linux/fs/ext4/extents_status.c
<<
>>
Prefs
   1/*
   2 *  fs/ext4/extents_status.c
   3 *
   4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
   5 * Modified by
   6 *      Allison Henderson <achender@linux.vnet.ibm.com>
   7 *      Hugh Dickins <hughd@google.com>
   8 *      Zheng Liu <wenqing.lz@taobao.com>
   9 *
  10 * Ext4 extents status tree core functions.
  11 */
  12#include <linux/rbtree.h>
  13#include <linux/list_sort.h>
  14#include "ext4.h"
  15#include "extents_status.h"
  16
  17#include <trace/events/ext4.h>
  18
  19/*
  20 * According to previous discussion in Ext4 Developer Workshop, we
  21 * will introduce a new structure called io tree to track all extent
  22 * status in order to solve some problems that we have met
  23 * (e.g. Reservation space warning), and provide extent-level locking.
  24 * Delay extent tree is the first step to achieve this goal.  It is
  25 * original built by Yongqiang Yang.  At that time it is called delay
  26 * extent tree, whose goal is only track delayed extents in memory to
  27 * simplify the implementation of fiemap and bigalloc, and introduce
  28 * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
  29 * delay extent tree at the first commit.  But for better understand
  30 * what it does, it has been rename to extent status tree.
  31 *
  32 * Step1:
  33 * Currently the first step has been done.  All delayed extents are
  34 * tracked in the tree.  It maintains the delayed extent when a delayed
  35 * allocation is issued, and the delayed extent is written out or
  36 * invalidated.  Therefore the implementation of fiemap and bigalloc
  37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  38 *
  39 * The following comment describes the implemenmtation of extent
  40 * status tree and future works.
  41 *
  42 * Step2:
  43 * In this step all extent status are tracked by extent status tree.
  44 * Thus, we can first try to lookup a block mapping in this tree before
  45 * finding it in extent tree.  Hence, single extent cache can be removed
  46 * because extent status tree can do a better job.  Extents in status
  47 * tree are loaded on-demand.  Therefore, the extent status tree may not
  48 * contain all of the extents in a file.  Meanwhile we define a shrinker
  49 * to reclaim memory from extent status tree because fragmented extent
  50 * tree will make status tree cost too much memory.  written/unwritten/-
  51 * hole extents in the tree will be reclaimed by this shrinker when we
  52 * are under high memory pressure.  Delayed extents will not be
  53 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  54 */
  55
  56/*
  57 * Extent status tree implementation for ext4.
  58 *
  59 *
  60 * ==========================================================================
  61 * Extent status tree tracks all extent status.
  62 *
  63 * 1. Why we need to implement extent status tree?
  64 *
  65 * Without extent status tree, ext4 identifies a delayed extent by looking
  66 * up page cache, this has several deficiencies - complicated, buggy,
  67 * and inefficient code.
  68 *
  69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  70 * block or a range of blocks are belonged to a delayed extent.
  71 *
  72 * Let us have a look at how they do without extent status tree.
  73 *   -- FIEMAP
  74 *      FIEMAP looks up page cache to identify delayed allocations from holes.
  75 *
  76 *   -- SEEK_HOLE/DATA
  77 *      SEEK_HOLE/DATA has the same problem as FIEMAP.
  78 *
  79 *   -- bigalloc
  80 *      bigalloc looks up page cache to figure out if a block is
  81 *      already under delayed allocation or not to determine whether
  82 *      quota reserving is needed for the cluster.
  83 *
  84 *   -- writeout
  85 *      Writeout looks up whole page cache to see if a buffer is
  86 *      mapped, If there are not very many delayed buffers, then it is
  87 *      time comsuming.
  88 *
  89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  90 * bigalloc and writeout can figure out if a block or a range of
  91 * blocks is under delayed allocation(belonged to a delayed extent) or
  92 * not by searching the extent tree.
  93 *
  94 *
  95 * ==========================================================================
  96 * 2. Ext4 extent status tree impelmentation
  97 *
  98 *   -- extent
  99 *      A extent is a range of blocks which are contiguous logically and
 100 *      physically.  Unlike extent in extent tree, this extent in ext4 is
 101 *      a in-memory struct, there is no corresponding on-disk data.  There
 102 *      is no limit on length of extent, so an extent can contain as many
 103 *      blocks as they are contiguous logically and physically.
 104 *
 105 *   -- extent status tree
 106 *      Every inode has an extent status tree and all allocation blocks
 107 *      are added to the tree with different status.  The extent in the
 108 *      tree are ordered by logical block no.
 109 *
 110 *   -- operations on a extent status tree
 111 *      There are three important operations on a delayed extent tree: find
 112 *      next extent, adding a extent(a range of blocks) and removing a extent.
 113 *
 114 *   -- race on a extent status tree
 115 *      Extent status tree is protected by inode->i_es_lock.
 116 *
 117 *   -- memory consumption
 118 *      Fragmented extent tree will make extent status tree cost too much
 119 *      memory.  Hence, we will reclaim written/unwritten/hole extents from
 120 *      the tree under a heavy memory pressure.
 121 *
 122 *
 123 * ==========================================================================
 124 * 3. Performance analysis
 125 *
 126 *   -- overhead
 127 *      1. There is a cache extent for write access, so if writes are
 128 *      not very random, adding space operaions are in O(1) time.
 129 *
 130 *   -- gain
 131 *      2. Code is much simpler, more readable, more maintainable and
 132 *      more efficient.
 133 *
 134 *
 135 * ==========================================================================
 136 * 4. TODO list
 137 *
 138 *   -- Refactor delayed space reservation
 139 *
 140 *   -- Extent-level locking
 141 */
 142
 143static struct kmem_cache *ext4_es_cachep;
 144
 145static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
 146static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 147                              ext4_lblk_t end);
 148static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
 149                                       int nr_to_scan);
 150static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
 151                            struct ext4_inode_info *locked_ei);
 152
 153int __init ext4_init_es(void)
 154{
 155        ext4_es_cachep = kmem_cache_create("ext4_extent_status",
 156                                           sizeof(struct extent_status),
 157                                           0, (SLAB_RECLAIM_ACCOUNT), NULL);
 158        if (ext4_es_cachep == NULL)
 159                return -ENOMEM;
 160        return 0;
 161}
 162
 163void ext4_exit_es(void)
 164{
 165        if (ext4_es_cachep)
 166                kmem_cache_destroy(ext4_es_cachep);
 167}
 168
 169void ext4_es_init_tree(struct ext4_es_tree *tree)
 170{
 171        tree->root = RB_ROOT;
 172        tree->cache_es = NULL;
 173}
 174
 175#ifdef ES_DEBUG__
 176static void ext4_es_print_tree(struct inode *inode)
 177{
 178        struct ext4_es_tree *tree;
 179        struct rb_node *node;
 180
 181        printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
 182        tree = &EXT4_I(inode)->i_es_tree;
 183        node = rb_first(&tree->root);
 184        while (node) {
 185                struct extent_status *es;
 186                es = rb_entry(node, struct extent_status, rb_node);
 187                printk(KERN_DEBUG " [%u/%u) %llu %x",
 188                       es->es_lblk, es->es_len,
 189                       ext4_es_pblock(es), ext4_es_status(es));
 190                node = rb_next(node);
 191        }
 192        printk(KERN_DEBUG "\n");
 193}
 194#else
 195#define ext4_es_print_tree(inode)
 196#endif
 197
 198static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
 199{
 200        BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
 201        return es->es_lblk + es->es_len - 1;
 202}
 203
 204/*
 205 * search through the tree for an delayed extent with a given offset.  If
 206 * it can't be found, try to find next extent.
 207 */
 208static struct extent_status *__es_tree_search(struct rb_root *root,
 209                                              ext4_lblk_t lblk)
 210{
 211        struct rb_node *node = root->rb_node;
 212        struct extent_status *es = NULL;
 213
 214        while (node) {
 215                es = rb_entry(node, struct extent_status, rb_node);
 216                if (lblk < es->es_lblk)
 217                        node = node->rb_left;
 218                else if (lblk > ext4_es_end(es))
 219                        node = node->rb_right;
 220                else
 221                        return es;
 222        }
 223
 224        if (es && lblk < es->es_lblk)
 225                return es;
 226
 227        if (es && lblk > ext4_es_end(es)) {
 228                node = rb_next(&es->rb_node);
 229                return node ? rb_entry(node, struct extent_status, rb_node) :
 230                              NULL;
 231        }
 232
 233        return NULL;
 234}
 235
 236/*
 237 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
 238 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
 239 *
 240 * @inode: the inode which owns delayed extents
 241 * @lblk: the offset where we start to search
 242 * @end: the offset where we stop to search
 243 * @es: delayed extent that we found
 244 */
 245void ext4_es_find_delayed_extent_range(struct inode *inode,
 246                                 ext4_lblk_t lblk, ext4_lblk_t end,
 247                                 struct extent_status *es)
 248{
 249        struct ext4_es_tree *tree = NULL;
 250        struct extent_status *es1 = NULL;
 251        struct rb_node *node;
 252
 253        BUG_ON(es == NULL);
 254        BUG_ON(end < lblk);
 255        trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
 256
 257        read_lock(&EXT4_I(inode)->i_es_lock);
 258        tree = &EXT4_I(inode)->i_es_tree;
 259
 260        /* find extent in cache firstly */
 261        es->es_lblk = es->es_len = es->es_pblk = 0;
 262        if (tree->cache_es) {
 263                es1 = tree->cache_es;
 264                if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 265                        es_debug("%u cached by [%u/%u) %llu %x\n",
 266                                 lblk, es1->es_lblk, es1->es_len,
 267                                 ext4_es_pblock(es1), ext4_es_status(es1));
 268                        goto out;
 269                }
 270        }
 271
 272        es1 = __es_tree_search(&tree->root, lblk);
 273
 274out:
 275        if (es1 && !ext4_es_is_delayed(es1)) {
 276                while ((node = rb_next(&es1->rb_node)) != NULL) {
 277                        es1 = rb_entry(node, struct extent_status, rb_node);
 278                        if (es1->es_lblk > end) {
 279                                es1 = NULL;
 280                                break;
 281                        }
 282                        if (ext4_es_is_delayed(es1))
 283                                break;
 284                }
 285        }
 286
 287        if (es1 && ext4_es_is_delayed(es1)) {
 288                tree->cache_es = es1;
 289                es->es_lblk = es1->es_lblk;
 290                es->es_len = es1->es_len;
 291                es->es_pblk = es1->es_pblk;
 292        }
 293
 294        read_unlock(&EXT4_I(inode)->i_es_lock);
 295
 296        trace_ext4_es_find_delayed_extent_range_exit(inode, es);
 297}
 298
 299static struct extent_status *
 300ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
 301                     ext4_fsblk_t pblk)
 302{
 303        struct extent_status *es;
 304        es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
 305        if (es == NULL)
 306                return NULL;
 307        es->es_lblk = lblk;
 308        es->es_len = len;
 309        es->es_pblk = pblk;
 310
 311        /*
 312         * We don't count delayed extent because we never try to reclaim them
 313         */
 314        if (!ext4_es_is_delayed(es)) {
 315                EXT4_I(inode)->i_es_lru_nr++;
 316                percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
 317        }
 318
 319        return es;
 320}
 321
 322static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
 323{
 324        /* Decrease the lru counter when this es is not delayed */
 325        if (!ext4_es_is_delayed(es)) {
 326                BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
 327                EXT4_I(inode)->i_es_lru_nr--;
 328                percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
 329        }
 330
 331        kmem_cache_free(ext4_es_cachep, es);
 332}
 333
 334/*
 335 * Check whether or not two extents can be merged
 336 * Condition:
 337 *  - logical block number is contiguous
 338 *  - physical block number is contiguous
 339 *  - status is equal
 340 */
 341static int ext4_es_can_be_merged(struct extent_status *es1,
 342                                 struct extent_status *es2)
 343{
 344        if (ext4_es_status(es1) != ext4_es_status(es2))
 345                return 0;
 346
 347        if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
 348                return 0;
 349
 350        if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
 351                return 0;
 352
 353        if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
 354            (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
 355                return 1;
 356
 357        if (ext4_es_is_hole(es1))
 358                return 1;
 359
 360        /* we need to check delayed extent is without unwritten status */
 361        if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
 362                return 1;
 363
 364        return 0;
 365}
 366
 367static struct extent_status *
 368ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
 369{
 370        struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 371        struct extent_status *es1;
 372        struct rb_node *node;
 373
 374        node = rb_prev(&es->rb_node);
 375        if (!node)
 376                return es;
 377
 378        es1 = rb_entry(node, struct extent_status, rb_node);
 379        if (ext4_es_can_be_merged(es1, es)) {
 380                es1->es_len += es->es_len;
 381                rb_erase(&es->rb_node, &tree->root);
 382                ext4_es_free_extent(inode, es);
 383                es = es1;
 384        }
 385
 386        return es;
 387}
 388
 389static struct extent_status *
 390ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
 391{
 392        struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 393        struct extent_status *es1;
 394        struct rb_node *node;
 395
 396        node = rb_next(&es->rb_node);
 397        if (!node)
 398                return es;
 399
 400        es1 = rb_entry(node, struct extent_status, rb_node);
 401        if (ext4_es_can_be_merged(es, es1)) {
 402                es->es_len += es1->es_len;
 403                rb_erase(node, &tree->root);
 404                ext4_es_free_extent(inode, es1);
 405        }
 406
 407        return es;
 408}
 409
 410#ifdef ES_AGGRESSIVE_TEST
 411#include "ext4_extents.h"       /* Needed when ES_AGGRESSIVE_TEST is defined */
 412
 413static void ext4_es_insert_extent_ext_check(struct inode *inode,
 414                                            struct extent_status *es)
 415{
 416        struct ext4_ext_path *path = NULL;
 417        struct ext4_extent *ex;
 418        ext4_lblk_t ee_block;
 419        ext4_fsblk_t ee_start;
 420        unsigned short ee_len;
 421        int depth, ee_status, es_status;
 422
 423        path = ext4_ext_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
 424        if (IS_ERR(path))
 425                return;
 426
 427        depth = ext_depth(inode);
 428        ex = path[depth].p_ext;
 429
 430        if (ex) {
 431
 432                ee_block = le32_to_cpu(ex->ee_block);
 433                ee_start = ext4_ext_pblock(ex);
 434                ee_len = ext4_ext_get_actual_len(ex);
 435
 436                ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
 437                es_status = ext4_es_is_unwritten(es) ? 1 : 0;
 438
 439                /*
 440                 * Make sure ex and es are not overlap when we try to insert
 441                 * a delayed/hole extent.
 442                 */
 443                if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
 444                        if (in_range(es->es_lblk, ee_block, ee_len)) {
 445                                pr_warn("ES insert assertion failed for "
 446                                        "inode: %lu we can find an extent "
 447                                        "at block [%d/%d/%llu/%c], but we "
 448                                        "want to add a delayed/hole extent "
 449                                        "[%d/%d/%llu/%x]\n",
 450                                        inode->i_ino, ee_block, ee_len,
 451                                        ee_start, ee_status ? 'u' : 'w',
 452                                        es->es_lblk, es->es_len,
 453                                        ext4_es_pblock(es), ext4_es_status(es));
 454                        }
 455                        goto out;
 456                }
 457
 458                /*
 459                 * We don't check ee_block == es->es_lblk, etc. because es
 460                 * might be a part of whole extent, vice versa.
 461                 */
 462                if (es->es_lblk < ee_block ||
 463                    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
 464                        pr_warn("ES insert assertion failed for inode: %lu "
 465                                "ex_status [%d/%d/%llu/%c] != "
 466                                "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 467                                ee_block, ee_len, ee_start,
 468                                ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 469                                ext4_es_pblock(es), es_status ? 'u' : 'w');
 470                        goto out;
 471                }
 472
 473                if (ee_status ^ es_status) {
 474                        pr_warn("ES insert assertion failed for inode: %lu "
 475                                "ex_status [%d/%d/%llu/%c] != "
 476                                "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 477                                ee_block, ee_len, ee_start,
 478                                ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 479                                ext4_es_pblock(es), es_status ? 'u' : 'w');
 480                }
 481        } else {
 482                /*
 483                 * We can't find an extent on disk.  So we need to make sure
 484                 * that we don't want to add an written/unwritten extent.
 485                 */
 486                if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
 487                        pr_warn("ES insert assertion failed for inode: %lu "
 488                                "can't find an extent at block %d but we want "
 489                                "to add a written/unwritten extent "
 490                                "[%d/%d/%llu/%x]\n", inode->i_ino,
 491                                es->es_lblk, es->es_lblk, es->es_len,
 492                                ext4_es_pblock(es), ext4_es_status(es));
 493                }
 494        }
 495out:
 496        if (path) {
 497                ext4_ext_drop_refs(path);
 498                kfree(path);
 499        }
 500}
 501
 502static void ext4_es_insert_extent_ind_check(struct inode *inode,
 503                                            struct extent_status *es)
 504{
 505        struct ext4_map_blocks map;
 506        int retval;
 507
 508        /*
 509         * Here we call ext4_ind_map_blocks to lookup a block mapping because
 510         * 'Indirect' structure is defined in indirect.c.  So we couldn't
 511         * access direct/indirect tree from outside.  It is too dirty to define
 512         * this function in indirect.c file.
 513         */
 514
 515        map.m_lblk = es->es_lblk;
 516        map.m_len = es->es_len;
 517
 518        retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
 519        if (retval > 0) {
 520                if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
 521                        /*
 522                         * We want to add a delayed/hole extent but this
 523                         * block has been allocated.
 524                         */
 525                        pr_warn("ES insert assertion failed for inode: %lu "
 526                                "We can find blocks but we want to add a "
 527                                "delayed/hole extent [%d/%d/%llu/%x]\n",
 528                                inode->i_ino, es->es_lblk, es->es_len,
 529                                ext4_es_pblock(es), ext4_es_status(es));
 530                        return;
 531                } else if (ext4_es_is_written(es)) {
 532                        if (retval != es->es_len) {
 533                                pr_warn("ES insert assertion failed for "
 534                                        "inode: %lu retval %d != es_len %d\n",
 535                                        inode->i_ino, retval, es->es_len);
 536                                return;
 537                        }
 538                        if (map.m_pblk != ext4_es_pblock(es)) {
 539                                pr_warn("ES insert assertion failed for "
 540                                        "inode: %lu m_pblk %llu != "
 541                                        "es_pblk %llu\n",
 542                                        inode->i_ino, map.m_pblk,
 543                                        ext4_es_pblock(es));
 544                                return;
 545                        }
 546                } else {
 547                        /*
 548                         * We don't need to check unwritten extent because
 549                         * indirect-based file doesn't have it.
 550                         */
 551                        BUG_ON(1);
 552                }
 553        } else if (retval == 0) {
 554                if (ext4_es_is_written(es)) {
 555                        pr_warn("ES insert assertion failed for inode: %lu "
 556                                "We can't find the block but we want to add "
 557                                "a written extent [%d/%d/%llu/%x]\n",
 558                                inode->i_ino, es->es_lblk, es->es_len,
 559                                ext4_es_pblock(es), ext4_es_status(es));
 560                        return;
 561                }
 562        }
 563}
 564
 565static inline void ext4_es_insert_extent_check(struct inode *inode,
 566                                               struct extent_status *es)
 567{
 568        /*
 569         * We don't need to worry about the race condition because
 570         * caller takes i_data_sem locking.
 571         */
 572        BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
 573        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 574                ext4_es_insert_extent_ext_check(inode, es);
 575        else
 576                ext4_es_insert_extent_ind_check(inode, es);
 577}
 578#else
 579static inline void ext4_es_insert_extent_check(struct inode *inode,
 580                                               struct extent_status *es)
 581{
 582}
 583#endif
 584
 585static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
 586{
 587        struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 588        struct rb_node **p = &tree->root.rb_node;
 589        struct rb_node *parent = NULL;
 590        struct extent_status *es;
 591
 592        while (*p) {
 593                parent = *p;
 594                es = rb_entry(parent, struct extent_status, rb_node);
 595
 596                if (newes->es_lblk < es->es_lblk) {
 597                        if (ext4_es_can_be_merged(newes, es)) {
 598                                /*
 599                                 * Here we can modify es_lblk directly
 600                                 * because it isn't overlapped.
 601                                 */
 602                                es->es_lblk = newes->es_lblk;
 603                                es->es_len += newes->es_len;
 604                                if (ext4_es_is_written(es) ||
 605                                    ext4_es_is_unwritten(es))
 606                                        ext4_es_store_pblock(es,
 607                                                             newes->es_pblk);
 608                                es = ext4_es_try_to_merge_left(inode, es);
 609                                goto out;
 610                        }
 611                        p = &(*p)->rb_left;
 612                } else if (newes->es_lblk > ext4_es_end(es)) {
 613                        if (ext4_es_can_be_merged(es, newes)) {
 614                                es->es_len += newes->es_len;
 615                                es = ext4_es_try_to_merge_right(inode, es);
 616                                goto out;
 617                        }
 618                        p = &(*p)->rb_right;
 619                } else {
 620                        BUG_ON(1);
 621                        return -EINVAL;
 622                }
 623        }
 624
 625        es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
 626                                  newes->es_pblk);
 627        if (!es)
 628                return -ENOMEM;
 629        rb_link_node(&es->rb_node, parent, p);
 630        rb_insert_color(&es->rb_node, &tree->root);
 631
 632out:
 633        tree->cache_es = es;
 634        return 0;
 635}
 636
 637/*
 638 * ext4_es_insert_extent() adds information to an inode's extent
 639 * status tree.
 640 *
 641 * Return 0 on success, error code on failure.
 642 */
 643int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
 644                          ext4_lblk_t len, ext4_fsblk_t pblk,
 645                          unsigned int status)
 646{
 647        struct extent_status newes;
 648        ext4_lblk_t end = lblk + len - 1;
 649        int err = 0;
 650
 651        es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
 652                 lblk, len, pblk, status, inode->i_ino);
 653
 654        if (!len)
 655                return 0;
 656
 657        BUG_ON(end < lblk);
 658
 659        newes.es_lblk = lblk;
 660        newes.es_len = len;
 661        ext4_es_store_pblock_status(&newes, pblk, status);
 662        trace_ext4_es_insert_extent(inode, &newes);
 663
 664        ext4_es_insert_extent_check(inode, &newes);
 665
 666        write_lock(&EXT4_I(inode)->i_es_lock);
 667        err = __es_remove_extent(inode, lblk, end);
 668        if (err != 0)
 669                goto error;
 670retry:
 671        err = __es_insert_extent(inode, &newes);
 672        if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
 673                                               EXT4_I(inode)))
 674                goto retry;
 675        if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
 676                err = 0;
 677
 678error:
 679        write_unlock(&EXT4_I(inode)->i_es_lock);
 680
 681        ext4_es_print_tree(inode);
 682
 683        return err;
 684}
 685
 686/*
 687 * ext4_es_cache_extent() inserts information into the extent status
 688 * tree if and only if there isn't information about the range in
 689 * question already.
 690 */
 691void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
 692                          ext4_lblk_t len, ext4_fsblk_t pblk,
 693                          unsigned int status)
 694{
 695        struct extent_status *es;
 696        struct extent_status newes;
 697        ext4_lblk_t end = lblk + len - 1;
 698
 699        newes.es_lblk = lblk;
 700        newes.es_len = len;
 701        ext4_es_store_pblock_status(&newes, pblk, status);
 702        trace_ext4_es_cache_extent(inode, &newes);
 703
 704        if (!len)
 705                return;
 706
 707        BUG_ON(end < lblk);
 708
 709        write_lock(&EXT4_I(inode)->i_es_lock);
 710
 711        es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
 712        if (!es || es->es_lblk > end)
 713                __es_insert_extent(inode, &newes);
 714        write_unlock(&EXT4_I(inode)->i_es_lock);
 715}
 716
 717/*
 718 * ext4_es_lookup_extent() looks up an extent in extent status tree.
 719 *
 720 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
 721 *
 722 * Return: 1 on found, 0 on not
 723 */
 724int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
 725                          struct extent_status *es)
 726{
 727        struct ext4_es_tree *tree;
 728        struct extent_status *es1 = NULL;
 729        struct rb_node *node;
 730        int found = 0;
 731
 732        trace_ext4_es_lookup_extent_enter(inode, lblk);
 733        es_debug("lookup extent in block %u\n", lblk);
 734
 735        tree = &EXT4_I(inode)->i_es_tree;
 736        read_lock(&EXT4_I(inode)->i_es_lock);
 737
 738        /* find extent in cache firstly */
 739        es->es_lblk = es->es_len = es->es_pblk = 0;
 740        if (tree->cache_es) {
 741                es1 = tree->cache_es;
 742                if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 743                        es_debug("%u cached by [%u/%u)\n",
 744                                 lblk, es1->es_lblk, es1->es_len);
 745                        found = 1;
 746                        goto out;
 747                }
 748        }
 749
 750        node = tree->root.rb_node;
 751        while (node) {
 752                es1 = rb_entry(node, struct extent_status, rb_node);
 753                if (lblk < es1->es_lblk)
 754                        node = node->rb_left;
 755                else if (lblk > ext4_es_end(es1))
 756                        node = node->rb_right;
 757                else {
 758                        found = 1;
 759                        break;
 760                }
 761        }
 762
 763out:
 764        if (found) {
 765                BUG_ON(!es1);
 766                es->es_lblk = es1->es_lblk;
 767                es->es_len = es1->es_len;
 768                es->es_pblk = es1->es_pblk;
 769        }
 770
 771        read_unlock(&EXT4_I(inode)->i_es_lock);
 772
 773        trace_ext4_es_lookup_extent_exit(inode, es, found);
 774        return found;
 775}
 776
 777static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 778                              ext4_lblk_t end)
 779{
 780        struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 781        struct rb_node *node;
 782        struct extent_status *es;
 783        struct extent_status orig_es;
 784        ext4_lblk_t len1, len2;
 785        ext4_fsblk_t block;
 786        int err;
 787
 788retry:
 789        err = 0;
 790        es = __es_tree_search(&tree->root, lblk);
 791        if (!es)
 792                goto out;
 793        if (es->es_lblk > end)
 794                goto out;
 795
 796        /* Simply invalidate cache_es. */
 797        tree->cache_es = NULL;
 798
 799        orig_es.es_lblk = es->es_lblk;
 800        orig_es.es_len = es->es_len;
 801        orig_es.es_pblk = es->es_pblk;
 802
 803        len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
 804        len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
 805        if (len1 > 0)
 806                es->es_len = len1;
 807        if (len2 > 0) {
 808                if (len1 > 0) {
 809                        struct extent_status newes;
 810
 811                        newes.es_lblk = end + 1;
 812                        newes.es_len = len2;
 813                        block = 0x7FDEADBEEFULL;
 814                        if (ext4_es_is_written(&orig_es) ||
 815                            ext4_es_is_unwritten(&orig_es))
 816                                block = ext4_es_pblock(&orig_es) +
 817                                        orig_es.es_len - len2;
 818                        ext4_es_store_pblock_status(&newes, block,
 819                                                    ext4_es_status(&orig_es));
 820                        err = __es_insert_extent(inode, &newes);
 821                        if (err) {
 822                                es->es_lblk = orig_es.es_lblk;
 823                                es->es_len = orig_es.es_len;
 824                                if ((err == -ENOMEM) &&
 825                                    __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
 826                                                     EXT4_I(inode)))
 827                                        goto retry;
 828                                goto out;
 829                        }
 830                } else {
 831                        es->es_lblk = end + 1;
 832                        es->es_len = len2;
 833                        if (ext4_es_is_written(es) ||
 834                            ext4_es_is_unwritten(es)) {
 835                                block = orig_es.es_pblk + orig_es.es_len - len2;
 836                                ext4_es_store_pblock(es, block);
 837                        }
 838                }
 839                goto out;
 840        }
 841
 842        if (len1 > 0) {
 843                node = rb_next(&es->rb_node);
 844                if (node)
 845                        es = rb_entry(node, struct extent_status, rb_node);
 846                else
 847                        es = NULL;
 848        }
 849
 850        while (es && ext4_es_end(es) <= end) {
 851                node = rb_next(&es->rb_node);
 852                rb_erase(&es->rb_node, &tree->root);
 853                ext4_es_free_extent(inode, es);
 854                if (!node) {
 855                        es = NULL;
 856                        break;
 857                }
 858                es = rb_entry(node, struct extent_status, rb_node);
 859        }
 860
 861        if (es && es->es_lblk < end + 1) {
 862                ext4_lblk_t orig_len = es->es_len;
 863
 864                len1 = ext4_es_end(es) - end;
 865                es->es_lblk = end + 1;
 866                es->es_len = len1;
 867                if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
 868                        block = es->es_pblk + orig_len - len1;
 869                        ext4_es_store_pblock(es, block);
 870                }
 871        }
 872
 873out:
 874        return err;
 875}
 876
 877/*
 878 * ext4_es_remove_extent() removes a space from a extent status tree.
 879 *
 880 * Return 0 on success, error code on failure.
 881 */
 882int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 883                          ext4_lblk_t len)
 884{
 885        ext4_lblk_t end;
 886        int err = 0;
 887
 888        trace_ext4_es_remove_extent(inode, lblk, len);
 889        es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
 890                 lblk, len, inode->i_ino);
 891
 892        if (!len)
 893                return err;
 894
 895        end = lblk + len - 1;
 896        BUG_ON(end < lblk);
 897
 898        write_lock(&EXT4_I(inode)->i_es_lock);
 899        err = __es_remove_extent(inode, lblk, end);
 900        write_unlock(&EXT4_I(inode)->i_es_lock);
 901        ext4_es_print_tree(inode);
 902        return err;
 903}
 904
 905static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
 906                                     struct list_head *b)
 907{
 908        struct ext4_inode_info *eia, *eib;
 909        eia = list_entry(a, struct ext4_inode_info, i_es_lru);
 910        eib = list_entry(b, struct ext4_inode_info, i_es_lru);
 911
 912        if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
 913            !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
 914                return 1;
 915        if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
 916            ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
 917                return -1;
 918        if (eia->i_touch_when == eib->i_touch_when)
 919                return 0;
 920        if (time_after(eia->i_touch_when, eib->i_touch_when))
 921                return 1;
 922        else
 923                return -1;
 924}
 925
 926static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
 927                            struct ext4_inode_info *locked_ei)
 928{
 929        struct ext4_inode_info *ei;
 930        struct list_head *cur, *tmp;
 931        LIST_HEAD(skipped);
 932        int nr_shrunk = 0;
 933        int retried = 0, skip_precached = 1, nr_skipped = 0;
 934
 935        spin_lock(&sbi->s_es_lru_lock);
 936
 937retry:
 938        list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
 939                int shrunk;
 940
 941                /*
 942                 * If we have already reclaimed all extents from extent
 943                 * status tree, just stop the loop immediately.
 944                 */
 945                if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
 946                        break;
 947
 948                ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
 949
 950                /*
 951                 * Skip the inode that is newer than the last_sorted
 952                 * time.  Normally we try hard to avoid shrinking
 953                 * precached inodes, but we will as a last resort.
 954                 */
 955                if ((sbi->s_es_last_sorted < ei->i_touch_when) ||
 956                    (skip_precached && ext4_test_inode_state(&ei->vfs_inode,
 957                                                EXT4_STATE_EXT_PRECACHED))) {
 958                        nr_skipped++;
 959                        list_move_tail(cur, &skipped);
 960                        continue;
 961                }
 962
 963                if (ei->i_es_lru_nr == 0 || ei == locked_ei)
 964                        continue;
 965
 966                write_lock(&ei->i_es_lock);
 967                shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
 968                if (ei->i_es_lru_nr == 0)
 969                        list_del_init(&ei->i_es_lru);
 970                write_unlock(&ei->i_es_lock);
 971
 972                nr_shrunk += shrunk;
 973                nr_to_scan -= shrunk;
 974                if (nr_to_scan == 0)
 975                        break;
 976        }
 977
 978        /* Move the newer inodes into the tail of the LRU list. */
 979        list_splice_tail(&skipped, &sbi->s_es_lru);
 980        INIT_LIST_HEAD(&skipped);
 981
 982        /*
 983         * If we skipped any inodes, and we weren't able to make any
 984         * forward progress, sort the list and try again.
 985         */
 986        if ((nr_shrunk == 0) && nr_skipped && !retried) {
 987                retried++;
 988                list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
 989                sbi->s_es_last_sorted = jiffies;
 990                ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info,
 991                                      i_es_lru);
 992                /*
 993                 * If there are no non-precached inodes left on the
 994                 * list, start releasing precached extents.
 995                 */
 996                if (ext4_test_inode_state(&ei->vfs_inode,
 997                                          EXT4_STATE_EXT_PRECACHED))
 998                        skip_precached = 0;
 999                goto retry;
1000        }
1001
1002        spin_unlock(&sbi->s_es_lru_lock);
1003
1004        if (locked_ei && nr_shrunk == 0)
1005                nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1006
1007        return nr_shrunk;
1008}
1009
1010static unsigned long ext4_es_count(struct shrinker *shrink,
1011                                   struct shrink_control *sc)
1012{
1013        unsigned long nr;
1014        struct ext4_sb_info *sbi;
1015
1016        sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1017        nr = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1018        trace_ext4_es_shrink_enter(sbi->s_sb, sc->nr_to_scan, nr);
1019        return nr;
1020}
1021
1022static unsigned long ext4_es_scan(struct shrinker *shrink,
1023                                  struct shrink_control *sc)
1024{
1025        struct ext4_sb_info *sbi = container_of(shrink,
1026                                        struct ext4_sb_info, s_es_shrinker);
1027        int nr_to_scan = sc->nr_to_scan;
1028        int ret, nr_shrunk;
1029
1030        ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1031        trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
1032
1033        if (!nr_to_scan)
1034                return ret;
1035
1036        nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
1037
1038        trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
1039        return nr_shrunk;
1040}
1041
1042void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1043{
1044        INIT_LIST_HEAD(&sbi->s_es_lru);
1045        spin_lock_init(&sbi->s_es_lru_lock);
1046        sbi->s_es_last_sorted = 0;
1047        sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1048        sbi->s_es_shrinker.count_objects = ext4_es_count;
1049        sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1050        register_shrinker(&sbi->s_es_shrinker);
1051}
1052
1053void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1054{
1055        unregister_shrinker(&sbi->s_es_shrinker);
1056}
1057
1058void ext4_es_lru_add(struct inode *inode)
1059{
1060        struct ext4_inode_info *ei = EXT4_I(inode);
1061        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1062
1063        ei->i_touch_when = jiffies;
1064
1065        if (!list_empty(&ei->i_es_lru))
1066                return;
1067
1068        spin_lock(&sbi->s_es_lru_lock);
1069        if (list_empty(&ei->i_es_lru))
1070                list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1071        spin_unlock(&sbi->s_es_lru_lock);
1072}
1073
1074void ext4_es_lru_del(struct inode *inode)
1075{
1076        struct ext4_inode_info *ei = EXT4_I(inode);
1077        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1078
1079        spin_lock(&sbi->s_es_lru_lock);
1080        if (!list_empty(&ei->i_es_lru))
1081                list_del_init(&ei->i_es_lru);
1082        spin_unlock(&sbi->s_es_lru_lock);
1083}
1084
1085static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1086                                       int nr_to_scan)
1087{
1088        struct inode *inode = &ei->vfs_inode;
1089        struct ext4_es_tree *tree = &ei->i_es_tree;
1090        struct rb_node *node;
1091        struct extent_status *es;
1092        unsigned long nr_shrunk = 0;
1093        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1094                                      DEFAULT_RATELIMIT_BURST);
1095
1096        if (ei->i_es_lru_nr == 0)
1097                return 0;
1098
1099        if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1100            __ratelimit(&_rs))
1101                ext4_warning(inode->i_sb, "forced shrink of precached extents");
1102
1103        node = rb_first(&tree->root);
1104        while (node != NULL) {
1105                es = rb_entry(node, struct extent_status, rb_node);
1106                node = rb_next(&es->rb_node);
1107                /*
1108                 * We can't reclaim delayed extent from status tree because
1109                 * fiemap, bigallic, and seek_data/hole need to use it.
1110                 */
1111                if (!ext4_es_is_delayed(es)) {
1112                        rb_erase(&es->rb_node, &tree->root);
1113                        ext4_es_free_extent(inode, es);
1114                        nr_shrunk++;
1115                        if (--nr_to_scan == 0)
1116                                break;
1117                }
1118        }
1119        tree->cache_es = NULL;
1120        return nr_shrunk;
1121}
1122