linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/slab.h>
  30#include <linux/migrate.h>
  31#include <linux/ratelimit.h>
  32#include <linux/uuid.h>
  33#include <linux/semaphore.h>
  34#include <asm/unaligned.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "hash.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "print-tree.h"
  42#include "async-thread.h"
  43#include "locking.h"
  44#include "tree-log.h"
  45#include "free-space-cache.h"
  46#include "inode-map.h"
  47#include "check-integrity.h"
  48#include "rcu-string.h"
  49#include "dev-replace.h"
  50#include "raid56.h"
  51#include "sysfs.h"
  52
  53#ifdef CONFIG_X86
  54#include <asm/cpufeature.h>
  55#endif
  56
  57static struct extent_io_ops btree_extent_io_ops;
  58static void end_workqueue_fn(struct btrfs_work *work);
  59static void free_fs_root(struct btrfs_root *root);
  60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  61                                    int read_only);
  62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  63                                             struct btrfs_root *root);
  64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  66                                      struct btrfs_root *root);
  67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  69                                        struct extent_io_tree *dirty_pages,
  70                                        int mark);
  71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  72                                       struct extent_io_tree *pinned_extents);
  73static int btrfs_cleanup_transaction(struct btrfs_root *root);
  74static void btrfs_error_commit_super(struct btrfs_root *root);
  75
  76/*
  77 * end_io_wq structs are used to do processing in task context when an IO is
  78 * complete.  This is used during reads to verify checksums, and it is used
  79 * by writes to insert metadata for new file extents after IO is complete.
  80 */
  81struct end_io_wq {
  82        struct bio *bio;
  83        bio_end_io_t *end_io;
  84        void *private;
  85        struct btrfs_fs_info *info;
  86        int error;
  87        int metadata;
  88        struct list_head list;
  89        struct btrfs_work work;
  90};
  91
  92/*
  93 * async submit bios are used to offload expensive checksumming
  94 * onto the worker threads.  They checksum file and metadata bios
  95 * just before they are sent down the IO stack.
  96 */
  97struct async_submit_bio {
  98        struct inode *inode;
  99        struct bio *bio;
 100        struct list_head list;
 101        extent_submit_bio_hook_t *submit_bio_start;
 102        extent_submit_bio_hook_t *submit_bio_done;
 103        int rw;
 104        int mirror_num;
 105        unsigned long bio_flags;
 106        /*
 107         * bio_offset is optional, can be used if the pages in the bio
 108         * can't tell us where in the file the bio should go
 109         */
 110        u64 bio_offset;
 111        struct btrfs_work work;
 112        int error;
 113};
 114
 115/*
 116 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 118 * the level the eb occupies in the tree.
 119 *
 120 * Different roots are used for different purposes and may nest inside each
 121 * other and they require separate keysets.  As lockdep keys should be
 122 * static, assign keysets according to the purpose of the root as indicated
 123 * by btrfs_root->objectid.  This ensures that all special purpose roots
 124 * have separate keysets.
 125 *
 126 * Lock-nesting across peer nodes is always done with the immediate parent
 127 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 128 * subclass to avoid triggering lockdep warning in such cases.
 129 *
 130 * The key is set by the readpage_end_io_hook after the buffer has passed
 131 * csum validation but before the pages are unlocked.  It is also set by
 132 * btrfs_init_new_buffer on freshly allocated blocks.
 133 *
 134 * We also add a check to make sure the highest level of the tree is the
 135 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 136 * needs update as well.
 137 */
 138#ifdef CONFIG_DEBUG_LOCK_ALLOC
 139# if BTRFS_MAX_LEVEL != 8
 140#  error
 141# endif
 142
 143static struct btrfs_lockdep_keyset {
 144        u64                     id;             /* root objectid */
 145        const char              *name_stem;     /* lock name stem */
 146        char                    names[BTRFS_MAX_LEVEL + 1][20];
 147        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 148} btrfs_lockdep_keysets[] = {
 149        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 150        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 151        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 152        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 153        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 154        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 155        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 156        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 157        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 158        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 159        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 160        { .id = 0,                              .name_stem = "tree"     },
 161};
 162
 163void __init btrfs_init_lockdep(void)
 164{
 165        int i, j;
 166
 167        /* initialize lockdep class names */
 168        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 169                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 170
 171                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 172                        snprintf(ks->names[j], sizeof(ks->names[j]),
 173                                 "btrfs-%s-%02d", ks->name_stem, j);
 174        }
 175}
 176
 177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 178                                    int level)
 179{
 180        struct btrfs_lockdep_keyset *ks;
 181
 182        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 183
 184        /* find the matching keyset, id 0 is the default entry */
 185        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 186                if (ks->id == objectid)
 187                        break;
 188
 189        lockdep_set_class_and_name(&eb->lock,
 190                                   &ks->keys[level], ks->names[level]);
 191}
 192
 193#endif
 194
 195/*
 196 * extents on the btree inode are pretty simple, there's one extent
 197 * that covers the entire device
 198 */
 199static struct extent_map *btree_get_extent(struct inode *inode,
 200                struct page *page, size_t pg_offset, u64 start, u64 len,
 201                int create)
 202{
 203        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 204        struct extent_map *em;
 205        int ret;
 206
 207        read_lock(&em_tree->lock);
 208        em = lookup_extent_mapping(em_tree, start, len);
 209        if (em) {
 210                em->bdev =
 211                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 212                read_unlock(&em_tree->lock);
 213                goto out;
 214        }
 215        read_unlock(&em_tree->lock);
 216
 217        em = alloc_extent_map();
 218        if (!em) {
 219                em = ERR_PTR(-ENOMEM);
 220                goto out;
 221        }
 222        em->start = 0;
 223        em->len = (u64)-1;
 224        em->block_len = (u64)-1;
 225        em->block_start = 0;
 226        em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 227
 228        write_lock(&em_tree->lock);
 229        ret = add_extent_mapping(em_tree, em, 0);
 230        if (ret == -EEXIST) {
 231                free_extent_map(em);
 232                em = lookup_extent_mapping(em_tree, start, len);
 233                if (!em)
 234                        em = ERR_PTR(-EIO);
 235        } else if (ret) {
 236                free_extent_map(em);
 237                em = ERR_PTR(ret);
 238        }
 239        write_unlock(&em_tree->lock);
 240
 241out:
 242        return em;
 243}
 244
 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 246{
 247        return btrfs_crc32c(seed, data, len);
 248}
 249
 250void btrfs_csum_final(u32 crc, char *result)
 251{
 252        put_unaligned_le32(~crc, result);
 253}
 254
 255/*
 256 * compute the csum for a btree block, and either verify it or write it
 257 * into the csum field of the block.
 258 */
 259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 260                           int verify)
 261{
 262        u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 263        char *result = NULL;
 264        unsigned long len;
 265        unsigned long cur_len;
 266        unsigned long offset = BTRFS_CSUM_SIZE;
 267        char *kaddr;
 268        unsigned long map_start;
 269        unsigned long map_len;
 270        int err;
 271        u32 crc = ~(u32)0;
 272        unsigned long inline_result;
 273
 274        len = buf->len - offset;
 275        while (len > 0) {
 276                err = map_private_extent_buffer(buf, offset, 32,
 277                                        &kaddr, &map_start, &map_len);
 278                if (err)
 279                        return 1;
 280                cur_len = min(len, map_len - (offset - map_start));
 281                crc = btrfs_csum_data(kaddr + offset - map_start,
 282                                      crc, cur_len);
 283                len -= cur_len;
 284                offset += cur_len;
 285        }
 286        if (csum_size > sizeof(inline_result)) {
 287                result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 288                if (!result)
 289                        return 1;
 290        } else {
 291                result = (char *)&inline_result;
 292        }
 293
 294        btrfs_csum_final(crc, result);
 295
 296        if (verify) {
 297                if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 298                        u32 val;
 299                        u32 found = 0;
 300                        memcpy(&found, result, csum_size);
 301
 302                        read_extent_buffer(buf, &val, 0, csum_size);
 303                        printk_ratelimited(KERN_INFO
 304                                "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
 305                                "level %d\n",
 306                                root->fs_info->sb->s_id, buf->start,
 307                                val, found, btrfs_header_level(buf));
 308                        if (result != (char *)&inline_result)
 309                                kfree(result);
 310                        return 1;
 311                }
 312        } else {
 313                write_extent_buffer(buf, result, 0, csum_size);
 314        }
 315        if (result != (char *)&inline_result)
 316                kfree(result);
 317        return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327                                 struct extent_buffer *eb, u64 parent_transid,
 328                                 int atomic)
 329{
 330        struct extent_state *cached_state = NULL;
 331        int ret;
 332        bool need_lock = (current->journal_info ==
 333                          (void *)BTRFS_SEND_TRANS_STUB);
 334
 335        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 336                return 0;
 337
 338        if (atomic)
 339                return -EAGAIN;
 340
 341        if (need_lock) {
 342                btrfs_tree_read_lock(eb);
 343                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 344        }
 345
 346        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 347                         0, &cached_state);
 348        if (extent_buffer_uptodate(eb) &&
 349            btrfs_header_generation(eb) == parent_transid) {
 350                ret = 0;
 351                goto out;
 352        }
 353        printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 354                       "found %llu\n",
 355                       eb->start, parent_transid, btrfs_header_generation(eb));
 356        ret = 1;
 357
 358        /*
 359         * Things reading via commit roots that don't have normal protection,
 360         * like send, can have a really old block in cache that may point at a
 361         * block that has been free'd and re-allocated.  So don't clear uptodate
 362         * if we find an eb that is under IO (dirty/writeback) because we could
 363         * end up reading in the stale data and then writing it back out and
 364         * making everybody very sad.
 365         */
 366        if (!extent_buffer_under_io(eb))
 367                clear_extent_buffer_uptodate(eb);
 368out:
 369        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 370                             &cached_state, GFP_NOFS);
 371        btrfs_tree_read_unlock_blocking(eb);
 372        return ret;
 373}
 374
 375/*
 376 * Return 0 if the superblock checksum type matches the checksum value of that
 377 * algorithm. Pass the raw disk superblock data.
 378 */
 379static int btrfs_check_super_csum(char *raw_disk_sb)
 380{
 381        struct btrfs_super_block *disk_sb =
 382                (struct btrfs_super_block *)raw_disk_sb;
 383        u16 csum_type = btrfs_super_csum_type(disk_sb);
 384        int ret = 0;
 385
 386        if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 387                u32 crc = ~(u32)0;
 388                const int csum_size = sizeof(crc);
 389                char result[csum_size];
 390
 391                /*
 392                 * The super_block structure does not span the whole
 393                 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 394                 * is filled with zeros and is included in the checkum.
 395                 */
 396                crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 397                                crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 398                btrfs_csum_final(crc, result);
 399
 400                if (memcmp(raw_disk_sb, result, csum_size))
 401                        ret = 1;
 402
 403                if (ret && btrfs_super_generation(disk_sb) < 10) {
 404                        printk(KERN_WARNING
 405                                "BTRFS: super block crcs don't match, older mkfs detected\n");
 406                        ret = 0;
 407                }
 408        }
 409
 410        if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 411                printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 412                                csum_type);
 413                ret = 1;
 414        }
 415
 416        return ret;
 417}
 418
 419/*
 420 * helper to read a given tree block, doing retries as required when
 421 * the checksums don't match and we have alternate mirrors to try.
 422 */
 423static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 424                                          struct extent_buffer *eb,
 425                                          u64 start, u64 parent_transid)
 426{
 427        struct extent_io_tree *io_tree;
 428        int failed = 0;
 429        int ret;
 430        int num_copies = 0;
 431        int mirror_num = 0;
 432        int failed_mirror = 0;
 433
 434        clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 435        io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 436        while (1) {
 437                ret = read_extent_buffer_pages(io_tree, eb, start,
 438                                               WAIT_COMPLETE,
 439                                               btree_get_extent, mirror_num);
 440                if (!ret) {
 441                        if (!verify_parent_transid(io_tree, eb,
 442                                                   parent_transid, 0))
 443                                break;
 444                        else
 445                                ret = -EIO;
 446                }
 447
 448                /*
 449                 * This buffer's crc is fine, but its contents are corrupted, so
 450                 * there is no reason to read the other copies, they won't be
 451                 * any less wrong.
 452                 */
 453                if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 454                        break;
 455
 456                num_copies = btrfs_num_copies(root->fs_info,
 457                                              eb->start, eb->len);
 458                if (num_copies == 1)
 459                        break;
 460
 461                if (!failed_mirror) {
 462                        failed = 1;
 463                        failed_mirror = eb->read_mirror;
 464                }
 465
 466                mirror_num++;
 467                if (mirror_num == failed_mirror)
 468                        mirror_num++;
 469
 470                if (mirror_num > num_copies)
 471                        break;
 472        }
 473
 474        if (failed && !ret && failed_mirror)
 475                repair_eb_io_failure(root, eb, failed_mirror);
 476
 477        return ret;
 478}
 479
 480/*
 481 * checksum a dirty tree block before IO.  This has extra checks to make sure
 482 * we only fill in the checksum field in the first page of a multi-page block
 483 */
 484
 485static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 486{
 487        u64 start = page_offset(page);
 488        u64 found_start;
 489        struct extent_buffer *eb;
 490
 491        eb = (struct extent_buffer *)page->private;
 492        if (page != eb->pages[0])
 493                return 0;
 494        found_start = btrfs_header_bytenr(eb);
 495        if (WARN_ON(found_start != start || !PageUptodate(page)))
 496                return 0;
 497        csum_tree_block(root, eb, 0);
 498        return 0;
 499}
 500
 501static int check_tree_block_fsid(struct btrfs_root *root,
 502                                 struct extent_buffer *eb)
 503{
 504        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 505        u8 fsid[BTRFS_UUID_SIZE];
 506        int ret = 1;
 507
 508        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 509        while (fs_devices) {
 510                if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 511                        ret = 0;
 512                        break;
 513                }
 514                fs_devices = fs_devices->seed;
 515        }
 516        return ret;
 517}
 518
 519#define CORRUPT(reason, eb, root, slot)                         \
 520        btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
 521                   "root=%llu, slot=%d", reason,                        \
 522               btrfs_header_bytenr(eb), root->objectid, slot)
 523
 524static noinline int check_leaf(struct btrfs_root *root,
 525                               struct extent_buffer *leaf)
 526{
 527        struct btrfs_key key;
 528        struct btrfs_key leaf_key;
 529        u32 nritems = btrfs_header_nritems(leaf);
 530        int slot;
 531
 532        if (nritems == 0)
 533                return 0;
 534
 535        /* Check the 0 item */
 536        if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 537            BTRFS_LEAF_DATA_SIZE(root)) {
 538                CORRUPT("invalid item offset size pair", leaf, root, 0);
 539                return -EIO;
 540        }
 541
 542        /*
 543         * Check to make sure each items keys are in the correct order and their
 544         * offsets make sense.  We only have to loop through nritems-1 because
 545         * we check the current slot against the next slot, which verifies the
 546         * next slot's offset+size makes sense and that the current's slot
 547         * offset is correct.
 548         */
 549        for (slot = 0; slot < nritems - 1; slot++) {
 550                btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 551                btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 552
 553                /* Make sure the keys are in the right order */
 554                if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 555                        CORRUPT("bad key order", leaf, root, slot);
 556                        return -EIO;
 557                }
 558
 559                /*
 560                 * Make sure the offset and ends are right, remember that the
 561                 * item data starts at the end of the leaf and grows towards the
 562                 * front.
 563                 */
 564                if (btrfs_item_offset_nr(leaf, slot) !=
 565                        btrfs_item_end_nr(leaf, slot + 1)) {
 566                        CORRUPT("slot offset bad", leaf, root, slot);
 567                        return -EIO;
 568                }
 569
 570                /*
 571                 * Check to make sure that we don't point outside of the leaf,
 572                 * just incase all the items are consistent to eachother, but
 573                 * all point outside of the leaf.
 574                 */
 575                if (btrfs_item_end_nr(leaf, slot) >
 576                    BTRFS_LEAF_DATA_SIZE(root)) {
 577                        CORRUPT("slot end outside of leaf", leaf, root, slot);
 578                        return -EIO;
 579                }
 580        }
 581
 582        return 0;
 583}
 584
 585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 586                                      u64 phy_offset, struct page *page,
 587                                      u64 start, u64 end, int mirror)
 588{
 589        u64 found_start;
 590        int found_level;
 591        struct extent_buffer *eb;
 592        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 593        int ret = 0;
 594        int reads_done;
 595
 596        if (!page->private)
 597                goto out;
 598
 599        eb = (struct extent_buffer *)page->private;
 600
 601        /* the pending IO might have been the only thing that kept this buffer
 602         * in memory.  Make sure we have a ref for all this other checks
 603         */
 604        extent_buffer_get(eb);
 605
 606        reads_done = atomic_dec_and_test(&eb->io_pages);
 607        if (!reads_done)
 608                goto err;
 609
 610        eb->read_mirror = mirror;
 611        if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 612                ret = -EIO;
 613                goto err;
 614        }
 615
 616        found_start = btrfs_header_bytenr(eb);
 617        if (found_start != eb->start) {
 618                printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
 619                               "%llu %llu\n",
 620                               found_start, eb->start);
 621                ret = -EIO;
 622                goto err;
 623        }
 624        if (check_tree_block_fsid(root, eb)) {
 625                printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
 626                               eb->start);
 627                ret = -EIO;
 628                goto err;
 629        }
 630        found_level = btrfs_header_level(eb);
 631        if (found_level >= BTRFS_MAX_LEVEL) {
 632                btrfs_info(root->fs_info, "bad tree block level %d",
 633                           (int)btrfs_header_level(eb));
 634                ret = -EIO;
 635                goto err;
 636        }
 637
 638        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 639                                       eb, found_level);
 640
 641        ret = csum_tree_block(root, eb, 1);
 642        if (ret) {
 643                ret = -EIO;
 644                goto err;
 645        }
 646
 647        /*
 648         * If this is a leaf block and it is corrupt, set the corrupt bit so
 649         * that we don't try and read the other copies of this block, just
 650         * return -EIO.
 651         */
 652        if (found_level == 0 && check_leaf(root, eb)) {
 653                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 654                ret = -EIO;
 655        }
 656
 657        if (!ret)
 658                set_extent_buffer_uptodate(eb);
 659err:
 660        if (reads_done &&
 661            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 662                btree_readahead_hook(root, eb, eb->start, ret);
 663
 664        if (ret) {
 665                /*
 666                 * our io error hook is going to dec the io pages
 667                 * again, we have to make sure it has something
 668                 * to decrement
 669                 */
 670                atomic_inc(&eb->io_pages);
 671                clear_extent_buffer_uptodate(eb);
 672        }
 673        free_extent_buffer(eb);
 674out:
 675        return ret;
 676}
 677
 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
 679{
 680        struct extent_buffer *eb;
 681        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 682
 683        eb = (struct extent_buffer *)page->private;
 684        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 685        eb->read_mirror = failed_mirror;
 686        atomic_dec(&eb->io_pages);
 687        if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 688                btree_readahead_hook(root, eb, eb->start, -EIO);
 689        return -EIO;    /* we fixed nothing */
 690}
 691
 692static void end_workqueue_bio(struct bio *bio, int err)
 693{
 694        struct end_io_wq *end_io_wq = bio->bi_private;
 695        struct btrfs_fs_info *fs_info;
 696
 697        fs_info = end_io_wq->info;
 698        end_io_wq->error = err;
 699        btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 700
 701        if (bio->bi_rw & REQ_WRITE) {
 702                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 703                        btrfs_queue_work(fs_info->endio_meta_write_workers,
 704                                         &end_io_wq->work);
 705                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 706                        btrfs_queue_work(fs_info->endio_freespace_worker,
 707                                         &end_io_wq->work);
 708                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 709                        btrfs_queue_work(fs_info->endio_raid56_workers,
 710                                         &end_io_wq->work);
 711                else
 712                        btrfs_queue_work(fs_info->endio_write_workers,
 713                                         &end_io_wq->work);
 714        } else {
 715                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 716                        btrfs_queue_work(fs_info->endio_raid56_workers,
 717                                         &end_io_wq->work);
 718                else if (end_io_wq->metadata)
 719                        btrfs_queue_work(fs_info->endio_meta_workers,
 720                                         &end_io_wq->work);
 721                else
 722                        btrfs_queue_work(fs_info->endio_workers,
 723                                         &end_io_wq->work);
 724        }
 725}
 726
 727/*
 728 * For the metadata arg you want
 729 *
 730 * 0 - if data
 731 * 1 - if normal metadta
 732 * 2 - if writing to the free space cache area
 733 * 3 - raid parity work
 734 */
 735int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 736                        int metadata)
 737{
 738        struct end_io_wq *end_io_wq;
 739        end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 740        if (!end_io_wq)
 741                return -ENOMEM;
 742
 743        end_io_wq->private = bio->bi_private;
 744        end_io_wq->end_io = bio->bi_end_io;
 745        end_io_wq->info = info;
 746        end_io_wq->error = 0;
 747        end_io_wq->bio = bio;
 748        end_io_wq->metadata = metadata;
 749
 750        bio->bi_private = end_io_wq;
 751        bio->bi_end_io = end_workqueue_bio;
 752        return 0;
 753}
 754
 755unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 756{
 757        unsigned long limit = min_t(unsigned long,
 758                                    info->thread_pool_size,
 759                                    info->fs_devices->open_devices);
 760        return 256 * limit;
 761}
 762
 763static void run_one_async_start(struct btrfs_work *work)
 764{
 765        struct async_submit_bio *async;
 766        int ret;
 767
 768        async = container_of(work, struct  async_submit_bio, work);
 769        ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 770                                      async->mirror_num, async->bio_flags,
 771                                      async->bio_offset);
 772        if (ret)
 773                async->error = ret;
 774}
 775
 776static void run_one_async_done(struct btrfs_work *work)
 777{
 778        struct btrfs_fs_info *fs_info;
 779        struct async_submit_bio *async;
 780        int limit;
 781
 782        async = container_of(work, struct  async_submit_bio, work);
 783        fs_info = BTRFS_I(async->inode)->root->fs_info;
 784
 785        limit = btrfs_async_submit_limit(fs_info);
 786        limit = limit * 2 / 3;
 787
 788        if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 789            waitqueue_active(&fs_info->async_submit_wait))
 790                wake_up(&fs_info->async_submit_wait);
 791
 792        /* If an error occured we just want to clean up the bio and move on */
 793        if (async->error) {
 794                bio_endio(async->bio, async->error);
 795                return;
 796        }
 797
 798        async->submit_bio_done(async->inode, async->rw, async->bio,
 799                               async->mirror_num, async->bio_flags,
 800                               async->bio_offset);
 801}
 802
 803static void run_one_async_free(struct btrfs_work *work)
 804{
 805        struct async_submit_bio *async;
 806
 807        async = container_of(work, struct  async_submit_bio, work);
 808        kfree(async);
 809}
 810
 811int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 812                        int rw, struct bio *bio, int mirror_num,
 813                        unsigned long bio_flags,
 814                        u64 bio_offset,
 815                        extent_submit_bio_hook_t *submit_bio_start,
 816                        extent_submit_bio_hook_t *submit_bio_done)
 817{
 818        struct async_submit_bio *async;
 819
 820        async = kmalloc(sizeof(*async), GFP_NOFS);
 821        if (!async)
 822                return -ENOMEM;
 823
 824        async->inode = inode;
 825        async->rw = rw;
 826        async->bio = bio;
 827        async->mirror_num = mirror_num;
 828        async->submit_bio_start = submit_bio_start;
 829        async->submit_bio_done = submit_bio_done;
 830
 831        btrfs_init_work(&async->work, run_one_async_start,
 832                        run_one_async_done, run_one_async_free);
 833
 834        async->bio_flags = bio_flags;
 835        async->bio_offset = bio_offset;
 836
 837        async->error = 0;
 838
 839        atomic_inc(&fs_info->nr_async_submits);
 840
 841        if (rw & REQ_SYNC)
 842                btrfs_set_work_high_priority(&async->work);
 843
 844        btrfs_queue_work(fs_info->workers, &async->work);
 845
 846        while (atomic_read(&fs_info->async_submit_draining) &&
 847              atomic_read(&fs_info->nr_async_submits)) {
 848                wait_event(fs_info->async_submit_wait,
 849                           (atomic_read(&fs_info->nr_async_submits) == 0));
 850        }
 851
 852        return 0;
 853}
 854
 855static int btree_csum_one_bio(struct bio *bio)
 856{
 857        struct bio_vec *bvec;
 858        struct btrfs_root *root;
 859        int i, ret = 0;
 860
 861        bio_for_each_segment_all(bvec, bio, i) {
 862                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 863                ret = csum_dirty_buffer(root, bvec->bv_page);
 864                if (ret)
 865                        break;
 866        }
 867
 868        return ret;
 869}
 870
 871static int __btree_submit_bio_start(struct inode *inode, int rw,
 872                                    struct bio *bio, int mirror_num,
 873                                    unsigned long bio_flags,
 874                                    u64 bio_offset)
 875{
 876        /*
 877         * when we're called for a write, we're already in the async
 878         * submission context.  Just jump into btrfs_map_bio
 879         */
 880        return btree_csum_one_bio(bio);
 881}
 882
 883static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 884                                 int mirror_num, unsigned long bio_flags,
 885                                 u64 bio_offset)
 886{
 887        int ret;
 888
 889        /*
 890         * when we're called for a write, we're already in the async
 891         * submission context.  Just jump into btrfs_map_bio
 892         */
 893        ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 894        if (ret)
 895                bio_endio(bio, ret);
 896        return ret;
 897}
 898
 899static int check_async_write(struct inode *inode, unsigned long bio_flags)
 900{
 901        if (bio_flags & EXTENT_BIO_TREE_LOG)
 902                return 0;
 903#ifdef CONFIG_X86
 904        if (cpu_has_xmm4_2)
 905                return 0;
 906#endif
 907        return 1;
 908}
 909
 910static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 911                                 int mirror_num, unsigned long bio_flags,
 912                                 u64 bio_offset)
 913{
 914        int async = check_async_write(inode, bio_flags);
 915        int ret;
 916
 917        if (!(rw & REQ_WRITE)) {
 918                /*
 919                 * called for a read, do the setup so that checksum validation
 920                 * can happen in the async kernel threads
 921                 */
 922                ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 923                                          bio, 1);
 924                if (ret)
 925                        goto out_w_error;
 926                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 927                                    mirror_num, 0);
 928        } else if (!async) {
 929                ret = btree_csum_one_bio(bio);
 930                if (ret)
 931                        goto out_w_error;
 932                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 933                                    mirror_num, 0);
 934        } else {
 935                /*
 936                 * kthread helpers are used to submit writes so that
 937                 * checksumming can happen in parallel across all CPUs
 938                 */
 939                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 940                                          inode, rw, bio, mirror_num, 0,
 941                                          bio_offset,
 942                                          __btree_submit_bio_start,
 943                                          __btree_submit_bio_done);
 944        }
 945
 946        if (ret) {
 947out_w_error:
 948                bio_endio(bio, ret);
 949        }
 950        return ret;
 951}
 952
 953#ifdef CONFIG_MIGRATION
 954static int btree_migratepage(struct address_space *mapping,
 955                        struct page *newpage, struct page *page,
 956                        enum migrate_mode mode)
 957{
 958        /*
 959         * we can't safely write a btree page from here,
 960         * we haven't done the locking hook
 961         */
 962        if (PageDirty(page))
 963                return -EAGAIN;
 964        /*
 965         * Buffers may be managed in a filesystem specific way.
 966         * We must have no buffers or drop them.
 967         */
 968        if (page_has_private(page) &&
 969            !try_to_release_page(page, GFP_KERNEL))
 970                return -EAGAIN;
 971        return migrate_page(mapping, newpage, page, mode);
 972}
 973#endif
 974
 975
 976static int btree_writepages(struct address_space *mapping,
 977                            struct writeback_control *wbc)
 978{
 979        struct btrfs_fs_info *fs_info;
 980        int ret;
 981
 982        if (wbc->sync_mode == WB_SYNC_NONE) {
 983
 984                if (wbc->for_kupdate)
 985                        return 0;
 986
 987                fs_info = BTRFS_I(mapping->host)->root->fs_info;
 988                /* this is a bit racy, but that's ok */
 989                ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 990                                             BTRFS_DIRTY_METADATA_THRESH);
 991                if (ret < 0)
 992                        return 0;
 993        }
 994        return btree_write_cache_pages(mapping, wbc);
 995}
 996
 997static int btree_readpage(struct file *file, struct page *page)
 998{
 999        struct extent_io_tree *tree;
1000        tree = &BTRFS_I(page->mapping->host)->io_tree;
1001        return extent_read_full_page(tree, page, btree_get_extent, 0);
1002}
1003
1004static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1005{
1006        if (PageWriteback(page) || PageDirty(page))
1007                return 0;
1008
1009        return try_release_extent_buffer(page);
1010}
1011
1012static void btree_invalidatepage(struct page *page, unsigned int offset,
1013                                 unsigned int length)
1014{
1015        struct extent_io_tree *tree;
1016        tree = &BTRFS_I(page->mapping->host)->io_tree;
1017        extent_invalidatepage(tree, page, offset);
1018        btree_releasepage(page, GFP_NOFS);
1019        if (PagePrivate(page)) {
1020                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1021                           "page private not zero on page %llu",
1022                           (unsigned long long)page_offset(page));
1023                ClearPagePrivate(page);
1024                set_page_private(page, 0);
1025                page_cache_release(page);
1026        }
1027}
1028
1029static int btree_set_page_dirty(struct page *page)
1030{
1031#ifdef DEBUG
1032        struct extent_buffer *eb;
1033
1034        BUG_ON(!PagePrivate(page));
1035        eb = (struct extent_buffer *)page->private;
1036        BUG_ON(!eb);
1037        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038        BUG_ON(!atomic_read(&eb->refs));
1039        btrfs_assert_tree_locked(eb);
1040#endif
1041        return __set_page_dirty_nobuffers(page);
1042}
1043
1044static const struct address_space_operations btree_aops = {
1045        .readpage       = btree_readpage,
1046        .writepages     = btree_writepages,
1047        .releasepage    = btree_releasepage,
1048        .invalidatepage = btree_invalidatepage,
1049#ifdef CONFIG_MIGRATION
1050        .migratepage    = btree_migratepage,
1051#endif
1052        .set_page_dirty = btree_set_page_dirty,
1053};
1054
1055int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056                         u64 parent_transid)
1057{
1058        struct extent_buffer *buf = NULL;
1059        struct inode *btree_inode = root->fs_info->btree_inode;
1060        int ret = 0;
1061
1062        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063        if (!buf)
1064                return 0;
1065        read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066                                 buf, 0, WAIT_NONE, btree_get_extent, 0);
1067        free_extent_buffer(buf);
1068        return ret;
1069}
1070
1071int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072                         int mirror_num, struct extent_buffer **eb)
1073{
1074        struct extent_buffer *buf = NULL;
1075        struct inode *btree_inode = root->fs_info->btree_inode;
1076        struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077        int ret;
1078
1079        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080        if (!buf)
1081                return 0;
1082
1083        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085        ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086                                       btree_get_extent, mirror_num);
1087        if (ret) {
1088                free_extent_buffer(buf);
1089                return ret;
1090        }
1091
1092        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093                free_extent_buffer(buf);
1094                return -EIO;
1095        } else if (extent_buffer_uptodate(buf)) {
1096                *eb = buf;
1097        } else {
1098                free_extent_buffer(buf);
1099        }
1100        return 0;
1101}
1102
1103struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104                                            u64 bytenr, u32 blocksize)
1105{
1106        return find_extent_buffer(root->fs_info, bytenr);
1107}
1108
1109struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1110                                                 u64 bytenr, u32 blocksize)
1111{
1112        return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1113}
1114
1115
1116int btrfs_write_tree_block(struct extent_buffer *buf)
1117{
1118        return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119                                        buf->start + buf->len - 1);
1120}
1121
1122int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1123{
1124        return filemap_fdatawait_range(buf->pages[0]->mapping,
1125                                       buf->start, buf->start + buf->len - 1);
1126}
1127
1128struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129                                      u32 blocksize, u64 parent_transid)
1130{
1131        struct extent_buffer *buf = NULL;
1132        int ret;
1133
1134        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135        if (!buf)
1136                return NULL;
1137
1138        ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139        if (ret) {
1140                free_extent_buffer(buf);
1141                return NULL;
1142        }
1143        return buf;
1144
1145}
1146
1147void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148                      struct extent_buffer *buf)
1149{
1150        struct btrfs_fs_info *fs_info = root->fs_info;
1151
1152        if (btrfs_header_generation(buf) ==
1153            fs_info->running_transaction->transid) {
1154                btrfs_assert_tree_locked(buf);
1155
1156                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157                        __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158                                             -buf->len,
1159                                             fs_info->dirty_metadata_batch);
1160                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1161                        btrfs_set_lock_blocking(buf);
1162                        clear_extent_buffer_dirty(buf);
1163                }
1164        }
1165}
1166
1167static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1168{
1169        struct btrfs_subvolume_writers *writers;
1170        int ret;
1171
1172        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1173        if (!writers)
1174                return ERR_PTR(-ENOMEM);
1175
1176        ret = percpu_counter_init(&writers->counter, 0);
1177        if (ret < 0) {
1178                kfree(writers);
1179                return ERR_PTR(ret);
1180        }
1181
1182        init_waitqueue_head(&writers->wait);
1183        return writers;
1184}
1185
1186static void
1187btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1188{
1189        percpu_counter_destroy(&writers->counter);
1190        kfree(writers);
1191}
1192
1193static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1194                         u32 stripesize, struct btrfs_root *root,
1195                         struct btrfs_fs_info *fs_info,
1196                         u64 objectid)
1197{
1198        root->node = NULL;
1199        root->commit_root = NULL;
1200        root->sectorsize = sectorsize;
1201        root->nodesize = nodesize;
1202        root->leafsize = leafsize;
1203        root->stripesize = stripesize;
1204        root->ref_cows = 0;
1205        root->track_dirty = 0;
1206        root->in_radix = 0;
1207        root->orphan_item_inserted = 0;
1208        root->orphan_cleanup_state = 0;
1209
1210        root->objectid = objectid;
1211        root->last_trans = 0;
1212        root->highest_objectid = 0;
1213        root->nr_delalloc_inodes = 0;
1214        root->nr_ordered_extents = 0;
1215        root->name = NULL;
1216        root->inode_tree = RB_ROOT;
1217        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1218        root->block_rsv = NULL;
1219        root->orphan_block_rsv = NULL;
1220
1221        INIT_LIST_HEAD(&root->dirty_list);
1222        INIT_LIST_HEAD(&root->root_list);
1223        INIT_LIST_HEAD(&root->delalloc_inodes);
1224        INIT_LIST_HEAD(&root->delalloc_root);
1225        INIT_LIST_HEAD(&root->ordered_extents);
1226        INIT_LIST_HEAD(&root->ordered_root);
1227        INIT_LIST_HEAD(&root->logged_list[0]);
1228        INIT_LIST_HEAD(&root->logged_list[1]);
1229        spin_lock_init(&root->orphan_lock);
1230        spin_lock_init(&root->inode_lock);
1231        spin_lock_init(&root->delalloc_lock);
1232        spin_lock_init(&root->ordered_extent_lock);
1233        spin_lock_init(&root->accounting_lock);
1234        spin_lock_init(&root->log_extents_lock[0]);
1235        spin_lock_init(&root->log_extents_lock[1]);
1236        mutex_init(&root->objectid_mutex);
1237        mutex_init(&root->log_mutex);
1238        mutex_init(&root->ordered_extent_mutex);
1239        mutex_init(&root->delalloc_mutex);
1240        init_waitqueue_head(&root->log_writer_wait);
1241        init_waitqueue_head(&root->log_commit_wait[0]);
1242        init_waitqueue_head(&root->log_commit_wait[1]);
1243        INIT_LIST_HEAD(&root->log_ctxs[0]);
1244        INIT_LIST_HEAD(&root->log_ctxs[1]);
1245        atomic_set(&root->log_commit[0], 0);
1246        atomic_set(&root->log_commit[1], 0);
1247        atomic_set(&root->log_writers, 0);
1248        atomic_set(&root->log_batch, 0);
1249        atomic_set(&root->orphan_inodes, 0);
1250        atomic_set(&root->refs, 1);
1251        atomic_set(&root->will_be_snapshoted, 0);
1252        root->log_transid = 0;
1253        root->log_transid_committed = -1;
1254        root->last_log_commit = 0;
1255        if (fs_info)
1256                extent_io_tree_init(&root->dirty_log_pages,
1257                                     fs_info->btree_inode->i_mapping);
1258
1259        memset(&root->root_key, 0, sizeof(root->root_key));
1260        memset(&root->root_item, 0, sizeof(root->root_item));
1261        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1262        memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1263        if (fs_info)
1264                root->defrag_trans_start = fs_info->generation;
1265        else
1266                root->defrag_trans_start = 0;
1267        init_completion(&root->kobj_unregister);
1268        root->defrag_running = 0;
1269        root->root_key.objectid = objectid;
1270        root->anon_dev = 0;
1271
1272        spin_lock_init(&root->root_item_lock);
1273}
1274
1275static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1276{
1277        struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1278        if (root)
1279                root->fs_info = fs_info;
1280        return root;
1281}
1282
1283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1284/* Should only be used by the testing infrastructure */
1285struct btrfs_root *btrfs_alloc_dummy_root(void)
1286{
1287        struct btrfs_root *root;
1288
1289        root = btrfs_alloc_root(NULL);
1290        if (!root)
1291                return ERR_PTR(-ENOMEM);
1292        __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1293        root->dummy_root = 1;
1294
1295        return root;
1296}
1297#endif
1298
1299struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1300                                     struct btrfs_fs_info *fs_info,
1301                                     u64 objectid)
1302{
1303        struct extent_buffer *leaf;
1304        struct btrfs_root *tree_root = fs_info->tree_root;
1305        struct btrfs_root *root;
1306        struct btrfs_key key;
1307        int ret = 0;
1308        uuid_le uuid;
1309
1310        root = btrfs_alloc_root(fs_info);
1311        if (!root)
1312                return ERR_PTR(-ENOMEM);
1313
1314        __setup_root(tree_root->nodesize, tree_root->leafsize,
1315                     tree_root->sectorsize, tree_root->stripesize,
1316                     root, fs_info, objectid);
1317        root->root_key.objectid = objectid;
1318        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319        root->root_key.offset = 0;
1320
1321        leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1322                                      0, objectid, NULL, 0, 0, 0);
1323        if (IS_ERR(leaf)) {
1324                ret = PTR_ERR(leaf);
1325                leaf = NULL;
1326                goto fail;
1327        }
1328
1329        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1330        btrfs_set_header_bytenr(leaf, leaf->start);
1331        btrfs_set_header_generation(leaf, trans->transid);
1332        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1333        btrfs_set_header_owner(leaf, objectid);
1334        root->node = leaf;
1335
1336        write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1337                            BTRFS_FSID_SIZE);
1338        write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1339                            btrfs_header_chunk_tree_uuid(leaf),
1340                            BTRFS_UUID_SIZE);
1341        btrfs_mark_buffer_dirty(leaf);
1342
1343        root->commit_root = btrfs_root_node(root);
1344        root->track_dirty = 1;
1345
1346
1347        root->root_item.flags = 0;
1348        root->root_item.byte_limit = 0;
1349        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350        btrfs_set_root_generation(&root->root_item, trans->transid);
1351        btrfs_set_root_level(&root->root_item, 0);
1352        btrfs_set_root_refs(&root->root_item, 1);
1353        btrfs_set_root_used(&root->root_item, leaf->len);
1354        btrfs_set_root_last_snapshot(&root->root_item, 0);
1355        btrfs_set_root_dirid(&root->root_item, 0);
1356        uuid_le_gen(&uuid);
1357        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1358        root->root_item.drop_level = 0;
1359
1360        key.objectid = objectid;
1361        key.type = BTRFS_ROOT_ITEM_KEY;
1362        key.offset = 0;
1363        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1364        if (ret)
1365                goto fail;
1366
1367        btrfs_tree_unlock(leaf);
1368
1369        return root;
1370
1371fail:
1372        if (leaf) {
1373                btrfs_tree_unlock(leaf);
1374                free_extent_buffer(leaf);
1375        }
1376        kfree(root);
1377
1378        return ERR_PTR(ret);
1379}
1380
1381static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1382                                         struct btrfs_fs_info *fs_info)
1383{
1384        struct btrfs_root *root;
1385        struct btrfs_root *tree_root = fs_info->tree_root;
1386        struct extent_buffer *leaf;
1387
1388        root = btrfs_alloc_root(fs_info);
1389        if (!root)
1390                return ERR_PTR(-ENOMEM);
1391
1392        __setup_root(tree_root->nodesize, tree_root->leafsize,
1393                     tree_root->sectorsize, tree_root->stripesize,
1394                     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1395
1396        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1397        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1398        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1399        /*
1400         * log trees do not get reference counted because they go away
1401         * before a real commit is actually done.  They do store pointers
1402         * to file data extents, and those reference counts still get
1403         * updated (along with back refs to the log tree).
1404         */
1405        root->ref_cows = 0;
1406
1407        leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1408                                      BTRFS_TREE_LOG_OBJECTID, NULL,
1409                                      0, 0, 0);
1410        if (IS_ERR(leaf)) {
1411                kfree(root);
1412                return ERR_CAST(leaf);
1413        }
1414
1415        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1416        btrfs_set_header_bytenr(leaf, leaf->start);
1417        btrfs_set_header_generation(leaf, trans->transid);
1418        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1419        btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1420        root->node = leaf;
1421
1422        write_extent_buffer(root->node, root->fs_info->fsid,
1423                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
1424        btrfs_mark_buffer_dirty(root->node);
1425        btrfs_tree_unlock(root->node);
1426        return root;
1427}
1428
1429int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1430                             struct btrfs_fs_info *fs_info)
1431{
1432        struct btrfs_root *log_root;
1433
1434        log_root = alloc_log_tree(trans, fs_info);
1435        if (IS_ERR(log_root))
1436                return PTR_ERR(log_root);
1437        WARN_ON(fs_info->log_root_tree);
1438        fs_info->log_root_tree = log_root;
1439        return 0;
1440}
1441
1442int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1443                       struct btrfs_root *root)
1444{
1445        struct btrfs_root *log_root;
1446        struct btrfs_inode_item *inode_item;
1447
1448        log_root = alloc_log_tree(trans, root->fs_info);
1449        if (IS_ERR(log_root))
1450                return PTR_ERR(log_root);
1451
1452        log_root->last_trans = trans->transid;
1453        log_root->root_key.offset = root->root_key.objectid;
1454
1455        inode_item = &log_root->root_item.inode;
1456        btrfs_set_stack_inode_generation(inode_item, 1);
1457        btrfs_set_stack_inode_size(inode_item, 3);
1458        btrfs_set_stack_inode_nlink(inode_item, 1);
1459        btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1460        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1461
1462        btrfs_set_root_node(&log_root->root_item, log_root->node);
1463
1464        WARN_ON(root->log_root);
1465        root->log_root = log_root;
1466        root->log_transid = 0;
1467        root->log_transid_committed = -1;
1468        root->last_log_commit = 0;
1469        return 0;
1470}
1471
1472static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1473                                               struct btrfs_key *key)
1474{
1475        struct btrfs_root *root;
1476        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1477        struct btrfs_path *path;
1478        u64 generation;
1479        u32 blocksize;
1480        int ret;
1481
1482        path = btrfs_alloc_path();
1483        if (!path)
1484                return ERR_PTR(-ENOMEM);
1485
1486        root = btrfs_alloc_root(fs_info);
1487        if (!root) {
1488                ret = -ENOMEM;
1489                goto alloc_fail;
1490        }
1491
1492        __setup_root(tree_root->nodesize, tree_root->leafsize,
1493                     tree_root->sectorsize, tree_root->stripesize,
1494                     root, fs_info, key->objectid);
1495
1496        ret = btrfs_find_root(tree_root, key, path,
1497                              &root->root_item, &root->root_key);
1498        if (ret) {
1499                if (ret > 0)
1500                        ret = -ENOENT;
1501                goto find_fail;
1502        }
1503
1504        generation = btrfs_root_generation(&root->root_item);
1505        blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1506        root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1507                                     blocksize, generation);
1508        if (!root->node) {
1509                ret = -ENOMEM;
1510                goto find_fail;
1511        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1512                ret = -EIO;
1513                goto read_fail;
1514        }
1515        root->commit_root = btrfs_root_node(root);
1516out:
1517        btrfs_free_path(path);
1518        return root;
1519
1520read_fail:
1521        free_extent_buffer(root->node);
1522find_fail:
1523        kfree(root);
1524alloc_fail:
1525        root = ERR_PTR(ret);
1526        goto out;
1527}
1528
1529struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1530                                      struct btrfs_key *location)
1531{
1532        struct btrfs_root *root;
1533
1534        root = btrfs_read_tree_root(tree_root, location);
1535        if (IS_ERR(root))
1536                return root;
1537
1538        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1539                root->ref_cows = 1;
1540                btrfs_check_and_init_root_item(&root->root_item);
1541        }
1542
1543        return root;
1544}
1545
1546int btrfs_init_fs_root(struct btrfs_root *root)
1547{
1548        int ret;
1549        struct btrfs_subvolume_writers *writers;
1550
1551        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1552        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1553                                        GFP_NOFS);
1554        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1555                ret = -ENOMEM;
1556                goto fail;
1557        }
1558
1559        writers = btrfs_alloc_subvolume_writers();
1560        if (IS_ERR(writers)) {
1561                ret = PTR_ERR(writers);
1562                goto fail;
1563        }
1564        root->subv_writers = writers;
1565
1566        btrfs_init_free_ino_ctl(root);
1567        spin_lock_init(&root->cache_lock);
1568        init_waitqueue_head(&root->cache_wait);
1569
1570        ret = get_anon_bdev(&root->anon_dev);
1571        if (ret)
1572                goto free_writers;
1573        return 0;
1574
1575free_writers:
1576        btrfs_free_subvolume_writers(root->subv_writers);
1577fail:
1578        kfree(root->free_ino_ctl);
1579        kfree(root->free_ino_pinned);
1580        return ret;
1581}
1582
1583static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1584                                               u64 root_id)
1585{
1586        struct btrfs_root *root;
1587
1588        spin_lock(&fs_info->fs_roots_radix_lock);
1589        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1590                                 (unsigned long)root_id);
1591        spin_unlock(&fs_info->fs_roots_radix_lock);
1592        return root;
1593}
1594
1595int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1596                         struct btrfs_root *root)
1597{
1598        int ret;
1599
1600        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1601        if (ret)
1602                return ret;
1603
1604        spin_lock(&fs_info->fs_roots_radix_lock);
1605        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1606                                (unsigned long)root->root_key.objectid,
1607                                root);
1608        if (ret == 0)
1609                root->in_radix = 1;
1610        spin_unlock(&fs_info->fs_roots_radix_lock);
1611        radix_tree_preload_end();
1612
1613        return ret;
1614}
1615
1616struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1617                                     struct btrfs_key *location,
1618                                     bool check_ref)
1619{
1620        struct btrfs_root *root;
1621        int ret;
1622
1623        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1624                return fs_info->tree_root;
1625        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1626                return fs_info->extent_root;
1627        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1628                return fs_info->chunk_root;
1629        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1630                return fs_info->dev_root;
1631        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1632                return fs_info->csum_root;
1633        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1634                return fs_info->quota_root ? fs_info->quota_root :
1635                                             ERR_PTR(-ENOENT);
1636        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1637                return fs_info->uuid_root ? fs_info->uuid_root :
1638                                            ERR_PTR(-ENOENT);
1639again:
1640        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1641        if (root) {
1642                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1643                        return ERR_PTR(-ENOENT);
1644                return root;
1645        }
1646
1647        root = btrfs_read_fs_root(fs_info->tree_root, location);
1648        if (IS_ERR(root))
1649                return root;
1650
1651        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1652                ret = -ENOENT;
1653                goto fail;
1654        }
1655
1656        ret = btrfs_init_fs_root(root);
1657        if (ret)
1658                goto fail;
1659
1660        ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1661                        location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1662        if (ret < 0)
1663                goto fail;
1664        if (ret == 0)
1665                root->orphan_item_inserted = 1;
1666
1667        ret = btrfs_insert_fs_root(fs_info, root);
1668        if (ret) {
1669                if (ret == -EEXIST) {
1670                        free_fs_root(root);
1671                        goto again;
1672                }
1673                goto fail;
1674        }
1675        return root;
1676fail:
1677        free_fs_root(root);
1678        return ERR_PTR(ret);
1679}
1680
1681static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1682{
1683        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1684        int ret = 0;
1685        struct btrfs_device *device;
1686        struct backing_dev_info *bdi;
1687
1688        rcu_read_lock();
1689        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1690                if (!device->bdev)
1691                        continue;
1692                bdi = blk_get_backing_dev_info(device->bdev);
1693                if (bdi && bdi_congested(bdi, bdi_bits)) {
1694                        ret = 1;
1695                        break;
1696                }
1697        }
1698        rcu_read_unlock();
1699        return ret;
1700}
1701
1702/*
1703 * If this fails, caller must call bdi_destroy() to get rid of the
1704 * bdi again.
1705 */
1706static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1707{
1708        int err;
1709
1710        bdi->capabilities = BDI_CAP_MAP_COPY;
1711        err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1712        if (err)
1713                return err;
1714
1715        bdi->ra_pages   = default_backing_dev_info.ra_pages;
1716        bdi->congested_fn       = btrfs_congested_fn;
1717        bdi->congested_data     = info;
1718        return 0;
1719}
1720
1721/*
1722 * called by the kthread helper functions to finally call the bio end_io
1723 * functions.  This is where read checksum verification actually happens
1724 */
1725static void end_workqueue_fn(struct btrfs_work *work)
1726{
1727        struct bio *bio;
1728        struct end_io_wq *end_io_wq;
1729        int error;
1730
1731        end_io_wq = container_of(work, struct end_io_wq, work);
1732        bio = end_io_wq->bio;
1733
1734        error = end_io_wq->error;
1735        bio->bi_private = end_io_wq->private;
1736        bio->bi_end_io = end_io_wq->end_io;
1737        kfree(end_io_wq);
1738        bio_endio_nodec(bio, error);
1739}
1740
1741static int cleaner_kthread(void *arg)
1742{
1743        struct btrfs_root *root = arg;
1744        int again;
1745
1746        do {
1747                again = 0;
1748
1749                /* Make the cleaner go to sleep early. */
1750                if (btrfs_need_cleaner_sleep(root))
1751                        goto sleep;
1752
1753                if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1754                        goto sleep;
1755
1756                /*
1757                 * Avoid the problem that we change the status of the fs
1758                 * during the above check and trylock.
1759                 */
1760                if (btrfs_need_cleaner_sleep(root)) {
1761                        mutex_unlock(&root->fs_info->cleaner_mutex);
1762                        goto sleep;
1763                }
1764
1765                btrfs_run_delayed_iputs(root);
1766                again = btrfs_clean_one_deleted_snapshot(root);
1767                mutex_unlock(&root->fs_info->cleaner_mutex);
1768
1769                /*
1770                 * The defragger has dealt with the R/O remount and umount,
1771                 * needn't do anything special here.
1772                 */
1773                btrfs_run_defrag_inodes(root->fs_info);
1774sleep:
1775                if (!try_to_freeze() && !again) {
1776                        set_current_state(TASK_INTERRUPTIBLE);
1777                        if (!kthread_should_stop())
1778                                schedule();
1779                        __set_current_state(TASK_RUNNING);
1780                }
1781        } while (!kthread_should_stop());
1782        return 0;
1783}
1784
1785static int transaction_kthread(void *arg)
1786{
1787        struct btrfs_root *root = arg;
1788        struct btrfs_trans_handle *trans;
1789        struct btrfs_transaction *cur;
1790        u64 transid;
1791        unsigned long now;
1792        unsigned long delay;
1793        bool cannot_commit;
1794
1795        do {
1796                cannot_commit = false;
1797                delay = HZ * root->fs_info->commit_interval;
1798                mutex_lock(&root->fs_info->transaction_kthread_mutex);
1799
1800                spin_lock(&root->fs_info->trans_lock);
1801                cur = root->fs_info->running_transaction;
1802                if (!cur) {
1803                        spin_unlock(&root->fs_info->trans_lock);
1804                        goto sleep;
1805                }
1806
1807                now = get_seconds();
1808                if (cur->state < TRANS_STATE_BLOCKED &&
1809                    (now < cur->start_time ||
1810                     now - cur->start_time < root->fs_info->commit_interval)) {
1811                        spin_unlock(&root->fs_info->trans_lock);
1812                        delay = HZ * 5;
1813                        goto sleep;
1814                }
1815                transid = cur->transid;
1816                spin_unlock(&root->fs_info->trans_lock);
1817
1818                /* If the file system is aborted, this will always fail. */
1819                trans = btrfs_attach_transaction(root);
1820                if (IS_ERR(trans)) {
1821                        if (PTR_ERR(trans) != -ENOENT)
1822                                cannot_commit = true;
1823                        goto sleep;
1824                }
1825                if (transid == trans->transid) {
1826                        btrfs_commit_transaction(trans, root);
1827                } else {
1828                        btrfs_end_transaction(trans, root);
1829                }
1830sleep:
1831                wake_up_process(root->fs_info->cleaner_kthread);
1832                mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1833
1834                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1835                                      &root->fs_info->fs_state)))
1836                        btrfs_cleanup_transaction(root);
1837                if (!try_to_freeze()) {
1838                        set_current_state(TASK_INTERRUPTIBLE);
1839                        if (!kthread_should_stop() &&
1840                            (!btrfs_transaction_blocked(root->fs_info) ||
1841                             cannot_commit))
1842                                schedule_timeout(delay);
1843                        __set_current_state(TASK_RUNNING);
1844                }
1845        } while (!kthread_should_stop());
1846        return 0;
1847}
1848
1849/*
1850 * this will find the highest generation in the array of
1851 * root backups.  The index of the highest array is returned,
1852 * or -1 if we can't find anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest  root in the array with the generation
1856 * in the super block.  If they don't match we pitch it.
1857 */
1858static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1859{
1860        u64 cur;
1861        int newest_index = -1;
1862        struct btrfs_root_backup *root_backup;
1863        int i;
1864
1865        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866                root_backup = info->super_copy->super_roots + i;
1867                cur = btrfs_backup_tree_root_gen(root_backup);
1868                if (cur == newest_gen)
1869                        newest_index = i;
1870        }
1871
1872        /* check to see if we actually wrapped around */
1873        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1874                root_backup = info->super_copy->super_roots;
1875                cur = btrfs_backup_tree_root_gen(root_backup);
1876                if (cur == newest_gen)
1877                        newest_index = 0;
1878        }
1879        return newest_index;
1880}
1881
1882
1883/*
1884 * find the oldest backup so we know where to store new entries
1885 * in the backup array.  This will set the backup_root_index
1886 * field in the fs_info struct
1887 */
1888static void find_oldest_super_backup(struct btrfs_fs_info *info,
1889                                     u64 newest_gen)
1890{
1891        int newest_index = -1;
1892
1893        newest_index = find_newest_super_backup(info, newest_gen);
1894        /* if there was garbage in there, just move along */
1895        if (newest_index == -1) {
1896                info->backup_root_index = 0;
1897        } else {
1898                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899        }
1900}
1901
1902/*
1903 * copy all the root pointers into the super backup array.
1904 * this will bump the backup pointer by one when it is
1905 * done
1906 */
1907static void backup_super_roots(struct btrfs_fs_info *info)
1908{
1909        int next_backup;
1910        struct btrfs_root_backup *root_backup;
1911        int last_backup;
1912
1913        next_backup = info->backup_root_index;
1914        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1915                BTRFS_NUM_BACKUP_ROOTS;
1916
1917        /*
1918         * just overwrite the last backup if we're at the same generation
1919         * this happens only at umount
1920         */
1921        root_backup = info->super_for_commit->super_roots + last_backup;
1922        if (btrfs_backup_tree_root_gen(root_backup) ==
1923            btrfs_header_generation(info->tree_root->node))
1924                next_backup = last_backup;
1925
1926        root_backup = info->super_for_commit->super_roots + next_backup;
1927
1928        /*
1929         * make sure all of our padding and empty slots get zero filled
1930         * regardless of which ones we use today
1931         */
1932        memset(root_backup, 0, sizeof(*root_backup));
1933
1934        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1935
1936        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1937        btrfs_set_backup_tree_root_gen(root_backup,
1938                               btrfs_header_generation(info->tree_root->node));
1939
1940        btrfs_set_backup_tree_root_level(root_backup,
1941                               btrfs_header_level(info->tree_root->node));
1942
1943        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1944        btrfs_set_backup_chunk_root_gen(root_backup,
1945                               btrfs_header_generation(info->chunk_root->node));
1946        btrfs_set_backup_chunk_root_level(root_backup,
1947                               btrfs_header_level(info->chunk_root->node));
1948
1949        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1950        btrfs_set_backup_extent_root_gen(root_backup,
1951                               btrfs_header_generation(info->extent_root->node));
1952        btrfs_set_backup_extent_root_level(root_backup,
1953                               btrfs_header_level(info->extent_root->node));
1954
1955        /*
1956         * we might commit during log recovery, which happens before we set
1957         * the fs_root.  Make sure it is valid before we fill it in.
1958         */
1959        if (info->fs_root && info->fs_root->node) {
1960                btrfs_set_backup_fs_root(root_backup,
1961                                         info->fs_root->node->start);
1962                btrfs_set_backup_fs_root_gen(root_backup,
1963                               btrfs_header_generation(info->fs_root->node));
1964                btrfs_set_backup_fs_root_level(root_backup,
1965                               btrfs_header_level(info->fs_root->node));
1966        }
1967
1968        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1969        btrfs_set_backup_dev_root_gen(root_backup,
1970                               btrfs_header_generation(info->dev_root->node));
1971        btrfs_set_backup_dev_root_level(root_backup,
1972                                       btrfs_header_level(info->dev_root->node));
1973
1974        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1975        btrfs_set_backup_csum_root_gen(root_backup,
1976                               btrfs_header_generation(info->csum_root->node));
1977        btrfs_set_backup_csum_root_level(root_backup,
1978                               btrfs_header_level(info->csum_root->node));
1979
1980        btrfs_set_backup_total_bytes(root_backup,
1981                             btrfs_super_total_bytes(info->super_copy));
1982        btrfs_set_backup_bytes_used(root_backup,
1983                             btrfs_super_bytes_used(info->super_copy));
1984        btrfs_set_backup_num_devices(root_backup,
1985                             btrfs_super_num_devices(info->super_copy));
1986
1987        /*
1988         * if we don't copy this out to the super_copy, it won't get remembered
1989         * for the next commit
1990         */
1991        memcpy(&info->super_copy->super_roots,
1992               &info->super_for_commit->super_roots,
1993               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1994}
1995
1996/*
1997 * this copies info out of the root backup array and back into
1998 * the in-memory super block.  It is meant to help iterate through
1999 * the array, so you send it the number of backups you've already
2000 * tried and the last backup index you used.
2001 *
2002 * this returns -1 when it has tried all the backups
2003 */
2004static noinline int next_root_backup(struct btrfs_fs_info *info,
2005                                     struct btrfs_super_block *super,
2006                                     int *num_backups_tried, int *backup_index)
2007{
2008        struct btrfs_root_backup *root_backup;
2009        int newest = *backup_index;
2010
2011        if (*num_backups_tried == 0) {
2012                u64 gen = btrfs_super_generation(super);
2013
2014                newest = find_newest_super_backup(info, gen);
2015                if (newest == -1)
2016                        return -1;
2017
2018                *backup_index = newest;
2019                *num_backups_tried = 1;
2020        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2021                /* we've tried all the backups, all done */
2022                return -1;
2023        } else {
2024                /* jump to the next oldest backup */
2025                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2026                        BTRFS_NUM_BACKUP_ROOTS;
2027                *backup_index = newest;
2028                *num_backups_tried += 1;
2029        }
2030        root_backup = super->super_roots + newest;
2031
2032        btrfs_set_super_generation(super,
2033                                   btrfs_backup_tree_root_gen(root_backup));
2034        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2035        btrfs_set_super_root_level(super,
2036                                   btrfs_backup_tree_root_level(root_backup));
2037        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2038
2039        /*
2040         * fixme: the total bytes and num_devices need to match or we should
2041         * need a fsck
2042         */
2043        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2044        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2045        return 0;
2046}
2047
2048/* helper to cleanup workers */
2049static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2050{
2051        btrfs_destroy_workqueue(fs_info->fixup_workers);
2052        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2053        btrfs_destroy_workqueue(fs_info->workers);
2054        btrfs_destroy_workqueue(fs_info->endio_workers);
2055        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2056        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2057        btrfs_destroy_workqueue(fs_info->rmw_workers);
2058        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2059        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2061        btrfs_destroy_workqueue(fs_info->submit_workers);
2062        btrfs_destroy_workqueue(fs_info->delayed_workers);
2063        btrfs_destroy_workqueue(fs_info->caching_workers);
2064        btrfs_destroy_workqueue(fs_info->readahead_workers);
2065        btrfs_destroy_workqueue(fs_info->flush_workers);
2066        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2067}
2068
2069static void free_root_extent_buffers(struct btrfs_root *root)
2070{
2071        if (root) {
2072                free_extent_buffer(root->node);
2073                free_extent_buffer(root->commit_root);
2074                root->node = NULL;
2075                root->commit_root = NULL;
2076        }
2077}
2078
2079/* helper to cleanup tree roots */
2080static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2081{
2082        free_root_extent_buffers(info->tree_root);
2083
2084        free_root_extent_buffers(info->dev_root);
2085        free_root_extent_buffers(info->extent_root);
2086        free_root_extent_buffers(info->csum_root);
2087        free_root_extent_buffers(info->quota_root);
2088        free_root_extent_buffers(info->uuid_root);
2089        if (chunk_root)
2090                free_root_extent_buffers(info->chunk_root);
2091}
2092
2093static void del_fs_roots(struct btrfs_fs_info *fs_info)
2094{
2095        int ret;
2096        struct btrfs_root *gang[8];
2097        int i;
2098
2099        while (!list_empty(&fs_info->dead_roots)) {
2100                gang[0] = list_entry(fs_info->dead_roots.next,
2101                                     struct btrfs_root, root_list);
2102                list_del(&gang[0]->root_list);
2103
2104                if (gang[0]->in_radix) {
2105                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2106                } else {
2107                        free_extent_buffer(gang[0]->node);
2108                        free_extent_buffer(gang[0]->commit_root);
2109                        btrfs_put_fs_root(gang[0]);
2110                }
2111        }
2112
2113        while (1) {
2114                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2115                                             (void **)gang, 0,
2116                                             ARRAY_SIZE(gang));
2117                if (!ret)
2118                        break;
2119                for (i = 0; i < ret; i++)
2120                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2121        }
2122
2123        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2124                btrfs_free_log_root_tree(NULL, fs_info);
2125                btrfs_destroy_pinned_extent(fs_info->tree_root,
2126                                            fs_info->pinned_extents);
2127        }
2128}
2129
2130int open_ctree(struct super_block *sb,
2131               struct btrfs_fs_devices *fs_devices,
2132               char *options)
2133{
2134        u32 sectorsize;
2135        u32 nodesize;
2136        u32 leafsize;
2137        u32 blocksize;
2138        u32 stripesize;
2139        u64 generation;
2140        u64 features;
2141        struct btrfs_key location;
2142        struct buffer_head *bh;
2143        struct btrfs_super_block *disk_super;
2144        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2145        struct btrfs_root *tree_root;
2146        struct btrfs_root *extent_root;
2147        struct btrfs_root *csum_root;
2148        struct btrfs_root *chunk_root;
2149        struct btrfs_root *dev_root;
2150        struct btrfs_root *quota_root;
2151        struct btrfs_root *uuid_root;
2152        struct btrfs_root *log_tree_root;
2153        int ret;
2154        int err = -EINVAL;
2155        int num_backups_tried = 0;
2156        int backup_index = 0;
2157        int max_active;
2158        int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159        bool create_uuid_tree;
2160        bool check_uuid_tree;
2161
2162        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2163        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2164        if (!tree_root || !chunk_root) {
2165                err = -ENOMEM;
2166                goto fail;
2167        }
2168
2169        ret = init_srcu_struct(&fs_info->subvol_srcu);
2170        if (ret) {
2171                err = ret;
2172                goto fail;
2173        }
2174
2175        ret = setup_bdi(fs_info, &fs_info->bdi);
2176        if (ret) {
2177                err = ret;
2178                goto fail_srcu;
2179        }
2180
2181        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2182        if (ret) {
2183                err = ret;
2184                goto fail_bdi;
2185        }
2186        fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187                                        (1 + ilog2(nr_cpu_ids));
2188
2189        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2190        if (ret) {
2191                err = ret;
2192                goto fail_dirty_metadata_bytes;
2193        }
2194
2195        ret = percpu_counter_init(&fs_info->bio_counter, 0);
2196        if (ret) {
2197                err = ret;
2198                goto fail_delalloc_bytes;
2199        }
2200
2201        fs_info->btree_inode = new_inode(sb);
2202        if (!fs_info->btree_inode) {
2203                err = -ENOMEM;
2204                goto fail_bio_counter;
2205        }
2206
2207        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2208
2209        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2210        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2211        INIT_LIST_HEAD(&fs_info->trans_list);
2212        INIT_LIST_HEAD(&fs_info->dead_roots);
2213        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2214        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2215        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2216        spin_lock_init(&fs_info->delalloc_root_lock);
2217        spin_lock_init(&fs_info->trans_lock);
2218        spin_lock_init(&fs_info->fs_roots_radix_lock);
2219        spin_lock_init(&fs_info->delayed_iput_lock);
2220        spin_lock_init(&fs_info->defrag_inodes_lock);
2221        spin_lock_init(&fs_info->free_chunk_lock);
2222        spin_lock_init(&fs_info->tree_mod_seq_lock);
2223        spin_lock_init(&fs_info->super_lock);
2224        spin_lock_init(&fs_info->buffer_lock);
2225        rwlock_init(&fs_info->tree_mod_log_lock);
2226        mutex_init(&fs_info->reloc_mutex);
2227        mutex_init(&fs_info->delalloc_root_mutex);
2228        seqlock_init(&fs_info->profiles_lock);
2229
2230        init_completion(&fs_info->kobj_unregister);
2231        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2232        INIT_LIST_HEAD(&fs_info->space_info);
2233        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2234        btrfs_mapping_init(&fs_info->mapping_tree);
2235        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2236                             BTRFS_BLOCK_RSV_GLOBAL);
2237        btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2238                             BTRFS_BLOCK_RSV_DELALLOC);
2239        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2240        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2241        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2242        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2243                             BTRFS_BLOCK_RSV_DELOPS);
2244        atomic_set(&fs_info->nr_async_submits, 0);
2245        atomic_set(&fs_info->async_delalloc_pages, 0);
2246        atomic_set(&fs_info->async_submit_draining, 0);
2247        atomic_set(&fs_info->nr_async_bios, 0);
2248        atomic_set(&fs_info->defrag_running, 0);
2249        atomic64_set(&fs_info->tree_mod_seq, 0);
2250        fs_info->sb = sb;
2251        fs_info->max_inline = 8192 * 1024;
2252        fs_info->metadata_ratio = 0;
2253        fs_info->defrag_inodes = RB_ROOT;
2254        fs_info->free_chunk_space = 0;
2255        fs_info->tree_mod_log = RB_ROOT;
2256        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2257        fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2258        /* readahead state */
2259        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2260        spin_lock_init(&fs_info->reada_lock);
2261
2262        fs_info->thread_pool_size = min_t(unsigned long,
2263                                          num_online_cpus() + 2, 8);
2264
2265        INIT_LIST_HEAD(&fs_info->ordered_roots);
2266        spin_lock_init(&fs_info->ordered_root_lock);
2267        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2268                                        GFP_NOFS);
2269        if (!fs_info->delayed_root) {
2270                err = -ENOMEM;
2271                goto fail_iput;
2272        }
2273        btrfs_init_delayed_root(fs_info->delayed_root);
2274
2275        mutex_init(&fs_info->scrub_lock);
2276        atomic_set(&fs_info->scrubs_running, 0);
2277        atomic_set(&fs_info->scrub_pause_req, 0);
2278        atomic_set(&fs_info->scrubs_paused, 0);
2279        atomic_set(&fs_info->scrub_cancel_req, 0);
2280        init_waitqueue_head(&fs_info->replace_wait);
2281        init_waitqueue_head(&fs_info->scrub_pause_wait);
2282        fs_info->scrub_workers_refcnt = 0;
2283#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2284        fs_info->check_integrity_print_mask = 0;
2285#endif
2286
2287        spin_lock_init(&fs_info->balance_lock);
2288        mutex_init(&fs_info->balance_mutex);
2289        atomic_set(&fs_info->balance_running, 0);
2290        atomic_set(&fs_info->balance_pause_req, 0);
2291        atomic_set(&fs_info->balance_cancel_req, 0);
2292        fs_info->balance_ctl = NULL;
2293        init_waitqueue_head(&fs_info->balance_wait_q);
2294
2295        sb->s_blocksize = 4096;
2296        sb->s_blocksize_bits = blksize_bits(4096);
2297        sb->s_bdi = &fs_info->bdi;
2298
2299        fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2300        set_nlink(fs_info->btree_inode, 1);
2301        /*
2302         * we set the i_size on the btree inode to the max possible int.
2303         * the real end of the address space is determined by all of
2304         * the devices in the system
2305         */
2306        fs_info->btree_inode->i_size = OFFSET_MAX;
2307        fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2308        fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2309
2310        RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2311        extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2312                             fs_info->btree_inode->i_mapping);
2313        BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2314        extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2315
2316        BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2317
2318        BTRFS_I(fs_info->btree_inode)->root = tree_root;
2319        memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2320               sizeof(struct btrfs_key));
2321        set_bit(BTRFS_INODE_DUMMY,
2322                &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2323        btrfs_insert_inode_hash(fs_info->btree_inode);
2324
2325        spin_lock_init(&fs_info->block_group_cache_lock);
2326        fs_info->block_group_cache_tree = RB_ROOT;
2327        fs_info->first_logical_byte = (u64)-1;
2328
2329        extent_io_tree_init(&fs_info->freed_extents[0],
2330                             fs_info->btree_inode->i_mapping);
2331        extent_io_tree_init(&fs_info->freed_extents[1],
2332                             fs_info->btree_inode->i_mapping);
2333        fs_info->pinned_extents = &fs_info->freed_extents[0];
2334        fs_info->do_barriers = 1;
2335
2336
2337        mutex_init(&fs_info->ordered_operations_mutex);
2338        mutex_init(&fs_info->ordered_extent_flush_mutex);
2339        mutex_init(&fs_info->tree_log_mutex);
2340        mutex_init(&fs_info->chunk_mutex);
2341        mutex_init(&fs_info->transaction_kthread_mutex);
2342        mutex_init(&fs_info->cleaner_mutex);
2343        mutex_init(&fs_info->volume_mutex);
2344        init_rwsem(&fs_info->commit_root_sem);
2345        init_rwsem(&fs_info->cleanup_work_sem);
2346        init_rwsem(&fs_info->subvol_sem);
2347        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2348        fs_info->dev_replace.lock_owner = 0;
2349        atomic_set(&fs_info->dev_replace.nesting_level, 0);
2350        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2351        mutex_init(&fs_info->dev_replace.lock_management_lock);
2352        mutex_init(&fs_info->dev_replace.lock);
2353
2354        spin_lock_init(&fs_info->qgroup_lock);
2355        mutex_init(&fs_info->qgroup_ioctl_lock);
2356        fs_info->qgroup_tree = RB_ROOT;
2357        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2358        fs_info->qgroup_seq = 1;
2359        fs_info->quota_enabled = 0;
2360        fs_info->pending_quota_state = 0;
2361        fs_info->qgroup_ulist = NULL;
2362        mutex_init(&fs_info->qgroup_rescan_lock);
2363
2364        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2365        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2366
2367        init_waitqueue_head(&fs_info->transaction_throttle);
2368        init_waitqueue_head(&fs_info->transaction_wait);
2369        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2370        init_waitqueue_head(&fs_info->async_submit_wait);
2371
2372        ret = btrfs_alloc_stripe_hash_table(fs_info);
2373        if (ret) {
2374                err = ret;
2375                goto fail_alloc;
2376        }
2377
2378        __setup_root(4096, 4096, 4096, 4096, tree_root,
2379                     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2380
2381        invalidate_bdev(fs_devices->latest_bdev);
2382
2383        /*
2384         * Read super block and check the signature bytes only
2385         */
2386        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2387        if (!bh) {
2388                err = -EINVAL;
2389                goto fail_alloc;
2390        }
2391
2392        /*
2393         * We want to check superblock checksum, the type is stored inside.
2394         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2395         */
2396        if (btrfs_check_super_csum(bh->b_data)) {
2397                printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2398                err = -EINVAL;
2399                goto fail_alloc;
2400        }
2401
2402        /*
2403         * super_copy is zeroed at allocation time and we never touch the
2404         * following bytes up to INFO_SIZE, the checksum is calculated from
2405         * the whole block of INFO_SIZE
2406         */
2407        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2408        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2409               sizeof(*fs_info->super_for_commit));
2410        brelse(bh);
2411
2412        memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2413
2414        ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2415        if (ret) {
2416                printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2417                err = -EINVAL;
2418                goto fail_alloc;
2419        }
2420
2421        disk_super = fs_info->super_copy;
2422        if (!btrfs_super_root(disk_super))
2423                goto fail_alloc;
2424
2425        /* check FS state, whether FS is broken. */
2426        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2427                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2428
2429        /*
2430         * run through our array of backup supers and setup
2431         * our ring pointer to the oldest one
2432         */
2433        generation = btrfs_super_generation(disk_super);
2434        find_oldest_super_backup(fs_info, generation);
2435
2436        /*
2437         * In the long term, we'll store the compression type in the super
2438         * block, and it'll be used for per file compression control.
2439         */
2440        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2441
2442        ret = btrfs_parse_options(tree_root, options);
2443        if (ret) {
2444                err = ret;
2445                goto fail_alloc;
2446        }
2447
2448        features = btrfs_super_incompat_flags(disk_super) &
2449                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2450        if (features) {
2451                printk(KERN_ERR "BTRFS: couldn't mount because of "
2452                       "unsupported optional features (%Lx).\n",
2453                       features);
2454                err = -EINVAL;
2455                goto fail_alloc;
2456        }
2457
2458        if (btrfs_super_leafsize(disk_super) !=
2459            btrfs_super_nodesize(disk_super)) {
2460                printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2461                       "blocksizes don't match.  node %d leaf %d\n",
2462                       btrfs_super_nodesize(disk_super),
2463                       btrfs_super_leafsize(disk_super));
2464                err = -EINVAL;
2465                goto fail_alloc;
2466        }
2467        if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2468                printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2469                       "blocksize (%d) was too large\n",
2470                       btrfs_super_leafsize(disk_super));
2471                err = -EINVAL;
2472                goto fail_alloc;
2473        }
2474
2475        features = btrfs_super_incompat_flags(disk_super);
2476        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2477        if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2478                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2479
2480        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2481                printk(KERN_ERR "BTRFS: has skinny extents\n");
2482
2483        /*
2484         * flag our filesystem as having big metadata blocks if
2485         * they are bigger than the page size
2486         */
2487        if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2488                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2489                        printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2490                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2491        }
2492
2493        nodesize = btrfs_super_nodesize(disk_super);
2494        leafsize = btrfs_super_leafsize(disk_super);
2495        sectorsize = btrfs_super_sectorsize(disk_super);
2496        stripesize = btrfs_super_stripesize(disk_super);
2497        fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2498        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2499
2500        /*
2501         * mixed block groups end up with duplicate but slightly offset
2502         * extent buffers for the same range.  It leads to corruptions
2503         */
2504        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2505            (sectorsize != leafsize)) {
2506                printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2507                                "are not allowed for mixed block groups on %s\n",
2508                                sb->s_id);
2509                goto fail_alloc;
2510        }
2511
2512        /*
2513         * Needn't use the lock because there is no other task which will
2514         * update the flag.
2515         */
2516        btrfs_set_super_incompat_flags(disk_super, features);
2517
2518        features = btrfs_super_compat_ro_flags(disk_super) &
2519                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2520        if (!(sb->s_flags & MS_RDONLY) && features) {
2521                printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2522                       "unsupported option features (%Lx).\n",
2523                       features);
2524                err = -EINVAL;
2525                goto fail_alloc;
2526        }
2527
2528        max_active = fs_info->thread_pool_size;
2529
2530        fs_info->workers =
2531                btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2532                                      max_active, 16);
2533
2534        fs_info->delalloc_workers =
2535                btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2536
2537        fs_info->flush_workers =
2538                btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2539
2540        fs_info->caching_workers =
2541                btrfs_alloc_workqueue("cache", flags, max_active, 0);
2542
2543        /*
2544         * a higher idle thresh on the submit workers makes it much more
2545         * likely that bios will be send down in a sane order to the
2546         * devices
2547         */
2548        fs_info->submit_workers =
2549                btrfs_alloc_workqueue("submit", flags,
2550                                      min_t(u64, fs_devices->num_devices,
2551                                            max_active), 64);
2552
2553        fs_info->fixup_workers =
2554                btrfs_alloc_workqueue("fixup", flags, 1, 0);
2555
2556        /*
2557         * endios are largely parallel and should have a very
2558         * low idle thresh
2559         */
2560        fs_info->endio_workers =
2561                btrfs_alloc_workqueue("endio", flags, max_active, 4);
2562        fs_info->endio_meta_workers =
2563                btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2564        fs_info->endio_meta_write_workers =
2565                btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2566        fs_info->endio_raid56_workers =
2567                btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2568        fs_info->rmw_workers =
2569                btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2570        fs_info->endio_write_workers =
2571                btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2572        fs_info->endio_freespace_worker =
2573                btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2574        fs_info->delayed_workers =
2575                btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2576        fs_info->readahead_workers =
2577                btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2578        fs_info->qgroup_rescan_workers =
2579                btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2580
2581        if (!(fs_info->workers && fs_info->delalloc_workers &&
2582              fs_info->submit_workers && fs_info->flush_workers &&
2583              fs_info->endio_workers && fs_info->endio_meta_workers &&
2584              fs_info->endio_meta_write_workers &&
2585              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2586              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2587              fs_info->caching_workers && fs_info->readahead_workers &&
2588              fs_info->fixup_workers && fs_info->delayed_workers &&
2589              fs_info->qgroup_rescan_workers)) {
2590                err = -ENOMEM;
2591                goto fail_sb_buffer;
2592        }
2593
2594        fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2595        fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2596                                    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2597
2598        tree_root->nodesize = nodesize;
2599        tree_root->leafsize = leafsize;
2600        tree_root->sectorsize = sectorsize;
2601        tree_root->stripesize = stripesize;
2602
2603        sb->s_blocksize = sectorsize;
2604        sb->s_blocksize_bits = blksize_bits(sectorsize);
2605
2606        if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2607                printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2608                goto fail_sb_buffer;
2609        }
2610
2611        if (sectorsize != PAGE_SIZE) {
2612                printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2613                       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2614                goto fail_sb_buffer;
2615        }
2616
2617        mutex_lock(&fs_info->chunk_mutex);
2618        ret = btrfs_read_sys_array(tree_root);
2619        mutex_unlock(&fs_info->chunk_mutex);
2620        if (ret) {
2621                printk(KERN_WARNING "BTRFS: failed to read the system "
2622                       "array on %s\n", sb->s_id);
2623                goto fail_sb_buffer;
2624        }
2625
2626        blocksize = btrfs_level_size(tree_root,
2627                                     btrfs_super_chunk_root_level(disk_super));
2628        generation = btrfs_super_chunk_root_generation(disk_super);
2629
2630        __setup_root(nodesize, leafsize, sectorsize, stripesize,
2631                     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2632
2633        chunk_root->node = read_tree_block(chunk_root,
2634                                           btrfs_super_chunk_root(disk_super),
2635                                           blocksize, generation);
2636        if (!chunk_root->node ||
2637            !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2638                printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2639                       sb->s_id);
2640                goto fail_tree_roots;
2641        }
2642        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2643        chunk_root->commit_root = btrfs_root_node(chunk_root);
2644
2645        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2646           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2647
2648        ret = btrfs_read_chunk_tree(chunk_root);
2649        if (ret) {
2650                printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2651                       sb->s_id);
2652                goto fail_tree_roots;
2653        }
2654
2655        /*
2656         * keep the device that is marked to be the target device for the
2657         * dev_replace procedure
2658         */
2659        btrfs_close_extra_devices(fs_info, fs_devices, 0);
2660
2661        if (!fs_devices->latest_bdev) {
2662                printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2663                       sb->s_id);
2664                goto fail_tree_roots;
2665        }
2666
2667retry_root_backup:
2668        blocksize = btrfs_level_size(tree_root,
2669                                     btrfs_super_root_level(disk_super));
2670        generation = btrfs_super_generation(disk_super);
2671
2672        tree_root->node = read_tree_block(tree_root,
2673                                          btrfs_super_root(disk_super),
2674                                          blocksize, generation);
2675        if (!tree_root->node ||
2676            !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2677                printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2678                       sb->s_id);
2679
2680                goto recovery_tree_root;
2681        }
2682
2683        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2684        tree_root->commit_root = btrfs_root_node(tree_root);
2685        btrfs_set_root_refs(&tree_root->root_item, 1);
2686
2687        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2688        location.type = BTRFS_ROOT_ITEM_KEY;
2689        location.offset = 0;
2690
2691        extent_root = btrfs_read_tree_root(tree_root, &location);
2692        if (IS_ERR(extent_root)) {
2693                ret = PTR_ERR(extent_root);
2694                goto recovery_tree_root;
2695        }
2696        extent_root->track_dirty = 1;
2697        fs_info->extent_root = extent_root;
2698
2699        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2700        dev_root = btrfs_read_tree_root(tree_root, &location);
2701        if (IS_ERR(dev_root)) {
2702                ret = PTR_ERR(dev_root);
2703                goto recovery_tree_root;
2704        }
2705        dev_root->track_dirty = 1;
2706        fs_info->dev_root = dev_root;
2707        btrfs_init_devices_late(fs_info);
2708
2709        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2710        csum_root = btrfs_read_tree_root(tree_root, &location);
2711        if (IS_ERR(csum_root)) {
2712                ret = PTR_ERR(csum_root);
2713                goto recovery_tree_root;
2714        }
2715        csum_root->track_dirty = 1;
2716        fs_info->csum_root = csum_root;
2717
2718        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2719        quota_root = btrfs_read_tree_root(tree_root, &location);
2720        if (!IS_ERR(quota_root)) {
2721                quota_root->track_dirty = 1;
2722                fs_info->quota_enabled = 1;
2723                fs_info->pending_quota_state = 1;
2724                fs_info->quota_root = quota_root;
2725        }
2726
2727        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2728        uuid_root = btrfs_read_tree_root(tree_root, &location);
2729        if (IS_ERR(uuid_root)) {
2730                ret = PTR_ERR(uuid_root);
2731                if (ret != -ENOENT)
2732                        goto recovery_tree_root;
2733                create_uuid_tree = true;
2734                check_uuid_tree = false;
2735        } else {
2736                uuid_root->track_dirty = 1;
2737                fs_info->uuid_root = uuid_root;
2738                create_uuid_tree = false;
2739                check_uuid_tree =
2740                    generation != btrfs_super_uuid_tree_generation(disk_super);
2741        }
2742
2743        fs_info->generation = generation;
2744        fs_info->last_trans_committed = generation;
2745
2746        ret = btrfs_recover_balance(fs_info);
2747        if (ret) {
2748                printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2749                goto fail_block_groups;
2750        }
2751
2752        ret = btrfs_init_dev_stats(fs_info);
2753        if (ret) {
2754                printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2755                       ret);
2756                goto fail_block_groups;
2757        }
2758
2759        ret = btrfs_init_dev_replace(fs_info);
2760        if (ret) {
2761                pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2762                goto fail_block_groups;
2763        }
2764
2765        btrfs_close_extra_devices(fs_info, fs_devices, 1);
2766
2767        ret = btrfs_sysfs_add_one(fs_info);
2768        if (ret) {
2769                pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2770                goto fail_block_groups;
2771        }
2772
2773        ret = btrfs_init_space_info(fs_info);
2774        if (ret) {
2775                printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2776                goto fail_sysfs;
2777        }
2778
2779        ret = btrfs_read_block_groups(extent_root);
2780        if (ret) {
2781                printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2782                goto fail_sysfs;
2783        }
2784        fs_info->num_tolerated_disk_barrier_failures =
2785                btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2786        if (fs_info->fs_devices->missing_devices >
2787             fs_info->num_tolerated_disk_barrier_failures &&
2788            !(sb->s_flags & MS_RDONLY)) {
2789                printk(KERN_WARNING "BTRFS: "
2790                        "too many missing devices, writeable mount is not allowed\n");
2791                goto fail_sysfs;
2792        }
2793
2794        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2795                                               "btrfs-cleaner");
2796        if (IS_ERR(fs_info->cleaner_kthread))
2797                goto fail_sysfs;
2798
2799        fs_info->transaction_kthread = kthread_run(transaction_kthread,
2800                                                   tree_root,
2801                                                   "btrfs-transaction");
2802        if (IS_ERR(fs_info->transaction_kthread))
2803                goto fail_cleaner;
2804
2805        if (!btrfs_test_opt(tree_root, SSD) &&
2806            !btrfs_test_opt(tree_root, NOSSD) &&
2807            !fs_info->fs_devices->rotating) {
2808                printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2809                       "mode\n");
2810                btrfs_set_opt(fs_info->mount_opt, SSD);
2811        }
2812
2813        /* Set the real inode map cache flag */
2814        if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2815                btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2816
2817#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2818        if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2819                ret = btrfsic_mount(tree_root, fs_devices,
2820                                    btrfs_test_opt(tree_root,
2821                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2822                                    1 : 0,
2823                                    fs_info->check_integrity_print_mask);
2824                if (ret)
2825                        printk(KERN_WARNING "BTRFS: failed to initialize"
2826                               " integrity check module %s\n", sb->s_id);
2827        }
2828#endif
2829        ret = btrfs_read_qgroup_config(fs_info);
2830        if (ret)
2831                goto fail_trans_kthread;
2832
2833        /* do not make disk changes in broken FS */
2834        if (btrfs_super_log_root(disk_super) != 0) {
2835                u64 bytenr = btrfs_super_log_root(disk_super);
2836
2837                if (fs_devices->rw_devices == 0) {
2838                        printk(KERN_WARNING "BTRFS: log replay required "
2839                               "on RO media\n");
2840                        err = -EIO;
2841                        goto fail_qgroup;
2842                }
2843                blocksize =
2844                     btrfs_level_size(tree_root,
2845                                      btrfs_super_log_root_level(disk_super));
2846
2847                log_tree_root = btrfs_alloc_root(fs_info);
2848                if (!log_tree_root) {
2849                        err = -ENOMEM;
2850                        goto fail_qgroup;
2851                }
2852
2853                __setup_root(nodesize, leafsize, sectorsize, stripesize,
2854                             log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2855
2856                log_tree_root->node = read_tree_block(tree_root, bytenr,
2857                                                      blocksize,
2858                                                      generation + 1);
2859                if (!log_tree_root->node ||
2860                    !extent_buffer_uptodate(log_tree_root->node)) {
2861                        printk(KERN_ERR "BTRFS: failed to read log tree\n");
2862                        free_extent_buffer(log_tree_root->node);
2863                        kfree(log_tree_root);
2864                        goto fail_qgroup;
2865                }
2866                /* returns with log_tree_root freed on success */
2867                ret = btrfs_recover_log_trees(log_tree_root);
2868                if (ret) {
2869                        btrfs_error(tree_root->fs_info, ret,
2870                                    "Failed to recover log tree");
2871                        free_extent_buffer(log_tree_root->node);
2872                        kfree(log_tree_root);
2873                        goto fail_qgroup;
2874                }
2875
2876                if (sb->s_flags & MS_RDONLY) {
2877                        ret = btrfs_commit_super(tree_root);
2878                        if (ret)
2879                                goto fail_qgroup;
2880                }
2881        }
2882
2883        ret = btrfs_find_orphan_roots(tree_root);
2884        if (ret)
2885                goto fail_qgroup;
2886
2887        if (!(sb->s_flags & MS_RDONLY)) {
2888                ret = btrfs_cleanup_fs_roots(fs_info);
2889                if (ret)
2890                        goto fail_qgroup;
2891
2892                ret = btrfs_recover_relocation(tree_root);
2893                if (ret < 0) {
2894                        printk(KERN_WARNING
2895                               "BTRFS: failed to recover relocation\n");
2896                        err = -EINVAL;
2897                        goto fail_qgroup;
2898                }
2899        }
2900
2901        location.objectid = BTRFS_FS_TREE_OBJECTID;
2902        location.type = BTRFS_ROOT_ITEM_KEY;
2903        location.offset = 0;
2904
2905        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2906        if (IS_ERR(fs_info->fs_root)) {
2907                err = PTR_ERR(fs_info->fs_root);
2908                goto fail_qgroup;
2909        }
2910
2911        if (sb->s_flags & MS_RDONLY)
2912                return 0;
2913
2914        down_read(&fs_info->cleanup_work_sem);
2915        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2916            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2917                up_read(&fs_info->cleanup_work_sem);
2918                close_ctree(tree_root);
2919                return ret;
2920        }
2921        up_read(&fs_info->cleanup_work_sem);
2922
2923        ret = btrfs_resume_balance_async(fs_info);
2924        if (ret) {
2925                printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2926                close_ctree(tree_root);
2927                return ret;
2928        }
2929
2930        ret = btrfs_resume_dev_replace_async(fs_info);
2931        if (ret) {
2932                pr_warn("BTRFS: failed to resume dev_replace\n");
2933                close_ctree(tree_root);
2934                return ret;
2935        }
2936
2937        btrfs_qgroup_rescan_resume(fs_info);
2938
2939        if (create_uuid_tree) {
2940                pr_info("BTRFS: creating UUID tree\n");
2941                ret = btrfs_create_uuid_tree(fs_info);
2942                if (ret) {
2943                        pr_warn("BTRFS: failed to create the UUID tree %d\n",
2944                                ret);
2945                        close_ctree(tree_root);
2946                        return ret;
2947                }
2948        } else if (check_uuid_tree ||
2949                   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2950                pr_info("BTRFS: checking UUID tree\n");
2951                ret = btrfs_check_uuid_tree(fs_info);
2952                if (ret) {
2953                        pr_warn("BTRFS: failed to check the UUID tree %d\n",
2954                                ret);
2955                        close_ctree(tree_root);
2956                        return ret;
2957                }
2958        } else {
2959                fs_info->update_uuid_tree_gen = 1;
2960        }
2961
2962        return 0;
2963
2964fail_qgroup:
2965        btrfs_free_qgroup_config(fs_info);
2966fail_trans_kthread:
2967        kthread_stop(fs_info->transaction_kthread);
2968        btrfs_cleanup_transaction(fs_info->tree_root);
2969        del_fs_roots(fs_info);
2970fail_cleaner:
2971        kthread_stop(fs_info->cleaner_kthread);
2972
2973        /*
2974         * make sure we're done with the btree inode before we stop our
2975         * kthreads
2976         */
2977        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2978
2979fail_sysfs:
2980        btrfs_sysfs_remove_one(fs_info);
2981
2982fail_block_groups:
2983        btrfs_put_block_group_cache(fs_info);
2984        btrfs_free_block_groups(fs_info);
2985
2986fail_tree_roots:
2987        free_root_pointers(fs_info, 1);
2988        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2989
2990fail_sb_buffer:
2991        btrfs_stop_all_workers(fs_info);
2992fail_alloc:
2993fail_iput:
2994        btrfs_mapping_tree_free(&fs_info->mapping_tree);
2995
2996        iput(fs_info->btree_inode);
2997fail_bio_counter:
2998        percpu_counter_destroy(&fs_info->bio_counter);
2999fail_delalloc_bytes:
3000        percpu_counter_destroy(&fs_info->delalloc_bytes);
3001fail_dirty_metadata_bytes:
3002        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3003fail_bdi:
3004        bdi_destroy(&fs_info->bdi);
3005fail_srcu:
3006        cleanup_srcu_struct(&fs_info->subvol_srcu);
3007fail:
3008        btrfs_free_stripe_hash_table(fs_info);
3009        btrfs_close_devices(fs_info->fs_devices);
3010        return err;
3011
3012recovery_tree_root:
3013        if (!btrfs_test_opt(tree_root, RECOVERY))
3014                goto fail_tree_roots;
3015
3016        free_root_pointers(fs_info, 0);
3017
3018        /* don't use the log in recovery mode, it won't be valid */
3019        btrfs_set_super_log_root(disk_super, 0);
3020
3021        /* we can't trust the free space cache either */
3022        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3023
3024        ret = next_root_backup(fs_info, fs_info->super_copy,
3025                               &num_backups_tried, &backup_index);
3026        if (ret == -1)
3027                goto fail_block_groups;
3028        goto retry_root_backup;
3029}
3030
3031static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3032{
3033        if (uptodate) {
3034                set_buffer_uptodate(bh);
3035        } else {
3036                struct btrfs_device *device = (struct btrfs_device *)
3037                        bh->b_private;
3038
3039                printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3040                                          "I/O error on %s\n",
3041                                          rcu_str_deref(device->name));
3042                /* note, we dont' set_buffer_write_io_error because we have
3043                 * our own ways of dealing with the IO errors
3044                 */
3045                clear_buffer_uptodate(bh);
3046                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3047        }
3048        unlock_buffer(bh);
3049        put_bh(bh);
3050}
3051
3052struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3053{
3054        struct buffer_head *bh;
3055        struct buffer_head *latest = NULL;
3056        struct btrfs_super_block *super;
3057        int i;
3058        u64 transid = 0;
3059        u64 bytenr;
3060
3061        /* we would like to check all the supers, but that would make
3062         * a btrfs mount succeed after a mkfs from a different FS.
3063         * So, we need to add a special mount option to scan for
3064         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3065         */
3066        for (i = 0; i < 1; i++) {
3067                bytenr = btrfs_sb_offset(i);
3068                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3069                                        i_size_read(bdev->bd_inode))
3070                        break;
3071                bh = __bread(bdev, bytenr / 4096,
3072                                        BTRFS_SUPER_INFO_SIZE);
3073                if (!bh)
3074                        continue;
3075
3076                super = (struct btrfs_super_block *)bh->b_data;
3077                if (btrfs_super_bytenr(super) != bytenr ||
3078                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3079                        brelse(bh);
3080                        continue;
3081                }
3082
3083                if (!latest || btrfs_super_generation(super) > transid) {
3084                        brelse(latest);
3085                        latest = bh;
3086                        transid = btrfs_super_generation(super);
3087                } else {
3088                        brelse(bh);
3089                }
3090        }
3091        return latest;
3092}
3093
3094/*
3095 * this should be called twice, once with wait == 0 and
3096 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3097 * we write are pinned.
3098 *
3099 * They are released when wait == 1 is done.
3100 * max_mirrors must be the same for both runs, and it indicates how
3101 * many supers on this one device should be written.
3102 *
3103 * max_mirrors == 0 means to write them all.
3104 */
3105static int write_dev_supers(struct btrfs_device *device,
3106                            struct btrfs_super_block *sb,
3107                            int do_barriers, int wait, int max_mirrors)
3108{
3109        struct buffer_head *bh;
3110        int i;
3111        int ret;
3112        int errors = 0;
3113        u32 crc;
3114        u64 bytenr;
3115
3116        if (max_mirrors == 0)
3117                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3118
3119        for (i = 0; i < max_mirrors; i++) {
3120                bytenr = btrfs_sb_offset(i);
3121                if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3122                        break;
3123
3124                if (wait) {
3125                        bh = __find_get_block(device->bdev, bytenr / 4096,
3126                                              BTRFS_SUPER_INFO_SIZE);
3127                        if (!bh) {
3128                                errors++;
3129                                continue;
3130                        }
3131                        wait_on_buffer(bh);
3132                        if (!buffer_uptodate(bh))
3133                                errors++;
3134
3135                        /* drop our reference */
3136                        brelse(bh);
3137
3138                        /* drop the reference from the wait == 0 run */
3139                        brelse(bh);
3140                        continue;
3141                } else {
3142                        btrfs_set_super_bytenr(sb, bytenr);
3143
3144                        crc = ~(u32)0;
3145                        crc = btrfs_csum_data((char *)sb +
3146                                              BTRFS_CSUM_SIZE, crc,
3147                                              BTRFS_SUPER_INFO_SIZE -
3148                                              BTRFS_CSUM_SIZE);
3149                        btrfs_csum_final(crc, sb->csum);
3150
3151                        /*
3152                         * one reference for us, and we leave it for the
3153                         * caller
3154                         */
3155                        bh = __getblk(device->bdev, bytenr / 4096,
3156                                      BTRFS_SUPER_INFO_SIZE);
3157                        if (!bh) {
3158                                printk(KERN_ERR "BTRFS: couldn't get super "
3159                                       "buffer head for bytenr %Lu\n", bytenr);
3160                                errors++;
3161                                continue;
3162                        }
3163
3164                        memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3165
3166                        /* one reference for submit_bh */
3167                        get_bh(bh);
3168
3169                        set_buffer_uptodate(bh);
3170                        lock_buffer(bh);
3171                        bh->b_end_io = btrfs_end_buffer_write_sync;
3172                        bh->b_private = device;
3173                }
3174
3175                /*
3176                 * we fua the first super.  The others we allow
3177                 * to go down lazy.
3178                 */
3179                if (i == 0)
3180                        ret = btrfsic_submit_bh(WRITE_FUA, bh);
3181                else
3182                        ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3183                if (ret)
3184                        errors++;
3185        }
3186        return errors < i ? 0 : -1;
3187}
3188
3189/*
3190 * endio for the write_dev_flush, this will wake anyone waiting
3191 * for the barrier when it is done
3192 */
3193static void btrfs_end_empty_barrier(struct bio *bio, int err)
3194{
3195        if (err) {
3196                if (err == -EOPNOTSUPP)
3197                        set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3198                clear_bit(BIO_UPTODATE, &bio->bi_flags);
3199        }
3200        if (bio->bi_private)
3201                complete(bio->bi_private);
3202        bio_put(bio);
3203}
3204
3205/*
3206 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3207 * sent down.  With wait == 1, it waits for the previous flush.
3208 *
3209 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3210 * capable
3211 */
3212static int write_dev_flush(struct btrfs_device *device, int wait)
3213{
3214        struct bio *bio;
3215        int ret = 0;
3216
3217        if (device->nobarriers)
3218                return 0;
3219
3220        if (wait) {
3221                bio = device->flush_bio;
3222                if (!bio)
3223                        return 0;
3224
3225                wait_for_completion(&device->flush_wait);
3226
3227                if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3228                        printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3229                                      rcu_str_deref(device->name));
3230                        device->nobarriers = 1;
3231                } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3232                        ret = -EIO;
3233                        btrfs_dev_stat_inc_and_print(device,
3234                                BTRFS_DEV_STAT_FLUSH_ERRS);
3235                }
3236
3237                /* drop the reference from the wait == 0 run */
3238                bio_put(bio);
3239                device->flush_bio = NULL;
3240
3241                return ret;
3242        }
3243
3244        /*
3245         * one reference for us, and we leave it for the
3246         * caller
3247         */
3248        device->flush_bio = NULL;
3249        bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3250        if (!bio)
3251                return -ENOMEM;
3252
3253        bio->bi_end_io = btrfs_end_empty_barrier;
3254        bio->bi_bdev = device->bdev;
3255        init_completion(&device->flush_wait);
3256        bio->bi_private = &device->flush_wait;
3257        device->flush_bio = bio;
3258
3259        bio_get(bio);
3260        btrfsic_submit_bio(WRITE_FLUSH, bio);
3261
3262        return 0;
3263}
3264
3265/*
3266 * send an empty flush down to each device in parallel,
3267 * then wait for them
3268 */
3269static int barrier_all_devices(struct btrfs_fs_info *info)
3270{
3271        struct list_head *head;
3272        struct btrfs_device *dev;
3273        int errors_send = 0;
3274        int errors_wait = 0;
3275        int ret;
3276
3277        /* send down all the barriers */
3278        head = &info->fs_devices->devices;
3279        list_for_each_entry_rcu(dev, head, dev_list) {
3280                if (dev->missing)
3281                        continue;
3282                if (!dev->bdev) {
3283                        errors_send++;
3284                        continue;
3285                }
3286                if (!dev->in_fs_metadata || !dev->writeable)
3287                        continue;
3288
3289                ret = write_dev_flush(dev, 0);
3290                if (ret)
3291                        errors_send++;
3292        }
3293
3294        /* wait for all the barriers */
3295        list_for_each_entry_rcu(dev, head, dev_list) {
3296                if (dev->missing)
3297                        continue;
3298                if (!dev->bdev) {
3299                        errors_wait++;
3300                        continue;
3301                }
3302                if (!dev->in_fs_metadata || !dev->writeable)
3303                        continue;
3304
3305                ret = write_dev_flush(dev, 1);
3306                if (ret)
3307                        errors_wait++;
3308        }
3309        if (errors_send > info->num_tolerated_disk_barrier_failures ||
3310            errors_wait > info->num_tolerated_disk_barrier_failures)
3311                return -EIO;
3312        return 0;
3313}
3314
3315int btrfs_calc_num_tolerated_disk_barrier_failures(
3316        struct btrfs_fs_info *fs_info)
3317{
3318        struct btrfs_ioctl_space_info space;
3319        struct btrfs_space_info *sinfo;
3320        u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3321                       BTRFS_BLOCK_GROUP_SYSTEM,
3322                       BTRFS_BLOCK_GROUP_METADATA,
3323                       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3324        int num_types = 4;
3325        int i;
3326        int c;
3327        int num_tolerated_disk_barrier_failures =
3328                (int)fs_info->fs_devices->num_devices;
3329
3330        for (i = 0; i < num_types; i++) {
3331                struct btrfs_space_info *tmp;
3332
3333                sinfo = NULL;
3334                rcu_read_lock();
3335                list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3336                        if (tmp->flags == types[i]) {
3337                                sinfo = tmp;
3338                                break;
3339                        }
3340                }
3341                rcu_read_unlock();
3342
3343                if (!sinfo)
3344                        continue;
3345
3346                down_read(&sinfo->groups_sem);
3347                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3348                        if (!list_empty(&sinfo->block_groups[c])) {
3349                                u64 flags;
3350
3351                                btrfs_get_block_group_info(
3352                                        &sinfo->block_groups[c], &space);
3353                                if (space.total_bytes == 0 ||
3354                                    space.used_bytes == 0)
3355                                        continue;
3356                                flags = space.flags;
3357                                /*
3358                                 * return
3359                                 * 0: if dup, single or RAID0 is configured for
3360                                 *    any of metadata, system or data, else
3361                                 * 1: if RAID5 is configured, or if RAID1 or
3362                                 *    RAID10 is configured and only two mirrors
3363                                 *    are used, else
3364                                 * 2: if RAID6 is configured, else
3365                                 * num_mirrors - 1: if RAID1 or RAID10 is
3366                                 *                  configured and more than
3367                                 *                  2 mirrors are used.
3368                                 */
3369                                if (num_tolerated_disk_barrier_failures > 0 &&
3370                                    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3371                                               BTRFS_BLOCK_GROUP_RAID0)) ||
3372                                     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3373                                      == 0)))
3374                                        num_tolerated_disk_barrier_failures = 0;
3375                                else if (num_tolerated_disk_barrier_failures > 1) {
3376                                        if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3377                                            BTRFS_BLOCK_GROUP_RAID5 |
3378                                            BTRFS_BLOCK_GROUP_RAID10)) {
3379                                                num_tolerated_disk_barrier_failures = 1;
3380                                        } else if (flags &
3381                                                   BTRFS_BLOCK_GROUP_RAID6) {
3382                                                num_tolerated_disk_barrier_failures = 2;
3383                                        }
3384                                }
3385                        }
3386                }
3387                up_read(&sinfo->groups_sem);
3388        }
3389
3390        return num_tolerated_disk_barrier_failures;
3391}
3392
3393static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3394{
3395        struct list_head *head;
3396        struct btrfs_device *dev;
3397        struct btrfs_super_block *sb;
3398        struct btrfs_dev_item *dev_item;
3399        int ret;
3400        int do_barriers;
3401        int max_errors;
3402        int total_errors = 0;
3403        u64 flags;
3404
3405        do_barriers = !btrfs_test_opt(root, NOBARRIER);
3406        backup_super_roots(root->fs_info);
3407
3408        sb = root->fs_info->super_for_commit;
3409        dev_item = &sb->dev_item;
3410
3411        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3412        head = &root->fs_info->fs_devices->devices;
3413        max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3414
3415        if (do_barriers) {
3416                ret = barrier_all_devices(root->fs_info);
3417                if (ret) {
3418                        mutex_unlock(
3419                                &root->fs_info->fs_devices->device_list_mutex);
3420                        btrfs_error(root->fs_info, ret,
3421                                    "errors while submitting device barriers.");
3422                        return ret;
3423                }
3424        }
3425
3426        list_for_each_entry_rcu(dev, head, dev_list) {
3427                if (!dev->bdev) {
3428                        total_errors++;
3429                        continue;
3430                }
3431                if (!dev->in_fs_metadata || !dev->writeable)
3432                        continue;
3433
3434                btrfs_set_stack_device_generation(dev_item, 0);
3435                btrfs_set_stack_device_type(dev_item, dev->type);
3436                btrfs_set_stack_device_id(dev_item, dev->devid);
3437                btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3438                btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3439                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3440                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3441                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3442                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3443                memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3444
3445                flags = btrfs_super_flags(sb);
3446                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3447
3448                ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3449                if (ret)
3450                        total_errors++;
3451        }
3452        if (total_errors > max_errors) {
3453                btrfs_err(root->fs_info, "%d errors while writing supers",
3454                       total_errors);
3455                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3456
3457                /* FUA is masked off if unsupported and can't be the reason */
3458                btrfs_error(root->fs_info, -EIO,
3459                            "%d errors while writing supers", total_errors);
3460                return -EIO;
3461        }
3462
3463        total_errors = 0;
3464        list_for_each_entry_rcu(dev, head, dev_list) {
3465                if (!dev->bdev)
3466                        continue;
3467                if (!dev->in_fs_metadata || !dev->writeable)
3468                        continue;
3469
3470                ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3471                if (ret)
3472                        total_errors++;
3473        }
3474        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3475        if (total_errors > max_errors) {
3476                btrfs_error(root->fs_info, -EIO,
3477                            "%d errors while writing supers", total_errors);
3478                return -EIO;
3479        }
3480        return 0;
3481}
3482
3483int write_ctree_super(struct btrfs_trans_handle *trans,
3484                      struct btrfs_root *root, int max_mirrors)
3485{
3486        return write_all_supers(root, max_mirrors);
3487}
3488
3489/* Drop a fs root from the radix tree and free it. */
3490void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3491                                  struct btrfs_root *root)
3492{
3493        spin_lock(&fs_info->fs_roots_radix_lock);
3494        radix_tree_delete(&fs_info->fs_roots_radix,
3495                          (unsigned long)root->root_key.objectid);
3496        spin_unlock(&fs_info->fs_roots_radix_lock);
3497
3498        if (btrfs_root_refs(&root->root_item) == 0)
3499                synchronize_srcu(&fs_info->subvol_srcu);
3500
3501        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3502                btrfs_free_log(NULL, root);
3503
3504        __btrfs_remove_free_space_cache(root->free_ino_pinned);
3505        __btrfs_remove_free_space_cache(root->free_ino_ctl);
3506        free_fs_root(root);
3507}
3508
3509static void free_fs_root(struct btrfs_root *root)
3510{
3511        iput(root->cache_inode);
3512        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3513        btrfs_free_block_rsv(root, root->orphan_block_rsv);
3514        root->orphan_block_rsv = NULL;
3515        if (root->anon_dev)
3516                free_anon_bdev(root->anon_dev);
3517        if (root->subv_writers)
3518                btrfs_free_subvolume_writers(root->subv_writers);
3519        free_extent_buffer(root->node);
3520        free_extent_buffer(root->commit_root);
3521        kfree(root->free_ino_ctl);
3522        kfree(root->free_ino_pinned);
3523        kfree(root->name);
3524        btrfs_put_fs_root(root);
3525}
3526
3527void btrfs_free_fs_root(struct btrfs_root *root)
3528{
3529        free_fs_root(root);
3530}
3531
3532int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3533{
3534        u64 root_objectid = 0;
3535        struct btrfs_root *gang[8];
3536        int i;
3537        int ret;
3538
3539        while (1) {
3540                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3541                                             (void **)gang, root_objectid,
3542                                             ARRAY_SIZE(gang));
3543                if (!ret)
3544                        break;
3545
3546                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3547                for (i = 0; i < ret; i++) {
3548                        int err;
3549
3550                        root_objectid = gang[i]->root_key.objectid;
3551                        err = btrfs_orphan_cleanup(gang[i]);
3552                        if (err)
3553                                return err;
3554                }
3555                root_objectid++;
3556        }
3557        return 0;
3558}
3559
3560int btrfs_commit_super(struct btrfs_root *root)
3561{
3562        struct btrfs_trans_handle *trans;
3563
3564        mutex_lock(&root->fs_info->cleaner_mutex);
3565        btrfs_run_delayed_iputs(root);
3566        mutex_unlock(&root->fs_info->cleaner_mutex);
3567        wake_up_process(root->fs_info->cleaner_kthread);
3568
3569        /* wait until ongoing cleanup work done */
3570        down_write(&root->fs_info->cleanup_work_sem);
3571        up_write(&root->fs_info->cleanup_work_sem);
3572
3573        trans = btrfs_join_transaction(root);
3574        if (IS_ERR(trans))
3575                return PTR_ERR(trans);
3576        return btrfs_commit_transaction(trans, root);
3577}
3578
3579int close_ctree(struct btrfs_root *root)
3580{
3581        struct btrfs_fs_info *fs_info = root->fs_info;
3582        int ret;
3583
3584        fs_info->closing = 1;
3585        smp_mb();
3586
3587        /* wait for the uuid_scan task to finish */
3588        down(&fs_info->uuid_tree_rescan_sem);
3589        /* avoid complains from lockdep et al., set sem back to initial state */
3590        up(&fs_info->uuid_tree_rescan_sem);
3591
3592        /* pause restriper - we want to resume on mount */
3593        btrfs_pause_balance(fs_info);
3594
3595        btrfs_dev_replace_suspend_for_unmount(fs_info);
3596
3597        btrfs_scrub_cancel(fs_info);
3598
3599        /* wait for any defraggers to finish */
3600        wait_event(fs_info->transaction_wait,
3601                   (atomic_read(&fs_info->defrag_running) == 0));
3602
3603        /* clear out the rbtree of defraggable inodes */
3604        btrfs_cleanup_defrag_inodes(fs_info);
3605
3606        if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3607                ret = btrfs_commit_super(root);
3608                if (ret)
3609                        btrfs_err(root->fs_info, "commit super ret %d", ret);
3610        }
3611
3612        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3613                btrfs_error_commit_super(root);
3614
3615        kthread_stop(fs_info->transaction_kthread);
3616        kthread_stop(fs_info->cleaner_kthread);
3617
3618        fs_info->closing = 2;
3619        smp_mb();
3620
3621        btrfs_free_qgroup_config(root->fs_info);
3622
3623        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3624                btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3625                       percpu_counter_sum(&fs_info->delalloc_bytes));
3626        }
3627
3628        btrfs_sysfs_remove_one(fs_info);
3629
3630        del_fs_roots(fs_info);
3631
3632        btrfs_put_block_group_cache(fs_info);
3633
3634        btrfs_free_block_groups(fs_info);
3635
3636        btrfs_stop_all_workers(fs_info);
3637
3638        free_root_pointers(fs_info, 1);
3639
3640        iput(fs_info->btree_inode);
3641
3642#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3643        if (btrfs_test_opt(root, CHECK_INTEGRITY))
3644                btrfsic_unmount(root, fs_info->fs_devices);
3645#endif
3646
3647        btrfs_close_devices(fs_info->fs_devices);
3648        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3649
3650        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3651        percpu_counter_destroy(&fs_info->delalloc_bytes);
3652        percpu_counter_destroy(&fs_info->bio_counter);
3653        bdi_destroy(&fs_info->bdi);
3654        cleanup_srcu_struct(&fs_info->subvol_srcu);
3655
3656        btrfs_free_stripe_hash_table(fs_info);
3657
3658        btrfs_free_block_rsv(root, root->orphan_block_rsv);
3659        root->orphan_block_rsv = NULL;
3660
3661        return 0;
3662}
3663
3664int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3665                          int atomic)
3666{
3667        int ret;
3668        struct inode *btree_inode = buf->pages[0]->mapping->host;
3669
3670        ret = extent_buffer_uptodate(buf);
3671        if (!ret)
3672                return ret;
3673
3674        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3675                                    parent_transid, atomic);
3676        if (ret == -EAGAIN)
3677                return ret;
3678        return !ret;
3679}
3680
3681int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3682{
3683        return set_extent_buffer_uptodate(buf);
3684}
3685
3686void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3687{
3688        struct btrfs_root *root;
3689        u64 transid = btrfs_header_generation(buf);
3690        int was_dirty;
3691
3692#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3693        /*
3694         * This is a fast path so only do this check if we have sanity tests
3695         * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3696         * outside of the sanity tests.
3697         */
3698        if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3699                return;
3700#endif
3701        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3702        btrfs_assert_tree_locked(buf);
3703        if (transid != root->fs_info->generation)
3704                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3705                       "found %llu running %llu\n",
3706                        buf->start, transid, root->fs_info->generation);
3707        was_dirty = set_extent_buffer_dirty(buf);
3708        if (!was_dirty)
3709                __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3710                                     buf->len,
3711                                     root->fs_info->dirty_metadata_batch);
3712}
3713
3714static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3715                                        int flush_delayed)
3716{
3717        /*
3718         * looks as though older kernels can get into trouble with
3719         * this code, they end up stuck in balance_dirty_pages forever
3720         */
3721        int ret;
3722
3723        if (current->flags & PF_MEMALLOC)
3724                return;
3725
3726        if (flush_delayed)
3727                btrfs_balance_delayed_items(root);
3728
3729        ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3730                                     BTRFS_DIRTY_METADATA_THRESH);
3731        if (ret > 0) {
3732                balance_dirty_pages_ratelimited(
3733                                   root->fs_info->btree_inode->i_mapping);
3734        }
3735        return;
3736}
3737
3738void btrfs_btree_balance_dirty(struct btrfs_root *root)
3739{
3740        __btrfs_btree_balance_dirty(root, 1);
3741}
3742
3743void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3744{
3745        __btrfs_btree_balance_dirty(root, 0);
3746}
3747
3748int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3749{
3750        struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3751        return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3752}
3753
3754static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3755                              int read_only)
3756{
3757        /*
3758         * Placeholder for checks
3759         */
3760        return 0;
3761}
3762
3763static void btrfs_error_commit_super(struct btrfs_root *root)
3764{
3765        mutex_lock(&root->fs_info->cleaner_mutex);
3766        btrfs_run_delayed_iputs(root);
3767        mutex_unlock(&root->fs_info->cleaner_mutex);
3768
3769        down_write(&root->fs_info->cleanup_work_sem);
3770        up_write(&root->fs_info->cleanup_work_sem);
3771
3772        /* cleanup FS via transaction */
3773        btrfs_cleanup_transaction(root);
3774}
3775
3776static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3777                                             struct btrfs_root *root)
3778{
3779        struct btrfs_inode *btrfs_inode;
3780        struct list_head splice;
3781
3782        INIT_LIST_HEAD(&splice);
3783
3784        mutex_lock(&root->fs_info->ordered_operations_mutex);
3785        spin_lock(&root->fs_info->ordered_root_lock);
3786
3787        list_splice_init(&t->ordered_operations, &splice);
3788        while (!list_empty(&splice)) {
3789                btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3790                                         ordered_operations);
3791
3792                list_del_init(&btrfs_inode->ordered_operations);
3793                spin_unlock(&root->fs_info->ordered_root_lock);
3794
3795                btrfs_invalidate_inodes(btrfs_inode->root);
3796
3797                spin_lock(&root->fs_info->ordered_root_lock);
3798        }
3799
3800        spin_unlock(&root->fs_info->ordered_root_lock);
3801        mutex_unlock(&root->fs_info->ordered_operations_mutex);
3802}
3803
3804static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3805{
3806        struct btrfs_ordered_extent *ordered;
3807
3808        spin_lock(&root->ordered_extent_lock);
3809        /*
3810         * This will just short circuit the ordered completion stuff which will
3811         * make sure the ordered extent gets properly cleaned up.
3812         */
3813        list_for_each_entry(ordered, &root->ordered_extents,
3814                            root_extent_list)
3815                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3816        spin_unlock(&root->ordered_extent_lock);
3817}
3818
3819static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3820{
3821        struct btrfs_root *root;
3822        struct list_head splice;
3823
3824        INIT_LIST_HEAD(&splice);
3825
3826        spin_lock(&fs_info->ordered_root_lock);
3827        list_splice_init(&fs_info->ordered_roots, &splice);
3828        while (!list_empty(&splice)) {
3829                root = list_first_entry(&splice, struct btrfs_root,
3830                                        ordered_root);
3831                list_move_tail(&root->ordered_root,
3832                               &fs_info->ordered_roots);
3833
3834                spin_unlock(&fs_info->ordered_root_lock);
3835                btrfs_destroy_ordered_extents(root);
3836
3837                cond_resched();
3838                spin_lock(&fs_info->ordered_root_lock);
3839        }
3840        spin_unlock(&fs_info->ordered_root_lock);
3841}
3842
3843static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3844                                      struct btrfs_root *root)
3845{
3846        struct rb_node *node;
3847        struct btrfs_delayed_ref_root *delayed_refs;
3848        struct btrfs_delayed_ref_node *ref;
3849        int ret = 0;
3850
3851        delayed_refs = &trans->delayed_refs;
3852
3853        spin_lock(&delayed_refs->lock);
3854        if (atomic_read(&delayed_refs->num_entries) == 0) {
3855                spin_unlock(&delayed_refs->lock);
3856                btrfs_info(root->fs_info, "delayed_refs has NO entry");
3857                return ret;
3858        }
3859
3860        while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3861                struct btrfs_delayed_ref_head *head;
3862                bool pin_bytes = false;
3863
3864                head = rb_entry(node, struct btrfs_delayed_ref_head,
3865                                href_node);
3866                if (!mutex_trylock(&head->mutex)) {
3867                        atomic_inc(&head->node.refs);
3868                        spin_unlock(&delayed_refs->lock);
3869
3870                        mutex_lock(&head->mutex);
3871                        mutex_unlock(&head->mutex);
3872                        btrfs_put_delayed_ref(&head->node);
3873                        spin_lock(&delayed_refs->lock);
3874                        continue;
3875                }
3876                spin_lock(&head->lock);
3877                while ((node = rb_first(&head->ref_root)) != NULL) {
3878                        ref = rb_entry(node, struct btrfs_delayed_ref_node,
3879                                       rb_node);
3880                        ref->in_tree = 0;
3881                        rb_erase(&ref->rb_node, &head->ref_root);
3882                        atomic_dec(&delayed_refs->num_entries);
3883                        btrfs_put_delayed_ref(ref);
3884                }
3885                if (head->must_insert_reserved)
3886                        pin_bytes = true;
3887                btrfs_free_delayed_extent_op(head->extent_op);
3888                delayed_refs->num_heads--;
3889                if (head->processing == 0)
3890                        delayed_refs->num_heads_ready--;
3891                atomic_dec(&delayed_refs->num_entries);
3892                head->node.in_tree = 0;
3893                rb_erase(&head->href_node, &delayed_refs->href_root);
3894                spin_unlock(&head->lock);
3895                spin_unlock(&delayed_refs->lock);
3896                mutex_unlock(&head->mutex);
3897
3898                if (pin_bytes)
3899                        btrfs_pin_extent(root, head->node.bytenr,
3900                                         head->node.num_bytes, 1);
3901                btrfs_put_delayed_ref(&head->node);
3902                cond_resched();
3903                spin_lock(&delayed_refs->lock);
3904        }
3905
3906        spin_unlock(&delayed_refs->lock);
3907
3908        return ret;
3909}
3910
3911static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3912{
3913        struct btrfs_inode *btrfs_inode;
3914        struct list_head splice;
3915
3916        INIT_LIST_HEAD(&splice);
3917
3918        spin_lock(&root->delalloc_lock);
3919        list_splice_init(&root->delalloc_inodes, &splice);
3920
3921        while (!list_empty(&splice)) {
3922                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3923                                               delalloc_inodes);
3924
3925                list_del_init(&btrfs_inode->delalloc_inodes);
3926                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3927                          &btrfs_inode->runtime_flags);
3928                spin_unlock(&root->delalloc_lock);
3929
3930                btrfs_invalidate_inodes(btrfs_inode->root);
3931
3932                spin_lock(&root->delalloc_lock);
3933        }
3934
3935        spin_unlock(&root->delalloc_lock);
3936}
3937
3938static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3939{
3940        struct btrfs_root *root;
3941        struct list_head splice;
3942
3943        INIT_LIST_HEAD(&splice);
3944
3945        spin_lock(&fs_info->delalloc_root_lock);
3946        list_splice_init(&fs_info->delalloc_roots, &splice);
3947        while (!list_empty(&splice)) {
3948                root = list_first_entry(&splice, struct btrfs_root,
3949                                         delalloc_root);
3950                list_del_init(&root->delalloc_root);
3951                root = btrfs_grab_fs_root(root);
3952                BUG_ON(!root);
3953                spin_unlock(&fs_info->delalloc_root_lock);
3954
3955                btrfs_destroy_delalloc_inodes(root);
3956                btrfs_put_fs_root(root);
3957
3958                spin_lock(&fs_info->delalloc_root_lock);
3959        }
3960        spin_unlock(&fs_info->delalloc_root_lock);
3961}
3962
3963static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3964                                        struct extent_io_tree *dirty_pages,
3965                                        int mark)
3966{
3967        int ret;
3968        struct extent_buffer *eb;
3969        u64 start = 0;
3970        u64 end;
3971
3972        while (1) {
3973                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3974                                            mark, NULL);
3975                if (ret)
3976                        break;
3977
3978                clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3979                while (start <= end) {
3980                        eb = btrfs_find_tree_block(root, start,
3981                                                   root->leafsize);
3982                        start += root->leafsize;
3983                        if (!eb)
3984                                continue;
3985                        wait_on_extent_buffer_writeback(eb);
3986
3987                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3988                                               &eb->bflags))
3989                                clear_extent_buffer_dirty(eb);
3990                        free_extent_buffer_stale(eb);
3991                }
3992        }
3993
3994        return ret;
3995}
3996
3997static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3998                                       struct extent_io_tree *pinned_extents)
3999{
4000        struct extent_io_tree *unpin;
4001        u64 start;
4002        u64 end;
4003        int ret;
4004        bool loop = true;
4005
4006        unpin = pinned_extents;
4007again:
4008        while (1) {
4009                ret = find_first_extent_bit(unpin, 0, &start, &end,
4010                                            EXTENT_DIRTY, NULL);
4011                if (ret)
4012                        break;
4013
4014                /* opt_discard */
4015                if (btrfs_test_opt(root, DISCARD))
4016                        ret = btrfs_error_discard_extent(root, start,
4017                                                         end + 1 - start,
4018                                                         NULL);
4019
4020                clear_extent_dirty(unpin, start, end, GFP_NOFS);
4021                btrfs_error_unpin_extent_range(root, start, end);
4022                cond_resched();
4023        }
4024
4025        if (loop) {
4026                if (unpin == &root->fs_info->freed_extents[0])
4027                        unpin = &root->fs_info->freed_extents[1];
4028                else
4029                        unpin = &root->fs_info->freed_extents[0];
4030                loop = false;
4031                goto again;
4032        }
4033
4034        return 0;
4035}
4036
4037void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4038                                   struct btrfs_root *root)
4039{
4040        btrfs_destroy_ordered_operations(cur_trans, root);
4041
4042        btrfs_destroy_delayed_refs(cur_trans, root);
4043
4044        cur_trans->state = TRANS_STATE_COMMIT_START;
4045        wake_up(&root->fs_info->transaction_blocked_wait);
4046
4047        cur_trans->state = TRANS_STATE_UNBLOCKED;
4048        wake_up(&root->fs_info->transaction_wait);
4049
4050        btrfs_destroy_delayed_inodes(root);
4051        btrfs_assert_delayed_root_empty(root);
4052
4053        btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4054                                     EXTENT_DIRTY);
4055        btrfs_destroy_pinned_extent(root,
4056                                    root->fs_info->pinned_extents);
4057
4058        cur_trans->state =TRANS_STATE_COMPLETED;
4059        wake_up(&cur_trans->commit_wait);
4060
4061        /*
4062        memset(cur_trans, 0, sizeof(*cur_trans));
4063        kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4064        */
4065}
4066
4067static int btrfs_cleanup_transaction(struct btrfs_root *root)
4068{
4069        struct btrfs_transaction *t;
4070
4071        mutex_lock(&root->fs_info->transaction_kthread_mutex);
4072
4073        spin_lock(&root->fs_info->trans_lock);
4074        while (!list_empty(&root->fs_info->trans_list)) {
4075                t = list_first_entry(&root->fs_info->trans_list,
4076                                     struct btrfs_transaction, list);
4077                if (t->state >= TRANS_STATE_COMMIT_START) {
4078                        atomic_inc(&t->use_count);
4079                        spin_unlock(&root->fs_info->trans_lock);
4080                        btrfs_wait_for_commit(root, t->transid);
4081                        btrfs_put_transaction(t);
4082                        spin_lock(&root->fs_info->trans_lock);
4083                        continue;
4084                }
4085                if (t == root->fs_info->running_transaction) {
4086                        t->state = TRANS_STATE_COMMIT_DOING;
4087                        spin_unlock(&root->fs_info->trans_lock);
4088                        /*
4089                         * We wait for 0 num_writers since we don't hold a trans
4090                         * handle open currently for this transaction.
4091                         */
4092                        wait_event(t->writer_wait,
4093                                   atomic_read(&t->num_writers) == 0);
4094                } else {
4095                        spin_unlock(&root->fs_info->trans_lock);
4096                }
4097                btrfs_cleanup_one_transaction(t, root);
4098
4099                spin_lock(&root->fs_info->trans_lock);
4100                if (t == root->fs_info->running_transaction)
4101                        root->fs_info->running_transaction = NULL;
4102                list_del_init(&t->list);
4103                spin_unlock(&root->fs_info->trans_lock);
4104
4105                btrfs_put_transaction(t);
4106                trace_btrfs_transaction_commit(root);
4107                spin_lock(&root->fs_info->trans_lock);
4108        }
4109        spin_unlock(&root->fs_info->trans_lock);
4110        btrfs_destroy_all_ordered_extents(root->fs_info);
4111        btrfs_destroy_delayed_inodes(root);
4112        btrfs_assert_delayed_root_empty(root);
4113        btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4114        btrfs_destroy_all_delalloc_inodes(root->fs_info);
4115        mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4116
4117        return 0;
4118}
4119
4120static struct extent_io_ops btree_extent_io_ops = {
4121        .readpage_end_io_hook = btree_readpage_end_io_hook,
4122        .readpage_io_failed_hook = btree_io_failed_hook,
4123        .submit_bio_hook = btree_submit_bio_hook,
4124        /* note we're sharing with inode.c for the merge bio hook */
4125        .merge_bio_hook = btrfs_merge_bio_hook,
4126};
4127