linux/fs/ext4/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *      (jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/jbd2.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/ratelimit.h>
  40#include <linux/aio.h>
  41#include <linux/bitops.h>
  42
  43#include "ext4_jbd2.h"
  44#include "xattr.h"
  45#include "acl.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53                              struct ext4_inode_info *ei)
  54{
  55        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56        __u16 csum_lo;
  57        __u16 csum_hi = 0;
  58        __u32 csum;
  59
  60        csum_lo = le16_to_cpu(raw->i_checksum_lo);
  61        raw->i_checksum_lo = 0;
  62        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  63            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  64                csum_hi = le16_to_cpu(raw->i_checksum_hi);
  65                raw->i_checksum_hi = 0;
  66        }
  67
  68        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  69                           EXT4_INODE_SIZE(inode->i_sb));
  70
  71        raw->i_checksum_lo = cpu_to_le16(csum_lo);
  72        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  73            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  74                raw->i_checksum_hi = cpu_to_le16(csum_hi);
  75
  76        return csum;
  77}
  78
  79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  80                                  struct ext4_inode_info *ei)
  81{
  82        __u32 provided, calculated;
  83
  84        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  85            cpu_to_le32(EXT4_OS_LINUX) ||
  86            !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  87                EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  88                return 1;
  89
  90        provided = le16_to_cpu(raw->i_checksum_lo);
  91        calculated = ext4_inode_csum(inode, raw, ei);
  92        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  93            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  94                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  95        else
  96                calculated &= 0xFFFF;
  97
  98        return provided == calculated;
  99}
 100
 101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 102                                struct ext4_inode_info *ei)
 103{
 104        __u32 csum;
 105
 106        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 107            cpu_to_le32(EXT4_OS_LINUX) ||
 108            !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 109                EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 110                return;
 111
 112        csum = ext4_inode_csum(inode, raw, ei);
 113        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 114        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 115            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 116                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 117}
 118
 119static inline int ext4_begin_ordered_truncate(struct inode *inode,
 120                                              loff_t new_size)
 121{
 122        trace_ext4_begin_ordered_truncate(inode, new_size);
 123        /*
 124         * If jinode is zero, then we never opened the file for
 125         * writing, so there's no need to call
 126         * jbd2_journal_begin_ordered_truncate() since there's no
 127         * outstanding writes we need to flush.
 128         */
 129        if (!EXT4_I(inode)->jinode)
 130                return 0;
 131        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 132                                                   EXT4_I(inode)->jinode,
 133                                                   new_size);
 134}
 135
 136static void ext4_invalidatepage(struct page *page, unsigned int offset,
 137                                unsigned int length);
 138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 141                                  int pextents);
 142
 143/*
 144 * Test whether an inode is a fast symlink.
 145 */
 146static int ext4_inode_is_fast_symlink(struct inode *inode)
 147{
 148        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 149                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 150
 151        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 152}
 153
 154/*
 155 * Restart the transaction associated with *handle.  This does a commit,
 156 * so before we call here everything must be consistently dirtied against
 157 * this transaction.
 158 */
 159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 160                                 int nblocks)
 161{
 162        int ret;
 163
 164        /*
 165         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 166         * moment, get_block can be called only for blocks inside i_size since
 167         * page cache has been already dropped and writes are blocked by
 168         * i_mutex. So we can safely drop the i_data_sem here.
 169         */
 170        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 171        jbd_debug(2, "restarting handle %p\n", handle);
 172        up_write(&EXT4_I(inode)->i_data_sem);
 173        ret = ext4_journal_restart(handle, nblocks);
 174        down_write(&EXT4_I(inode)->i_data_sem);
 175        ext4_discard_preallocations(inode);
 176
 177        return ret;
 178}
 179
 180/*
 181 * Called at the last iput() if i_nlink is zero.
 182 */
 183void ext4_evict_inode(struct inode *inode)
 184{
 185        handle_t *handle;
 186        int err;
 187
 188        trace_ext4_evict_inode(inode);
 189
 190        if (inode->i_nlink) {
 191                /*
 192                 * When journalling data dirty buffers are tracked only in the
 193                 * journal. So although mm thinks everything is clean and
 194                 * ready for reaping the inode might still have some pages to
 195                 * write in the running transaction or waiting to be
 196                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 197                 * (via truncate_inode_pages()) to discard these buffers can
 198                 * cause data loss. Also even if we did not discard these
 199                 * buffers, we would have no way to find them after the inode
 200                 * is reaped and thus user could see stale data if he tries to
 201                 * read them before the transaction is checkpointed. So be
 202                 * careful and force everything to disk here... We use
 203                 * ei->i_datasync_tid to store the newest transaction
 204                 * containing inode's data.
 205                 *
 206                 * Note that directories do not have this problem because they
 207                 * don't use page cache.
 208                 */
 209                if (ext4_should_journal_data(inode) &&
 210                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 211                    inode->i_ino != EXT4_JOURNAL_INO) {
 212                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 213                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 214
 215                        jbd2_complete_transaction(journal, commit_tid);
 216                        filemap_write_and_wait(&inode->i_data);
 217                }
 218                truncate_inode_pages_final(&inode->i_data);
 219
 220                WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
 221                goto no_delete;
 222        }
 223
 224        if (!is_bad_inode(inode))
 225                dquot_initialize(inode);
 226
 227        if (ext4_should_order_data(inode))
 228                ext4_begin_ordered_truncate(inode, 0);
 229        truncate_inode_pages_final(&inode->i_data);
 230
 231        WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
 232        if (is_bad_inode(inode))
 233                goto no_delete;
 234
 235        /*
 236         * Protect us against freezing - iput() caller didn't have to have any
 237         * protection against it
 238         */
 239        sb_start_intwrite(inode->i_sb);
 240        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 241                                    ext4_blocks_for_truncate(inode)+3);
 242        if (IS_ERR(handle)) {
 243                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 244                /*
 245                 * If we're going to skip the normal cleanup, we still need to
 246                 * make sure that the in-core orphan linked list is properly
 247                 * cleaned up.
 248                 */
 249                ext4_orphan_del(NULL, inode);
 250                sb_end_intwrite(inode->i_sb);
 251                goto no_delete;
 252        }
 253
 254        if (IS_SYNC(inode))
 255                ext4_handle_sync(handle);
 256        inode->i_size = 0;
 257        err = ext4_mark_inode_dirty(handle, inode);
 258        if (err) {
 259                ext4_warning(inode->i_sb,
 260                             "couldn't mark inode dirty (err %d)", err);
 261                goto stop_handle;
 262        }
 263        if (inode->i_blocks)
 264                ext4_truncate(inode);
 265
 266        /*
 267         * ext4_ext_truncate() doesn't reserve any slop when it
 268         * restarts journal transactions; therefore there may not be
 269         * enough credits left in the handle to remove the inode from
 270         * the orphan list and set the dtime field.
 271         */
 272        if (!ext4_handle_has_enough_credits(handle, 3)) {
 273                err = ext4_journal_extend(handle, 3);
 274                if (err > 0)
 275                        err = ext4_journal_restart(handle, 3);
 276                if (err != 0) {
 277                        ext4_warning(inode->i_sb,
 278                                     "couldn't extend journal (err %d)", err);
 279                stop_handle:
 280                        ext4_journal_stop(handle);
 281                        ext4_orphan_del(NULL, inode);
 282                        sb_end_intwrite(inode->i_sb);
 283                        goto no_delete;
 284                }
 285        }
 286
 287        /*
 288         * Kill off the orphan record which ext4_truncate created.
 289         * AKPM: I think this can be inside the above `if'.
 290         * Note that ext4_orphan_del() has to be able to cope with the
 291         * deletion of a non-existent orphan - this is because we don't
 292         * know if ext4_truncate() actually created an orphan record.
 293         * (Well, we could do this if we need to, but heck - it works)
 294         */
 295        ext4_orphan_del(handle, inode);
 296        EXT4_I(inode)->i_dtime  = get_seconds();
 297
 298        /*
 299         * One subtle ordering requirement: if anything has gone wrong
 300         * (transaction abort, IO errors, whatever), then we can still
 301         * do these next steps (the fs will already have been marked as
 302         * having errors), but we can't free the inode if the mark_dirty
 303         * fails.
 304         */
 305        if (ext4_mark_inode_dirty(handle, inode))
 306                /* If that failed, just do the required in-core inode clear. */
 307                ext4_clear_inode(inode);
 308        else
 309                ext4_free_inode(handle, inode);
 310        ext4_journal_stop(handle);
 311        sb_end_intwrite(inode->i_sb);
 312        return;
 313no_delete:
 314        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 315}
 316
 317#ifdef CONFIG_QUOTA
 318qsize_t *ext4_get_reserved_space(struct inode *inode)
 319{
 320        return &EXT4_I(inode)->i_reserved_quota;
 321}
 322#endif
 323
 324/*
 325 * Calculate the number of metadata blocks need to reserve
 326 * to allocate a block located at @lblock
 327 */
 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 329{
 330        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 331                return ext4_ext_calc_metadata_amount(inode, lblock);
 332
 333        return ext4_ind_calc_metadata_amount(inode, lblock);
 334}
 335
 336/*
 337 * Called with i_data_sem down, which is important since we can call
 338 * ext4_discard_preallocations() from here.
 339 */
 340void ext4_da_update_reserve_space(struct inode *inode,
 341                                        int used, int quota_claim)
 342{
 343        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 344        struct ext4_inode_info *ei = EXT4_I(inode);
 345
 346        spin_lock(&ei->i_block_reservation_lock);
 347        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 348        if (unlikely(used > ei->i_reserved_data_blocks)) {
 349                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 350                         "with only %d reserved data blocks",
 351                         __func__, inode->i_ino, used,
 352                         ei->i_reserved_data_blocks);
 353                WARN_ON(1);
 354                used = ei->i_reserved_data_blocks;
 355        }
 356
 357        if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
 358                ext4_warning(inode->i_sb, "ino %lu, allocated %d "
 359                        "with only %d reserved metadata blocks "
 360                        "(releasing %d blocks with reserved %d data blocks)",
 361                        inode->i_ino, ei->i_allocated_meta_blocks,
 362                             ei->i_reserved_meta_blocks, used,
 363                             ei->i_reserved_data_blocks);
 364                WARN_ON(1);
 365                ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
 366        }
 367
 368        /* Update per-inode reservations */
 369        ei->i_reserved_data_blocks -= used;
 370        ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 371        percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 372                           used + ei->i_allocated_meta_blocks);
 373        ei->i_allocated_meta_blocks = 0;
 374
 375        if (ei->i_reserved_data_blocks == 0) {
 376                /*
 377                 * We can release all of the reserved metadata blocks
 378                 * only when we have written all of the delayed
 379                 * allocation blocks.
 380                 */
 381                percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 382                                   ei->i_reserved_meta_blocks);
 383                ei->i_reserved_meta_blocks = 0;
 384                ei->i_da_metadata_calc_len = 0;
 385        }
 386        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 387
 388        /* Update quota subsystem for data blocks */
 389        if (quota_claim)
 390                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 391        else {
 392                /*
 393                 * We did fallocate with an offset that is already delayed
 394                 * allocated. So on delayed allocated writeback we should
 395                 * not re-claim the quota for fallocated blocks.
 396                 */
 397                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 398        }
 399
 400        /*
 401         * If we have done all the pending block allocations and if
 402         * there aren't any writers on the inode, we can discard the
 403         * inode's preallocations.
 404         */
 405        if ((ei->i_reserved_data_blocks == 0) &&
 406            (atomic_read(&inode->i_writecount) == 0))
 407                ext4_discard_preallocations(inode);
 408}
 409
 410static int __check_block_validity(struct inode *inode, const char *func,
 411                                unsigned int line,
 412                                struct ext4_map_blocks *map)
 413{
 414        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 415                                   map->m_len)) {
 416                ext4_error_inode(inode, func, line, map->m_pblk,
 417                                 "lblock %lu mapped to illegal pblock "
 418                                 "(length %d)", (unsigned long) map->m_lblk,
 419                                 map->m_len);
 420                return -EIO;
 421        }
 422        return 0;
 423}
 424
 425#define check_block_validity(inode, map)        \
 426        __check_block_validity((inode), __func__, __LINE__, (map))
 427
 428#ifdef ES_AGGRESSIVE_TEST
 429static void ext4_map_blocks_es_recheck(handle_t *handle,
 430                                       struct inode *inode,
 431                                       struct ext4_map_blocks *es_map,
 432                                       struct ext4_map_blocks *map,
 433                                       int flags)
 434{
 435        int retval;
 436
 437        map->m_flags = 0;
 438        /*
 439         * There is a race window that the result is not the same.
 440         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 441         * is that we lookup a block mapping in extent status tree with
 442         * out taking i_data_sem.  So at the time the unwritten extent
 443         * could be converted.
 444         */
 445        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 446                down_read((&EXT4_I(inode)->i_data_sem));
 447        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 448                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 449                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 450        } else {
 451                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 452                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 453        }
 454        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 455                up_read((&EXT4_I(inode)->i_data_sem));
 456        /*
 457         * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
 458         * because it shouldn't be marked in es_map->m_flags.
 459         */
 460        map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
 461
 462        /*
 463         * We don't check m_len because extent will be collpased in status
 464         * tree.  So the m_len might not equal.
 465         */
 466        if (es_map->m_lblk != map->m_lblk ||
 467            es_map->m_flags != map->m_flags ||
 468            es_map->m_pblk != map->m_pblk) {
 469                printk("ES cache assertion failed for inode: %lu "
 470                       "es_cached ex [%d/%d/%llu/%x] != "
 471                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 472                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 473                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 474                       map->m_len, map->m_pblk, map->m_flags,
 475                       retval, flags);
 476        }
 477}
 478#endif /* ES_AGGRESSIVE_TEST */
 479
 480/*
 481 * The ext4_map_blocks() function tries to look up the requested blocks,
 482 * and returns if the blocks are already mapped.
 483 *
 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 485 * and store the allocated blocks in the result buffer head and mark it
 486 * mapped.
 487 *
 488 * If file type is extents based, it will call ext4_ext_map_blocks(),
 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 490 * based files
 491 *
 492 * On success, it returns the number of blocks being mapped or allocate.
 493 * if create==0 and the blocks are pre-allocated and uninitialized block,
 494 * the result buffer head is unmapped. If the create ==1, it will make sure
 495 * the buffer head is mapped.
 496 *
 497 * It returns 0 if plain look up failed (blocks have not been allocated), in
 498 * that case, buffer head is unmapped
 499 *
 500 * It returns the error in case of allocation failure.
 501 */
 502int ext4_map_blocks(handle_t *handle, struct inode *inode,
 503                    struct ext4_map_blocks *map, int flags)
 504{
 505        struct extent_status es;
 506        int retval;
 507        int ret = 0;
 508#ifdef ES_AGGRESSIVE_TEST
 509        struct ext4_map_blocks orig_map;
 510
 511        memcpy(&orig_map, map, sizeof(*map));
 512#endif
 513
 514        map->m_flags = 0;
 515        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 516                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 517                  (unsigned long) map->m_lblk);
 518
 519        /*
 520         * ext4_map_blocks returns an int, and m_len is an unsigned int
 521         */
 522        if (unlikely(map->m_len > INT_MAX))
 523                map->m_len = INT_MAX;
 524
 525        /* We can handle the block number less than EXT_MAX_BLOCKS */
 526        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 527                return -EIO;
 528
 529        /* Lookup extent status tree firstly */
 530        if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 531                ext4_es_lru_add(inode);
 532                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 533                        map->m_pblk = ext4_es_pblock(&es) +
 534                                        map->m_lblk - es.es_lblk;
 535                        map->m_flags |= ext4_es_is_written(&es) ?
 536                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 537                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 538                        if (retval > map->m_len)
 539                                retval = map->m_len;
 540                        map->m_len = retval;
 541                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 542                        retval = 0;
 543                } else {
 544                        BUG_ON(1);
 545                }
 546#ifdef ES_AGGRESSIVE_TEST
 547                ext4_map_blocks_es_recheck(handle, inode, map,
 548                                           &orig_map, flags);
 549#endif
 550                goto found;
 551        }
 552
 553        /*
 554         * Try to see if we can get the block without requesting a new
 555         * file system block.
 556         */
 557        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 558                down_read((&EXT4_I(inode)->i_data_sem));
 559        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 560                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 561                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 562        } else {
 563                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 564                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 565        }
 566        if (retval > 0) {
 567                unsigned int status;
 568
 569                if (unlikely(retval != map->m_len)) {
 570                        ext4_warning(inode->i_sb,
 571                                     "ES len assertion failed for inode "
 572                                     "%lu: retval %d != map->m_len %d",
 573                                     inode->i_ino, retval, map->m_len);
 574                        WARN_ON(1);
 575                }
 576
 577                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 578                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 579                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 580                    ext4_find_delalloc_range(inode, map->m_lblk,
 581                                             map->m_lblk + map->m_len - 1))
 582                        status |= EXTENT_STATUS_DELAYED;
 583                ret = ext4_es_insert_extent(inode, map->m_lblk,
 584                                            map->m_len, map->m_pblk, status);
 585                if (ret < 0)
 586                        retval = ret;
 587        }
 588        if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 589                up_read((&EXT4_I(inode)->i_data_sem));
 590
 591found:
 592        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 593                ret = check_block_validity(inode, map);
 594                if (ret != 0)
 595                        return ret;
 596        }
 597
 598        /* If it is only a block(s) look up */
 599        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 600                return retval;
 601
 602        /*
 603         * Returns if the blocks have already allocated
 604         *
 605         * Note that if blocks have been preallocated
 606         * ext4_ext_get_block() returns the create = 0
 607         * with buffer head unmapped.
 608         */
 609        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 610                /*
 611                 * If we need to convert extent to unwritten
 612                 * we continue and do the actual work in
 613                 * ext4_ext_map_blocks()
 614                 */
 615                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 616                        return retval;
 617
 618        /*
 619         * Here we clear m_flags because after allocating an new extent,
 620         * it will be set again.
 621         */
 622        map->m_flags &= ~EXT4_MAP_FLAGS;
 623
 624        /*
 625         * New blocks allocate and/or writing to uninitialized extent
 626         * will possibly result in updating i_data, so we take
 627         * the write lock of i_data_sem, and call get_blocks()
 628         * with create == 1 flag.
 629         */
 630        down_write((&EXT4_I(inode)->i_data_sem));
 631
 632        /*
 633         * if the caller is from delayed allocation writeout path
 634         * we have already reserved fs blocks for allocation
 635         * let the underlying get_block() function know to
 636         * avoid double accounting
 637         */
 638        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 639                ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 640        /*
 641         * We need to check for EXT4 here because migrate
 642         * could have changed the inode type in between
 643         */
 644        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 645                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 646        } else {
 647                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 648
 649                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 650                        /*
 651                         * We allocated new blocks which will result in
 652                         * i_data's format changing.  Force the migrate
 653                         * to fail by clearing migrate flags
 654                         */
 655                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 656                }
 657
 658                /*
 659                 * Update reserved blocks/metadata blocks after successful
 660                 * block allocation which had been deferred till now. We don't
 661                 * support fallocate for non extent files. So we can update
 662                 * reserve space here.
 663                 */
 664                if ((retval > 0) &&
 665                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 666                        ext4_da_update_reserve_space(inode, retval, 1);
 667        }
 668        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 669                ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 670
 671        if (retval > 0) {
 672                unsigned int status;
 673
 674                if (unlikely(retval != map->m_len)) {
 675                        ext4_warning(inode->i_sb,
 676                                     "ES len assertion failed for inode "
 677                                     "%lu: retval %d != map->m_len %d",
 678                                     inode->i_ino, retval, map->m_len);
 679                        WARN_ON(1);
 680                }
 681
 682                /*
 683                 * If the extent has been zeroed out, we don't need to update
 684                 * extent status tree.
 685                 */
 686                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 687                    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 688                        if (ext4_es_is_written(&es))
 689                                goto has_zeroout;
 690                }
 691                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 692                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 693                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 694                    ext4_find_delalloc_range(inode, map->m_lblk,
 695                                             map->m_lblk + map->m_len - 1))
 696                        status |= EXTENT_STATUS_DELAYED;
 697                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 698                                            map->m_pblk, status);
 699                if (ret < 0)
 700                        retval = ret;
 701        }
 702
 703has_zeroout:
 704        up_write((&EXT4_I(inode)->i_data_sem));
 705        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 706                ret = check_block_validity(inode, map);
 707                if (ret != 0)
 708                        return ret;
 709        }
 710        return retval;
 711}
 712
 713/* Maximum number of blocks we map for direct IO at once. */
 714#define DIO_MAX_BLOCKS 4096
 715
 716static int _ext4_get_block(struct inode *inode, sector_t iblock,
 717                           struct buffer_head *bh, int flags)
 718{
 719        handle_t *handle = ext4_journal_current_handle();
 720        struct ext4_map_blocks map;
 721        int ret = 0, started = 0;
 722        int dio_credits;
 723
 724        if (ext4_has_inline_data(inode))
 725                return -ERANGE;
 726
 727        map.m_lblk = iblock;
 728        map.m_len = bh->b_size >> inode->i_blkbits;
 729
 730        if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
 731                /* Direct IO write... */
 732                if (map.m_len > DIO_MAX_BLOCKS)
 733                        map.m_len = DIO_MAX_BLOCKS;
 734                dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 735                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
 736                                            dio_credits);
 737                if (IS_ERR(handle)) {
 738                        ret = PTR_ERR(handle);
 739                        return ret;
 740                }
 741                started = 1;
 742        }
 743
 744        ret = ext4_map_blocks(handle, inode, &map, flags);
 745        if (ret > 0) {
 746                ext4_io_end_t *io_end = ext4_inode_aio(inode);
 747
 748                map_bh(bh, inode->i_sb, map.m_pblk);
 749                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 750                if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
 751                        set_buffer_defer_completion(bh);
 752                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 753                ret = 0;
 754        }
 755        if (started)
 756                ext4_journal_stop(handle);
 757        return ret;
 758}
 759
 760int ext4_get_block(struct inode *inode, sector_t iblock,
 761                   struct buffer_head *bh, int create)
 762{
 763        return _ext4_get_block(inode, iblock, bh,
 764                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 765}
 766
 767/*
 768 * `handle' can be NULL if create is zero
 769 */
 770struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 771                                ext4_lblk_t block, int create, int *errp)
 772{
 773        struct ext4_map_blocks map;
 774        struct buffer_head *bh;
 775        int fatal = 0, err;
 776
 777        J_ASSERT(handle != NULL || create == 0);
 778
 779        map.m_lblk = block;
 780        map.m_len = 1;
 781        err = ext4_map_blocks(handle, inode, &map,
 782                              create ? EXT4_GET_BLOCKS_CREATE : 0);
 783
 784        /* ensure we send some value back into *errp */
 785        *errp = 0;
 786
 787        if (create && err == 0)
 788                err = -ENOSPC;  /* should never happen */
 789        if (err < 0)
 790                *errp = err;
 791        if (err <= 0)
 792                return NULL;
 793
 794        bh = sb_getblk(inode->i_sb, map.m_pblk);
 795        if (unlikely(!bh)) {
 796                *errp = -ENOMEM;
 797                return NULL;
 798        }
 799        if (map.m_flags & EXT4_MAP_NEW) {
 800                J_ASSERT(create != 0);
 801                J_ASSERT(handle != NULL);
 802
 803                /*
 804                 * Now that we do not always journal data, we should
 805                 * keep in mind whether this should always journal the
 806                 * new buffer as metadata.  For now, regular file
 807                 * writes use ext4_get_block instead, so it's not a
 808                 * problem.
 809                 */
 810                lock_buffer(bh);
 811                BUFFER_TRACE(bh, "call get_create_access");
 812                fatal = ext4_journal_get_create_access(handle, bh);
 813                if (!fatal && !buffer_uptodate(bh)) {
 814                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 815                        set_buffer_uptodate(bh);
 816                }
 817                unlock_buffer(bh);
 818                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 819                err = ext4_handle_dirty_metadata(handle, inode, bh);
 820                if (!fatal)
 821                        fatal = err;
 822        } else {
 823                BUFFER_TRACE(bh, "not a new buffer");
 824        }
 825        if (fatal) {
 826                *errp = fatal;
 827                brelse(bh);
 828                bh = NULL;
 829        }
 830        return bh;
 831}
 832
 833struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 834                               ext4_lblk_t block, int create, int *err)
 835{
 836        struct buffer_head *bh;
 837
 838        bh = ext4_getblk(handle, inode, block, create, err);
 839        if (!bh)
 840                return bh;
 841        if (buffer_uptodate(bh))
 842                return bh;
 843        ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 844        wait_on_buffer(bh);
 845        if (buffer_uptodate(bh))
 846                return bh;
 847        put_bh(bh);
 848        *err = -EIO;
 849        return NULL;
 850}
 851
 852int ext4_walk_page_buffers(handle_t *handle,
 853                           struct buffer_head *head,
 854                           unsigned from,
 855                           unsigned to,
 856                           int *partial,
 857                           int (*fn)(handle_t *handle,
 858                                     struct buffer_head *bh))
 859{
 860        struct buffer_head *bh;
 861        unsigned block_start, block_end;
 862        unsigned blocksize = head->b_size;
 863        int err, ret = 0;
 864        struct buffer_head *next;
 865
 866        for (bh = head, block_start = 0;
 867             ret == 0 && (bh != head || !block_start);
 868             block_start = block_end, bh = next) {
 869                next = bh->b_this_page;
 870                block_end = block_start + blocksize;
 871                if (block_end <= from || block_start >= to) {
 872                        if (partial && !buffer_uptodate(bh))
 873                                *partial = 1;
 874                        continue;
 875                }
 876                err = (*fn)(handle, bh);
 877                if (!ret)
 878                        ret = err;
 879        }
 880        return ret;
 881}
 882
 883/*
 884 * To preserve ordering, it is essential that the hole instantiation and
 885 * the data write be encapsulated in a single transaction.  We cannot
 886 * close off a transaction and start a new one between the ext4_get_block()
 887 * and the commit_write().  So doing the jbd2_journal_start at the start of
 888 * prepare_write() is the right place.
 889 *
 890 * Also, this function can nest inside ext4_writepage().  In that case, we
 891 * *know* that ext4_writepage() has generated enough buffer credits to do the
 892 * whole page.  So we won't block on the journal in that case, which is good,
 893 * because the caller may be PF_MEMALLOC.
 894 *
 895 * By accident, ext4 can be reentered when a transaction is open via
 896 * quota file writes.  If we were to commit the transaction while thus
 897 * reentered, there can be a deadlock - we would be holding a quota
 898 * lock, and the commit would never complete if another thread had a
 899 * transaction open and was blocking on the quota lock - a ranking
 900 * violation.
 901 *
 902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 903 * will _not_ run commit under these circumstances because handle->h_ref
 904 * is elevated.  We'll still have enough credits for the tiny quotafile
 905 * write.
 906 */
 907int do_journal_get_write_access(handle_t *handle,
 908                                struct buffer_head *bh)
 909{
 910        int dirty = buffer_dirty(bh);
 911        int ret;
 912
 913        if (!buffer_mapped(bh) || buffer_freed(bh))
 914                return 0;
 915        /*
 916         * __block_write_begin() could have dirtied some buffers. Clean
 917         * the dirty bit as jbd2_journal_get_write_access() could complain
 918         * otherwise about fs integrity issues. Setting of the dirty bit
 919         * by __block_write_begin() isn't a real problem here as we clear
 920         * the bit before releasing a page lock and thus writeback cannot
 921         * ever write the buffer.
 922         */
 923        if (dirty)
 924                clear_buffer_dirty(bh);
 925        ret = ext4_journal_get_write_access(handle, bh);
 926        if (!ret && dirty)
 927                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 928        return ret;
 929}
 930
 931static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
 932                   struct buffer_head *bh_result, int create);
 933static int ext4_write_begin(struct file *file, struct address_space *mapping,
 934                            loff_t pos, unsigned len, unsigned flags,
 935                            struct page **pagep, void **fsdata)
 936{
 937        struct inode *inode = mapping->host;
 938        int ret, needed_blocks;
 939        handle_t *handle;
 940        int retries = 0;
 941        struct page *page;
 942        pgoff_t index;
 943        unsigned from, to;
 944
 945        trace_ext4_write_begin(inode, pos, len, flags);
 946        /*
 947         * Reserve one block more for addition to orphan list in case
 948         * we allocate blocks but write fails for some reason
 949         */
 950        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 951        index = pos >> PAGE_CACHE_SHIFT;
 952        from = pos & (PAGE_CACHE_SIZE - 1);
 953        to = from + len;
 954
 955        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
 956                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
 957                                                    flags, pagep);
 958                if (ret < 0)
 959                        return ret;
 960                if (ret == 1)
 961                        return 0;
 962        }
 963
 964        /*
 965         * grab_cache_page_write_begin() can take a long time if the
 966         * system is thrashing due to memory pressure, or if the page
 967         * is being written back.  So grab it first before we start
 968         * the transaction handle.  This also allows us to allocate
 969         * the page (if needed) without using GFP_NOFS.
 970         */
 971retry_grab:
 972        page = grab_cache_page_write_begin(mapping, index, flags);
 973        if (!page)
 974                return -ENOMEM;
 975        unlock_page(page);
 976
 977retry_journal:
 978        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
 979        if (IS_ERR(handle)) {
 980                page_cache_release(page);
 981                return PTR_ERR(handle);
 982        }
 983
 984        lock_page(page);
 985        if (page->mapping != mapping) {
 986                /* The page got truncated from under us */
 987                unlock_page(page);
 988                page_cache_release(page);
 989                ext4_journal_stop(handle);
 990                goto retry_grab;
 991        }
 992        /* In case writeback began while the page was unlocked */
 993        wait_for_stable_page(page);
 994
 995        if (ext4_should_dioread_nolock(inode))
 996                ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 997        else
 998                ret = __block_write_begin(page, pos, len, ext4_get_block);
 999
1000        if (!ret && ext4_should_journal_data(inode)) {
1001                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002                                             from, to, NULL,
1003                                             do_journal_get_write_access);
1004        }
1005
1006        if (ret) {
1007                unlock_page(page);
1008                /*
1009                 * __block_write_begin may have instantiated a few blocks
1010                 * outside i_size.  Trim these off again. Don't need
1011                 * i_size_read because we hold i_mutex.
1012                 *
1013                 * Add inode to orphan list in case we crash before
1014                 * truncate finishes
1015                 */
1016                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017                        ext4_orphan_add(handle, inode);
1018
1019                ext4_journal_stop(handle);
1020                if (pos + len > inode->i_size) {
1021                        ext4_truncate_failed_write(inode);
1022                        /*
1023                         * If truncate failed early the inode might
1024                         * still be on the orphan list; we need to
1025                         * make sure the inode is removed from the
1026                         * orphan list in that case.
1027                         */
1028                        if (inode->i_nlink)
1029                                ext4_orphan_del(NULL, inode);
1030                }
1031
1032                if (ret == -ENOSPC &&
1033                    ext4_should_retry_alloc(inode->i_sb, &retries))
1034                        goto retry_journal;
1035                page_cache_release(page);
1036                return ret;
1037        }
1038        *pagep = page;
1039        return ret;
1040}
1041
1042/* For write_end() in data=journal mode */
1043static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1044{
1045        int ret;
1046        if (!buffer_mapped(bh) || buffer_freed(bh))
1047                return 0;
1048        set_buffer_uptodate(bh);
1049        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050        clear_buffer_meta(bh);
1051        clear_buffer_prio(bh);
1052        return ret;
1053}
1054
1055/*
1056 * We need to pick up the new inode size which generic_commit_write gave us
1057 * `file' can be NULL - eg, when called from page_symlink().
1058 *
1059 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1060 * buffers are managed internally.
1061 */
1062static int ext4_write_end(struct file *file,
1063                          struct address_space *mapping,
1064                          loff_t pos, unsigned len, unsigned copied,
1065                          struct page *page, void *fsdata)
1066{
1067        handle_t *handle = ext4_journal_current_handle();
1068        struct inode *inode = mapping->host;
1069        int ret = 0, ret2;
1070        int i_size_changed = 0;
1071
1072        trace_ext4_write_end(inode, pos, len, copied);
1073        if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074                ret = ext4_jbd2_file_inode(handle, inode);
1075                if (ret) {
1076                        unlock_page(page);
1077                        page_cache_release(page);
1078                        goto errout;
1079                }
1080        }
1081
1082        if (ext4_has_inline_data(inode)) {
1083                ret = ext4_write_inline_data_end(inode, pos, len,
1084                                                 copied, page);
1085                if (ret < 0)
1086                        goto errout;
1087                copied = ret;
1088        } else
1089                copied = block_write_end(file, mapping, pos,
1090                                         len, copied, page, fsdata);
1091
1092        /*
1093         * No need to use i_size_read() here, the i_size
1094         * cannot change under us because we hole i_mutex.
1095         *
1096         * But it's important to update i_size while still holding page lock:
1097         * page writeout could otherwise come in and zero beyond i_size.
1098         */
1099        if (pos + copied > inode->i_size) {
1100                i_size_write(inode, pos + copied);
1101                i_size_changed = 1;
1102        }
1103
1104        if (pos + copied > EXT4_I(inode)->i_disksize) {
1105                /* We need to mark inode dirty even if
1106                 * new_i_size is less that inode->i_size
1107                 * but greater than i_disksize. (hint delalloc)
1108                 */
1109                ext4_update_i_disksize(inode, (pos + copied));
1110                i_size_changed = 1;
1111        }
1112        unlock_page(page);
1113        page_cache_release(page);
1114
1115        /*
1116         * Don't mark the inode dirty under page lock. First, it unnecessarily
1117         * makes the holding time of page lock longer. Second, it forces lock
1118         * ordering of page lock and transaction start for journaling
1119         * filesystems.
1120         */
1121        if (i_size_changed)
1122                ext4_mark_inode_dirty(handle, inode);
1123
1124        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125                /* if we have allocated more blocks and copied
1126                 * less. We will have blocks allocated outside
1127                 * inode->i_size. So truncate them
1128                 */
1129                ext4_orphan_add(handle, inode);
1130errout:
1131        ret2 = ext4_journal_stop(handle);
1132        if (!ret)
1133                ret = ret2;
1134
1135        if (pos + len > inode->i_size) {
1136                ext4_truncate_failed_write(inode);
1137                /*
1138                 * If truncate failed early the inode might still be
1139                 * on the orphan list; we need to make sure the inode
1140                 * is removed from the orphan list in that case.
1141                 */
1142                if (inode->i_nlink)
1143                        ext4_orphan_del(NULL, inode);
1144        }
1145
1146        return ret ? ret : copied;
1147}
1148
1149static int ext4_journalled_write_end(struct file *file,
1150                                     struct address_space *mapping,
1151                                     loff_t pos, unsigned len, unsigned copied,
1152                                     struct page *page, void *fsdata)
1153{
1154        handle_t *handle = ext4_journal_current_handle();
1155        struct inode *inode = mapping->host;
1156        int ret = 0, ret2;
1157        int partial = 0;
1158        unsigned from, to;
1159        loff_t new_i_size;
1160
1161        trace_ext4_journalled_write_end(inode, pos, len, copied);
1162        from = pos & (PAGE_CACHE_SIZE - 1);
1163        to = from + len;
1164
1165        BUG_ON(!ext4_handle_valid(handle));
1166
1167        if (ext4_has_inline_data(inode))
1168                copied = ext4_write_inline_data_end(inode, pos, len,
1169                                                    copied, page);
1170        else {
1171                if (copied < len) {
1172                        if (!PageUptodate(page))
1173                                copied = 0;
1174                        page_zero_new_buffers(page, from+copied, to);
1175                }
1176
1177                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178                                             to, &partial, write_end_fn);
1179                if (!partial)
1180                        SetPageUptodate(page);
1181        }
1182        new_i_size = pos + copied;
1183        if (new_i_size > inode->i_size)
1184                i_size_write(inode, pos+copied);
1185        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187        if (new_i_size > EXT4_I(inode)->i_disksize) {
1188                ext4_update_i_disksize(inode, new_i_size);
1189                ret2 = ext4_mark_inode_dirty(handle, inode);
1190                if (!ret)
1191                        ret = ret2;
1192        }
1193
1194        unlock_page(page);
1195        page_cache_release(page);
1196        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197                /* if we have allocated more blocks and copied
1198                 * less. We will have blocks allocated outside
1199                 * inode->i_size. So truncate them
1200                 */
1201                ext4_orphan_add(handle, inode);
1202
1203        ret2 = ext4_journal_stop(handle);
1204        if (!ret)
1205                ret = ret2;
1206        if (pos + len > inode->i_size) {
1207                ext4_truncate_failed_write(inode);
1208                /*
1209                 * If truncate failed early the inode might still be
1210                 * on the orphan list; we need to make sure the inode
1211                 * is removed from the orphan list in that case.
1212                 */
1213                if (inode->i_nlink)
1214                        ext4_orphan_del(NULL, inode);
1215        }
1216
1217        return ret ? ret : copied;
1218}
1219
1220/*
1221 * Reserve a metadata for a single block located at lblock
1222 */
1223static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224{
1225        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226        struct ext4_inode_info *ei = EXT4_I(inode);
1227        unsigned int md_needed;
1228        ext4_lblk_t save_last_lblock;
1229        int save_len;
1230
1231        /*
1232         * recalculate the amount of metadata blocks to reserve
1233         * in order to allocate nrblocks
1234         * worse case is one extent per block
1235         */
1236        spin_lock(&ei->i_block_reservation_lock);
1237        /*
1238         * ext4_calc_metadata_amount() has side effects, which we have
1239         * to be prepared undo if we fail to claim space.
1240         */
1241        save_len = ei->i_da_metadata_calc_len;
1242        save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243        md_needed = EXT4_NUM_B2C(sbi,
1244                                 ext4_calc_metadata_amount(inode, lblock));
1245        trace_ext4_da_reserve_space(inode, md_needed);
1246
1247        /*
1248         * We do still charge estimated metadata to the sb though;
1249         * we cannot afford to run out of free blocks.
1250         */
1251        if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252                ei->i_da_metadata_calc_len = save_len;
1253                ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254                spin_unlock(&ei->i_block_reservation_lock);
1255                return -ENOSPC;
1256        }
1257        ei->i_reserved_meta_blocks += md_needed;
1258        spin_unlock(&ei->i_block_reservation_lock);
1259
1260        return 0;       /* success */
1261}
1262
1263/*
1264 * Reserve a single cluster located at lblock
1265 */
1266static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267{
1268        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269        struct ext4_inode_info *ei = EXT4_I(inode);
1270        unsigned int md_needed;
1271        int ret;
1272        ext4_lblk_t save_last_lblock;
1273        int save_len;
1274
1275        /*
1276         * We will charge metadata quota at writeout time; this saves
1277         * us from metadata over-estimation, though we may go over by
1278         * a small amount in the end.  Here we just reserve for data.
1279         */
1280        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281        if (ret)
1282                return ret;
1283
1284        /*
1285         * recalculate the amount of metadata blocks to reserve
1286         * in order to allocate nrblocks
1287         * worse case is one extent per block
1288         */
1289        spin_lock(&ei->i_block_reservation_lock);
1290        /*
1291         * ext4_calc_metadata_amount() has side effects, which we have
1292         * to be prepared undo if we fail to claim space.
1293         */
1294        save_len = ei->i_da_metadata_calc_len;
1295        save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296        md_needed = EXT4_NUM_B2C(sbi,
1297                                 ext4_calc_metadata_amount(inode, lblock));
1298        trace_ext4_da_reserve_space(inode, md_needed);
1299
1300        /*
1301         * We do still charge estimated metadata to the sb though;
1302         * we cannot afford to run out of free blocks.
1303         */
1304        if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305                ei->i_da_metadata_calc_len = save_len;
1306                ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307                spin_unlock(&ei->i_block_reservation_lock);
1308                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309                return -ENOSPC;
1310        }
1311        ei->i_reserved_data_blocks++;
1312        ei->i_reserved_meta_blocks += md_needed;
1313        spin_unlock(&ei->i_block_reservation_lock);
1314
1315        return 0;       /* success */
1316}
1317
1318static void ext4_da_release_space(struct inode *inode, int to_free)
1319{
1320        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321        struct ext4_inode_info *ei = EXT4_I(inode);
1322
1323        if (!to_free)
1324                return;         /* Nothing to release, exit */
1325
1326        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327
1328        trace_ext4_da_release_space(inode, to_free);
1329        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330                /*
1331                 * if there aren't enough reserved blocks, then the
1332                 * counter is messed up somewhere.  Since this
1333                 * function is called from invalidate page, it's
1334                 * harmless to return without any action.
1335                 */
1336                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337                         "ino %lu, to_free %d with only %d reserved "
1338                         "data blocks", inode->i_ino, to_free,
1339                         ei->i_reserved_data_blocks);
1340                WARN_ON(1);
1341                to_free = ei->i_reserved_data_blocks;
1342        }
1343        ei->i_reserved_data_blocks -= to_free;
1344
1345        if (ei->i_reserved_data_blocks == 0) {
1346                /*
1347                 * We can release all of the reserved metadata blocks
1348                 * only when we have written all of the delayed
1349                 * allocation blocks.
1350                 * Note that in case of bigalloc, i_reserved_meta_blocks,
1351                 * i_reserved_data_blocks, etc. refer to number of clusters.
1352                 */
1353                percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354                                   ei->i_reserved_meta_blocks);
1355                ei->i_reserved_meta_blocks = 0;
1356                ei->i_da_metadata_calc_len = 0;
1357        }
1358
1359        /* update fs dirty data blocks counter */
1360        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361
1362        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365}
1366
1367static void ext4_da_page_release_reservation(struct page *page,
1368                                             unsigned int offset,
1369                                             unsigned int length)
1370{
1371        int to_release = 0;
1372        struct buffer_head *head, *bh;
1373        unsigned int curr_off = 0;
1374        struct inode *inode = page->mapping->host;
1375        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376        unsigned int stop = offset + length;
1377        int num_clusters;
1378        ext4_fsblk_t lblk;
1379
1380        BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
1382        head = page_buffers(page);
1383        bh = head;
1384        do {
1385                unsigned int next_off = curr_off + bh->b_size;
1386
1387                if (next_off > stop)
1388                        break;
1389
1390                if ((offset <= curr_off) && (buffer_delay(bh))) {
1391                        to_release++;
1392                        clear_buffer_delay(bh);
1393                }
1394                curr_off = next_off;
1395        } while ((bh = bh->b_this_page) != head);
1396
1397        if (to_release) {
1398                lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399                ext4_es_remove_extent(inode, lblk, to_release);
1400        }
1401
1402        /* If we have released all the blocks belonging to a cluster, then we
1403         * need to release the reserved space for that cluster. */
1404        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405        while (num_clusters > 0) {
1406                lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407                        ((num_clusters - 1) << sbi->s_cluster_bits);
1408                if (sbi->s_cluster_ratio == 1 ||
1409                    !ext4_find_delalloc_cluster(inode, lblk))
1410                        ext4_da_release_space(inode, 1);
1411
1412                num_clusters--;
1413        }
1414}
1415
1416/*
1417 * Delayed allocation stuff
1418 */
1419
1420struct mpage_da_data {
1421        struct inode *inode;
1422        struct writeback_control *wbc;
1423
1424        pgoff_t first_page;     /* The first page to write */
1425        pgoff_t next_page;      /* Current page to examine */
1426        pgoff_t last_page;      /* Last page to examine */
1427        /*
1428         * Extent to map - this can be after first_page because that can be
1429         * fully mapped. We somewhat abuse m_flags to store whether the extent
1430         * is delalloc or unwritten.
1431         */
1432        struct ext4_map_blocks map;
1433        struct ext4_io_submit io_submit;        /* IO submission data */
1434};
1435
1436static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437                                       bool invalidate)
1438{
1439        int nr_pages, i;
1440        pgoff_t index, end;
1441        struct pagevec pvec;
1442        struct inode *inode = mpd->inode;
1443        struct address_space *mapping = inode->i_mapping;
1444
1445        /* This is necessary when next_page == 0. */
1446        if (mpd->first_page >= mpd->next_page)
1447                return;
1448
1449        index = mpd->first_page;
1450        end   = mpd->next_page - 1;
1451        if (invalidate) {
1452                ext4_lblk_t start, last;
1453                start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454                last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455                ext4_es_remove_extent(inode, start, last - start + 1);
1456        }
1457
1458        pagevec_init(&pvec, 0);
1459        while (index <= end) {
1460                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461                if (nr_pages == 0)
1462                        break;
1463                for (i = 0; i < nr_pages; i++) {
1464                        struct page *page = pvec.pages[i];
1465                        if (page->index > end)
1466                                break;
1467                        BUG_ON(!PageLocked(page));
1468                        BUG_ON(PageWriteback(page));
1469                        if (invalidate) {
1470                                block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471                                ClearPageUptodate(page);
1472                        }
1473                        unlock_page(page);
1474                }
1475                index = pvec.pages[nr_pages - 1]->index + 1;
1476                pagevec_release(&pvec);
1477        }
1478}
1479
1480static void ext4_print_free_blocks(struct inode *inode)
1481{
1482        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483        struct super_block *sb = inode->i_sb;
1484        struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487               EXT4_C2B(EXT4_SB(inode->i_sb),
1488                        ext4_count_free_clusters(sb)));
1489        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491               (long long) EXT4_C2B(EXT4_SB(sb),
1492                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494               (long long) EXT4_C2B(EXT4_SB(sb),
1495                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498                 ei->i_reserved_data_blocks);
1499        ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500               ei->i_reserved_meta_blocks);
1501        ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502               ei->i_allocated_meta_blocks);
1503        return;
1504}
1505
1506static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507{
1508        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509}
1510
1511/*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1516 */
1517static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518                              struct ext4_map_blocks *map,
1519                              struct buffer_head *bh)
1520{
1521        struct extent_status es;
1522        int retval;
1523        sector_t invalid_block = ~((sector_t) 0xffff);
1524#ifdef ES_AGGRESSIVE_TEST
1525        struct ext4_map_blocks orig_map;
1526
1527        memcpy(&orig_map, map, sizeof(*map));
1528#endif
1529
1530        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531                invalid_block = ~0;
1532
1533        map->m_flags = 0;
1534        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535                  "logical block %lu\n", inode->i_ino, map->m_len,
1536                  (unsigned long) map->m_lblk);
1537
1538        /* Lookup extent status tree firstly */
1539        if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540                ext4_es_lru_add(inode);
1541                if (ext4_es_is_hole(&es)) {
1542                        retval = 0;
1543                        down_read((&EXT4_I(inode)->i_data_sem));
1544                        goto add_delayed;
1545                }
1546
1547                /*
1548                 * Delayed extent could be allocated by fallocate.
1549                 * So we need to check it.
1550                 */
1551                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552                        map_bh(bh, inode->i_sb, invalid_block);
1553                        set_buffer_new(bh);
1554                        set_buffer_delay(bh);
1555                        return 0;
1556                }
1557
1558                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559                retval = es.es_len - (iblock - es.es_lblk);
1560                if (retval > map->m_len)
1561                        retval = map->m_len;
1562                map->m_len = retval;
1563                if (ext4_es_is_written(&es))
1564                        map->m_flags |= EXT4_MAP_MAPPED;
1565                else if (ext4_es_is_unwritten(&es))
1566                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1567                else
1568                        BUG_ON(1);
1569
1570#ifdef ES_AGGRESSIVE_TEST
1571                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572#endif
1573                return retval;
1574        }
1575
1576        /*
1577         * Try to see if we can get the block without requesting a new
1578         * file system block.
1579         */
1580        down_read((&EXT4_I(inode)->i_data_sem));
1581        if (ext4_has_inline_data(inode)) {
1582                /*
1583                 * We will soon create blocks for this page, and let
1584                 * us pretend as if the blocks aren't allocated yet.
1585                 * In case of clusters, we have to handle the work
1586                 * of mapping from cluster so that the reserved space
1587                 * is calculated properly.
1588                 */
1589                if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590                    ext4_find_delalloc_cluster(inode, map->m_lblk))
1591                        map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592                retval = 0;
1593        } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594                retval = ext4_ext_map_blocks(NULL, inode, map,
1595                                             EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596        else
1597                retval = ext4_ind_map_blocks(NULL, inode, map,
1598                                             EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599
1600add_delayed:
1601        if (retval == 0) {
1602                int ret;
1603                /*
1604                 * XXX: __block_prepare_write() unmaps passed block,
1605                 * is it OK?
1606                 */
1607                /*
1608                 * If the block was allocated from previously allocated cluster,
1609                 * then we don't need to reserve it again. However we still need
1610                 * to reserve metadata for every block we're going to write.
1611                 */
1612                if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613                        ret = ext4_da_reserve_space(inode, iblock);
1614                        if (ret) {
1615                                /* not enough space to reserve */
1616                                retval = ret;
1617                                goto out_unlock;
1618                        }
1619                } else {
1620                        ret = ext4_da_reserve_metadata(inode, iblock);
1621                        if (ret) {
1622                                /* not enough space to reserve */
1623                                retval = ret;
1624                                goto out_unlock;
1625                        }
1626                }
1627
1628                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629                                            ~0, EXTENT_STATUS_DELAYED);
1630                if (ret) {
1631                        retval = ret;
1632                        goto out_unlock;
1633                }
1634
1635                /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636                 * and it should not appear on the bh->b_state.
1637                 */
1638                map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640                map_bh(bh, inode->i_sb, invalid_block);
1641                set_buffer_new(bh);
1642                set_buffer_delay(bh);
1643        } else if (retval > 0) {
1644                int ret;
1645                unsigned int status;
1646
1647                if (unlikely(retval != map->m_len)) {
1648                        ext4_warning(inode->i_sb,
1649                                     "ES len assertion failed for inode "
1650                                     "%lu: retval %d != map->m_len %d",
1651                                     inode->i_ino, retval, map->m_len);
1652                        WARN_ON(1);
1653                }
1654
1655                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658                                            map->m_pblk, status);
1659                if (ret != 0)
1660                        retval = ret;
1661        }
1662
1663out_unlock:
1664        up_read((&EXT4_I(inode)->i_data_sem));
1665
1666        return retval;
1667}
1668
1669/*
1670 * This is a special get_blocks_t callback which is used by
1671 * ext4_da_write_begin().  It will either return mapped block or
1672 * reserve space for a single block.
1673 *
1674 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675 * We also have b_blocknr = -1 and b_bdev initialized properly
1676 *
1677 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679 * initialized properly.
1680 */
1681int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682                           struct buffer_head *bh, int create)
1683{
1684        struct ext4_map_blocks map;
1685        int ret = 0;
1686
1687        BUG_ON(create == 0);
1688        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690        map.m_lblk = iblock;
1691        map.m_len = 1;
1692
1693        /*
1694         * first, we need to know whether the block is allocated already
1695         * preallocated blocks are unmapped but should treated
1696         * the same as allocated blocks.
1697         */
1698        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699        if (ret <= 0)
1700                return ret;
1701
1702        map_bh(bh, inode->i_sb, map.m_pblk);
1703        bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705        if (buffer_unwritten(bh)) {
1706                /* A delayed write to unwritten bh should be marked
1707                 * new and mapped.  Mapped ensures that we don't do
1708                 * get_block multiple times when we write to the same
1709                 * offset and new ensures that we do proper zero out
1710                 * for partial write.
1711                 */
1712                set_buffer_new(bh);
1713                set_buffer_mapped(bh);
1714        }
1715        return 0;
1716}
1717
1718static int bget_one(handle_t *handle, struct buffer_head *bh)
1719{
1720        get_bh(bh);
1721        return 0;
1722}
1723
1724static int bput_one(handle_t *handle, struct buffer_head *bh)
1725{
1726        put_bh(bh);
1727        return 0;
1728}
1729
1730static int __ext4_journalled_writepage(struct page *page,
1731                                       unsigned int len)
1732{
1733        struct address_space *mapping = page->mapping;
1734        struct inode *inode = mapping->host;
1735        struct buffer_head *page_bufs = NULL;
1736        handle_t *handle = NULL;
1737        int ret = 0, err = 0;
1738        int inline_data = ext4_has_inline_data(inode);
1739        struct buffer_head *inode_bh = NULL;
1740
1741        ClearPageChecked(page);
1742
1743        if (inline_data) {
1744                BUG_ON(page->index != 0);
1745                BUG_ON(len > ext4_get_max_inline_size(inode));
1746                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747                if (inode_bh == NULL)
1748                        goto out;
1749        } else {
1750                page_bufs = page_buffers(page);
1751                if (!page_bufs) {
1752                        BUG();
1753                        goto out;
1754                }
1755                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756                                       NULL, bget_one);
1757        }
1758        /* As soon as we unlock the page, it can go away, but we have
1759         * references to buffers so we are safe */
1760        unlock_page(page);
1761
1762        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763                                    ext4_writepage_trans_blocks(inode));
1764        if (IS_ERR(handle)) {
1765                ret = PTR_ERR(handle);
1766                goto out;
1767        }
1768
1769        BUG_ON(!ext4_handle_valid(handle));
1770
1771        if (inline_data) {
1772                ret = ext4_journal_get_write_access(handle, inode_bh);
1773
1774                err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776        } else {
1777                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778                                             do_journal_get_write_access);
1779
1780                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781                                             write_end_fn);
1782        }
1783        if (ret == 0)
1784                ret = err;
1785        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786        err = ext4_journal_stop(handle);
1787        if (!ret)
1788                ret = err;
1789
1790        if (!ext4_has_inline_data(inode))
1791                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792                                       NULL, bput_one);
1793        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794out:
1795        brelse(inode_bh);
1796        return ret;
1797}
1798
1799/*
1800 * Note that we don't need to start a transaction unless we're journaling data
1801 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802 * need to file the inode to the transaction's list in ordered mode because if
1803 * we are writing back data added by write(), the inode is already there and if
1804 * we are writing back data modified via mmap(), no one guarantees in which
1805 * transaction the data will hit the disk. In case we are journaling data, we
1806 * cannot start transaction directly because transaction start ranks above page
1807 * lock so we have to do some magic.
1808 *
1809 * This function can get called via...
1810 *   - ext4_writepages after taking page lock (have journal handle)
1811 *   - journal_submit_inode_data_buffers (no journal handle)
1812 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813 *   - grab_page_cache when doing write_begin (have journal handle)
1814 *
1815 * We don't do any block allocation in this function. If we have page with
1816 * multiple blocks we need to write those buffer_heads that are mapped. This
1817 * is important for mmaped based write. So if we do with blocksize 1K
1818 * truncate(f, 1024);
1819 * a = mmap(f, 0, 4096);
1820 * a[0] = 'a';
1821 * truncate(f, 4096);
1822 * we have in the page first buffer_head mapped via page_mkwrite call back
1823 * but other buffer_heads would be unmapped but dirty (dirty done via the
1824 * do_wp_page). So writepage should write the first block. If we modify
1825 * the mmap area beyond 1024 we will again get a page_fault and the
1826 * page_mkwrite callback will do the block allocation and mark the
1827 * buffer_heads mapped.
1828 *
1829 * We redirty the page if we have any buffer_heads that is either delay or
1830 * unwritten in the page.
1831 *
1832 * We can get recursively called as show below.
1833 *
1834 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835 *              ext4_writepage()
1836 *
1837 * But since we don't do any block allocation we should not deadlock.
1838 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839 */
1840static int ext4_writepage(struct page *page,
1841                          struct writeback_control *wbc)
1842{
1843        int ret = 0;
1844        loff_t size;
1845        unsigned int len;
1846        struct buffer_head *page_bufs = NULL;
1847        struct inode *inode = page->mapping->host;
1848        struct ext4_io_submit io_submit;
1849
1850        trace_ext4_writepage(page);
1851        size = i_size_read(inode);
1852        if (page->index == size >> PAGE_CACHE_SHIFT)
1853                len = size & ~PAGE_CACHE_MASK;
1854        else
1855                len = PAGE_CACHE_SIZE;
1856
1857        page_bufs = page_buffers(page);
1858        /*
1859         * We cannot do block allocation or other extent handling in this
1860         * function. If there are buffers needing that, we have to redirty
1861         * the page. But we may reach here when we do a journal commit via
1862         * journal_submit_inode_data_buffers() and in that case we must write
1863         * allocated buffers to achieve data=ordered mode guarantees.
1864         */
1865        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866                                   ext4_bh_delay_or_unwritten)) {
1867                redirty_page_for_writepage(wbc, page);
1868                if (current->flags & PF_MEMALLOC) {
1869                        /*
1870                         * For memory cleaning there's no point in writing only
1871                         * some buffers. So just bail out. Warn if we came here
1872                         * from direct reclaim.
1873                         */
1874                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875                                                        == PF_MEMALLOC);
1876                        unlock_page(page);
1877                        return 0;
1878                }
1879        }
1880
1881        if (PageChecked(page) && ext4_should_journal_data(inode))
1882                /*
1883                 * It's mmapped pagecache.  Add buffers and journal it.  There
1884                 * doesn't seem much point in redirtying the page here.
1885                 */
1886                return __ext4_journalled_writepage(page, len);
1887
1888        ext4_io_submit_init(&io_submit, wbc);
1889        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890        if (!io_submit.io_end) {
1891                redirty_page_for_writepage(wbc, page);
1892                unlock_page(page);
1893                return -ENOMEM;
1894        }
1895        ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896        ext4_io_submit(&io_submit);
1897        /* Drop io_end reference we got from init */
1898        ext4_put_io_end_defer(io_submit.io_end);
1899        return ret;
1900}
1901
1902static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903{
1904        int len;
1905        loff_t size = i_size_read(mpd->inode);
1906        int err;
1907
1908        BUG_ON(page->index != mpd->first_page);
1909        if (page->index == size >> PAGE_CACHE_SHIFT)
1910                len = size & ~PAGE_CACHE_MASK;
1911        else
1912                len = PAGE_CACHE_SIZE;
1913        clear_page_dirty_for_io(page);
1914        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915        if (!err)
1916                mpd->wbc->nr_to_write--;
1917        mpd->first_page++;
1918
1919        return err;
1920}
1921
1922#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
1924/*
1925 * mballoc gives us at most this number of blocks...
1926 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1927 * The rest of mballoc seems to handle chunks up to full group size.
1928 */
1929#define MAX_WRITEPAGES_EXTENT_LEN 2048
1930
1931/*
1932 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933 *
1934 * @mpd - extent of blocks
1935 * @lblk - logical number of the block in the file
1936 * @bh - buffer head we want to add to the extent
1937 *
1938 * The function is used to collect contig. blocks in the same state. If the
1939 * buffer doesn't require mapping for writeback and we haven't started the
1940 * extent of buffers to map yet, the function returns 'true' immediately - the
1941 * caller can write the buffer right away. Otherwise the function returns true
1942 * if the block has been added to the extent, false if the block couldn't be
1943 * added.
1944 */
1945static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946                                   struct buffer_head *bh)
1947{
1948        struct ext4_map_blocks *map = &mpd->map;
1949
1950        /* Buffer that doesn't need mapping for writeback? */
1951        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953                /* So far no extent to map => we write the buffer right away */
1954                if (map->m_len == 0)
1955                        return true;
1956                return false;
1957        }
1958
1959        /* First block in the extent? */
1960        if (map->m_len == 0) {
1961                map->m_lblk = lblk;
1962                map->m_len = 1;
1963                map->m_flags = bh->b_state & BH_FLAGS;
1964                return true;
1965        }
1966
1967        /* Don't go larger than mballoc is willing to allocate */
1968        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969                return false;
1970
1971        /* Can we merge the block to our big extent? */
1972        if (lblk == map->m_lblk + map->m_len &&
1973            (bh->b_state & BH_FLAGS) == map->m_flags) {
1974                map->m_len++;
1975                return true;
1976        }
1977        return false;
1978}
1979
1980/*
1981 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982 *
1983 * @mpd - extent of blocks for mapping
1984 * @head - the first buffer in the page
1985 * @bh - buffer we should start processing from
1986 * @lblk - logical number of the block in the file corresponding to @bh
1987 *
1988 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989 * the page for IO if all buffers in this page were mapped and there's no
1990 * accumulated extent of buffers to map or add buffers in the page to the
1991 * extent of buffers to map. The function returns 1 if the caller can continue
1992 * by processing the next page, 0 if it should stop adding buffers to the
1993 * extent to map because we cannot extend it anymore. It can also return value
1994 * < 0 in case of error during IO submission.
1995 */
1996static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997                                   struct buffer_head *head,
1998                                   struct buffer_head *bh,
1999                                   ext4_lblk_t lblk)
2000{
2001        struct inode *inode = mpd->inode;
2002        int err;
2003        ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004                                                        >> inode->i_blkbits;
2005
2006        do {
2007                BUG_ON(buffer_locked(bh));
2008
2009                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2010                        /* Found extent to map? */
2011                        if (mpd->map.m_len)
2012                                return 0;
2013                        /* Everything mapped so far and we hit EOF */
2014                        break;
2015                }
2016        } while (lblk++, (bh = bh->b_this_page) != head);
2017        /* So far everything mapped? Submit the page for IO. */
2018        if (mpd->map.m_len == 0) {
2019                err = mpage_submit_page(mpd, head->b_page);
2020                if (err < 0)
2021                        return err;
2022        }
2023        return lblk < blocks;
2024}
2025
2026/*
2027 * mpage_map_buffers - update buffers corresponding to changed extent and
2028 *                     submit fully mapped pages for IO
2029 *
2030 * @mpd - description of extent to map, on return next extent to map
2031 *
2032 * Scan buffers corresponding to changed extent (we expect corresponding pages
2033 * to be already locked) and update buffer state according to new extent state.
2034 * We map delalloc buffers to their physical location, clear unwritten bits,
2035 * and mark buffers as uninit when we perform writes to uninitialized extents
2036 * and do extent conversion after IO is finished. If the last page is not fully
2037 * mapped, we update @map to the next extent in the last page that needs
2038 * mapping. Otherwise we submit the page for IO.
2039 */
2040static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041{
2042        struct pagevec pvec;
2043        int nr_pages, i;
2044        struct inode *inode = mpd->inode;
2045        struct buffer_head *head, *bh;
2046        int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047        pgoff_t start, end;
2048        ext4_lblk_t lblk;
2049        sector_t pblock;
2050        int err;
2051
2052        start = mpd->map.m_lblk >> bpp_bits;
2053        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054        lblk = start << bpp_bits;
2055        pblock = mpd->map.m_pblk;
2056
2057        pagevec_init(&pvec, 0);
2058        while (start <= end) {
2059                nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060                                          PAGEVEC_SIZE);
2061                if (nr_pages == 0)
2062                        break;
2063                for (i = 0; i < nr_pages; i++) {
2064                        struct page *page = pvec.pages[i];
2065
2066                        if (page->index > end)
2067                                break;
2068                        /* Up to 'end' pages must be contiguous */
2069                        BUG_ON(page->index != start);
2070                        bh = head = page_buffers(page);
2071                        do {
2072                                if (lblk < mpd->map.m_lblk)
2073                                        continue;
2074                                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075                                        /*
2076                                         * Buffer after end of mapped extent.
2077                                         * Find next buffer in the page to map.
2078                                         */
2079                                        mpd->map.m_len = 0;
2080                                        mpd->map.m_flags = 0;
2081                                        /*
2082                                         * FIXME: If dioread_nolock supports
2083                                         * blocksize < pagesize, we need to make
2084                                         * sure we add size mapped so far to
2085                                         * io_end->size as the following call
2086                                         * can submit the page for IO.
2087                                         */
2088                                        err = mpage_process_page_bufs(mpd, head,
2089                                                                      bh, lblk);
2090                                        pagevec_release(&pvec);
2091                                        if (err > 0)
2092                                                err = 0;
2093                                        return err;
2094                                }
2095                                if (buffer_delay(bh)) {
2096                                        clear_buffer_delay(bh);
2097                                        bh->b_blocknr = pblock++;
2098                                }
2099                                clear_buffer_unwritten(bh);
2100                        } while (lblk++, (bh = bh->b_this_page) != head);
2101
2102                        /*
2103                         * FIXME: This is going to break if dioread_nolock
2104                         * supports blocksize < pagesize as we will try to
2105                         * convert potentially unmapped parts of inode.
2106                         */
2107                        mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108                        /* Page fully mapped - let IO run! */
2109                        err = mpage_submit_page(mpd, page);
2110                        if (err < 0) {
2111                                pagevec_release(&pvec);
2112                                return err;
2113                        }
2114                        start++;
2115                }
2116                pagevec_release(&pvec);
2117        }
2118        /* Extent fully mapped and matches with page boundary. We are done. */
2119        mpd->map.m_len = 0;
2120        mpd->map.m_flags = 0;
2121        return 0;
2122}
2123
2124static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125{
2126        struct inode *inode = mpd->inode;
2127        struct ext4_map_blocks *map = &mpd->map;
2128        int get_blocks_flags;
2129        int err;
2130
2131        trace_ext4_da_write_pages_extent(inode, map);
2132        /*
2133         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134         * to convert an uninitialized extent to be initialized (in the case
2135         * where we have written into one or more preallocated blocks).  It is
2136         * possible that we're going to need more metadata blocks than
2137         * previously reserved. However we must not fail because we're in
2138         * writeback and there is nothing we can do about it so it might result
2139         * in data loss.  So use reserved blocks to allocate metadata if
2140         * possible.
2141         *
2142         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143         * in question are delalloc blocks.  This affects functions in many
2144         * different parts of the allocation call path.  This flag exists
2145         * primarily because we don't want to change *many* call functions, so
2146         * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147         * once the inode's allocation semaphore is taken.
2148         */
2149        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150                           EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151        if (ext4_should_dioread_nolock(inode))
2152                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2153        if (map->m_flags & (1 << BH_Delay))
2154                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2155
2156        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2157        if (err < 0)
2158                return err;
2159        if (map->m_flags & EXT4_MAP_UNINIT) {
2160                if (!mpd->io_submit.io_end->handle &&
2161                    ext4_handle_valid(handle)) {
2162                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2163                        handle->h_rsv_handle = NULL;
2164                }
2165                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2166        }
2167
2168        BUG_ON(map->m_len == 0);
2169        if (map->m_flags & EXT4_MAP_NEW) {
2170                struct block_device *bdev = inode->i_sb->s_bdev;
2171                int i;
2172
2173                for (i = 0; i < map->m_len; i++)
2174                        unmap_underlying_metadata(bdev, map->m_pblk + i);
2175        }
2176        return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 *                               mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 *                     is no hope of writing the data. The caller should discard
2187 *                     dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200                                       struct mpage_da_data *mpd,
2201                                       bool *give_up_on_write)
2202{
2203        struct inode *inode = mpd->inode;
2204        struct ext4_map_blocks *map = &mpd->map;
2205        int err;
2206        loff_t disksize;
2207
2208        mpd->io_submit.io_end->offset =
2209                                ((loff_t)map->m_lblk) << inode->i_blkbits;
2210        do {
2211                err = mpage_map_one_extent(handle, mpd);
2212                if (err < 0) {
2213                        struct super_block *sb = inode->i_sb;
2214
2215                        if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2216                                goto invalidate_dirty_pages;
2217                        /*
2218                         * Let the uper layers retry transient errors.
2219                         * In the case of ENOSPC, if ext4_count_free_blocks()
2220                         * is non-zero, a commit should free up blocks.
2221                         */
2222                        if ((err == -ENOMEM) ||
2223                            (err == -ENOSPC && ext4_count_free_clusters(sb)))
2224                                return err;
2225                        ext4_msg(sb, KERN_CRIT,
2226                                 "Delayed block allocation failed for "
2227                                 "inode %lu at logical offset %llu with"
2228                                 " max blocks %u with error %d",
2229                                 inode->i_ino,
2230                                 (unsigned long long)map->m_lblk,
2231                                 (unsigned)map->m_len, -err);
2232                        ext4_msg(sb, KERN_CRIT,
2233                                 "This should not happen!! Data will "
2234                                 "be lost\n");
2235                        if (err == -ENOSPC)
2236                                ext4_print_free_blocks(inode);
2237                invalidate_dirty_pages:
2238                        *give_up_on_write = true;
2239                        return err;
2240                }
2241                /*
2242                 * Update buffer state, submit mapped pages, and get us new
2243                 * extent to map
2244                 */
2245                err = mpage_map_and_submit_buffers(mpd);
2246                if (err < 0)
2247                        return err;
2248        } while (map->m_len);
2249
2250        /*
2251         * Update on-disk size after IO is submitted.  Races with
2252         * truncate are avoided by checking i_size under i_data_sem.
2253         */
2254        disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2255        if (disksize > EXT4_I(inode)->i_disksize) {
2256                int err2;
2257                loff_t i_size;
2258
2259                down_write(&EXT4_I(inode)->i_data_sem);
2260                i_size = i_size_read(inode);
2261                if (disksize > i_size)
2262                        disksize = i_size;
2263                if (disksize > EXT4_I(inode)->i_disksize)
2264                        EXT4_I(inode)->i_disksize = disksize;
2265                err2 = ext4_mark_inode_dirty(handle, inode);
2266                up_write(&EXT4_I(inode)->i_data_sem);
2267                if (err2)
2268                        ext4_error(inode->i_sb,
2269                                   "Failed to mark inode %lu dirty",
2270                                   inode->i_ino);
2271                if (!err)
2272                        err = err2;
2273        }
2274        return err;
2275}
2276
2277/*
2278 * Calculate the total number of credits to reserve for one writepages
2279 * iteration. This is called from ext4_writepages(). We map an extent of
2280 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2281 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2282 * bpp - 1 blocks in bpp different extents.
2283 */
2284static int ext4_da_writepages_trans_blocks(struct inode *inode)
2285{
2286        int bpp = ext4_journal_blocks_per_page(inode);
2287
2288        return ext4_meta_trans_blocks(inode,
2289                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2290}
2291
2292/*
2293 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2294 *                               and underlying extent to map
2295 *
2296 * @mpd - where to look for pages
2297 *
2298 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2299 * IO immediately. When we find a page which isn't mapped we start accumulating
2300 * extent of buffers underlying these pages that needs mapping (formed by
2301 * either delayed or unwritten buffers). We also lock the pages containing
2302 * these buffers. The extent found is returned in @mpd structure (starting at
2303 * mpd->lblk with length mpd->len blocks).
2304 *
2305 * Note that this function can attach bios to one io_end structure which are
2306 * neither logically nor physically contiguous. Although it may seem as an
2307 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2308 * case as we need to track IO to all buffers underlying a page in one io_end.
2309 */
2310static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2311{
2312        struct address_space *mapping = mpd->inode->i_mapping;
2313        struct pagevec pvec;
2314        unsigned int nr_pages;
2315        long left = mpd->wbc->nr_to_write;
2316        pgoff_t index = mpd->first_page;
2317        pgoff_t end = mpd->last_page;
2318        int tag;
2319        int i, err = 0;
2320        int blkbits = mpd->inode->i_blkbits;
2321        ext4_lblk_t lblk;
2322        struct buffer_head *head;
2323
2324        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2325                tag = PAGECACHE_TAG_TOWRITE;
2326        else
2327                tag = PAGECACHE_TAG_DIRTY;
2328
2329        pagevec_init(&pvec, 0);
2330        mpd->map.m_len = 0;
2331        mpd->next_page = index;
2332        while (index <= end) {
2333                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2334                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2335                if (nr_pages == 0)
2336                        goto out;
2337
2338                for (i = 0; i < nr_pages; i++) {
2339                        struct page *page = pvec.pages[i];
2340
2341                        /*
2342                         * At this point, the page may be truncated or
2343                         * invalidated (changing page->mapping to NULL), or
2344                         * even swizzled back from swapper_space to tmpfs file
2345                         * mapping. However, page->index will not change
2346                         * because we have a reference on the page.
2347                         */
2348                        if (page->index > end)
2349                                goto out;
2350
2351                        /*
2352                         * Accumulated enough dirty pages? This doesn't apply
2353                         * to WB_SYNC_ALL mode. For integrity sync we have to
2354                         * keep going because someone may be concurrently
2355                         * dirtying pages, and we might have synced a lot of
2356                         * newly appeared dirty pages, but have not synced all
2357                         * of the old dirty pages.
2358                         */
2359                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2360                                goto out;
2361
2362                        /* If we can't merge this page, we are done. */
2363                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2364                                goto out;
2365
2366                        lock_page(page);
2367                        /*
2368                         * If the page is no longer dirty, or its mapping no
2369                         * longer corresponds to inode we are writing (which
2370                         * means it has been truncated or invalidated), or the
2371                         * page is already under writeback and we are not doing
2372                         * a data integrity writeback, skip the page
2373                         */
2374                        if (!PageDirty(page) ||
2375                            (PageWriteback(page) &&
2376                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2377                            unlikely(page->mapping != mapping)) {
2378                                unlock_page(page);
2379                                continue;
2380                        }
2381
2382                        wait_on_page_writeback(page);
2383                        BUG_ON(PageWriteback(page));
2384
2385                        if (mpd->map.m_len == 0)
2386                                mpd->first_page = page->index;
2387                        mpd->next_page = page->index + 1;
2388                        /* Add all dirty buffers to mpd */
2389                        lblk = ((ext4_lblk_t)page->index) <<
2390                                (PAGE_CACHE_SHIFT - blkbits);
2391                        head = page_buffers(page);
2392                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2393                        if (err <= 0)
2394                                goto out;
2395                        err = 0;
2396                        left--;
2397                }
2398                pagevec_release(&pvec);
2399                cond_resched();
2400        }
2401        return 0;
2402out:
2403        pagevec_release(&pvec);
2404        return err;
2405}
2406
2407static int __writepage(struct page *page, struct writeback_control *wbc,
2408                       void *data)
2409{
2410        struct address_space *mapping = data;
2411        int ret = ext4_writepage(page, wbc);
2412        mapping_set_error(mapping, ret);
2413        return ret;
2414}
2415
2416static int ext4_writepages(struct address_space *mapping,
2417                           struct writeback_control *wbc)
2418{
2419        pgoff_t writeback_index = 0;
2420        long nr_to_write = wbc->nr_to_write;
2421        int range_whole = 0;
2422        int cycled = 1;
2423        handle_t *handle = NULL;
2424        struct mpage_da_data mpd;
2425        struct inode *inode = mapping->host;
2426        int needed_blocks, rsv_blocks = 0, ret = 0;
2427        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2428        bool done;
2429        struct blk_plug plug;
2430        bool give_up_on_write = false;
2431
2432        trace_ext4_writepages(inode, wbc);
2433
2434        /*
2435         * No pages to write? This is mainly a kludge to avoid starting
2436         * a transaction for special inodes like journal inode on last iput()
2437         * because that could violate lock ordering on umount
2438         */
2439        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2440                goto out_writepages;
2441
2442        if (ext4_should_journal_data(inode)) {
2443                struct blk_plug plug;
2444
2445                blk_start_plug(&plug);
2446                ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2447                blk_finish_plug(&plug);
2448                goto out_writepages;
2449        }
2450
2451        /*
2452         * If the filesystem has aborted, it is read-only, so return
2453         * right away instead of dumping stack traces later on that
2454         * will obscure the real source of the problem.  We test
2455         * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2456         * the latter could be true if the filesystem is mounted
2457         * read-only, and in that case, ext4_writepages should
2458         * *never* be called, so if that ever happens, we would want
2459         * the stack trace.
2460         */
2461        if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2462                ret = -EROFS;
2463                goto out_writepages;
2464        }
2465
2466        if (ext4_should_dioread_nolock(inode)) {
2467                /*
2468                 * We may need to convert up to one extent per block in
2469                 * the page and we may dirty the inode.
2470                 */
2471                rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2472        }
2473
2474        /*
2475         * If we have inline data and arrive here, it means that
2476         * we will soon create the block for the 1st page, so
2477         * we'd better clear the inline data here.
2478         */
2479        if (ext4_has_inline_data(inode)) {
2480                /* Just inode will be modified... */
2481                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2482                if (IS_ERR(handle)) {
2483                        ret = PTR_ERR(handle);
2484                        goto out_writepages;
2485                }
2486                BUG_ON(ext4_test_inode_state(inode,
2487                                EXT4_STATE_MAY_INLINE_DATA));
2488                ext4_destroy_inline_data(handle, inode);
2489                ext4_journal_stop(handle);
2490        }
2491
2492        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2493                range_whole = 1;
2494
2495        if (wbc->range_cyclic) {
2496                writeback_index = mapping->writeback_index;
2497                if (writeback_index)
2498                        cycled = 0;
2499                mpd.first_page = writeback_index;
2500                mpd.last_page = -1;
2501        } else {
2502                mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2503                mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2504        }
2505
2506        mpd.inode = inode;
2507        mpd.wbc = wbc;
2508        ext4_io_submit_init(&mpd.io_submit, wbc);
2509retry:
2510        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2511                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2512        done = false;
2513        blk_start_plug(&plug);
2514        while (!done && mpd.first_page <= mpd.last_page) {
2515                /* For each extent of pages we use new io_end */
2516                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2517                if (!mpd.io_submit.io_end) {
2518                        ret = -ENOMEM;
2519                        break;
2520                }
2521
2522                /*
2523                 * We have two constraints: We find one extent to map and we
2524                 * must always write out whole page (makes a difference when
2525                 * blocksize < pagesize) so that we don't block on IO when we
2526                 * try to write out the rest of the page. Journalled mode is
2527                 * not supported by delalloc.
2528                 */
2529                BUG_ON(ext4_should_journal_data(inode));
2530                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2531
2532                /* start a new transaction */
2533                handle = ext4_journal_start_with_reserve(inode,
2534                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2535                if (IS_ERR(handle)) {
2536                        ret = PTR_ERR(handle);
2537                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2538                               "%ld pages, ino %lu; err %d", __func__,
2539                                wbc->nr_to_write, inode->i_ino, ret);
2540                        /* Release allocated io_end */
2541                        ext4_put_io_end(mpd.io_submit.io_end);
2542                        break;
2543                }
2544
2545                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2546                ret = mpage_prepare_extent_to_map(&mpd);
2547                if (!ret) {
2548                        if (mpd.map.m_len)
2549                                ret = mpage_map_and_submit_extent(handle, &mpd,
2550                                        &give_up_on_write);
2551                        else {
2552                                /*
2553                                 * We scanned the whole range (or exhausted
2554                                 * nr_to_write), submitted what was mapped and
2555                                 * didn't find anything needing mapping. We are
2556                                 * done.
2557                                 */
2558                                done = true;
2559                        }
2560                }
2561                ext4_journal_stop(handle);
2562                /* Submit prepared bio */
2563                ext4_io_submit(&mpd.io_submit);
2564                /* Unlock pages we didn't use */
2565                mpage_release_unused_pages(&mpd, give_up_on_write);
2566                /* Drop our io_end reference we got from init */
2567                ext4_put_io_end(mpd.io_submit.io_end);
2568
2569                if (ret == -ENOSPC && sbi->s_journal) {
2570                        /*
2571                         * Commit the transaction which would
2572                         * free blocks released in the transaction
2573                         * and try again
2574                         */
2575                        jbd2_journal_force_commit_nested(sbi->s_journal);
2576                        ret = 0;
2577                        continue;
2578                }
2579                /* Fatal error - ENOMEM, EIO... */
2580                if (ret)
2581                        break;
2582        }
2583        blk_finish_plug(&plug);
2584        if (!ret && !cycled && wbc->nr_to_write > 0) {
2585                cycled = 1;
2586                mpd.last_page = writeback_index - 1;
2587                mpd.first_page = 0;
2588                goto retry;
2589        }
2590
2591        /* Update index */
2592        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2593                /*
2594                 * Set the writeback_index so that range_cyclic
2595                 * mode will write it back later
2596                 */
2597                mapping->writeback_index = mpd.first_page;
2598
2599out_writepages:
2600        trace_ext4_writepages_result(inode, wbc, ret,
2601                                     nr_to_write - wbc->nr_to_write);
2602        return ret;
2603}
2604
2605static int ext4_nonda_switch(struct super_block *sb)
2606{
2607        s64 free_clusters, dirty_clusters;
2608        struct ext4_sb_info *sbi = EXT4_SB(sb);
2609
2610        /*
2611         * switch to non delalloc mode if we are running low
2612         * on free block. The free block accounting via percpu
2613         * counters can get slightly wrong with percpu_counter_batch getting
2614         * accumulated on each CPU without updating global counters
2615         * Delalloc need an accurate free block accounting. So switch
2616         * to non delalloc when we are near to error range.
2617         */
2618        free_clusters =
2619                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2620        dirty_clusters =
2621                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2622        /*
2623         * Start pushing delalloc when 1/2 of free blocks are dirty.
2624         */
2625        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2626                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2627
2628        if (2 * free_clusters < 3 * dirty_clusters ||
2629            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2630                /*
2631                 * free block count is less than 150% of dirty blocks
2632                 * or free blocks is less than watermark
2633                 */
2634                return 1;
2635        }
2636        return 0;
2637}
2638
2639static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2640                               loff_t pos, unsigned len, unsigned flags,
2641                               struct page **pagep, void **fsdata)
2642{
2643        int ret, retries = 0;
2644        struct page *page;
2645        pgoff_t index;
2646        struct inode *inode = mapping->host;
2647        handle_t *handle;
2648
2649        index = pos >> PAGE_CACHE_SHIFT;
2650
2651        if (ext4_nonda_switch(inode->i_sb)) {
2652                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653                return ext4_write_begin(file, mapping, pos,
2654                                        len, flags, pagep, fsdata);
2655        }
2656        *fsdata = (void *)0;
2657        trace_ext4_da_write_begin(inode, pos, len, flags);
2658
2659        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660                ret = ext4_da_write_inline_data_begin(mapping, inode,
2661                                                      pos, len, flags,
2662                                                      pagep, fsdata);
2663                if (ret < 0)
2664                        return ret;
2665                if (ret == 1)
2666                        return 0;
2667        }
2668
2669        /*
2670         * grab_cache_page_write_begin() can take a long time if the
2671         * system is thrashing due to memory pressure, or if the page
2672         * is being written back.  So grab it first before we start
2673         * the transaction handle.  This also allows us to allocate
2674         * the page (if needed) without using GFP_NOFS.
2675         */
2676retry_grab:
2677        page = grab_cache_page_write_begin(mapping, index, flags);
2678        if (!page)
2679                return -ENOMEM;
2680        unlock_page(page);
2681
2682        /*
2683         * With delayed allocation, we don't log the i_disksize update
2684         * if there is delayed block allocation. But we still need
2685         * to journalling the i_disksize update if writes to the end
2686         * of file which has an already mapped buffer.
2687         */
2688retry_journal:
2689        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2690        if (IS_ERR(handle)) {
2691                page_cache_release(page);
2692                return PTR_ERR(handle);
2693        }
2694
2695        lock_page(page);
2696        if (page->mapping != mapping) {
2697                /* The page got truncated from under us */
2698                unlock_page(page);
2699                page_cache_release(page);
2700                ext4_journal_stop(handle);
2701                goto retry_grab;
2702        }
2703        /* In case writeback began while the page was unlocked */
2704        wait_for_stable_page(page);
2705
2706        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2707        if (ret < 0) {
2708                unlock_page(page);
2709                ext4_journal_stop(handle);
2710                /*
2711                 * block_write_begin may have instantiated a few blocks
2712                 * outside i_size.  Trim these off again. Don't need
2713                 * i_size_read because we hold i_mutex.
2714                 */
2715                if (pos + len > inode->i_size)
2716                        ext4_truncate_failed_write(inode);
2717
2718                if (ret == -ENOSPC &&
2719                    ext4_should_retry_alloc(inode->i_sb, &retries))
2720                        goto retry_journal;
2721
2722                page_cache_release(page);
2723                return ret;
2724        }
2725
2726        *pagep = page;
2727        return ret;
2728}
2729
2730/*
2731 * Check if we should update i_disksize
2732 * when write to the end of file but not require block allocation
2733 */
2734static int ext4_da_should_update_i_disksize(struct page *page,
2735                                            unsigned long offset)
2736{
2737        struct buffer_head *bh;
2738        struct inode *inode = page->mapping->host;
2739        unsigned int idx;
2740        int i;
2741
2742        bh = page_buffers(page);
2743        idx = offset >> inode->i_blkbits;
2744
2745        for (i = 0; i < idx; i++)
2746                bh = bh->b_this_page;
2747
2748        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2749                return 0;
2750        return 1;
2751}
2752
2753static int ext4_da_write_end(struct file *file,
2754                             struct address_space *mapping,
2755                             loff_t pos, unsigned len, unsigned copied,
2756                             struct page *page, void *fsdata)
2757{
2758        struct inode *inode = mapping->host;
2759        int ret = 0, ret2;
2760        handle_t *handle = ext4_journal_current_handle();
2761        loff_t new_i_size;
2762        unsigned long start, end;
2763        int write_mode = (int)(unsigned long)fsdata;
2764
2765        if (write_mode == FALL_BACK_TO_NONDELALLOC)
2766                return ext4_write_end(file, mapping, pos,
2767                                      len, copied, page, fsdata);
2768
2769        trace_ext4_da_write_end(inode, pos, len, copied);
2770        start = pos & (PAGE_CACHE_SIZE - 1);
2771        end = start + copied - 1;
2772
2773        /*
2774         * generic_write_end() will run mark_inode_dirty() if i_size
2775         * changes.  So let's piggyback the i_disksize mark_inode_dirty
2776         * into that.
2777         */
2778        new_i_size = pos + copied;
2779        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2780                if (ext4_has_inline_data(inode) ||
2781                    ext4_da_should_update_i_disksize(page, end)) {
2782                        down_write(&EXT4_I(inode)->i_data_sem);
2783                        if (new_i_size > EXT4_I(inode)->i_disksize)
2784                                EXT4_I(inode)->i_disksize = new_i_size;
2785                        up_write(&EXT4_I(inode)->i_data_sem);
2786                        /* We need to mark inode dirty even if
2787                         * new_i_size is less that inode->i_size
2788                         * bu greater than i_disksize.(hint delalloc)
2789                         */
2790                        ext4_mark_inode_dirty(handle, inode);
2791                }
2792        }
2793
2794        if (write_mode != CONVERT_INLINE_DATA &&
2795            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2796            ext4_has_inline_data(inode))
2797                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2798                                                     page);
2799        else
2800                ret2 = generic_write_end(file, mapping, pos, len, copied,
2801                                                        page, fsdata);
2802
2803        copied = ret2;
2804        if (ret2 < 0)
2805                ret = ret2;
2806        ret2 = ext4_journal_stop(handle);
2807        if (!ret)
2808                ret = ret2;
2809
2810        return ret ? ret : copied;
2811}
2812
2813static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2814                                   unsigned int length)
2815{
2816        /*
2817         * Drop reserved blocks
2818         */
2819        BUG_ON(!PageLocked(page));
2820        if (!page_has_buffers(page))
2821                goto out;
2822
2823        ext4_da_page_release_reservation(page, offset, length);
2824
2825out:
2826        ext4_invalidatepage(page, offset, length);
2827
2828        return;
2829}
2830
2831/*
2832 * Force all delayed allocation blocks to be allocated for a given inode.
2833 */
2834int ext4_alloc_da_blocks(struct inode *inode)
2835{
2836        trace_ext4_alloc_da_blocks(inode);
2837
2838        if (!EXT4_I(inode)->i_reserved_data_blocks &&
2839            !EXT4_I(inode)->i_reserved_meta_blocks)
2840                return 0;
2841
2842        /*
2843         * We do something simple for now.  The filemap_flush() will
2844         * also start triggering a write of the data blocks, which is
2845         * not strictly speaking necessary (and for users of
2846         * laptop_mode, not even desirable).  However, to do otherwise
2847         * would require replicating code paths in:
2848         *
2849         * ext4_writepages() ->
2850         *    write_cache_pages() ---> (via passed in callback function)
2851         *        __mpage_da_writepage() -->
2852         *           mpage_add_bh_to_extent()
2853         *           mpage_da_map_blocks()
2854         *
2855         * The problem is that write_cache_pages(), located in
2856         * mm/page-writeback.c, marks pages clean in preparation for
2857         * doing I/O, which is not desirable if we're not planning on
2858         * doing I/O at all.
2859         *
2860         * We could call write_cache_pages(), and then redirty all of
2861         * the pages by calling redirty_page_for_writepage() but that
2862         * would be ugly in the extreme.  So instead we would need to
2863         * replicate parts of the code in the above functions,
2864         * simplifying them because we wouldn't actually intend to
2865         * write out the pages, but rather only collect contiguous
2866         * logical block extents, call the multi-block allocator, and
2867         * then update the buffer heads with the block allocations.
2868         *
2869         * For now, though, we'll cheat by calling filemap_flush(),
2870         * which will map the blocks, and start the I/O, but not
2871         * actually wait for the I/O to complete.
2872         */
2873        return filemap_flush(inode->i_mapping);
2874}
2875
2876/*
2877 * bmap() is special.  It gets used by applications such as lilo and by
2878 * the swapper to find the on-disk block of a specific piece of data.
2879 *
2880 * Naturally, this is dangerous if the block concerned is still in the
2881 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2882 * filesystem and enables swap, then they may get a nasty shock when the
2883 * data getting swapped to that swapfile suddenly gets overwritten by
2884 * the original zero's written out previously to the journal and
2885 * awaiting writeback in the kernel's buffer cache.
2886 *
2887 * So, if we see any bmap calls here on a modified, data-journaled file,
2888 * take extra steps to flush any blocks which might be in the cache.
2889 */
2890static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2891{
2892        struct inode *inode = mapping->host;
2893        journal_t *journal;
2894        int err;
2895
2896        /*
2897         * We can get here for an inline file via the FIBMAP ioctl
2898         */
2899        if (ext4_has_inline_data(inode))
2900                return 0;
2901
2902        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2903                        test_opt(inode->i_sb, DELALLOC)) {
2904                /*
2905                 * With delalloc we want to sync the file
2906                 * so that we can make sure we allocate
2907                 * blocks for file
2908                 */
2909                filemap_write_and_wait(mapping);
2910        }
2911
2912        if (EXT4_JOURNAL(inode) &&
2913            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2914                /*
2915                 * This is a REALLY heavyweight approach, but the use of
2916                 * bmap on dirty files is expected to be extremely rare:
2917                 * only if we run lilo or swapon on a freshly made file
2918                 * do we expect this to happen.
2919                 *
2920                 * (bmap requires CAP_SYS_RAWIO so this does not
2921                 * represent an unprivileged user DOS attack --- we'd be
2922                 * in trouble if mortal users could trigger this path at
2923                 * will.)
2924                 *
2925                 * NB. EXT4_STATE_JDATA is not set on files other than
2926                 * regular files.  If somebody wants to bmap a directory
2927                 * or symlink and gets confused because the buffer
2928                 * hasn't yet been flushed to disk, they deserve
2929                 * everything they get.
2930                 */
2931
2932                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2933                journal = EXT4_JOURNAL(inode);
2934                jbd2_journal_lock_updates(journal);
2935                err = jbd2_journal_flush(journal);
2936                jbd2_journal_unlock_updates(journal);
2937
2938                if (err)
2939                        return 0;
2940        }
2941
2942        return generic_block_bmap(mapping, block, ext4_get_block);
2943}
2944
2945static int ext4_readpage(struct file *file, struct page *page)
2946{
2947        int ret = -EAGAIN;
2948        struct inode *inode = page->mapping->host;
2949
2950        trace_ext4_readpage(page);
2951
2952        if (ext4_has_inline_data(inode))
2953                ret = ext4_readpage_inline(inode, page);
2954
2955        if (ret == -EAGAIN)
2956                return mpage_readpage(page, ext4_get_block);
2957
2958        return ret;
2959}
2960
2961static int
2962ext4_readpages(struct file *file, struct address_space *mapping,
2963                struct list_head *pages, unsigned nr_pages)
2964{
2965        struct inode *inode = mapping->host;
2966
2967        /* If the file has inline data, no need to do readpages. */
2968        if (ext4_has_inline_data(inode))
2969                return 0;
2970
2971        return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2972}
2973
2974static void ext4_invalidatepage(struct page *page, unsigned int offset,
2975                                unsigned int length)
2976{
2977        trace_ext4_invalidatepage(page, offset, length);
2978
2979        /* No journalling happens on data buffers when this function is used */
2980        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2981
2982        block_invalidatepage(page, offset, length);
2983}
2984
2985static int __ext4_journalled_invalidatepage(struct page *page,
2986                                            unsigned int offset,
2987                                            unsigned int length)
2988{
2989        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2990
2991        trace_ext4_journalled_invalidatepage(page, offset, length);
2992
2993        /*
2994         * If it's a full truncate we just forget about the pending dirtying
2995         */
2996        if (offset == 0 && length == PAGE_CACHE_SIZE)
2997                ClearPageChecked(page);
2998
2999        return jbd2_journal_invalidatepage(journal, page, offset, length);
3000}
3001
3002/* Wrapper for aops... */
3003static void ext4_journalled_invalidatepage(struct page *page,
3004                                           unsigned int offset,
3005                                           unsigned int length)
3006{
3007        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3008}
3009
3010static int ext4_releasepage(struct page *page, gfp_t wait)
3011{
3012        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3013
3014        trace_ext4_releasepage(page);
3015
3016        /* Page has dirty journalled data -> cannot release */
3017        if (PageChecked(page))
3018                return 0;
3019        if (journal)
3020                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3021        else
3022                return try_to_free_buffers(page);
3023}
3024
3025/*
3026 * ext4_get_block used when preparing for a DIO write or buffer write.
3027 * We allocate an uinitialized extent if blocks haven't been allocated.
3028 * The extent will be converted to initialized after the IO is complete.
3029 */
3030int ext4_get_block_write(struct inode *inode, sector_t iblock,
3031                   struct buffer_head *bh_result, int create)
3032{
3033        ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3034                   inode->i_ino, create);
3035        return _ext4_get_block(inode, iblock, bh_result,
3036                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
3037}
3038
3039static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3040                   struct buffer_head *bh_result, int create)
3041{
3042        ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3043                   inode->i_ino, create);
3044        return _ext4_get_block(inode, iblock, bh_result,
3045                               EXT4_GET_BLOCKS_NO_LOCK);
3046}
3047
3048static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3049                            ssize_t size, void *private)
3050{
3051        ext4_io_end_t *io_end = iocb->private;
3052
3053        /* if not async direct IO just return */
3054        if (!io_end)
3055                return;
3056
3057        ext_debug("ext4_end_io_dio(): io_end 0x%p "
3058                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3059                  iocb->private, io_end->inode->i_ino, iocb, offset,
3060                  size);
3061
3062        iocb->private = NULL;
3063        io_end->offset = offset;
3064        io_end->size = size;
3065        ext4_put_io_end(io_end);
3066}
3067
3068/*
3069 * For ext4 extent files, ext4 will do direct-io write to holes,
3070 * preallocated extents, and those write extend the file, no need to
3071 * fall back to buffered IO.
3072 *
3073 * For holes, we fallocate those blocks, mark them as uninitialized
3074 * If those blocks were preallocated, we mark sure they are split, but
3075 * still keep the range to write as uninitialized.
3076 *
3077 * The unwritten extents will be converted to written when DIO is completed.
3078 * For async direct IO, since the IO may still pending when return, we
3079 * set up an end_io call back function, which will do the conversion
3080 * when async direct IO completed.
3081 *
3082 * If the O_DIRECT write will extend the file then add this inode to the
3083 * orphan list.  So recovery will truncate it back to the original size
3084 * if the machine crashes during the write.
3085 *
3086 */
3087static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3088                              const struct iovec *iov, loff_t offset,
3089                              unsigned long nr_segs)
3090{
3091        struct file *file = iocb->ki_filp;
3092        struct inode *inode = file->f_mapping->host;
3093        ssize_t ret;
3094        size_t count = iov_length(iov, nr_segs);
3095        int overwrite = 0;
3096        get_block_t *get_block_func = NULL;
3097        int dio_flags = 0;
3098        loff_t final_size = offset + count;
3099        ext4_io_end_t *io_end = NULL;
3100
3101        /* Use the old path for reads and writes beyond i_size. */
3102        if (rw != WRITE || final_size > inode->i_size)
3103                return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3104
3105        BUG_ON(iocb->private == NULL);
3106
3107        /*
3108         * Make all waiters for direct IO properly wait also for extent
3109         * conversion. This also disallows race between truncate() and
3110         * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3111         */
3112        if (rw == WRITE)
3113                atomic_inc(&inode->i_dio_count);
3114
3115        /* If we do a overwrite dio, i_mutex locking can be released */
3116        overwrite = *((int *)iocb->private);
3117
3118        if (overwrite) {
3119                down_read(&EXT4_I(inode)->i_data_sem);
3120                mutex_unlock(&inode->i_mutex);
3121        }
3122
3123        /*
3124         * We could direct write to holes and fallocate.
3125         *
3126         * Allocated blocks to fill the hole are marked as
3127         * uninitialized to prevent parallel buffered read to expose
3128         * the stale data before DIO complete the data IO.
3129         *
3130         * As to previously fallocated extents, ext4 get_block will
3131         * just simply mark the buffer mapped but still keep the
3132         * extents uninitialized.
3133         *
3134         * For non AIO case, we will convert those unwritten extents
3135         * to written after return back from blockdev_direct_IO.
3136         *
3137         * For async DIO, the conversion needs to be deferred when the
3138         * IO is completed. The ext4 end_io callback function will be
3139         * called to take care of the conversion work.  Here for async
3140         * case, we allocate an io_end structure to hook to the iocb.
3141         */
3142        iocb->private = NULL;
3143        ext4_inode_aio_set(inode, NULL);
3144        if (!is_sync_kiocb(iocb)) {
3145                io_end = ext4_init_io_end(inode, GFP_NOFS);
3146                if (!io_end) {
3147                        ret = -ENOMEM;
3148                        goto retake_lock;
3149                }
3150                /*
3151                 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3152                 */
3153                iocb->private = ext4_get_io_end(io_end);
3154                /*
3155                 * we save the io structure for current async direct
3156                 * IO, so that later ext4_map_blocks() could flag the
3157                 * io structure whether there is a unwritten extents
3158                 * needs to be converted when IO is completed.
3159                 */
3160                ext4_inode_aio_set(inode, io_end);
3161        }
3162
3163        if (overwrite) {
3164                get_block_func = ext4_get_block_write_nolock;
3165        } else {
3166                get_block_func = ext4_get_block_write;
3167                dio_flags = DIO_LOCKING;
3168        }
3169        ret = __blockdev_direct_IO(rw, iocb, inode,
3170                                   inode->i_sb->s_bdev, iov,
3171                                   offset, nr_segs,
3172                                   get_block_func,
3173                                   ext4_end_io_dio,
3174                                   NULL,
3175                                   dio_flags);
3176
3177        /*
3178         * Put our reference to io_end. This can free the io_end structure e.g.
3179         * in sync IO case or in case of error. It can even perform extent
3180         * conversion if all bios we submitted finished before we got here.
3181         * Note that in that case iocb->private can be already set to NULL
3182         * here.
3183         */
3184        if (io_end) {
3185                ext4_inode_aio_set(inode, NULL);
3186                ext4_put_io_end(io_end);
3187                /*
3188                 * When no IO was submitted ext4_end_io_dio() was not
3189                 * called so we have to put iocb's reference.
3190                 */
3191                if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3192                        WARN_ON(iocb->private != io_end);
3193                        WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3194                        ext4_put_io_end(io_end);
3195                        iocb->private = NULL;
3196                }
3197        }
3198        if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3199                                                EXT4_STATE_DIO_UNWRITTEN)) {
3200                int err;
3201                /*
3202                 * for non AIO case, since the IO is already
3203                 * completed, we could do the conversion right here
3204                 */
3205                err = ext4_convert_unwritten_extents(NULL, inode,
3206                                                     offset, ret);
3207                if (err < 0)
3208                        ret = err;
3209                ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3210        }
3211
3212retake_lock:
3213        if (rw == WRITE)
3214                inode_dio_done(inode);
3215        /* take i_mutex locking again if we do a ovewrite dio */
3216        if (overwrite) {
3217                up_read(&EXT4_I(inode)->i_data_sem);
3218                mutex_lock(&inode->i_mutex);
3219        }
3220
3221        return ret;
3222}
3223
3224static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225                              const struct iovec *iov, loff_t offset,
3226                              unsigned long nr_segs)
3227{
3228        struct file *file = iocb->ki_filp;
3229        struct inode *inode = file->f_mapping->host;
3230        ssize_t ret;
3231
3232        /*
3233         * If we are doing data journalling we don't support O_DIRECT
3234         */
3235        if (ext4_should_journal_data(inode))
3236                return 0;
3237
3238        /* Let buffer I/O handle the inline data case. */
3239        if (ext4_has_inline_data(inode))
3240                return 0;
3241
3242        trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3243        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244                ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3245        else
3246                ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3247        trace_ext4_direct_IO_exit(inode, offset,
3248                                iov_length(iov, nr_segs), rw, ret);
3249        return ret;
3250}
3251
3252/*
3253 * Pages can be marked dirty completely asynchronously from ext4's journalling
3254 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3255 * much here because ->set_page_dirty is called under VFS locks.  The page is
3256 * not necessarily locked.
3257 *
3258 * We cannot just dirty the page and leave attached buffers clean, because the
3259 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3260 * or jbddirty because all the journalling code will explode.
3261 *
3262 * So what we do is to mark the page "pending dirty" and next time writepage
3263 * is called, propagate that into the buffers appropriately.
3264 */
3265static int ext4_journalled_set_page_dirty(struct page *page)
3266{
3267        SetPageChecked(page);
3268        return __set_page_dirty_nobuffers(page);
3269}
3270
3271static const struct address_space_operations ext4_aops = {
3272        .readpage               = ext4_readpage,
3273        .readpages              = ext4_readpages,
3274        .writepage              = ext4_writepage,
3275        .writepages             = ext4_writepages,
3276        .write_begin            = ext4_write_begin,
3277        .write_end              = ext4_write_end,
3278        .bmap                   = ext4_bmap,
3279        .invalidatepage         = ext4_invalidatepage,
3280        .releasepage            = ext4_releasepage,
3281        .direct_IO              = ext4_direct_IO,
3282        .migratepage            = buffer_migrate_page,
3283        .is_partially_uptodate  = block_is_partially_uptodate,
3284        .error_remove_page      = generic_error_remove_page,
3285};
3286
3287static const struct address_space_operations ext4_journalled_aops = {
3288        .readpage               = ext4_readpage,
3289        .readpages              = ext4_readpages,
3290        .writepage              = ext4_writepage,
3291        .writepages             = ext4_writepages,
3292        .write_begin            = ext4_write_begin,
3293        .write_end              = ext4_journalled_write_end,
3294        .set_page_dirty         = ext4_journalled_set_page_dirty,
3295        .bmap                   = ext4_bmap,
3296        .invalidatepage         = ext4_journalled_invalidatepage,
3297        .releasepage            = ext4_releasepage,
3298        .direct_IO              = ext4_direct_IO,
3299        .is_partially_uptodate  = block_is_partially_uptodate,
3300        .error_remove_page      = generic_error_remove_page,
3301};
3302
3303static const struct address_space_operations ext4_da_aops = {
3304        .readpage               = ext4_readpage,
3305        .readpages              = ext4_readpages,
3306        .writepage              = ext4_writepage,
3307        .writepages             = ext4_writepages,
3308        .write_begin            = ext4_da_write_begin,
3309        .write_end              = ext4_da_write_end,
3310        .bmap                   = ext4_bmap,
3311        .invalidatepage         = ext4_da_invalidatepage,
3312        .releasepage            = ext4_releasepage,
3313        .direct_IO              = ext4_direct_IO,
3314        .migratepage            = buffer_migrate_page,
3315        .is_partially_uptodate  = block_is_partially_uptodate,
3316        .error_remove_page      = generic_error_remove_page,
3317};
3318
3319void ext4_set_aops(struct inode *inode)
3320{
3321        switch (ext4_inode_journal_mode(inode)) {
3322        case EXT4_INODE_ORDERED_DATA_MODE:
3323                ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3324                break;
3325        case EXT4_INODE_WRITEBACK_DATA_MODE:
3326                ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3327                break;
3328        case EXT4_INODE_JOURNAL_DATA_MODE:
3329                inode->i_mapping->a_ops = &ext4_journalled_aops;
3330                return;
3331        default:
3332                BUG();
3333        }
3334        if (test_opt(inode->i_sb, DELALLOC))
3335                inode->i_mapping->a_ops = &ext4_da_aops;
3336        else
3337                inode->i_mapping->a_ops = &ext4_aops;
3338}
3339
3340/*
3341 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3342 * starting from file offset 'from'.  The range to be zero'd must
3343 * be contained with in one block.  If the specified range exceeds
3344 * the end of the block it will be shortened to end of the block
3345 * that cooresponds to 'from'
3346 */
3347static int ext4_block_zero_page_range(handle_t *handle,
3348                struct address_space *mapping, loff_t from, loff_t length)
3349{
3350        ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3351        unsigned offset = from & (PAGE_CACHE_SIZE-1);
3352        unsigned blocksize, max, pos;
3353        ext4_lblk_t iblock;
3354        struct inode *inode = mapping->host;
3355        struct buffer_head *bh;
3356        struct page *page;
3357        int err = 0;
3358
3359        page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3360                                   mapping_gfp_mask(mapping) & ~__GFP_FS);
3361        if (!page)
3362                return -ENOMEM;
3363
3364        blocksize = inode->i_sb->s_blocksize;
3365        max = blocksize - (offset & (blocksize - 1));
3366
3367        /*
3368         * correct length if it does not fall between
3369         * 'from' and the end of the block
3370         */
3371        if (length > max || length < 0)
3372                length = max;
3373
3374        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3375
3376        if (!page_has_buffers(page))
3377                create_empty_buffers(page, blocksize, 0);
3378
3379        /* Find the buffer that contains "offset" */
3380        bh = page_buffers(page);
3381        pos = blocksize;
3382        while (offset >= pos) {
3383                bh = bh->b_this_page;
3384                iblock++;
3385                pos += blocksize;
3386        }
3387        if (buffer_freed(bh)) {
3388                BUFFER_TRACE(bh, "freed: skip");
3389                goto unlock;
3390        }
3391        if (!buffer_mapped(bh)) {
3392                BUFFER_TRACE(bh, "unmapped");
3393                ext4_get_block(inode, iblock, bh, 0);
3394                /* unmapped? It's a hole - nothing to do */
3395                if (!buffer_mapped(bh)) {
3396                        BUFFER_TRACE(bh, "still unmapped");
3397                        goto unlock;
3398                }
3399        }
3400
3401        /* Ok, it's mapped. Make sure it's up-to-date */
3402        if (PageUptodate(page))
3403                set_buffer_uptodate(bh);
3404
3405        if (!buffer_uptodate(bh)) {
3406                err = -EIO;
3407                ll_rw_block(READ, 1, &bh);
3408                wait_on_buffer(bh);
3409                /* Uhhuh. Read error. Complain and punt. */
3410                if (!buffer_uptodate(bh))
3411                        goto unlock;
3412        }
3413        if (ext4_should_journal_data(inode)) {
3414                BUFFER_TRACE(bh, "get write access");
3415                err = ext4_journal_get_write_access(handle, bh);
3416                if (err)
3417                        goto unlock;
3418        }
3419        zero_user(page, offset, length);
3420        BUFFER_TRACE(bh, "zeroed end of block");
3421
3422        if (ext4_should_journal_data(inode)) {
3423                err = ext4_handle_dirty_metadata(handle, inode, bh);
3424        } else {
3425                err = 0;
3426                mark_buffer_dirty(bh);
3427                if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3428                        err = ext4_jbd2_file_inode(handle, inode);
3429        }
3430
3431unlock:
3432        unlock_page(page);
3433        page_cache_release(page);
3434        return err;
3435}
3436
3437/*
3438 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3439 * up to the end of the block which corresponds to `from'.
3440 * This required during truncate. We need to physically zero the tail end
3441 * of that block so it doesn't yield old data if the file is later grown.
3442 */
3443int ext4_block_truncate_page(handle_t *handle,
3444                struct address_space *mapping, loff_t from)
3445{
3446        unsigned offset = from & (PAGE_CACHE_SIZE-1);
3447        unsigned length;
3448        unsigned blocksize;
3449        struct inode *inode = mapping->host;
3450
3451        blocksize = inode->i_sb->s_blocksize;
3452        length = blocksize - (offset & (blocksize - 1));
3453
3454        return ext4_block_zero_page_range(handle, mapping, from, length);
3455}
3456
3457int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3458                             loff_t lstart, loff_t length)
3459{
3460        struct super_block *sb = inode->i_sb;
3461        struct address_space *mapping = inode->i_mapping;
3462        unsigned partial_start, partial_end;
3463        ext4_fsblk_t start, end;
3464        loff_t byte_end = (lstart + length - 1);
3465        int err = 0;
3466
3467        partial_start = lstart & (sb->s_blocksize - 1);
3468        partial_end = byte_end & (sb->s_blocksize - 1);
3469
3470        start = lstart >> sb->s_blocksize_bits;
3471        end = byte_end >> sb->s_blocksize_bits;
3472
3473        /* Handle partial zero within the single block */
3474        if (start == end &&
3475            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3476                err = ext4_block_zero_page_range(handle, mapping,
3477                                                 lstart, length);
3478                return err;
3479        }
3480        /* Handle partial zero out on the start of the range */
3481        if (partial_start) {
3482                err = ext4_block_zero_page_range(handle, mapping,
3483                                                 lstart, sb->s_blocksize);
3484                if (err)
3485                        return err;
3486        }
3487        /* Handle partial zero out on the end of the range */
3488        if (partial_end != sb->s_blocksize - 1)
3489                err = ext4_block_zero_page_range(handle, mapping,
3490                                                 byte_end - partial_end,
3491                                                 partial_end + 1);
3492        return err;
3493}
3494
3495int ext4_can_truncate(struct inode *inode)
3496{
3497        if (S_ISREG(inode->i_mode))
3498                return 1;
3499        if (S_ISDIR(inode->i_mode))
3500                return 1;
3501        if (S_ISLNK(inode->i_mode))
3502                return !ext4_inode_is_fast_symlink(inode);
3503        return 0;
3504}
3505
3506/*
3507 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3508 * associated with the given offset and length
3509 *
3510 * @inode:  File inode
3511 * @offset: The offset where the hole will begin
3512 * @len:    The length of the hole
3513 *
3514 * Returns: 0 on success or negative on failure
3515 */
3516
3517int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3518{
3519        struct super_block *sb = inode->i_sb;
3520        ext4_lblk_t first_block, stop_block;
3521        struct address_space *mapping = inode->i_mapping;
3522        loff_t first_block_offset, last_block_offset;
3523        handle_t *handle;
3524        unsigned int credits;
3525        int ret = 0;
3526
3527        if (!S_ISREG(inode->i_mode))
3528                return -EOPNOTSUPP;
3529
3530        trace_ext4_punch_hole(inode, offset, length, 0);
3531
3532        /*
3533         * Write out all dirty pages to avoid race conditions
3534         * Then release them.
3535         */
3536        if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3537                ret = filemap_write_and_wait_range(mapping, offset,
3538                                                   offset + length - 1);
3539                if (ret)
3540                        return ret;
3541        }
3542
3543        mutex_lock(&inode->i_mutex);
3544
3545        /* No need to punch hole beyond i_size */
3546        if (offset >= inode->i_size)
3547                goto out_mutex;
3548
3549        /*
3550         * If the hole extends beyond i_size, set the hole
3551         * to end after the page that contains i_size
3552         */
3553        if (offset + length > inode->i_size) {
3554                length = inode->i_size +
3555                   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3556                   offset;
3557        }
3558
3559        if (offset & (sb->s_blocksize - 1) ||
3560            (offset + length) & (sb->s_blocksize - 1)) {
3561                /*
3562                 * Attach jinode to inode for jbd2 if we do any zeroing of
3563                 * partial block
3564                 */
3565                ret = ext4_inode_attach_jinode(inode);
3566                if (ret < 0)
3567                        goto out_mutex;
3568
3569        }
3570
3571        first_block_offset = round_up(offset, sb->s_blocksize);
3572        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3573
3574        /* Now release the pages and zero block aligned part of pages*/
3575        if (last_block_offset > first_block_offset)
3576                truncate_pagecache_range(inode, first_block_offset,
3577                                         last_block_offset);
3578
3579        /* Wait all existing dio workers, newcomers will block on i_mutex */
3580        ext4_inode_block_unlocked_dio(inode);
3581        inode_dio_wait(inode);
3582
3583        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584                credits = ext4_writepage_trans_blocks(inode);
3585        else
3586                credits = ext4_blocks_for_truncate(inode);
3587        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3588        if (IS_ERR(handle)) {
3589                ret = PTR_ERR(handle);
3590                ext4_std_error(sb, ret);
3591                goto out_dio;
3592        }
3593
3594        ret = ext4_zero_partial_blocks(handle, inode, offset,
3595                                       length);
3596        if (ret)
3597                goto out_stop;
3598
3599        first_block = (offset + sb->s_blocksize - 1) >>
3600                EXT4_BLOCK_SIZE_BITS(sb);
3601        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3602
3603        /* If there are no blocks to remove, return now */
3604        if (first_block >= stop_block)
3605                goto out_stop;
3606
3607        down_write(&EXT4_I(inode)->i_data_sem);
3608        ext4_discard_preallocations(inode);
3609
3610        ret = ext4_es_remove_extent(inode, first_block,
3611                                    stop_block - first_block);
3612        if (ret) {
3613                up_write(&EXT4_I(inode)->i_data_sem);
3614                goto out_stop;
3615        }
3616
3617        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3618                ret = ext4_ext_remove_space(inode, first_block,
3619                                            stop_block - 1);
3620        else
3621                ret = ext4_free_hole_blocks(handle, inode, first_block,
3622                                            stop_block);
3623
3624        up_write(&EXT4_I(inode)->i_data_sem);
3625        if (IS_SYNC(inode))
3626                ext4_handle_sync(handle);
3627
3628        /* Now release the pages again to reduce race window */
3629        if (last_block_offset > first_block_offset)
3630                truncate_pagecache_range(inode, first_block_offset,
3631                                         last_block_offset);
3632
3633        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3634        ext4_mark_inode_dirty(handle, inode);
3635out_stop:
3636        ext4_journal_stop(handle);
3637out_dio:
3638        ext4_inode_resume_unlocked_dio(inode);
3639out_mutex:
3640        mutex_unlock(&inode->i_mutex);
3641        return ret;
3642}
3643
3644int ext4_inode_attach_jinode(struct inode *inode)
3645{
3646        struct ext4_inode_info *ei = EXT4_I(inode);
3647        struct jbd2_inode *jinode;
3648
3649        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3650                return 0;
3651
3652        jinode = jbd2_alloc_inode(GFP_KERNEL);
3653        spin_lock(&inode->i_lock);
3654        if (!ei->jinode) {
3655                if (!jinode) {
3656                        spin_unlock(&inode->i_lock);
3657                        return -ENOMEM;
3658                }
3659                ei->jinode = jinode;
3660                jbd2_journal_init_jbd_inode(ei->jinode, inode);
3661                jinode = NULL;
3662        }
3663        spin_unlock(&inode->i_lock);
3664        if (unlikely(jinode != NULL))
3665                jbd2_free_inode(jinode);
3666        return 0;
3667}
3668
3669/*
3670 * ext4_truncate()
3671 *
3672 * We block out ext4_get_block() block instantiations across the entire
3673 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3674 * simultaneously on behalf of the same inode.
3675 *
3676 * As we work through the truncate and commit bits of it to the journal there
3677 * is one core, guiding principle: the file's tree must always be consistent on
3678 * disk.  We must be able to restart the truncate after a crash.
3679 *
3680 * The file's tree may be transiently inconsistent in memory (although it
3681 * probably isn't), but whenever we close off and commit a journal transaction,
3682 * the contents of (the filesystem + the journal) must be consistent and
3683 * restartable.  It's pretty simple, really: bottom up, right to left (although
3684 * left-to-right works OK too).
3685 *
3686 * Note that at recovery time, journal replay occurs *before* the restart of
3687 * truncate against the orphan inode list.
3688 *
3689 * The committed inode has the new, desired i_size (which is the same as
3690 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3691 * that this inode's truncate did not complete and it will again call
3692 * ext4_truncate() to have another go.  So there will be instantiated blocks
3693 * to the right of the truncation point in a crashed ext4 filesystem.  But
3694 * that's fine - as long as they are linked from the inode, the post-crash
3695 * ext4_truncate() run will find them and release them.
3696 */
3697void ext4_truncate(struct inode *inode)
3698{
3699        struct ext4_inode_info *ei = EXT4_I(inode);
3700        unsigned int credits;
3701        handle_t *handle;
3702        struct address_space *mapping = inode->i_mapping;
3703
3704        /*
3705         * There is a possibility that we're either freeing the inode
3706         * or it's a completely new inode. In those cases we might not
3707         * have i_mutex locked because it's not necessary.
3708         */
3709        if (!(inode->i_state & (I_NEW|I_FREEING)))
3710                WARN_ON(!mutex_is_locked(&inode->i_mutex));
3711        trace_ext4_truncate_enter(inode);
3712
3713        if (!ext4_can_truncate(inode))
3714                return;
3715
3716        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3717
3718        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3719                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3720
3721        if (ext4_has_inline_data(inode)) {
3722                int has_inline = 1;
3723
3724                ext4_inline_data_truncate(inode, &has_inline);
3725                if (has_inline)
3726                        return;
3727        }
3728
3729        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3730        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3731                if (ext4_inode_attach_jinode(inode) < 0)
3732                        return;
3733        }
3734
3735        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3736                credits = ext4_writepage_trans_blocks(inode);
3737        else
3738                credits = ext4_blocks_for_truncate(inode);
3739
3740        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3741        if (IS_ERR(handle)) {
3742                ext4_std_error(inode->i_sb, PTR_ERR(handle));
3743                return;
3744        }
3745
3746        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3747                ext4_block_truncate_page(handle, mapping, inode->i_size);
3748
3749        /*
3750         * We add the inode to the orphan list, so that if this
3751         * truncate spans multiple transactions, and we crash, we will
3752         * resume the truncate when the filesystem recovers.  It also
3753         * marks the inode dirty, to catch the new size.
3754         *
3755         * Implication: the file must always be in a sane, consistent
3756         * truncatable state while each transaction commits.
3757         */
3758        if (ext4_orphan_add(handle, inode))
3759                goto out_stop;
3760
3761        down_write(&EXT4_I(inode)->i_data_sem);
3762
3763        ext4_discard_preallocations(inode);
3764
3765        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3766                ext4_ext_truncate(handle, inode);
3767        else
3768                ext4_ind_truncate(handle, inode);
3769
3770        up_write(&ei->i_data_sem);
3771
3772        if (IS_SYNC(inode))
3773                ext4_handle_sync(handle);
3774
3775out_stop:
3776        /*
3777         * If this was a simple ftruncate() and the file will remain alive,
3778         * then we need to clear up the orphan record which we created above.
3779         * However, if this was a real unlink then we were called by
3780         * ext4_delete_inode(), and we allow that function to clean up the
3781         * orphan info for us.
3782         */
3783        if (inode->i_nlink)
3784                ext4_orphan_del(handle, inode);
3785
3786        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3787        ext4_mark_inode_dirty(handle, inode);
3788        ext4_journal_stop(handle);
3789
3790        trace_ext4_truncate_exit(inode);
3791}
3792
3793/*
3794 * ext4_get_inode_loc returns with an extra refcount against the inode's
3795 * underlying buffer_head on success. If 'in_mem' is true, we have all
3796 * data in memory that is needed to recreate the on-disk version of this
3797 * inode.
3798 */
3799static int __ext4_get_inode_loc(struct inode *inode,
3800                                struct ext4_iloc *iloc, int in_mem)
3801{
3802        struct ext4_group_desc  *gdp;
3803        struct buffer_head      *bh;
3804        struct super_block      *sb = inode->i_sb;
3805        ext4_fsblk_t            block;
3806        int                     inodes_per_block, inode_offset;
3807
3808        iloc->bh = NULL;
3809        if (!ext4_valid_inum(sb, inode->i_ino))
3810                return -EIO;
3811
3812        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3813        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3814        if (!gdp)
3815                return -EIO;
3816
3817        /*
3818         * Figure out the offset within the block group inode table
3819         */
3820        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3821        inode_offset = ((inode->i_ino - 1) %
3822                        EXT4_INODES_PER_GROUP(sb));
3823        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3824        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3825
3826        bh = sb_getblk(sb, block);
3827        if (unlikely(!bh))
3828                return -ENOMEM;
3829        if (!buffer_uptodate(bh)) {
3830                lock_buffer(bh);
3831
3832                /*
3833                 * If the buffer has the write error flag, we have failed
3834                 * to write out another inode in the same block.  In this
3835                 * case, we don't have to read the block because we may
3836                 * read the old inode data successfully.
3837                 */
3838                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3839                        set_buffer_uptodate(bh);
3840
3841                if (buffer_uptodate(bh)) {
3842                        /* someone brought it uptodate while we waited */
3843                        unlock_buffer(bh);
3844                        goto has_buffer;
3845                }
3846
3847                /*
3848                 * If we have all information of the inode in memory and this
3849                 * is the only valid inode in the block, we need not read the
3850                 * block.
3851                 */
3852                if (in_mem) {
3853                        struct buffer_head *bitmap_bh;
3854                        int i, start;
3855
3856                        start = inode_offset & ~(inodes_per_block - 1);
3857
3858                        /* Is the inode bitmap in cache? */
3859                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3860                        if (unlikely(!bitmap_bh))
3861                                goto make_io;
3862
3863                        /*
3864                         * If the inode bitmap isn't in cache then the
3865                         * optimisation may end up performing two reads instead
3866                         * of one, so skip it.
3867                         */
3868                        if (!buffer_uptodate(bitmap_bh)) {
3869                                brelse(bitmap_bh);
3870                                goto make_io;
3871                        }
3872                        for (i = start; i < start + inodes_per_block; i++) {
3873                                if (i == inode_offset)
3874                                        continue;
3875                                if (ext4_test_bit(i, bitmap_bh->b_data))
3876                                        break;
3877                        }
3878                        brelse(bitmap_bh);
3879                        if (i == start + inodes_per_block) {
3880                                /* all other inodes are free, so skip I/O */
3881                                memset(bh->b_data, 0, bh->b_size);
3882                                set_buffer_uptodate(bh);
3883                                unlock_buffer(bh);
3884                                goto has_buffer;
3885                        }
3886                }
3887
3888make_io:
3889                /*
3890                 * If we need to do any I/O, try to pre-readahead extra
3891                 * blocks from the inode table.
3892                 */
3893                if (EXT4_SB(sb)->s_inode_readahead_blks) {
3894                        ext4_fsblk_t b, end, table;
3895                        unsigned num;
3896                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3897
3898                        table = ext4_inode_table(sb, gdp);
3899                        /* s_inode_readahead_blks is always a power of 2 */
3900                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
3901                        if (table > b)
3902                                b = table;
3903                        end = b + ra_blks;
3904                        num = EXT4_INODES_PER_GROUP(sb);
3905                        if (ext4_has_group_desc_csum(sb))
3906                                num -= ext4_itable_unused_count(sb, gdp);
3907                        table += num / inodes_per_block;
3908                        if (end > table)
3909                                end = table;
3910                        while (b <= end)
3911                                sb_breadahead(sb, b++);
3912                }
3913
3914                /*
3915                 * There are other valid inodes in the buffer, this inode
3916                 * has in-inode xattrs, or we don't have this inode in memory.
3917                 * Read the block from disk.
3918                 */
3919                trace_ext4_load_inode(inode);
3920                get_bh(bh);
3921                bh->b_end_io = end_buffer_read_sync;
3922                submit_bh(READ | REQ_META | REQ_PRIO, bh);
3923                wait_on_buffer(bh);
3924                if (!buffer_uptodate(bh)) {
3925                        EXT4_ERROR_INODE_BLOCK(inode, block,
3926                                               "unable to read itable block");
3927                        brelse(bh);
3928                        return -EIO;
3929                }
3930        }
3931has_buffer:
3932        iloc->bh = bh;
3933        return 0;
3934}
3935
3936int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3937{
3938        /* We have all inode data except xattrs in memory here. */
3939        return __ext4_get_inode_loc(inode, iloc,
3940                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3941}
3942
3943void ext4_set_inode_flags(struct inode *inode)
3944{
3945        unsigned int flags = EXT4_I(inode)->i_flags;
3946        unsigned int new_fl = 0;
3947
3948        if (flags & EXT4_SYNC_FL)
3949                new_fl |= S_SYNC;
3950        if (flags & EXT4_APPEND_FL)
3951                new_fl |= S_APPEND;
3952        if (flags & EXT4_IMMUTABLE_FL)
3953                new_fl |= S_IMMUTABLE;
3954        if (flags & EXT4_NOATIME_FL)
3955                new_fl |= S_NOATIME;
3956        if (flags & EXT4_DIRSYNC_FL)
3957                new_fl |= S_DIRSYNC;
3958        inode_set_flags(inode, new_fl,
3959                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3960}
3961
3962/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3963void ext4_get_inode_flags(struct ext4_inode_info *ei)
3964{
3965        unsigned int vfs_fl;
3966        unsigned long old_fl, new_fl;
3967
3968        do {
3969                vfs_fl = ei->vfs_inode.i_flags;
3970                old_fl = ei->i_flags;
3971                new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3972                                EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3973                                EXT4_DIRSYNC_FL);
3974                if (vfs_fl & S_SYNC)
3975                        new_fl |= EXT4_SYNC_FL;
3976                if (vfs_fl & S_APPEND)
3977                        new_fl |= EXT4_APPEND_FL;
3978                if (vfs_fl & S_IMMUTABLE)
3979                        new_fl |= EXT4_IMMUTABLE_FL;
3980                if (vfs_fl & S_NOATIME)
3981                        new_fl |= EXT4_NOATIME_FL;
3982                if (vfs_fl & S_DIRSYNC)
3983                        new_fl |= EXT4_DIRSYNC_FL;
3984        } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3985}
3986
3987static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3988                                  struct ext4_inode_info *ei)
3989{
3990        blkcnt_t i_blocks ;
3991        struct inode *inode = &(ei->vfs_inode);
3992        struct super_block *sb = inode->i_sb;
3993
3994        if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3995                                EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3996                /* we are using combined 48 bit field */
3997                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3998                                        le32_to_cpu(raw_inode->i_blocks_lo);
3999                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4000                        /* i_blocks represent file system block size */
4001                        return i_blocks  << (inode->i_blkbits - 9);
4002                } else {
4003                        return i_blocks;
4004                }
4005        } else {
4006                return le32_to_cpu(raw_inode->i_blocks_lo);
4007        }
4008}
4009
4010static inline void ext4_iget_extra_inode(struct inode *inode,
4011                                         struct ext4_inode *raw_inode,
4012                                         struct ext4_inode_info *ei)
4013{
4014        __le32 *magic = (void *)raw_inode +
4015                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4016        if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4017                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4018                ext4_find_inline_data_nolock(inode);
4019        } else
4020                EXT4_I(inode)->i_inline_off = 0;
4021}
4022
4023struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4024{
4025        struct ext4_iloc iloc;
4026        struct ext4_inode *raw_inode;
4027        struct ext4_inode_info *ei;
4028        struct inode *inode;
4029        journal_t *journal = EXT4_SB(sb)->s_journal;
4030        long ret;
4031        int block;
4032        uid_t i_uid;
4033        gid_t i_gid;
4034
4035        inode = iget_locked(sb, ino);
4036        if (!inode)
4037                return ERR_PTR(-ENOMEM);
4038        if (!(inode->i_state & I_NEW))
4039                return inode;
4040
4041        ei = EXT4_I(inode);
4042        iloc.bh = NULL;
4043
4044        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4045        if (ret < 0)
4046                goto bad_inode;
4047        raw_inode = ext4_raw_inode(&iloc);
4048
4049        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4050                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4051                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4052                    EXT4_INODE_SIZE(inode->i_sb)) {
4053                        EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4054                                EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4055                                EXT4_INODE_SIZE(inode->i_sb));
4056                        ret = -EIO;
4057                        goto bad_inode;
4058                }
4059        } else
4060                ei->i_extra_isize = 0;
4061
4062        /* Precompute checksum seed for inode metadata */
4063        if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4064                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4065                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066                __u32 csum;
4067                __le32 inum = cpu_to_le32(inode->i_ino);
4068                __le32 gen = raw_inode->i_generation;
4069                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070                                   sizeof(inum));
4071                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072                                              sizeof(gen));
4073        }
4074
4075        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076                EXT4_ERROR_INODE(inode, "checksum invalid");
4077                ret = -EIO;
4078                goto bad_inode;
4079        }
4080
4081        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4084        if (!(test_opt(inode->i_sb, NO_UID32))) {
4085                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087        }
4088        i_uid_write(inode, i_uid);
4089        i_gid_write(inode, i_gid);
4090        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4091
4092        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4093        ei->i_inline_off = 0;
4094        ei->i_dir_start_lookup = 0;
4095        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096        /* We now have enough fields to check if the inode was active or not.
4097         * This is needed because nfsd might try to access dead inodes
4098         * the test is that same one that e2fsck uses
4099         * NeilBrown 1999oct15
4100         */
4101        if (inode->i_nlink == 0) {
4102                if ((inode->i_mode == 0 ||
4103                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104                    ino != EXT4_BOOT_LOADER_INO) {
4105                        /* this inode is deleted */
4106                        ret = -ESTALE;
4107                        goto bad_inode;
4108                }
4109                /* The only unlinked inodes we let through here have
4110                 * valid i_mode and are being read by the orphan
4111                 * recovery code: that's fine, we're about to complete
4112                 * the process of deleting those.
4113                 * OR it is the EXT4_BOOT_LOADER_INO which is
4114                 * not initialized on a new filesystem. */
4115        }
4116        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4117        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4118        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4119        if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4120                ei->i_file_acl |=
4121                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4122        inode->i_size = ext4_isize(raw_inode);
4123        ei->i_disksize = inode->i_size;
4124#ifdef CONFIG_QUOTA
4125        ei->i_reserved_quota = 0;
4126#endif
4127        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128        ei->i_block_group = iloc.block_group;
4129        ei->i_last_alloc_group = ~0;
4130        /*
4131         * NOTE! The in-memory inode i_data array is in little-endian order
4132         * even on big-endian machines: we do NOT byteswap the block numbers!
4133         */
4134        for (block = 0; block < EXT4_N_BLOCKS; block++)
4135                ei->i_data[block] = raw_inode->i_block[block];
4136        INIT_LIST_HEAD(&ei->i_orphan);
4137
4138        /*
4139         * Set transaction id's of transactions that have to be committed
4140         * to finish f[data]sync. We set them to currently running transaction
4141         * as we cannot be sure that the inode or some of its metadata isn't
4142         * part of the transaction - the inode could have been reclaimed and
4143         * now it is reread from disk.
4144         */
4145        if (journal) {
4146                transaction_t *transaction;
4147                tid_t tid;
4148
4149                read_lock(&journal->j_state_lock);
4150                if (journal->j_running_transaction)
4151                        transaction = journal->j_running_transaction;
4152                else
4153                        transaction = journal->j_committing_transaction;
4154                if (transaction)
4155                        tid = transaction->t_tid;
4156                else
4157                        tid = journal->j_commit_sequence;
4158                read_unlock(&journal->j_state_lock);
4159                ei->i_sync_tid = tid;
4160                ei->i_datasync_tid = tid;
4161        }
4162
4163        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4164                if (ei->i_extra_isize == 0) {
4165                        /* The extra space is currently unused. Use it. */
4166                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4167                                            EXT4_GOOD_OLD_INODE_SIZE;
4168                } else {
4169                        ext4_iget_extra_inode(inode, raw_inode, ei);
4170                }
4171        }
4172
4173        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177
4178        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4179                inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4180                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182                                inode->i_version |=
4183                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184                }
4185        }
4186
4187        ret = 0;
4188        if (ei->i_file_acl &&
4189            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4190                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191                                 ei->i_file_acl);
4192                ret = -EIO;
4193                goto bad_inode;
4194        } else if (!ext4_has_inline_data(inode)) {
4195                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196                        if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197                            (S_ISLNK(inode->i_mode) &&
4198                             !ext4_inode_is_fast_symlink(inode))))
4199                                /* Validate extent which is part of inode */
4200                                ret = ext4_ext_check_inode(inode);
4201                } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202                           (S_ISLNK(inode->i_mode) &&
4203                            !ext4_inode_is_fast_symlink(inode))) {
4204                        /* Validate block references which are part of inode */
4205                        ret = ext4_ind_check_inode(inode);
4206                }
4207        }
4208        if (ret)
4209                goto bad_inode;
4210
4211        if (S_ISREG(inode->i_mode)) {
4212                inode->i_op = &ext4_file_inode_operations;
4213                inode->i_fop = &ext4_file_operations;
4214                ext4_set_aops(inode);
4215        } else if (S_ISDIR(inode->i_mode)) {
4216                inode->i_op = &ext4_dir_inode_operations;
4217                inode->i_fop = &ext4_dir_operations;
4218        } else if (S_ISLNK(inode->i_mode)) {
4219                if (ext4_inode_is_fast_symlink(inode)) {
4220                        inode->i_op = &ext4_fast_symlink_inode_operations;
4221                        nd_terminate_link(ei->i_data, inode->i_size,
4222                                sizeof(ei->i_data) - 1);
4223                } else {
4224                        inode->i_op = &ext4_symlink_inode_operations;
4225                        ext4_set_aops(inode);
4226                }
4227        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4229                inode->i_op = &ext4_special_inode_operations;
4230                if (raw_inode->i_block[0])
4231                        init_special_inode(inode, inode->i_mode,
4232                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233                else
4234                        init_special_inode(inode, inode->i_mode,
4235                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4236        } else if (ino == EXT4_BOOT_LOADER_INO) {
4237                make_bad_inode(inode);
4238        } else {
4239                ret = -EIO;
4240                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4241                goto bad_inode;
4242        }
4243        brelse(iloc.bh);
4244        ext4_set_inode_flags(inode);
4245        unlock_new_inode(inode);
4246        return inode;
4247
4248bad_inode:
4249        brelse(iloc.bh);
4250        iget_failed(inode);
4251        return ERR_PTR(ret);
4252}
4253
4254static int ext4_inode_blocks_set(handle_t *handle,
4255                                struct ext4_inode *raw_inode,
4256                                struct ext4_inode_info *ei)
4257{
4258        struct inode *inode = &(ei->vfs_inode);
4259        u64 i_blocks = inode->i_blocks;
4260        struct super_block *sb = inode->i_sb;
4261
4262        if (i_blocks <= ~0U) {
4263                /*
4264                 * i_blocks can be represented in a 32 bit variable
4265                 * as multiple of 512 bytes
4266                 */
4267                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4268                raw_inode->i_blocks_high = 0;
4269                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270                return 0;
4271        }
4272        if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4273                return -EFBIG;
4274
4275        if (i_blocks <= 0xffffffffffffULL) {
4276                /*
4277                 * i_blocks can be represented in a 48 bit variable
4278                 * as multiple of 512 bytes
4279                 */
4280                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283        } else {
4284                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285                /* i_block is stored in file system block size */
4286                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4287                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4288                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289        }
4290        return 0;
4291}
4292
4293/*
4294 * Post the struct inode info into an on-disk inode location in the
4295 * buffer-cache.  This gobbles the caller's reference to the
4296 * buffer_head in the inode location struct.
4297 *
4298 * The caller must have write access to iloc->bh.
4299 */
4300static int ext4_do_update_inode(handle_t *handle,
4301                                struct inode *inode,
4302                                struct ext4_iloc *iloc)
4303{
4304        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4305        struct ext4_inode_info *ei = EXT4_I(inode);
4306        struct buffer_head *bh = iloc->bh;
4307        int err = 0, rc, block;
4308        int need_datasync = 0;
4309        uid_t i_uid;
4310        gid_t i_gid;
4311
4312        /* For fields not not tracking in the in-memory inode,
4313         * initialise them to zero for new inodes. */
4314        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4315                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4316
4317        ext4_get_inode_flags(ei);
4318        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4319        i_uid = i_uid_read(inode);
4320        i_gid = i_gid_read(inode);
4321        if (!(test_opt(inode->i_sb, NO_UID32))) {
4322                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4324/*
4325 * Fix up interoperability with old kernels. Otherwise, old inodes get
4326 * re-used with the upper 16 bits of the uid/gid intact
4327 */
4328                if (!ei->i_dtime) {
4329                        raw_inode->i_uid_high =
4330                                cpu_to_le16(high_16_bits(i_uid));
4331                        raw_inode->i_gid_high =
4332                                cpu_to_le16(high_16_bits(i_gid));
4333                } else {
4334                        raw_inode->i_uid_high = 0;
4335                        raw_inode->i_gid_high = 0;
4336                }
4337        } else {
4338                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4339                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4340                raw_inode->i_uid_high = 0;
4341                raw_inode->i_gid_high = 0;
4342        }
4343        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4344
4345        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4346        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4347        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4348        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4349
4350        if (ext4_inode_blocks_set(handle, raw_inode, ei))
4351                goto out_brelse;
4352        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4353        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4354        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4355                raw_inode->i_file_acl_high =
4356                        cpu_to_le16(ei->i_file_acl >> 32);
4357        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4358        if (ei->i_disksize != ext4_isize(raw_inode)) {
4359                ext4_isize_set(raw_inode, ei->i_disksize);
4360                need_datasync = 1;
4361        }
4362        if (ei->i_disksize > 0x7fffffffULL) {
4363                struct super_block *sb = inode->i_sb;
4364                if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365                                EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366                                EXT4_SB(sb)->s_es->s_rev_level ==
4367                                cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368                        /* If this is the first large file
4369                         * created, add a flag to the superblock.
4370                         */
4371                        err = ext4_journal_get_write_access(handle,
4372                                        EXT4_SB(sb)->s_sbh);
4373                        if (err)
4374                                goto out_brelse;
4375                        ext4_update_dynamic_rev(sb);
4376                        EXT4_SET_RO_COMPAT_FEATURE(sb,
4377                                        EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4378                        ext4_handle_sync(handle);
4379                        err = ext4_handle_dirty_super(handle, sb);
4380                }
4381        }
4382        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4383        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4384                if (old_valid_dev(inode->i_rdev)) {
4385                        raw_inode->i_block[0] =
4386                                cpu_to_le32(old_encode_dev(inode->i_rdev));
4387                        raw_inode->i_block[1] = 0;
4388                } else {
4389                        raw_inode->i_block[0] = 0;
4390                        raw_inode->i_block[1] =
4391                                cpu_to_le32(new_encode_dev(inode->i_rdev));
4392                        raw_inode->i_block[2] = 0;
4393                }
4394        } else if (!ext4_has_inline_data(inode)) {
4395                for (block = 0; block < EXT4_N_BLOCKS; block++)
4396                        raw_inode->i_block[block] = ei->i_data[block];
4397        }
4398
4399        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4400                raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401                if (ei->i_extra_isize) {
4402                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403                                raw_inode->i_version_hi =
4404                                        cpu_to_le32(inode->i_version >> 32);
4405                        raw_inode->i_extra_isize =
4406                                cpu_to_le16(ei->i_extra_isize);
4407                }
4408        }
4409
4410        ext4_inode_csum_set(inode, raw_inode, ei);
4411
4412        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4414        if (!err)
4415                err = rc;
4416        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4417
4418        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4419out_brelse:
4420        brelse(bh);
4421        ext4_std_error(inode->i_sb, err);
4422        return err;
4423}
4424
4425/*
4426 * ext4_write_inode()
4427 *
4428 * We are called from a few places:
4429 *
4430 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4431 *   Here, there will be no transaction running. We wait for any running
4432 *   transaction to commit.
4433 *
4434 * - Within flush work (sys_sync(), kupdate and such).
4435 *   We wait on commit, if told to.
4436 *
4437 * - Within iput_final() -> write_inode_now()
4438 *   We wait on commit, if told to.
4439 *
4440 * In all cases it is actually safe for us to return without doing anything,
4441 * because the inode has been copied into a raw inode buffer in
4442 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4443 * writeback.
4444 *
4445 * Note that we are absolutely dependent upon all inode dirtiers doing the
4446 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4447 * which we are interested.
4448 *
4449 * It would be a bug for them to not do this.  The code:
4450 *
4451 *      mark_inode_dirty(inode)
4452 *      stuff();
4453 *      inode->i_size = expr;
4454 *
4455 * is in error because write_inode() could occur while `stuff()' is running,
4456 * and the new i_size will be lost.  Plus the inode will no longer be on the
4457 * superblock's dirty inode list.
4458 */
4459int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4460{
4461        int err;
4462
4463        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4464                return 0;
4465
4466        if (EXT4_SB(inode->i_sb)->s_journal) {
4467                if (ext4_journal_current_handle()) {
4468                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4469                        dump_stack();
4470                        return -EIO;
4471                }
4472
4473                /*
4474                 * No need to force transaction in WB_SYNC_NONE mode. Also
4475                 * ext4_sync_fs() will force the commit after everything is
4476                 * written.
4477                 */
4478                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4479                        return 0;
4480
4481                err = ext4_force_commit(inode->i_sb);
4482        } else {
4483                struct ext4_iloc iloc;
4484
4485                err = __ext4_get_inode_loc(inode, &iloc, 0);
4486                if (err)
4487                        return err;
4488                /*
4489                 * sync(2) will flush the whole buffer cache. No need to do
4490                 * it here separately for each inode.
4491                 */
4492                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4493                        sync_dirty_buffer(iloc.bh);
4494                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4495                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4496                                         "IO error syncing inode");
4497                        err = -EIO;
4498                }
4499                brelse(iloc.bh);
4500        }
4501        return err;
4502}
4503
4504/*
4505 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4506 * buffers that are attached to a page stradding i_size and are undergoing
4507 * commit. In that case we have to wait for commit to finish and try again.
4508 */
4509static void ext4_wait_for_tail_page_commit(struct inode *inode)
4510{
4511        struct page *page;
4512        unsigned offset;
4513        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4514        tid_t commit_tid = 0;
4515        int ret;
4516
4517        offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4518        /*
4519         * All buffers in the last page remain valid? Then there's nothing to
4520         * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4521         * blocksize case
4522         */
4523        if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4524                return;
4525        while (1) {
4526                page = find_lock_page(inode->i_mapping,
4527                                      inode->i_size >> PAGE_CACHE_SHIFT);
4528                if (!page)
4529                        return;
4530                ret = __ext4_journalled_invalidatepage(page, offset,
4531                                                PAGE_CACHE_SIZE - offset);
4532                unlock_page(page);
4533                page_cache_release(page);
4534                if (ret != -EBUSY)
4535                        return;
4536                commit_tid = 0;
4537                read_lock(&journal->j_state_lock);
4538                if (journal->j_committing_transaction)
4539                        commit_tid = journal->j_committing_transaction->t_tid;
4540                read_unlock(&journal->j_state_lock);
4541                if (commit_tid)
4542                        jbd2_log_wait_commit(journal, commit_tid);
4543        }
4544}
4545
4546/*
4547 * ext4_setattr()
4548 *
4549 * Called from notify_change.
4550 *
4551 * We want to trap VFS attempts to truncate the file as soon as
4552 * possible.  In particular, we want to make sure that when the VFS
4553 * shrinks i_size, we put the inode on the orphan list and modify
4554 * i_disksize immediately, so that during the subsequent flushing of
4555 * dirty pages and freeing of disk blocks, we can guarantee that any
4556 * commit will leave the blocks being flushed in an unused state on
4557 * disk.  (On recovery, the inode will get truncated and the blocks will
4558 * be freed, so we have a strong guarantee that no future commit will
4559 * leave these blocks visible to the user.)
4560 *
4561 * Another thing we have to assure is that if we are in ordered mode
4562 * and inode is still attached to the committing transaction, we must
4563 * we start writeout of all the dirty pages which are being truncated.
4564 * This way we are sure that all the data written in the previous
4565 * transaction are already on disk (truncate waits for pages under
4566 * writeback).
4567 *
4568 * Called with inode->i_mutex down.
4569 */
4570int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4571{
4572        struct inode *inode = dentry->d_inode;
4573        int error, rc = 0;
4574        int orphan = 0;
4575        const unsigned int ia_valid = attr->ia_valid;
4576
4577        error = inode_change_ok(inode, attr);
4578        if (error)
4579                return error;
4580
4581        if (is_quota_modification(inode, attr))
4582                dquot_initialize(inode);
4583        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4584            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4585                handle_t *handle;
4586
4587                /* (user+group)*(old+new) structure, inode write (sb,
4588                 * inode block, ? - but truncate inode update has it) */
4589                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4590                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4591                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4592                if (IS_ERR(handle)) {
4593                        error = PTR_ERR(handle);
4594                        goto err_out;
4595                }
4596                error = dquot_transfer(inode, attr);
4597                if (error) {
4598                        ext4_journal_stop(handle);
4599                        return error;
4600                }
4601                /* Update corresponding info in inode so that everything is in
4602                 * one transaction */
4603                if (attr->ia_valid & ATTR_UID)
4604                        inode->i_uid = attr->ia_uid;
4605                if (attr->ia_valid & ATTR_GID)
4606                        inode->i_gid = attr->ia_gid;
4607                error = ext4_mark_inode_dirty(handle, inode);
4608                ext4_journal_stop(handle);
4609        }
4610
4611        if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4612                handle_t *handle;
4613
4614                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4615                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4616
4617                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
4618                                return -EFBIG;
4619                }
4620
4621                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4622                        inode_inc_iversion(inode);
4623
4624                if (S_ISREG(inode->i_mode) &&
4625                    (attr->ia_size < inode->i_size)) {
4626                        if (ext4_should_order_data(inode)) {
4627                                error = ext4_begin_ordered_truncate(inode,
4628                                                            attr->ia_size);
4629                                if (error)
4630                                        goto err_out;
4631                        }
4632                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4633                        if (IS_ERR(handle)) {
4634                                error = PTR_ERR(handle);
4635                                goto err_out;
4636                        }
4637                        if (ext4_handle_valid(handle)) {
4638                                error = ext4_orphan_add(handle, inode);
4639                                orphan = 1;
4640                        }
4641                        down_write(&EXT4_I(inode)->i_data_sem);
4642                        EXT4_I(inode)->i_disksize = attr->ia_size;
4643                        rc = ext4_mark_inode_dirty(handle, inode);
4644                        if (!error)
4645                                error = rc;
4646                        /*
4647                         * We have to update i_size under i_data_sem together
4648                         * with i_disksize to avoid races with writeback code
4649                         * running ext4_wb_update_i_disksize().
4650                         */
4651                        if (!error)
4652                                i_size_write(inode, attr->ia_size);
4653                        up_write(&EXT4_I(inode)->i_data_sem);
4654                        ext4_journal_stop(handle);
4655                        if (error) {
4656                                ext4_orphan_del(NULL, inode);
4657                                goto err_out;
4658                        }
4659                } else
4660                        i_size_write(inode, attr->ia_size);
4661
4662                /*
4663                 * Blocks are going to be removed from the inode. Wait
4664                 * for dio in flight.  Temporarily disable
4665                 * dioread_nolock to prevent livelock.
4666                 */
4667                if (orphan) {
4668                        if (!ext4_should_journal_data(inode)) {
4669                                ext4_inode_block_unlocked_dio(inode);
4670                                inode_dio_wait(inode);
4671                                ext4_inode_resume_unlocked_dio(inode);
4672                        } else
4673                                ext4_wait_for_tail_page_commit(inode);
4674                }
4675                /*
4676                 * Truncate pagecache after we've waited for commit
4677                 * in data=journal mode to make pages freeable.
4678                 */
4679                        truncate_pagecache(inode, inode->i_size);
4680        }
4681        /*
4682         * We want to call ext4_truncate() even if attr->ia_size ==
4683         * inode->i_size for cases like truncation of fallocated space
4684         */
4685        if (attr->ia_valid & ATTR_SIZE)
4686                ext4_truncate(inode);
4687
4688        if (!rc) {
4689                setattr_copy(inode, attr);
4690                mark_inode_dirty(inode);
4691        }
4692
4693        /*
4694         * If the call to ext4_truncate failed to get a transaction handle at
4695         * all, we need to clean up the in-core orphan list manually.
4696         */
4697        if (orphan && inode->i_nlink)
4698                ext4_orphan_del(NULL, inode);
4699
4700        if (!rc && (ia_valid & ATTR_MODE))
4701                rc = posix_acl_chmod(inode, inode->i_mode);
4702
4703err_out:
4704        ext4_std_error(inode->i_sb, error);
4705        if (!error)
4706                error = rc;
4707        return error;
4708}
4709
4710int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4711                 struct kstat *stat)
4712{
4713        struct inode *inode;
4714        unsigned long long delalloc_blocks;
4715
4716        inode = dentry->d_inode;
4717        generic_fillattr(inode, stat);
4718
4719        /*
4720         * If there is inline data in the inode, the inode will normally not
4721         * have data blocks allocated (it may have an external xattr block).
4722         * Report at least one sector for such files, so tools like tar, rsync,
4723         * others doen't incorrectly think the file is completely sparse.
4724         */
4725        if (unlikely(ext4_has_inline_data(inode)))
4726                stat->blocks += (stat->size + 511) >> 9;
4727
4728        /*
4729         * We can't update i_blocks if the block allocation is delayed
4730         * otherwise in the case of system crash before the real block
4731         * allocation is done, we will have i_blocks inconsistent with
4732         * on-disk file blocks.
4733         * We always keep i_blocks updated together with real
4734         * allocation. But to not confuse with user, stat
4735         * will return the blocks that include the delayed allocation
4736         * blocks for this file.
4737         */
4738        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4739                                   EXT4_I(inode)->i_reserved_data_blocks);
4740        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4741        return 0;
4742}
4743
4744static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4745                                   int pextents)
4746{
4747        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4748                return ext4_ind_trans_blocks(inode, lblocks);
4749        return ext4_ext_index_trans_blocks(inode, pextents);
4750}
4751
4752/*
4753 * Account for index blocks, block groups bitmaps and block group
4754 * descriptor blocks if modify datablocks and index blocks
4755 * worse case, the indexs blocks spread over different block groups
4756 *
4757 * If datablocks are discontiguous, they are possible to spread over
4758 * different block groups too. If they are contiguous, with flexbg,
4759 * they could still across block group boundary.
4760 *
4761 * Also account for superblock, inode, quota and xattr blocks
4762 */
4763static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4764                                  int pextents)
4765{
4766        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4767        int gdpblocks;
4768        int idxblocks;
4769        int ret = 0;
4770
4771        /*
4772         * How many index blocks need to touch to map @lblocks logical blocks
4773         * to @pextents physical extents?
4774         */
4775        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4776
4777        ret = idxblocks;
4778
4779        /*
4780         * Now let's see how many group bitmaps and group descriptors need
4781         * to account
4782         */
4783        groups = idxblocks + pextents;
4784        gdpblocks = groups;
4785        if (groups > ngroups)
4786                groups = ngroups;
4787        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4788                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4789
4790        /* bitmaps and block group descriptor blocks */
4791        ret += groups + gdpblocks;
4792
4793        /* Blocks for super block, inode, quota and xattr blocks */
4794        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4795
4796        return ret;
4797}
4798
4799/*
4800 * Calculate the total number of credits to reserve to fit
4801 * the modification of a single pages into a single transaction,
4802 * which may include multiple chunks of block allocations.
4803 *
4804 * This could be called via ext4_write_begin()
4805 *
4806 * We need to consider the worse case, when
4807 * one new block per extent.
4808 */
4809int ext4_writepage_trans_blocks(struct inode *inode)
4810{
4811        int bpp = ext4_journal_blocks_per_page(inode);
4812        int ret;
4813
4814        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4815
4816        /* Account for data blocks for journalled mode */
4817        if (ext4_should_journal_data(inode))
4818                ret += bpp;
4819        return ret;
4820}
4821
4822/*
4823 * Calculate the journal credits for a chunk of data modification.
4824 *
4825 * This is called from DIO, fallocate or whoever calling
4826 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4827 *
4828 * journal buffers for data blocks are not included here, as DIO
4829 * and fallocate do no need to journal data buffers.
4830 */
4831int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4832{
4833        return ext4_meta_trans_blocks(inode, nrblocks, 1);
4834}
4835
4836/*
4837 * The caller must have previously called ext4_reserve_inode_write().
4838 * Give this, we know that the caller already has write access to iloc->bh.
4839 */
4840int ext4_mark_iloc_dirty(handle_t *handle,
4841                         struct inode *inode, struct ext4_iloc *iloc)
4842{
4843        int err = 0;
4844
4845        if (IS_I_VERSION(inode))
4846                inode_inc_iversion(inode);
4847
4848        /* the do_update_inode consumes one bh->b_count */
4849        get_bh(iloc->bh);
4850
4851        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4852        err = ext4_do_update_inode(handle, inode, iloc);
4853        put_bh(iloc->bh);
4854        return err;
4855}
4856
4857/*
4858 * On success, We end up with an outstanding reference count against
4859 * iloc->bh.  This _must_ be cleaned up later.
4860 */
4861
4862int
4863ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4864                         struct ext4_iloc *iloc)
4865{
4866        int err;
4867
4868        err = ext4_get_inode_loc(inode, iloc);
4869        if (!err) {
4870                BUFFER_TRACE(iloc->bh, "get_write_access");
4871                err = ext4_journal_get_write_access(handle, iloc->bh);
4872                if (err) {
4873                        brelse(iloc->bh);
4874                        iloc->bh = NULL;
4875                }
4876        }
4877        ext4_std_error(inode->i_sb, err);
4878        return err;
4879}
4880
4881/*
4882 * Expand an inode by new_extra_isize bytes.
4883 * Returns 0 on success or negative error number on failure.
4884 */
4885static int ext4_expand_extra_isize(struct inode *inode,
4886                                   unsigned int new_extra_isize,
4887                                   struct ext4_iloc iloc,
4888                                   handle_t *handle)
4889{
4890        struct ext4_inode *raw_inode;
4891        struct ext4_xattr_ibody_header *header;
4892
4893        if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4894                return 0;
4895
4896        raw_inode = ext4_raw_inode(&iloc);
4897
4898        header = IHDR(inode, raw_inode);
4899
4900        /* No extended attributes present */
4901        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4902            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4903                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4904                        new_extra_isize);
4905                EXT4_I(inode)->i_extra_isize = new_extra_isize;
4906                return 0;
4907        }
4908
4909        /* try to expand with EAs present */
4910        return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4911                                          raw_inode, handle);
4912}
4913
4914/*
4915 * What we do here is to mark the in-core inode as clean with respect to inode
4916 * dirtiness (it may still be data-dirty).
4917 * This means that the in-core inode may be reaped by prune_icache
4918 * without having to perform any I/O.  This is a very good thing,
4919 * because *any* task may call prune_icache - even ones which
4920 * have a transaction open against a different journal.
4921 *
4922 * Is this cheating?  Not really.  Sure, we haven't written the
4923 * inode out, but prune_icache isn't a user-visible syncing function.
4924 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4925 * we start and wait on commits.
4926 */
4927int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4928{
4929        struct ext4_iloc iloc;
4930        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4931        static unsigned int mnt_count;
4932        int err, ret;
4933
4934        might_sleep();
4935        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4936        err = ext4_reserve_inode_write(handle, inode, &iloc);
4937        if (ext4_handle_valid(handle) &&
4938            EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4939            !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4940                /*
4941                 * We need extra buffer credits since we may write into EA block
4942                 * with this same handle. If journal_extend fails, then it will
4943                 * only result in a minor loss of functionality for that inode.
4944                 * If this is felt to be critical, then e2fsck should be run to
4945                 * force a large enough s_min_extra_isize.
4946                 */
4947                if ((jbd2_journal_extend(handle,
4948                             EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4949                        ret = ext4_expand_extra_isize(inode,
4950                                                      sbi->s_want_extra_isize,
4951                                                      iloc, handle);
4952                        if (ret) {
4953                                ext4_set_inode_state(inode,
4954                                                     EXT4_STATE_NO_EXPAND);
4955                                if (mnt_count !=
4956                                        le16_to_cpu(sbi->s_es->s_mnt_count)) {
4957                                        ext4_warning(inode->i_sb,
4958                                        "Unable to expand inode %lu. Delete"
4959                                        " some EAs or run e2fsck.",
4960                                        inode->i_ino);
4961                                        mnt_count =
4962                                          le16_to_cpu(sbi->s_es->s_mnt_count);
4963                                }
4964                        }
4965                }
4966        }
4967        if (!err)
4968                err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4969        return err;
4970}
4971
4972/*
4973 * ext4_dirty_inode() is called from __mark_inode_dirty()
4974 *
4975 * We're really interested in the case where a file is being extended.
4976 * i_size has been changed by generic_commit_write() and we thus need
4977 * to include the updated inode in the current transaction.
4978 *
4979 * Also, dquot_alloc_block() will always dirty the inode when blocks
4980 * are allocated to the file.
4981 *
4982 * If the inode is marked synchronous, we don't honour that here - doing
4983 * so would cause a commit on atime updates, which we don't bother doing.
4984 * We handle synchronous inodes at the highest possible level.
4985 */
4986void ext4_dirty_inode(struct inode *inode, int flags)
4987{
4988        handle_t *handle;
4989
4990        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4991        if (IS_ERR(handle))
4992                goto out;
4993
4994        ext4_mark_inode_dirty(handle, inode);
4995
4996        ext4_journal_stop(handle);
4997out:
4998        return;
4999}
5000
5001#if 0
5002/*
5003 * Bind an inode's backing buffer_head into this transaction, to prevent
5004 * it from being flushed to disk early.  Unlike
5005 * ext4_reserve_inode_write, this leaves behind no bh reference and
5006 * returns no iloc structure, so the caller needs to repeat the iloc
5007 * lookup to mark the inode dirty later.
5008 */
5009static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5010{
5011        struct ext4_iloc iloc;
5012
5013        int err = 0;
5014        if (handle) {
5015                err = ext4_get_inode_loc(inode, &iloc);
5016                if (!err) {
5017                        BUFFER_TRACE(iloc.bh, "get_write_access");
5018                        err = jbd2_journal_get_write_access(handle, iloc.bh);
5019                        if (!err)
5020                                err = ext4_handle_dirty_metadata(handle,
5021                                                                 NULL,
5022                                                                 iloc.bh);
5023                        brelse(iloc.bh);
5024                }
5025        }
5026        ext4_std_error(inode->i_sb, err);
5027        return err;
5028}
5029#endif
5030
5031int ext4_change_inode_journal_flag(struct inode *inode, int val)
5032{
5033        journal_t *journal;
5034        handle_t *handle;
5035        int err;
5036
5037        /*
5038         * We have to be very careful here: changing a data block's
5039         * journaling status dynamically is dangerous.  If we write a
5040         * data block to the journal, change the status and then delete
5041         * that block, we risk forgetting to revoke the old log record
5042         * from the journal and so a subsequent replay can corrupt data.
5043         * So, first we make sure that the journal is empty and that
5044         * nobody is changing anything.
5045         */
5046
5047        journal = EXT4_JOURNAL(inode);
5048        if (!journal)
5049                return 0;
5050        if (is_journal_aborted(journal))
5051                return -EROFS;
5052        /* We have to allocate physical blocks for delalloc blocks
5053         * before flushing journal. otherwise delalloc blocks can not
5054         * be allocated any more. even more truncate on delalloc blocks
5055         * could trigger BUG by flushing delalloc blocks in journal.
5056         * There is no delalloc block in non-journal data mode.
5057         */
5058        if (val && test_opt(inode->i_sb, DELALLOC)) {
5059                err = ext4_alloc_da_blocks(inode);
5060                if (err < 0)
5061                        return err;
5062        }
5063
5064        /* Wait for all existing dio workers */
5065        ext4_inode_block_unlocked_dio(inode);
5066        inode_dio_wait(inode);
5067
5068        jbd2_journal_lock_updates(journal);
5069
5070        /*
5071         * OK, there are no updates running now, and all cached data is
5072         * synced to disk.  We are now in a completely consistent state
5073         * which doesn't have anything in the journal, and we know that
5074         * no filesystem updates are running, so it is safe to modify
5075         * the inode's in-core data-journaling state flag now.
5076         */
5077
5078        if (val)
5079                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5080        else {
5081                jbd2_journal_flush(journal);
5082                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5083        }
5084        ext4_set_aops(inode);
5085
5086        jbd2_journal_unlock_updates(journal);
5087        ext4_inode_resume_unlocked_dio(inode);
5088
5089        /* Finally we can mark the inode as dirty. */
5090
5091        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5092        if (IS_ERR(handle))
5093                return PTR_ERR(handle);
5094
5095        err = ext4_mark_inode_dirty(handle, inode);
5096        ext4_handle_sync(handle);
5097        ext4_journal_stop(handle);
5098        ext4_std_error(inode->i_sb, err);
5099
5100        return err;
5101}
5102
5103static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5104{
5105        return !buffer_mapped(bh);
5106}
5107
5108int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5109{
5110        struct page *page = vmf->page;
5111        loff_t size;
5112        unsigned long len;
5113        int ret;
5114        struct file *file = vma->vm_file;
5115        struct inode *inode = file_inode(file);
5116        struct address_space *mapping = inode->i_mapping;
5117        handle_t *handle;
5118        get_block_t *get_block;
5119        int retries = 0;
5120
5121        sb_start_pagefault(inode->i_sb);
5122        file_update_time(vma->vm_file);
5123        /* Delalloc case is easy... */
5124        if (test_opt(inode->i_sb, DELALLOC) &&
5125            !ext4_should_journal_data(inode) &&
5126            !ext4_nonda_switch(inode->i_sb)) {
5127                do {
5128                        ret = __block_page_mkwrite(vma, vmf,
5129                                                   ext4_da_get_block_prep);
5130                } while (ret == -ENOSPC &&
5131                       ext4_should_retry_alloc(inode->i_sb, &retries));
5132                goto out_ret;
5133        }
5134
5135        lock_page(page);
5136        size = i_size_read(inode);
5137        /* Page got truncated from under us? */
5138        if (page->mapping != mapping || page_offset(page) > size) {
5139                unlock_page(page);
5140                ret = VM_FAULT_NOPAGE;
5141                goto out;
5142        }
5143
5144        if (page->index == size >> PAGE_CACHE_SHIFT)
5145                len = size & ~PAGE_CACHE_MASK;
5146        else
5147                len = PAGE_CACHE_SIZE;
5148        /*
5149         * Return if we have all the buffers mapped. This avoids the need to do
5150         * journal_start/journal_stop which can block and take a long time
5151         */
5152        if (page_has_buffers(page)) {
5153                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5154                                            0, len, NULL,
5155                                            ext4_bh_unmapped)) {
5156                        /* Wait so that we don't change page under IO */
5157                        wait_for_stable_page(page);
5158                        ret = VM_FAULT_LOCKED;
5159                        goto out;
5160                }
5161        }
5162        unlock_page(page);
5163        /* OK, we need to fill the hole... */
5164        if (ext4_should_dioread_nolock(inode))
5165                get_block = ext4_get_block_write;
5166        else
5167                get_block = ext4_get_block;
5168retry_alloc:
5169        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5170                                    ext4_writepage_trans_blocks(inode));
5171        if (IS_ERR(handle)) {
5172                ret = VM_FAULT_SIGBUS;
5173                goto out;
5174        }
5175        ret = __block_page_mkwrite(vma, vmf, get_block);
5176        if (!ret && ext4_should_journal_data(inode)) {
5177                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5178                          PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5179                        unlock_page(page);
5180                        ret = VM_FAULT_SIGBUS;
5181                        ext4_journal_stop(handle);
5182                        goto out;
5183                }
5184                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5185        }
5186        ext4_journal_stop(handle);
5187        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5188                goto retry_alloc;
5189out_ret:
5190        ret = block_page_mkwrite_return(ret);
5191out:
5192        sb_end_pagefault(inode->i_sb);
5193        return ret;
5194}
5195