x02);
3106                        RetryLimit = 0x7;
3107                }
3108        }
3109
3110        rtw_write16(padapter, REG_RL,
3111                    RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit <<
3112                    RETRY_LIMIT_LONG_SHIFT);
3113
3114#ifdef CONFIG_8723AU_BT_COEXIST
3115        switch (type) {
3116        case 0:
3117                /*  prepare to join */
3118                BT_WifiAssociateNotify(padapter, true);
3119                break;
3120        case 1:
3121                /*  joinbss_event callback when join res < 0 */
3122                BT_WifiAssociateNotify(padapter, false);
3123                break;
3124        case 2:
3125                /*  sta add event callback */
3126/*              BT_WifiMediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3127                break;
3128        }
3129#endif
3130}
3131
3132void SetHwReg8723A(struct rtw_adapter *padapter, u8 variable, u8 *val)
3133{
3134        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
3135        u32 *val32 = (u32 *)val;
3136
3137        switch (variable) {
3138        case HW_VAR_MEDIA_STATUS:
3139                rtl8723a_set_media_status(padapter, *val);
3140                break;
3141
3142        case HW_VAR_MEDIA_STATUS1:
3143                rtl8723a_set_media_status1(padapter, *val);
3144                break;
3145
3146        case HW_VAR_SET_OPMODE:
3147                hw_var_set_opmode(padapter, *val);
3148                break;
3149
3150        case HW_VAR_MAC_ADDR:
3151                hw_var_set_macaddr(padapter, val);
3152                break;
3153
3154        case HW_VAR_BSSID:
3155                hw_var_set_bssid(padapter, val);
3156                break;
3157
3158        case HW_VAR_BASIC_RATE:
3159                HalSetBrateCfg23a(padapter, val);
3160                break;
3161
3162        case HW_VAR_TXPAUSE:
3163                rtl8723a_set_tx_pause(padapter, *val);
3164                break;
3165
3166        case HW_VAR_BCN_FUNC:
3167                rtl8723a_set_bcn_func(padapter, *val);
3168                break;
3169
3170        case HW_VAR_CORRECT_TSF:
3171                hw_var_set_correct_tsf(padapter);
3172                break;
3173
3174        case HW_VAR_CHECK_BSSID:
3175                rtl8723a_check_bssid(padapter, *val);
3176                break;
3177
3178        case HW_VAR_MLME_DISCONNECT:
3179                hw_var_set_mlme_disconnect(padapter);
3180                break;
3181
3182        case HW_VAR_MLME_SITESURVEY:
3183                rtl8723a_mlme_sitesurvey(padapter, *val);
3184                break;
3185
3186        case HW_VAR_MLME_JOIN:
3187                hw_var_set_mlme_join(padapter, *val);
3188                break;
3189
3190        case HW_VAR_ON_RCR_AM:
3191                rtl8723a_on_rcr_am(padapter);
3192                break;
3193
3194        case HW_VAR_OFF_RCR_AM:
3195                rtl8723a_off_rcr_am(padapter);
3196                break;
3197
3198        case HW_VAR_BEACON_INTERVAL:
3199                rtl8723a_set_beacon_interval(padapter, *((u16 *) val));
3200                break;
3201
3202        case HW_VAR_SLOT_TIME:
3203                rtl8723a_set_slot_time(padapter, *val);
3204                break;
3205
3206        case HW_VAR_RESP_SIFS:
3207                rtl8723a_set_resp_sifs(padapter, val[0], val[1],
3208                                       val[2], val[3]);
3209                break;
3210
3211        case HW_VAR_ACK_PREAMBLE:
3212                rtl8723a_ack_preamble(padapter, *val);
3213                break;
3214
3215        case HW_VAR_SEC_CFG:
3216                rtl8723a_set_sec_cfg(padapter, *val);
3217                break;
3218
3219        case HW_VAR_DM_FLAG:
3220                rtl8723a_odm_support_ability_write(padapter, *val32);
3221                break;
3222        case HW_VAR_DM_FUNC_OP:
3223                rtl8723a_odm_support_ability_backup(padapter, *val);
3224                break;
3225        case HW_VAR_DM_FUNC_SET:
3226                rtl8723a_odm_support_ability_set(padapter, *val32);
3227                break;
3228
3229        case HW_VAR_DM_FUNC_CLR:
3230                rtl8723a_odm_support_ability_clr(padapter, *val32);
3231                break;
3232
3233        case HW_VAR_CAM_EMPTY_ENTRY:
3234                rtl8723a_cam_empty_entry(padapter, *val);
3235                break;
3236
3237        case HW_VAR_CAM_INVALID_ALL:
3238                rtl8723a_cam_invalid_all(padapter);
3239                break;
3240
3241        case HW_VAR_CAM_WRITE:
3242                rtl8723a_cam_write(padapter, val32[0], val32[1]);
3243                break;
3244
3245        case HW_VAR_AC_PARAM_VO:
3246                rtl8723a_set_ac_param_vo(padapter, *val32);
3247                break;
3248
3249        case HW_VAR_AC_PARAM_VI:
3250                rtl8723a_set_ac_param_vi(padapter, *val32);
3251                break;
3252
3253        case HW_VAR_AC_PARAM_BE:
3254                rtl8723a_set_ac_param_be(padapter, *val32);
3255                break;
3256
3257        case HW_VAR_AC_PARAM_BK:
3258                rtl8723a_set_ac_param_bk(padapter, *val32);
3259                break;
3260
3261        case HW_VAR_ACM_CTRL:
3262                rtl8723a_set_acm_ctrl(padapter, *val);
3263                break;
3264
3265        case HW_VAR_AMPDU_MIN_SPACE:
3266                rtl8723a_set_ampdu_min_space(padapter, *val);
3267                break;
3268
3269        case HW_VAR_AMPDU_FACTOR:
3270                rtl8723a_set_ampdu_factor(padapter, *val);
3271                break;
3272
3273        case HW_VAR_RXDMA_AGG_PG_TH:
3274                rtl8723a_set_rxdma_agg_pg_th(padapter, *val);
3275                break;
3276
3277        case HW_VAR_H2C_FW_PWRMODE:
3278                rtl8723a_set_FwPwrMode_cmd(padapter, *val);
3279                break;
3280
3281        case HW_VAR_H2C_FW_JOINBSSRPT:
3282                rtl8723a_set_FwJoinBssReport_cmd(padapter, *val);
3283                break;
3284
3285#ifdef CONFIG_8723AU_P2P
3286        case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
3287                rtl8723a_set_p2p_ps_offload_cmd(padapter, *val);
3288                break;
3289#endif /* CONFIG_8723AU_P2P */
3290
3291        case HW_VAR_INITIAL_GAIN:
3292                rtl8723a_set_initial_gain(padapter, *val32);
3293                break;
3294        case HW_VAR_EFUSE_BYTES:
3295                pHalData->EfuseUsedBytes = *((u16 *) val);
3296                break;
3297        case HW_VAR_EFUSE_BT_BYTES:
3298                pHalData->BTEfuseUsedBytes = *((u16 *) val);
3299                break;
3300        case HW_VAR_FIFO_CLEARN_UP:
3301                rtl8723a_fifo_cleanup(padapter);
3302                break;
3303        case HW_VAR_CHECK_TXBUF:
3304                break;
3305        case HW_VAR_APFM_ON_MAC:
3306                rtl8723a_set_apfm_on_mac(padapter, *val);
3307                break;
3308
3309        case HW_VAR_NAV_UPPER:
3310                rtl8723a_set_nav_upper(padapter, *val32);
3311                break;
3312        case HW_VAR_BCN_VALID:
3313                rtl8723a_bcn_valid(padapter);
3314                break;
3315        default:
3316                break;
3317        }
3318
3319}
3320
3321void GetHwReg8723A(struct rtw_adapter *padapter, u8 variable, u8 *val)
3322{
3323        struct hal_data_8723a *pHalData = GET_HAL_DATA(padapter);
3324
3325        switch (variable) {
3326        case HW_VAR_BASIC_RATE:
3327                *((u16 *) val) = pHalData->BasicRateSet;
3328                break;
3329
3330        case HW_VAR_TXPAUSE:
3331                *val = rtw_read8(padapter, REG_TXPAUSE);
3332                break;
3333
3334        case HW_VAR_BCN_VALID:
3335                /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3336                val[0] = (BIT0 & rtw_read8(padapter, REG_TDECTRL + 2)) ? true :
3337                        false;
3338                break;
3339
3340        case HW_VAR_RF_TYPE:
3341                *val = pHalData->rf_type;
3342                break;
3343
3344        case HW_VAR_DM_FLAG:
3345        {
3346                struct dm_odm_t *podmpriv = &pHalData->odmpriv;
3347                *((u32 *) val) = podmpriv->SupportAbility;
3348        }
3349                break;
3350
3351        case HW_VAR_FWLPS_RF_ON:
3352        {
3353                /*  When we halt NIC, we should check if FW LPS is leave. */
3354                u32 valRCR;
3355
3356                if ((padapter->bSurpriseRemoved == true) ||
3357                    (padapter->pwrctrlpriv.rf_pwrstate == rf_off)) {
3358                        /*  If it is in HW/SW Radio OFF or IPS state, we do
3359                            not check Fw LPS Leave, because Fw is unload. */
3360                        *val = true;
3361                } else {
3362                        valRCR = rtw_read32(padapter, REG_RCR);
3363                        valRCR &= 0x00070000;
3364                        if (valRCR)
3365                                *val = false;
3366                        else
3367                                *val = true;
3368                }
3369        }
3370                break;
3371        case HW_VAR_EFUSE_BYTES:
3372                *((u16 *) val) = pHalData->EfuseUsedBytes;
3373                break;
3374
3375        case HW_VAR_EFUSE_BT_BYTES:
3376                *((u16 *) val) = pHalData->BTEfuseUsedBytes;
3377                break;
3378
3379        case HW_VAR_APFM_ON_MAC:
3380                *val = pHalData->bMacPwrCtrlOn;
3381                break;
3382        case HW_VAR_CHK_HI_QUEUE_EMPTY:
3383                *val =
3384                    ((rtw_read32(padapter, REG_HGQ_INFORMATION) & 0x0000ff00) ==
3385                     0) ? true : false;
3386                break;
3387        }
3388}
3389
3390#ifdef CONFIG_8723AU_BT_COEXIST
3391
3392void rtl8723a_SingleDualAntennaDetection(struct rtw_adapter *padapter)
3393{
3394        struct hal_data_8723a *pHalData;
3395        struct dm_odm_t *pDM_Odm;
3396        struct sw_ant_sw *pDM_SWAT_Table;
3397        u8 i;
3398
3399        pHalData = GET_HAL_DATA(padapter);
3400        pDM_Odm = &pHalData->odmpriv;
3401        pDM_SWAT_Table = &pDM_Odm->DM_SWAT_Table;
3402
3403        /*  */
3404        /*  <Roger_Notes> RTL8723A Single and Dual antenna dynamic detection
3405            mechanism when RF power state is on. */
3406        /*  We should take power tracking, IQK, LCK, RCK RF read/write
3407            operation into consideration. */
3408        /*  2011.12.15. */
3409        /*  */
3410        if (!pHalData->bAntennaDetected) {
3411                u8 btAntNum = BT_GetPGAntNum(padapter);
3412
3413                /*  Set default antenna B status */
3414                if (btAntNum == Ant_x2)
3415                        pDM_SWAT_Table->ANTB_ON = true;
3416                else if (btAntNum == Ant_x1)
3417                        pDM_SWAT_Table->ANTB_ON = false;
3418                else
3419                        pDM_SWAT_Table->ANTB_ON = true;
3420
3421                if (pHalData->CustomerID != RT_CID_TOSHIBA) {
3422                        for (i = 0; i < MAX_ANTENNA_DETECTION_CNT; i++) {
3423                                if (ODM_SingleDualAntennaDetection
3424                                    (&pHalData->odmpriv, ANTTESTALL) == true)
3425                                        break;
3426                        }
3427
3428                        /*  Set default antenna number for BT coexistence */
3429                        if (btAntNum == Ant_x2)
3430                                BT_SetBtCoexCurrAntNum(padapter,
3431                                                       pDM_SWAT_Table->
3432                                                       ANTB_ON ? 2 : 1);
3433                }
3434                pHalData->bAntennaDetected = true;
3435        }
3436}
3437#endif /*  CONFIG_8723AU_BT_COEXIST */
3438
3439void rtl8723a_clone_haldata(struct rtw_adapter *dst_adapter,
3440                            struct rtw_adapter *src_adapter)
3441{
3442        memcpy(dst_adapter->HalData, src_adapter->HalData,
3443               dst_adapter->hal_data_sz);
3444}
3445
3446void rtl8723a_start_thread(struct rtw_adapter *padapter)
3447{
3448}
3449
3450void rtl8723a_stop_thread(struct rtw_adapter *padapter)
3451{
3452}
3453