linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
  56
  57const struct file_operations nfs_dir_operations = {
  58        .llseek         = nfs_llseek_dir,
  59        .read           = generic_read_dir,
  60        .iterate        = nfs_readdir,
  61        .open           = nfs_opendir,
  62        .release        = nfs_closedir,
  63        .fsync          = nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67        .freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
  71{
  72        struct nfs_inode *nfsi = NFS_I(dir);
  73        struct nfs_open_dir_context *ctx;
  74        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  75        if (ctx != NULL) {
  76                ctx->duped = 0;
  77                ctx->attr_gencount = nfsi->attr_gencount;
  78                ctx->dir_cookie = 0;
  79                ctx->dup_cookie = 0;
  80                ctx->cred = get_rpccred(cred);
  81                spin_lock(&dir->i_lock);
  82                list_add(&ctx->list, &nfsi->open_files);
  83                spin_unlock(&dir->i_lock);
  84                return ctx;
  85        }
  86        return  ERR_PTR(-ENOMEM);
  87}
  88
  89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  90{
  91        spin_lock(&dir->i_lock);
  92        list_del(&ctx->list);
  93        spin_unlock(&dir->i_lock);
  94        put_rpccred(ctx->cred);
  95        kfree(ctx);
  96}
  97
  98/*
  99 * Open file
 100 */
 101static int
 102nfs_opendir(struct inode *inode, struct file *filp)
 103{
 104        int res = 0;
 105        struct nfs_open_dir_context *ctx;
 106        struct rpc_cred *cred;
 107
 108        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 109
 110        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 111
 112        cred = rpc_lookup_cred();
 113        if (IS_ERR(cred))
 114                return PTR_ERR(cred);
 115        ctx = alloc_nfs_open_dir_context(inode, cred);
 116        if (IS_ERR(ctx)) {
 117                res = PTR_ERR(ctx);
 118                goto out;
 119        }
 120        filp->private_data = ctx;
 121        if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 122                /* This is a mountpoint, so d_revalidate will never
 123                 * have been called, so we need to refresh the
 124                 * inode (for close-open consistency) ourselves.
 125                 */
 126                __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 127        }
 128out:
 129        put_rpccred(cred);
 130        return res;
 131}
 132
 133static int
 134nfs_closedir(struct inode *inode, struct file *filp)
 135{
 136        put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data);
 137        return 0;
 138}
 139
 140struct nfs_cache_array_entry {
 141        u64 cookie;
 142        u64 ino;
 143        struct qstr string;
 144        unsigned char d_type;
 145};
 146
 147struct nfs_cache_array {
 148        int size;
 149        int eof_index;
 150        u64 last_cookie;
 151        struct nfs_cache_array_entry array[0];
 152};
 153
 154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 155typedef struct {
 156        struct file     *file;
 157        struct page     *page;
 158        struct dir_context *ctx;
 159        unsigned long   page_index;
 160        u64             *dir_cookie;
 161        u64             last_cookie;
 162        loff_t          current_index;
 163        decode_dirent_t decode;
 164
 165        unsigned long   timestamp;
 166        unsigned long   gencount;
 167        unsigned int    cache_entry_index;
 168        unsigned int    plus:1;
 169        unsigned int    eof:1;
 170} nfs_readdir_descriptor_t;
 171
 172/*
 173 * The caller is responsible for calling nfs_readdir_release_array(page)
 174 */
 175static
 176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 177{
 178        void *ptr;
 179        if (page == NULL)
 180                return ERR_PTR(-EIO);
 181        ptr = kmap(page);
 182        if (ptr == NULL)
 183                return ERR_PTR(-ENOMEM);
 184        return ptr;
 185}
 186
 187static
 188void nfs_readdir_release_array(struct page *page)
 189{
 190        kunmap(page);
 191}
 192
 193/*
 194 * we are freeing strings created by nfs_add_to_readdir_array()
 195 */
 196static
 197void nfs_readdir_clear_array(struct page *page)
 198{
 199        struct nfs_cache_array *array;
 200        int i;
 201
 202        array = kmap_atomic(page);
 203        for (i = 0; i < array->size; i++)
 204                kfree(array->array[i].string.name);
 205        kunmap_atomic(array);
 206}
 207
 208/*
 209 * the caller is responsible for freeing qstr.name
 210 * when called by nfs_readdir_add_to_array, the strings will be freed in
 211 * nfs_clear_readdir_array()
 212 */
 213static
 214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 215{
 216        string->len = len;
 217        string->name = kmemdup(name, len, GFP_KERNEL);
 218        if (string->name == NULL)
 219                return -ENOMEM;
 220        /*
 221         * Avoid a kmemleak false positive. The pointer to the name is stored
 222         * in a page cache page which kmemleak does not scan.
 223         */
 224        kmemleak_not_leak(string->name);
 225        string->hash = full_name_hash(name, len);
 226        return 0;
 227}
 228
 229static
 230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 231{
 232        struct nfs_cache_array *array = nfs_readdir_get_array(page);
 233        struct nfs_cache_array_entry *cache_entry;
 234        int ret;
 235
 236        if (IS_ERR(array))
 237                return PTR_ERR(array);
 238
 239        cache_entry = &array->array[array->size];
 240
 241        /* Check that this entry lies within the page bounds */
 242        ret = -ENOSPC;
 243        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 244                goto out;
 245
 246        cache_entry->cookie = entry->prev_cookie;
 247        cache_entry->ino = entry->ino;
 248        cache_entry->d_type = entry->d_type;
 249        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 250        if (ret)
 251                goto out;
 252        array->last_cookie = entry->cookie;
 253        array->size++;
 254        if (entry->eof != 0)
 255                array->eof_index = array->size;
 256out:
 257        nfs_readdir_release_array(page);
 258        return ret;
 259}
 260
 261static
 262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 263{
 264        loff_t diff = desc->ctx->pos - desc->current_index;
 265        unsigned int index;
 266
 267        if (diff < 0)
 268                goto out_eof;
 269        if (diff >= array->size) {
 270                if (array->eof_index >= 0)
 271                        goto out_eof;
 272                return -EAGAIN;
 273        }
 274
 275        index = (unsigned int)diff;
 276        *desc->dir_cookie = array->array[index].cookie;
 277        desc->cache_entry_index = index;
 278        return 0;
 279out_eof:
 280        desc->eof = 1;
 281        return -EBADCOOKIE;
 282}
 283
 284static bool
 285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 286{
 287        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 288                return false;
 289        smp_rmb();
 290        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 291}
 292
 293static
 294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 295{
 296        int i;
 297        loff_t new_pos;
 298        int status = -EAGAIN;
 299
 300        for (i = 0; i < array->size; i++) {
 301                if (array->array[i].cookie == *desc->dir_cookie) {
 302                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 303                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 304
 305                        new_pos = desc->current_index + i;
 306                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 307                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 308                                ctx->duped = 0;
 309                                ctx->attr_gencount = nfsi->attr_gencount;
 310                        } else if (new_pos < desc->ctx->pos) {
 311                                if (ctx->duped > 0
 312                                    && ctx->dup_cookie == *desc->dir_cookie) {
 313                                        if (printk_ratelimit()) {
 314                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 315                                                                "Please contact your server vendor.  "
 316                                                                "The file: %.*s has duplicate cookie %llu\n",
 317                                                                desc->file, array->array[i].string.len,
 318                                                                array->array[i].string.name, *desc->dir_cookie);
 319                                        }
 320                                        status = -ELOOP;
 321                                        goto out;
 322                                }
 323                                ctx->dup_cookie = *desc->dir_cookie;
 324                                ctx->duped = -1;
 325                        }
 326                        desc->ctx->pos = new_pos;
 327                        desc->cache_entry_index = i;
 328                        return 0;
 329                }
 330        }
 331        if (array->eof_index >= 0) {
 332                status = -EBADCOOKIE;
 333                if (*desc->dir_cookie == array->last_cookie)
 334                        desc->eof = 1;
 335        }
 336out:
 337        return status;
 338}
 339
 340static
 341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 342{
 343        struct nfs_cache_array *array;
 344        int status;
 345
 346        array = nfs_readdir_get_array(desc->page);
 347        if (IS_ERR(array)) {
 348                status = PTR_ERR(array);
 349                goto out;
 350        }
 351
 352        if (*desc->dir_cookie == 0)
 353                status = nfs_readdir_search_for_pos(array, desc);
 354        else
 355                status = nfs_readdir_search_for_cookie(array, desc);
 356
 357        if (status == -EAGAIN) {
 358                desc->last_cookie = array->last_cookie;
 359                desc->current_index += array->size;
 360                desc->page_index++;
 361        }
 362        nfs_readdir_release_array(desc->page);
 363out:
 364        return status;
 365}
 366
 367/* Fill a page with xdr information before transferring to the cache page */
 368static
 369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 370                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 371{
 372        struct nfs_open_dir_context *ctx = file->private_data;
 373        struct rpc_cred *cred = ctx->cred;
 374        unsigned long   timestamp, gencount;
 375        int             error;
 376
 377 again:
 378        timestamp = jiffies;
 379        gencount = nfs_inc_attr_generation_counter();
 380        error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
 381                                          NFS_SERVER(inode)->dtsize, desc->plus);
 382        if (error < 0) {
 383                /* We requested READDIRPLUS, but the server doesn't grok it */
 384                if (error == -ENOTSUPP && desc->plus) {
 385                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 386                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 387                        desc->plus = 0;
 388                        goto again;
 389                }
 390                goto error;
 391        }
 392        desc->timestamp = timestamp;
 393        desc->gencount = gencount;
 394error:
 395        return error;
 396}
 397
 398static int xdr_decode(nfs_readdir_descriptor_t *desc,
 399                      struct nfs_entry *entry, struct xdr_stream *xdr)
 400{
 401        int error;
 402
 403        error = desc->decode(xdr, entry, desc->plus);
 404        if (error)
 405                return error;
 406        entry->fattr->time_start = desc->timestamp;
 407        entry->fattr->gencount = desc->gencount;
 408        return 0;
 409}
 410
 411static
 412int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 413{
 414        if (dentry->d_inode == NULL)
 415                goto different;
 416        if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
 417                goto different;
 418        return 1;
 419different:
 420        return 0;
 421}
 422
 423static
 424bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 425{
 426        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 427                return false;
 428        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 429                return true;
 430        if (ctx->pos == 0)
 431                return true;
 432        return false;
 433}
 434
 435/*
 436 * This function is called by the lookup code to request the use of
 437 * readdirplus to accelerate any future lookups in the same
 438 * directory.
 439 */
 440static
 441void nfs_advise_use_readdirplus(struct inode *dir)
 442{
 443        set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
 444}
 445
 446/*
 447 * This function is mainly for use by nfs_getattr().
 448 *
 449 * If this is an 'ls -l', we want to force use of readdirplus.
 450 * Do this by checking if there is an active file descriptor
 451 * and calling nfs_advise_use_readdirplus, then forcing a
 452 * cache flush.
 453 */
 454void nfs_force_use_readdirplus(struct inode *dir)
 455{
 456        if (!list_empty(&NFS_I(dir)->open_files)) {
 457                nfs_advise_use_readdirplus(dir);
 458                nfs_zap_mapping(dir, dir->i_mapping);
 459        }
 460}
 461
 462static
 463void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 464{
 465        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 466        struct dentry *dentry;
 467        struct dentry *alias;
 468        struct inode *dir = parent->d_inode;
 469        struct inode *inode;
 470        int status;
 471
 472        if (filename.name[0] == '.') {
 473                if (filename.len == 1)
 474                        return;
 475                if (filename.len == 2 && filename.name[1] == '.')
 476                        return;
 477        }
 478        filename.hash = full_name_hash(filename.name, filename.len);
 479
 480        dentry = d_lookup(parent, &filename);
 481        if (dentry != NULL) {
 482                if (nfs_same_file(dentry, entry)) {
 483                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 484                        status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
 485                        if (!status)
 486                                nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
 487                        goto out;
 488                } else {
 489                        if (d_invalidate(dentry) != 0)
 490                                goto out;
 491                        dput(dentry);
 492                }
 493        }
 494
 495        dentry = d_alloc(parent, &filename);
 496        if (dentry == NULL)
 497                return;
 498
 499        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 500        if (IS_ERR(inode))
 501                goto out;
 502
 503        alias = d_materialise_unique(dentry, inode);
 504        if (IS_ERR(alias))
 505                goto out;
 506        else if (alias) {
 507                nfs_set_verifier(alias, nfs_save_change_attribute(dir));
 508                dput(alias);
 509        } else
 510                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 511
 512out:
 513        dput(dentry);
 514}
 515
 516/* Perform conversion from xdr to cache array */
 517static
 518int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 519                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 520{
 521        struct xdr_stream stream;
 522        struct xdr_buf buf;
 523        struct page *scratch;
 524        struct nfs_cache_array *array;
 525        unsigned int count = 0;
 526        int status;
 527
 528        scratch = alloc_page(GFP_KERNEL);
 529        if (scratch == NULL)
 530                return -ENOMEM;
 531
 532        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 533        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 534
 535        do {
 536                status = xdr_decode(desc, entry, &stream);
 537                if (status != 0) {
 538                        if (status == -EAGAIN)
 539                                status = 0;
 540                        break;
 541                }
 542
 543                count++;
 544
 545                if (desc->plus != 0)
 546                        nfs_prime_dcache(desc->file->f_path.dentry, entry);
 547
 548                status = nfs_readdir_add_to_array(entry, page);
 549                if (status != 0)
 550                        break;
 551        } while (!entry->eof);
 552
 553        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 554                array = nfs_readdir_get_array(page);
 555                if (!IS_ERR(array)) {
 556                        array->eof_index = array->size;
 557                        status = 0;
 558                        nfs_readdir_release_array(page);
 559                } else
 560                        status = PTR_ERR(array);
 561        }
 562
 563        put_page(scratch);
 564        return status;
 565}
 566
 567static
 568void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
 569{
 570        unsigned int i;
 571        for (i = 0; i < npages; i++)
 572                put_page(pages[i]);
 573}
 574
 575static
 576void nfs_readdir_free_large_page(void *ptr, struct page **pages,
 577                unsigned int npages)
 578{
 579        nfs_readdir_free_pagearray(pages, npages);
 580}
 581
 582/*
 583 * nfs_readdir_large_page will allocate pages that must be freed with a call
 584 * to nfs_readdir_free_large_page
 585 */
 586static
 587int nfs_readdir_large_page(struct page **pages, unsigned int npages)
 588{
 589        unsigned int i;
 590
 591        for (i = 0; i < npages; i++) {
 592                struct page *page = alloc_page(GFP_KERNEL);
 593                if (page == NULL)
 594                        goto out_freepages;
 595                pages[i] = page;
 596        }
 597        return 0;
 598
 599out_freepages:
 600        nfs_readdir_free_pagearray(pages, i);
 601        return -ENOMEM;
 602}
 603
 604static
 605int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 606{
 607        struct page *pages[NFS_MAX_READDIR_PAGES];
 608        void *pages_ptr = NULL;
 609        struct nfs_entry entry;
 610        struct file     *file = desc->file;
 611        struct nfs_cache_array *array;
 612        int status = -ENOMEM;
 613        unsigned int array_size = ARRAY_SIZE(pages);
 614
 615        entry.prev_cookie = 0;
 616        entry.cookie = desc->last_cookie;
 617        entry.eof = 0;
 618        entry.fh = nfs_alloc_fhandle();
 619        entry.fattr = nfs_alloc_fattr();
 620        entry.server = NFS_SERVER(inode);
 621        if (entry.fh == NULL || entry.fattr == NULL)
 622                goto out;
 623
 624        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 625        if (IS_ERR(entry.label)) {
 626                status = PTR_ERR(entry.label);
 627                goto out;
 628        }
 629
 630        array = nfs_readdir_get_array(page);
 631        if (IS_ERR(array)) {
 632                status = PTR_ERR(array);
 633                goto out_label_free;
 634        }
 635        memset(array, 0, sizeof(struct nfs_cache_array));
 636        array->eof_index = -1;
 637
 638        status = nfs_readdir_large_page(pages, array_size);
 639        if (status < 0)
 640                goto out_release_array;
 641        do {
 642                unsigned int pglen;
 643                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 644
 645                if (status < 0)
 646                        break;
 647                pglen = status;
 648                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 649                if (status < 0) {
 650                        if (status == -ENOSPC)
 651                                status = 0;
 652                        break;
 653                }
 654        } while (array->eof_index < 0);
 655
 656        nfs_readdir_free_large_page(pages_ptr, pages, array_size);
 657out_release_array:
 658        nfs_readdir_release_array(page);
 659out_label_free:
 660        nfs4_label_free(entry.label);
 661out:
 662        nfs_free_fattr(entry.fattr);
 663        nfs_free_fhandle(entry.fh);
 664        return status;
 665}
 666
 667/*
 668 * Now we cache directories properly, by converting xdr information
 669 * to an array that can be used for lookups later.  This results in
 670 * fewer cache pages, since we can store more information on each page.
 671 * We only need to convert from xdr once so future lookups are much simpler
 672 */
 673static
 674int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 675{
 676        struct inode    *inode = file_inode(desc->file);
 677        int ret;
 678
 679        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 680        if (ret < 0)
 681                goto error;
 682        SetPageUptodate(page);
 683
 684        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 685                /* Should never happen */
 686                nfs_zap_mapping(inode, inode->i_mapping);
 687        }
 688        unlock_page(page);
 689        return 0;
 690 error:
 691        unlock_page(page);
 692        return ret;
 693}
 694
 695static
 696void cache_page_release(nfs_readdir_descriptor_t *desc)
 697{
 698        if (!desc->page->mapping)
 699                nfs_readdir_clear_array(desc->page);
 700        page_cache_release(desc->page);
 701        desc->page = NULL;
 702}
 703
 704static
 705struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 706{
 707        return read_cache_page(file_inode(desc->file)->i_mapping,
 708                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 709}
 710
 711/*
 712 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 713 */
 714static
 715int find_cache_page(nfs_readdir_descriptor_t *desc)
 716{
 717        int res;
 718
 719        desc->page = get_cache_page(desc);
 720        if (IS_ERR(desc->page))
 721                return PTR_ERR(desc->page);
 722
 723        res = nfs_readdir_search_array(desc);
 724        if (res != 0)
 725                cache_page_release(desc);
 726        return res;
 727}
 728
 729/* Search for desc->dir_cookie from the beginning of the page cache */
 730static inline
 731int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 732{
 733        int res;
 734
 735        if (desc->page_index == 0) {
 736                desc->current_index = 0;
 737                desc->last_cookie = 0;
 738        }
 739        do {
 740                res = find_cache_page(desc);
 741        } while (res == -EAGAIN);
 742        return res;
 743}
 744
 745/*
 746 * Once we've found the start of the dirent within a page: fill 'er up...
 747 */
 748static 
 749int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 750{
 751        struct file     *file = desc->file;
 752        int i = 0;
 753        int res = 0;
 754        struct nfs_cache_array *array = NULL;
 755        struct nfs_open_dir_context *ctx = file->private_data;
 756
 757        array = nfs_readdir_get_array(desc->page);
 758        if (IS_ERR(array)) {
 759                res = PTR_ERR(array);
 760                goto out;
 761        }
 762
 763        for (i = desc->cache_entry_index; i < array->size; i++) {
 764                struct nfs_cache_array_entry *ent;
 765
 766                ent = &array->array[i];
 767                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 768                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 769                        desc->eof = 1;
 770                        break;
 771                }
 772                desc->ctx->pos++;
 773                if (i < (array->size-1))
 774                        *desc->dir_cookie = array->array[i+1].cookie;
 775                else
 776                        *desc->dir_cookie = array->last_cookie;
 777                if (ctx->duped != 0)
 778                        ctx->duped = 1;
 779        }
 780        if (array->eof_index >= 0)
 781                desc->eof = 1;
 782
 783        nfs_readdir_release_array(desc->page);
 784out:
 785        cache_page_release(desc);
 786        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 787                        (unsigned long long)*desc->dir_cookie, res);
 788        return res;
 789}
 790
 791/*
 792 * If we cannot find a cookie in our cache, we suspect that this is
 793 * because it points to a deleted file, so we ask the server to return
 794 * whatever it thinks is the next entry. We then feed this to filldir.
 795 * If all goes well, we should then be able to find our way round the
 796 * cache on the next call to readdir_search_pagecache();
 797 *
 798 * NOTE: we cannot add the anonymous page to the pagecache because
 799 *       the data it contains might not be page aligned. Besides,
 800 *       we should already have a complete representation of the
 801 *       directory in the page cache by the time we get here.
 802 */
 803static inline
 804int uncached_readdir(nfs_readdir_descriptor_t *desc)
 805{
 806        struct page     *page = NULL;
 807        int             status;
 808        struct inode *inode = file_inode(desc->file);
 809        struct nfs_open_dir_context *ctx = desc->file->private_data;
 810
 811        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 812                        (unsigned long long)*desc->dir_cookie);
 813
 814        page = alloc_page(GFP_HIGHUSER);
 815        if (!page) {
 816                status = -ENOMEM;
 817                goto out;
 818        }
 819
 820        desc->page_index = 0;
 821        desc->last_cookie = *desc->dir_cookie;
 822        desc->page = page;
 823        ctx->duped = 0;
 824
 825        status = nfs_readdir_xdr_to_array(desc, page, inode);
 826        if (status < 0)
 827                goto out_release;
 828
 829        status = nfs_do_filldir(desc);
 830
 831 out:
 832        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 833                        __func__, status);
 834        return status;
 835 out_release:
 836        cache_page_release(desc);
 837        goto out;
 838}
 839
 840static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
 841{
 842        struct nfs_inode *nfsi = NFS_I(dir);
 843
 844        if (nfs_attribute_cache_expired(dir))
 845                return true;
 846        if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
 847                return true;
 848        return false;
 849}
 850
 851/* The file offset position represents the dirent entry number.  A
 852   last cookie cache takes care of the common case of reading the
 853   whole directory.
 854 */
 855static int nfs_readdir(struct file *file, struct dir_context *ctx)
 856{
 857        struct dentry   *dentry = file->f_path.dentry;
 858        struct inode    *inode = dentry->d_inode;
 859        nfs_readdir_descriptor_t my_desc,
 860                        *desc = &my_desc;
 861        struct nfs_open_dir_context *dir_ctx = file->private_data;
 862        int res = 0;
 863
 864        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 865                        file, (long long)ctx->pos);
 866        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 867
 868        /*
 869         * ctx->pos points to the dirent entry number.
 870         * *desc->dir_cookie has the cookie for the next entry. We have
 871         * to either find the entry with the appropriate number or
 872         * revalidate the cookie.
 873         */
 874        memset(desc, 0, sizeof(*desc));
 875
 876        desc->file = file;
 877        desc->ctx = ctx;
 878        desc->dir_cookie = &dir_ctx->dir_cookie;
 879        desc->decode = NFS_PROTO(inode)->decode_dirent;
 880        desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
 881
 882        nfs_block_sillyrename(dentry);
 883        if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
 884                res = nfs_revalidate_mapping(inode, file->f_mapping);
 885        if (res < 0)
 886                goto out;
 887
 888        do {
 889                res = readdir_search_pagecache(desc);
 890
 891                if (res == -EBADCOOKIE) {
 892                        res = 0;
 893                        /* This means either end of directory */
 894                        if (*desc->dir_cookie && desc->eof == 0) {
 895                                /* Or that the server has 'lost' a cookie */
 896                                res = uncached_readdir(desc);
 897                                if (res == 0)
 898                                        continue;
 899                        }
 900                        break;
 901                }
 902                if (res == -ETOOSMALL && desc->plus) {
 903                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 904                        nfs_zap_caches(inode);
 905                        desc->page_index = 0;
 906                        desc->plus = 0;
 907                        desc->eof = 0;
 908                        continue;
 909                }
 910                if (res < 0)
 911                        break;
 912
 913                res = nfs_do_filldir(desc);
 914                if (res < 0)
 915                        break;
 916        } while (!desc->eof);
 917out:
 918        nfs_unblock_sillyrename(dentry);
 919        if (res > 0)
 920                res = 0;
 921        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 922        return res;
 923}
 924
 925static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 926{
 927        struct inode *inode = file_inode(filp);
 928        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 929
 930        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 931                        filp, offset, whence);
 932
 933        mutex_lock(&inode->i_mutex);
 934        switch (whence) {
 935                case 1:
 936                        offset += filp->f_pos;
 937                case 0:
 938                        if (offset >= 0)
 939                                break;
 940                default:
 941                        offset = -EINVAL;
 942                        goto out;
 943        }
 944        if (offset != filp->f_pos) {
 945                filp->f_pos = offset;
 946                dir_ctx->dir_cookie = 0;
 947                dir_ctx->duped = 0;
 948        }
 949out:
 950        mutex_unlock(&inode->i_mutex);
 951        return offset;
 952}
 953
 954/*
 955 * All directory operations under NFS are synchronous, so fsync()
 956 * is a dummy operation.
 957 */
 958static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 959                         int datasync)
 960{
 961        struct inode *inode = file_inode(filp);
 962
 963        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 964
 965        mutex_lock(&inode->i_mutex);
 966        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 967        mutex_unlock(&inode->i_mutex);
 968        return 0;
 969}
 970
 971/**
 972 * nfs_force_lookup_revalidate - Mark the directory as having changed
 973 * @dir - pointer to directory inode
 974 *
 975 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 976 * full lookup on all child dentries of 'dir' whenever a change occurs
 977 * on the server that might have invalidated our dcache.
 978 *
 979 * The caller should be holding dir->i_lock
 980 */
 981void nfs_force_lookup_revalidate(struct inode *dir)
 982{
 983        NFS_I(dir)->cache_change_attribute++;
 984}
 985EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
 986
 987/*
 988 * A check for whether or not the parent directory has changed.
 989 * In the case it has, we assume that the dentries are untrustworthy
 990 * and may need to be looked up again.
 991 */
 992static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
 993{
 994        if (IS_ROOT(dentry))
 995                return 1;
 996        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
 997                return 0;
 998        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 999                return 0;
1000        /* Revalidate nfsi->cache_change_attribute before we declare a match */
1001        if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1002                return 0;
1003        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1004                return 0;
1005        return 1;
1006}
1007
1008/*
1009 * Use intent information to check whether or not we're going to do
1010 * an O_EXCL create using this path component.
1011 */
1012static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1013{
1014        if (NFS_PROTO(dir)->version == 2)
1015                return 0;
1016        return flags & LOOKUP_EXCL;
1017}
1018
1019/*
1020 * Inode and filehandle revalidation for lookups.
1021 *
1022 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1023 * or if the intent information indicates that we're about to open this
1024 * particular file and the "nocto" mount flag is not set.
1025 *
1026 */
1027static
1028int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1029{
1030        struct nfs_server *server = NFS_SERVER(inode);
1031        int ret;
1032
1033        if (IS_AUTOMOUNT(inode))
1034                return 0;
1035        /* VFS wants an on-the-wire revalidation */
1036        if (flags & LOOKUP_REVAL)
1037                goto out_force;
1038        /* This is an open(2) */
1039        if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1040            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1041                goto out_force;
1042out:
1043        return (inode->i_nlink == 0) ? -ENOENT : 0;
1044out_force:
1045        ret = __nfs_revalidate_inode(server, inode);
1046        if (ret != 0)
1047                return ret;
1048        goto out;
1049}
1050
1051/*
1052 * We judge how long we want to trust negative
1053 * dentries by looking at the parent inode mtime.
1054 *
1055 * If parent mtime has changed, we revalidate, else we wait for a
1056 * period corresponding to the parent's attribute cache timeout value.
1057 */
1058static inline
1059int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1060                       unsigned int flags)
1061{
1062        /* Don't revalidate a negative dentry if we're creating a new file */
1063        if (flags & LOOKUP_CREATE)
1064                return 0;
1065        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1066                return 1;
1067        return !nfs_check_verifier(dir, dentry);
1068}
1069
1070/*
1071 * This is called every time the dcache has a lookup hit,
1072 * and we should check whether we can really trust that
1073 * lookup.
1074 *
1075 * NOTE! The hit can be a negative hit too, don't assume
1076 * we have an inode!
1077 *
1078 * If the parent directory is seen to have changed, we throw out the
1079 * cached dentry and do a new lookup.
1080 */
1081static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1082{
1083        struct inode *dir;
1084        struct inode *inode;
1085        struct dentry *parent;
1086        struct nfs_fh *fhandle = NULL;
1087        struct nfs_fattr *fattr = NULL;
1088        struct nfs4_label *label = NULL;
1089        int error;
1090
1091        if (flags & LOOKUP_RCU)
1092                return -ECHILD;
1093
1094        parent = dget_parent(dentry);
1095        dir = parent->d_inode;
1096        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1097        inode = dentry->d_inode;
1098
1099        if (!inode) {
1100                if (nfs_neg_need_reval(dir, dentry, flags))
1101                        goto out_bad;
1102                goto out_valid_noent;
1103        }
1104
1105        if (is_bad_inode(inode)) {
1106                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1107                                __func__, dentry);
1108                goto out_bad;
1109        }
1110
1111        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1112                goto out_set_verifier;
1113
1114        /* Force a full look up iff the parent directory has changed */
1115        if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1116                if (nfs_lookup_verify_inode(inode, flags))
1117                        goto out_zap_parent;
1118                goto out_valid;
1119        }
1120
1121        if (NFS_STALE(inode))
1122                goto out_bad;
1123
1124        error = -ENOMEM;
1125        fhandle = nfs_alloc_fhandle();
1126        fattr = nfs_alloc_fattr();
1127        if (fhandle == NULL || fattr == NULL)
1128                goto out_error;
1129
1130        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1131        if (IS_ERR(label))
1132                goto out_error;
1133
1134        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1135        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1136        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1137        if (error)
1138                goto out_bad;
1139        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1140                goto out_bad;
1141        if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1142                goto out_bad;
1143
1144        nfs_setsecurity(inode, fattr, label);
1145
1146        nfs_free_fattr(fattr);
1147        nfs_free_fhandle(fhandle);
1148        nfs4_label_free(label);
1149
1150out_set_verifier:
1151        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1152 out_valid:
1153        /* Success: notify readdir to use READDIRPLUS */
1154        nfs_advise_use_readdirplus(dir);
1155 out_valid_noent:
1156        dput(parent);
1157        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1158                        __func__, dentry);
1159        return 1;
1160out_zap_parent:
1161        nfs_zap_caches(dir);
1162 out_bad:
1163        nfs_free_fattr(fattr);
1164        nfs_free_fhandle(fhandle);
1165        nfs4_label_free(label);
1166        nfs_mark_for_revalidate(dir);
1167        if (inode && S_ISDIR(inode->i_mode)) {
1168                /* Purge readdir caches. */
1169                nfs_zap_caches(inode);
1170                /*
1171                 * We can't d_drop the root of a disconnected tree:
1172                 * its d_hash is on the s_anon list and d_drop() would hide
1173                 * it from shrink_dcache_for_unmount(), leading to busy
1174                 * inodes on unmount and further oopses.
1175                 */
1176                if (IS_ROOT(dentry))
1177                        goto out_valid;
1178        }
1179        /* If we have submounts, don't unhash ! */
1180        if (check_submounts_and_drop(dentry) != 0)
1181                goto out_valid;
1182
1183        dput(parent);
1184        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1185                        __func__, dentry);
1186        return 0;
1187out_error:
1188        nfs_free_fattr(fattr);
1189        nfs_free_fhandle(fhandle);
1190        nfs4_label_free(label);
1191        dput(parent);
1192        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1193                        __func__, dentry, error);
1194        return error;
1195}
1196
1197/*
1198 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1199 * when we don't really care about the dentry name. This is called when a
1200 * pathwalk ends on a dentry that was not found via a normal lookup in the
1201 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1202 *
1203 * In this situation, we just want to verify that the inode itself is OK
1204 * since the dentry might have changed on the server.
1205 */
1206static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1207{
1208        int error;
1209        struct inode *inode = dentry->d_inode;
1210
1211        /*
1212         * I believe we can only get a negative dentry here in the case of a
1213         * procfs-style symlink. Just assume it's correct for now, but we may
1214         * eventually need to do something more here.
1215         */
1216        if (!inode) {
1217                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1218                                __func__, dentry);
1219                return 1;
1220        }
1221
1222        if (is_bad_inode(inode)) {
1223                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1224                                __func__, dentry);
1225                return 0;
1226        }
1227
1228        error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1229        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1230                        __func__, inode->i_ino, error ? "invalid" : "valid");
1231        return !error;
1232}
1233
1234/*
1235 * This is called from dput() when d_count is going to 0.
1236 */
1237static int nfs_dentry_delete(const struct dentry *dentry)
1238{
1239        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1240                dentry, dentry->d_flags);
1241
1242        /* Unhash any dentry with a stale inode */
1243        if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1244                return 1;
1245
1246        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1247                /* Unhash it, so that ->d_iput() would be called */
1248                return 1;
1249        }
1250        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1251                /* Unhash it, so that ancestors of killed async unlink
1252                 * files will be cleaned up during umount */
1253                return 1;
1254        }
1255        return 0;
1256
1257}
1258
1259/* Ensure that we revalidate inode->i_nlink */
1260static void nfs_drop_nlink(struct inode *inode)
1261{
1262        spin_lock(&inode->i_lock);
1263        /* drop the inode if we're reasonably sure this is the last link */
1264        if (inode->i_nlink == 1)
1265                clear_nlink(inode);
1266        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1267        spin_unlock(&inode->i_lock);
1268}
1269
1270/*
1271 * Called when the dentry loses inode.
1272 * We use it to clean up silly-renamed files.
1273 */
1274static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1275{
1276        if (S_ISDIR(inode->i_mode))
1277                /* drop any readdir cache as it could easily be old */
1278                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1279
1280        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1281                nfs_complete_unlink(dentry, inode);
1282                nfs_drop_nlink(inode);
1283        }
1284        iput(inode);
1285}
1286
1287static void nfs_d_release(struct dentry *dentry)
1288{
1289        /* free cached devname value, if it survived that far */
1290        if (unlikely(dentry->d_fsdata)) {
1291                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1292                        WARN_ON(1);
1293                else
1294                        kfree(dentry->d_fsdata);
1295        }
1296}
1297
1298const struct dentry_operations nfs_dentry_operations = {
1299        .d_revalidate   = nfs_lookup_revalidate,
1300        .d_weak_revalidate      = nfs_weak_revalidate,
1301        .d_delete       = nfs_dentry_delete,
1302        .d_iput         = nfs_dentry_iput,
1303        .d_automount    = nfs_d_automount,
1304        .d_release      = nfs_d_release,
1305};
1306EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1307
1308struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1309{
1310        struct dentry *res;
1311        struct dentry *parent;
1312        struct inode *inode = NULL;
1313        struct nfs_fh *fhandle = NULL;
1314        struct nfs_fattr *fattr = NULL;
1315        struct nfs4_label *label = NULL;
1316        int error;
1317
1318        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1319        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1320
1321        res = ERR_PTR(-ENAMETOOLONG);
1322        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1323                goto out;
1324
1325        /*
1326         * If we're doing an exclusive create, optimize away the lookup
1327         * but don't hash the dentry.
1328         */
1329        if (nfs_is_exclusive_create(dir, flags)) {
1330                d_instantiate(dentry, NULL);
1331                res = NULL;
1332                goto out;
1333        }
1334
1335        res = ERR_PTR(-ENOMEM);
1336        fhandle = nfs_alloc_fhandle();
1337        fattr = nfs_alloc_fattr();
1338        if (fhandle == NULL || fattr == NULL)
1339                goto out;
1340
1341        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1342        if (IS_ERR(label))
1343                goto out;
1344
1345        parent = dentry->d_parent;
1346        /* Protect against concurrent sillydeletes */
1347        trace_nfs_lookup_enter(dir, dentry, flags);
1348        nfs_block_sillyrename(parent);
1349        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1350        if (error == -ENOENT)
1351                goto no_entry;
1352        if (error < 0) {
1353                res = ERR_PTR(error);
1354                goto out_unblock_sillyrename;
1355        }
1356        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1357        res = ERR_CAST(inode);
1358        if (IS_ERR(res))
1359                goto out_unblock_sillyrename;
1360
1361        /* Success: notify readdir to use READDIRPLUS */
1362        nfs_advise_use_readdirplus(dir);
1363
1364no_entry:
1365        res = d_materialise_unique(dentry, inode);
1366        if (res != NULL) {
1367                if (IS_ERR(res))
1368                        goto out_unblock_sillyrename;
1369                dentry = res;
1370        }
1371        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1372out_unblock_sillyrename:
1373        nfs_unblock_sillyrename(parent);
1374        trace_nfs_lookup_exit(dir, dentry, flags, error);
1375        nfs4_label_free(label);
1376out:
1377        nfs_free_fattr(fattr);
1378        nfs_free_fhandle(fhandle);
1379        return res;
1380}
1381EXPORT_SYMBOL_GPL(nfs_lookup);
1382
1383#if IS_ENABLED(CONFIG_NFS_V4)
1384static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1385
1386const struct dentry_operations nfs4_dentry_operations = {
1387        .d_revalidate   = nfs4_lookup_revalidate,
1388        .d_delete       = nfs_dentry_delete,
1389        .d_iput         = nfs_dentry_iput,
1390        .d_automount    = nfs_d_automount,
1391        .d_release      = nfs_d_release,
1392};
1393EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1394
1395static fmode_t flags_to_mode(int flags)
1396{
1397        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1398        if ((flags & O_ACCMODE) != O_WRONLY)
1399                res |= FMODE_READ;
1400        if ((flags & O_ACCMODE) != O_RDONLY)
1401                res |= FMODE_WRITE;
1402        return res;
1403}
1404
1405static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1406{
1407        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1408}
1409
1410static int do_open(struct inode *inode, struct file *filp)
1411{
1412        nfs_fscache_open_file(inode, filp);
1413        return 0;
1414}
1415
1416static int nfs_finish_open(struct nfs_open_context *ctx,
1417                           struct dentry *dentry,
1418                           struct file *file, unsigned open_flags,
1419                           int *opened)
1420{
1421        int err;
1422
1423        if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1424                *opened |= FILE_CREATED;
1425
1426        err = finish_open(file, dentry, do_open, opened);
1427        if (err)
1428                goto out;
1429        nfs_file_set_open_context(file, ctx);
1430
1431out:
1432        return err;
1433}
1434
1435int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1436                    struct file *file, unsigned open_flags,
1437                    umode_t mode, int *opened)
1438{
1439        struct nfs_open_context *ctx;
1440        struct dentry *res;
1441        struct iattr attr = { .ia_valid = ATTR_OPEN };
1442        struct inode *inode;
1443        unsigned int lookup_flags = 0;
1444        int err;
1445
1446        /* Expect a negative dentry */
1447        BUG_ON(dentry->d_inode);
1448
1449        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1450                        dir->i_sb->s_id, dir->i_ino, dentry);
1451
1452        err = nfs_check_flags(open_flags);
1453        if (err)
1454                return err;
1455
1456        /* NFS only supports OPEN on regular files */
1457        if ((open_flags & O_DIRECTORY)) {
1458                if (!d_unhashed(dentry)) {
1459                        /*
1460                         * Hashed negative dentry with O_DIRECTORY: dentry was
1461                         * revalidated and is fine, no need to perform lookup
1462                         * again
1463                         */
1464                        return -ENOENT;
1465                }
1466                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1467                goto no_open;
1468        }
1469
1470        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1471                return -ENAMETOOLONG;
1472
1473        if (open_flags & O_CREAT) {
1474                attr.ia_valid |= ATTR_MODE;
1475                attr.ia_mode = mode & ~current_umask();
1476        }
1477        if (open_flags & O_TRUNC) {
1478                attr.ia_valid |= ATTR_SIZE;
1479                attr.ia_size = 0;
1480        }
1481
1482        ctx = create_nfs_open_context(dentry, open_flags);
1483        err = PTR_ERR(ctx);
1484        if (IS_ERR(ctx))
1485                goto out;
1486
1487        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1488        nfs_block_sillyrename(dentry->d_parent);
1489        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1490        nfs_unblock_sillyrename(dentry->d_parent);
1491        if (IS_ERR(inode)) {
1492                err = PTR_ERR(inode);
1493                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1494                put_nfs_open_context(ctx);
1495                switch (err) {
1496                case -ENOENT:
1497                        d_drop(dentry);
1498                        d_add(dentry, NULL);
1499                        break;
1500                case -EISDIR:
1501                case -ENOTDIR:
1502                        goto no_open;
1503                case -ELOOP:
1504                        if (!(open_flags & O_NOFOLLOW))
1505                                goto no_open;
1506                        break;
1507                        /* case -EINVAL: */
1508                default:
1509                        break;
1510                }
1511                goto out;
1512        }
1513
1514        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1515        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1516        put_nfs_open_context(ctx);
1517out:
1518        return err;
1519
1520no_open:
1521        res = nfs_lookup(dir, dentry, lookup_flags);
1522        err = PTR_ERR(res);
1523        if (IS_ERR(res))
1524                goto out;
1525
1526        return finish_no_open(file, res);
1527}
1528EXPORT_SYMBOL_GPL(nfs_atomic_open);
1529
1530static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1531{
1532        struct dentry *parent = NULL;
1533        struct inode *inode;
1534        struct inode *dir;
1535        int ret = 0;
1536
1537        if (flags & LOOKUP_RCU)
1538                return -ECHILD;
1539
1540        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1541                goto no_open;
1542        if (d_mountpoint(dentry))
1543                goto no_open;
1544        if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1545                goto no_open;
1546
1547        inode = dentry->d_inode;
1548        parent = dget_parent(dentry);
1549        dir = parent->d_inode;
1550
1551        /* We can't create new files in nfs_open_revalidate(), so we
1552         * optimize away revalidation of negative dentries.
1553         */
1554        if (inode == NULL) {
1555                if (!nfs_neg_need_reval(dir, dentry, flags))
1556                        ret = 1;
1557                goto out;
1558        }
1559
1560        /* NFS only supports OPEN on regular files */
1561        if (!S_ISREG(inode->i_mode))
1562                goto no_open_dput;
1563        /* We cannot do exclusive creation on a positive dentry */
1564        if (flags & LOOKUP_EXCL)
1565                goto no_open_dput;
1566
1567        /* Let f_op->open() actually open (and revalidate) the file */
1568        ret = 1;
1569
1570out:
1571        dput(parent);
1572        return ret;
1573
1574no_open_dput:
1575        dput(parent);
1576no_open:
1577        return nfs_lookup_revalidate(dentry, flags);
1578}
1579
1580#endif /* CONFIG_NFSV4 */
1581
1582/*
1583 * Code common to create, mkdir, and mknod.
1584 */
1585int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1586                                struct nfs_fattr *fattr,
1587                                struct nfs4_label *label)
1588{
1589        struct dentry *parent = dget_parent(dentry);
1590        struct inode *dir = parent->d_inode;
1591        struct inode *inode;
1592        int error = -EACCES;
1593
1594        d_drop(dentry);
1595
1596        /* We may have been initialized further down */
1597        if (dentry->d_inode)
1598                goto out;
1599        if (fhandle->size == 0) {
1600                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1601                if (error)
1602                        goto out_error;
1603        }
1604        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1605        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1606                struct nfs_server *server = NFS_SB(dentry->d_sb);
1607                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1608                if (error < 0)
1609                        goto out_error;
1610        }
1611        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1612        error = PTR_ERR(inode);
1613        if (IS_ERR(inode))
1614                goto out_error;
1615        d_add(dentry, inode);
1616out:
1617        dput(parent);
1618        return 0;
1619out_error:
1620        nfs_mark_for_revalidate(dir);
1621        dput(parent);
1622        return error;
1623}
1624EXPORT_SYMBOL_GPL(nfs_instantiate);
1625
1626/*
1627 * Following a failed create operation, we drop the dentry rather
1628 * than retain a negative dentry. This avoids a problem in the event
1629 * that the operation succeeded on the server, but an error in the
1630 * reply path made it appear to have failed.
1631 */
1632int nfs_create(struct inode *dir, struct dentry *dentry,
1633                umode_t mode, bool excl)
1634{
1635        struct iattr attr;
1636        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1637        int error;
1638
1639        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1640                        dir->i_sb->s_id, dir->i_ino, dentry);
1641
1642        attr.ia_mode = mode;
1643        attr.ia_valid = ATTR_MODE;
1644
1645        trace_nfs_create_enter(dir, dentry, open_flags);
1646        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1647        trace_nfs_create_exit(dir, dentry, open_flags, error);
1648        if (error != 0)
1649                goto out_err;
1650        return 0;
1651out_err:
1652        d_drop(dentry);
1653        return error;
1654}
1655EXPORT_SYMBOL_GPL(nfs_create);
1656
1657/*
1658 * See comments for nfs_proc_create regarding failed operations.
1659 */
1660int
1661nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1662{
1663        struct iattr attr;
1664        int status;
1665
1666        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1667                        dir->i_sb->s_id, dir->i_ino, dentry);
1668
1669        if (!new_valid_dev(rdev))
1670                return -EINVAL;
1671
1672        attr.ia_mode = mode;
1673        attr.ia_valid = ATTR_MODE;
1674
1675        trace_nfs_mknod_enter(dir, dentry);
1676        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1677        trace_nfs_mknod_exit(dir, dentry, status);
1678        if (status != 0)
1679                goto out_err;
1680        return 0;
1681out_err:
1682        d_drop(dentry);
1683        return status;
1684}
1685EXPORT_SYMBOL_GPL(nfs_mknod);
1686
1687/*
1688 * See comments for nfs_proc_create regarding failed operations.
1689 */
1690int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1691{
1692        struct iattr attr;
1693        int error;
1694
1695        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1696                        dir->i_sb->s_id, dir->i_ino, dentry);
1697
1698        attr.ia_valid = ATTR_MODE;
1699        attr.ia_mode = mode | S_IFDIR;
1700
1701        trace_nfs_mkdir_enter(dir, dentry);
1702        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1703        trace_nfs_mkdir_exit(dir, dentry, error);
1704        if (error != 0)
1705                goto out_err;
1706        return 0;
1707out_err:
1708        d_drop(dentry);
1709        return error;
1710}
1711EXPORT_SYMBOL_GPL(nfs_mkdir);
1712
1713static void nfs_dentry_handle_enoent(struct dentry *dentry)
1714{
1715        if (dentry->d_inode != NULL && !d_unhashed(dentry))
1716                d_delete(dentry);
1717}
1718
1719int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1720{
1721        int error;
1722
1723        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1724                        dir->i_sb->s_id, dir->i_ino, dentry);
1725
1726        trace_nfs_rmdir_enter(dir, dentry);
1727        if (dentry->d_inode) {
1728                nfs_wait_on_sillyrename(dentry);
1729                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1730                /* Ensure the VFS deletes this inode */
1731                switch (error) {
1732                case 0:
1733                        clear_nlink(dentry->d_inode);
1734                        break;
1735                case -ENOENT:
1736                        nfs_dentry_handle_enoent(dentry);
1737                }
1738        } else
1739                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1740        trace_nfs_rmdir_exit(dir, dentry, error);
1741
1742        return error;
1743}
1744EXPORT_SYMBOL_GPL(nfs_rmdir);
1745
1746/*
1747 * Remove a file after making sure there are no pending writes,
1748 * and after checking that the file has only one user. 
1749 *
1750 * We invalidate the attribute cache and free the inode prior to the operation
1751 * to avoid possible races if the server reuses the inode.
1752 */
1753static int nfs_safe_remove(struct dentry *dentry)
1754{
1755        struct inode *dir = dentry->d_parent->d_inode;
1756        struct inode *inode = dentry->d_inode;
1757        int error = -EBUSY;
1758                
1759        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1760
1761        /* If the dentry was sillyrenamed, we simply call d_delete() */
1762        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1763                error = 0;
1764                goto out;
1765        }
1766
1767        trace_nfs_remove_enter(dir, dentry);
1768        if (inode != NULL) {
1769                NFS_PROTO(inode)->return_delegation(inode);
1770                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1771                if (error == 0)
1772                        nfs_drop_nlink(inode);
1773        } else
1774                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1775        if (error == -ENOENT)
1776                nfs_dentry_handle_enoent(dentry);
1777        trace_nfs_remove_exit(dir, dentry, error);
1778out:
1779        return error;
1780}
1781
1782/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1783 *  belongs to an active ".nfs..." file and we return -EBUSY.
1784 *
1785 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1786 */
1787int nfs_unlink(struct inode *dir, struct dentry *dentry)
1788{
1789        int error;
1790        int need_rehash = 0;
1791
1792        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1793                dir->i_ino, dentry);
1794
1795        trace_nfs_unlink_enter(dir, dentry);
1796        spin_lock(&dentry->d_lock);
1797        if (d_count(dentry) > 1) {
1798                spin_unlock(&dentry->d_lock);
1799                /* Start asynchronous writeout of the inode */
1800                write_inode_now(dentry->d_inode, 0);
1801                error = nfs_sillyrename(dir, dentry);
1802                goto out;
1803        }
1804        if (!d_unhashed(dentry)) {
1805                __d_drop(dentry);
1806                need_rehash = 1;
1807        }
1808        spin_unlock(&dentry->d_lock);
1809        error = nfs_safe_remove(dentry);
1810        if (!error || error == -ENOENT) {
1811                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1812        } else if (need_rehash)
1813                d_rehash(dentry);
1814out:
1815        trace_nfs_unlink_exit(dir, dentry, error);
1816        return error;
1817}
1818EXPORT_SYMBOL_GPL(nfs_unlink);
1819
1820/*
1821 * To create a symbolic link, most file systems instantiate a new inode,
1822 * add a page to it containing the path, then write it out to the disk
1823 * using prepare_write/commit_write.
1824 *
1825 * Unfortunately the NFS client can't create the in-core inode first
1826 * because it needs a file handle to create an in-core inode (see
1827 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1828 * symlink request has completed on the server.
1829 *
1830 * So instead we allocate a raw page, copy the symname into it, then do
1831 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1832 * now have a new file handle and can instantiate an in-core NFS inode
1833 * and move the raw page into its mapping.
1834 */
1835int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1836{
1837        struct page *page;
1838        char *kaddr;
1839        struct iattr attr;
1840        unsigned int pathlen = strlen(symname);
1841        int error;
1842
1843        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1844                dir->i_ino, dentry, symname);
1845
1846        if (pathlen > PAGE_SIZE)
1847                return -ENAMETOOLONG;
1848
1849        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1850        attr.ia_valid = ATTR_MODE;
1851
1852        page = alloc_page(GFP_HIGHUSER);
1853        if (!page)
1854                return -ENOMEM;
1855
1856        kaddr = kmap_atomic(page);
1857        memcpy(kaddr, symname, pathlen);
1858        if (pathlen < PAGE_SIZE)
1859                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1860        kunmap_atomic(kaddr);
1861
1862        trace_nfs_symlink_enter(dir, dentry);
1863        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1864        trace_nfs_symlink_exit(dir, dentry, error);
1865        if (error != 0) {
1866                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1867                        dir->i_sb->s_id, dir->i_ino,
1868                        dentry, symname, error);
1869                d_drop(dentry);
1870                __free_page(page);
1871                return error;
1872        }
1873
1874        /*
1875         * No big deal if we can't add this page to the page cache here.
1876         * READLINK will get the missing page from the server if needed.
1877         */
1878        if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1879                                                        GFP_KERNEL)) {
1880                SetPageUptodate(page);
1881                unlock_page(page);
1882                /*
1883                 * add_to_page_cache_lru() grabs an extra page refcount.
1884                 * Drop it here to avoid leaking this page later.
1885                 */
1886                page_cache_release(page);
1887        } else
1888                __free_page(page);
1889
1890        return 0;
1891}
1892EXPORT_SYMBOL_GPL(nfs_symlink);
1893
1894int
1895nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1896{
1897        struct inode *inode = old_dentry->d_inode;
1898        int error;
1899
1900        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1901                old_dentry, dentry);
1902
1903        trace_nfs_link_enter(inode, dir, dentry);
1904        NFS_PROTO(inode)->return_delegation(inode);
1905
1906        d_drop(dentry);
1907        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1908        if (error == 0) {
1909                ihold(inode);
1910                d_add(dentry, inode);
1911        }
1912        trace_nfs_link_exit(inode, dir, dentry, error);
1913        return error;
1914}
1915EXPORT_SYMBOL_GPL(nfs_link);
1916
1917/*
1918 * RENAME
1919 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1920 * different file handle for the same inode after a rename (e.g. when
1921 * moving to a different directory). A fail-safe method to do so would
1922 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1923 * rename the old file using the sillyrename stuff. This way, the original
1924 * file in old_dir will go away when the last process iput()s the inode.
1925 *
1926 * FIXED.
1927 * 
1928 * It actually works quite well. One needs to have the possibility for
1929 * at least one ".nfs..." file in each directory the file ever gets
1930 * moved or linked to which happens automagically with the new
1931 * implementation that only depends on the dcache stuff instead of
1932 * using the inode layer
1933 *
1934 * Unfortunately, things are a little more complicated than indicated
1935 * above. For a cross-directory move, we want to make sure we can get
1936 * rid of the old inode after the operation.  This means there must be
1937 * no pending writes (if it's a file), and the use count must be 1.
1938 * If these conditions are met, we can drop the dentries before doing
1939 * the rename.
1940 */
1941int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1942                      struct inode *new_dir, struct dentry *new_dentry)
1943{
1944        struct inode *old_inode = old_dentry->d_inode;
1945        struct inode *new_inode = new_dentry->d_inode;
1946        struct dentry *dentry = NULL, *rehash = NULL;
1947        struct rpc_task *task;
1948        int error = -EBUSY;
1949
1950        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1951                 old_dentry, new_dentry,
1952                 d_count(new_dentry));
1953
1954        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1955        /*
1956         * For non-directories, check whether the target is busy and if so,
1957         * make a copy of the dentry and then do a silly-rename. If the
1958         * silly-rename succeeds, the copied dentry is hashed and becomes
1959         * the new target.
1960         */
1961        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1962                /*
1963                 * To prevent any new references to the target during the
1964                 * rename, we unhash the dentry in advance.
1965                 */
1966                if (!d_unhashed(new_dentry)) {
1967                        d_drop(new_dentry);
1968                        rehash = new_dentry;
1969                }
1970
1971                if (d_count(new_dentry) > 2) {
1972                        int err;
1973
1974                        /* copy the target dentry's name */
1975                        dentry = d_alloc(new_dentry->d_parent,
1976                                         &new_dentry->d_name);
1977                        if (!dentry)
1978                                goto out;
1979
1980                        /* silly-rename the existing target ... */
1981                        err = nfs_sillyrename(new_dir, new_dentry);
1982                        if (err)
1983                                goto out;
1984
1985                        new_dentry = dentry;
1986                        rehash = NULL;
1987                        new_inode = NULL;
1988                }
1989        }
1990
1991        NFS_PROTO(old_inode)->return_delegation(old_inode);
1992        if (new_inode != NULL)
1993                NFS_PROTO(new_inode)->return_delegation(new_inode);
1994
1995        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
1996        if (IS_ERR(task)) {
1997                error = PTR_ERR(task);
1998                goto out;
1999        }
2000
2001        error = rpc_wait_for_completion_task(task);
2002        if (error == 0)
2003                error = task->tk_status;
2004        rpc_put_task(task);
2005        nfs_mark_for_revalidate(old_inode);
2006out:
2007        if (rehash)
2008                d_rehash(rehash);
2009        trace_nfs_rename_exit(old_dir, old_dentry,
2010                        new_dir, new_dentry, error);
2011        if (!error) {
2012                if (new_inode != NULL)
2013                        nfs_drop_nlink(new_inode);
2014                d_move(old_dentry, new_dentry);
2015                nfs_set_verifier(new_dentry,
2016                                        nfs_save_change_attribute(new_dir));
2017        } else if (error == -ENOENT)
2018                nfs_dentry_handle_enoent(old_dentry);
2019
2020        /* new dentry created? */
2021        if (dentry)
2022                dput(dentry);
2023        return error;
2024}
2025EXPORT_SYMBOL_GPL(nfs_rename);
2026
2027static DEFINE_SPINLOCK(nfs_access_lru_lock);
2028static LIST_HEAD(nfs_access_lru_list);
2029static atomic_long_t nfs_access_nr_entries;
2030
2031static void nfs_access_free_entry(struct nfs_access_entry *entry)
2032{
2033        put_rpccred(entry->cred);
2034        kfree(entry);
2035        smp_mb__before_atomic_dec();
2036        atomic_long_dec(&nfs_access_nr_entries);
2037        smp_mb__after_atomic_dec();
2038}
2039
2040static void nfs_access_free_list(struct list_head *head)
2041{
2042        struct nfs_access_entry *cache;
2043
2044        while (!list_empty(head)) {
2045                cache = list_entry(head->next, struct nfs_access_entry, lru);
2046                list_del(&cache->lru);
2047                nfs_access_free_entry(cache);
2048        }
2049}
2050
2051unsigned long
2052nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2053{
2054        LIST_HEAD(head);
2055        struct nfs_inode *nfsi, *next;
2056        struct nfs_access_entry *cache;
2057        int nr_to_scan = sc->nr_to_scan;
2058        gfp_t gfp_mask = sc->gfp_mask;
2059        long freed = 0;
2060
2061        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2062                return SHRINK_STOP;
2063
2064        spin_lock(&nfs_access_lru_lock);
2065        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2066                struct inode *inode;
2067
2068                if (nr_to_scan-- == 0)
2069                        break;
2070                inode = &nfsi->vfs_inode;
2071                spin_lock(&inode->i_lock);
2072                if (list_empty(&nfsi->access_cache_entry_lru))
2073                        goto remove_lru_entry;
2074                cache = list_entry(nfsi->access_cache_entry_lru.next,
2075                                struct nfs_access_entry, lru);
2076                list_move(&cache->lru, &head);
2077                rb_erase(&cache->rb_node, &nfsi->access_cache);
2078                freed++;
2079                if (!list_empty(&nfsi->access_cache_entry_lru))
2080                        list_move_tail(&nfsi->access_cache_inode_lru,
2081                                        &nfs_access_lru_list);
2082                else {
2083remove_lru_entry:
2084                        list_del_init(&nfsi->access_cache_inode_lru);
2085                        smp_mb__before_clear_bit();
2086                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2087                        smp_mb__after_clear_bit();
2088                }
2089                spin_unlock(&inode->i_lock);
2090        }
2091        spin_unlock(&nfs_access_lru_lock);
2092        nfs_access_free_list(&head);
2093        return freed;
2094}
2095
2096unsigned long
2097nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2098{
2099        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2100}
2101
2102static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2103{
2104        struct rb_root *root_node = &nfsi->access_cache;
2105        struct rb_node *n;
2106        struct nfs_access_entry *entry;
2107
2108        /* Unhook entries from the cache */
2109        while ((n = rb_first(root_node)) != NULL) {
2110                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2111                rb_erase(n, root_node);
2112                list_move(&entry->lru, head);
2113        }
2114        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2115}
2116
2117void nfs_access_zap_cache(struct inode *inode)
2118{
2119        LIST_HEAD(head);
2120
2121        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2122                return;
2123        /* Remove from global LRU init */
2124        spin_lock(&nfs_access_lru_lock);
2125        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2126                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2127
2128        spin_lock(&inode->i_lock);
2129        __nfs_access_zap_cache(NFS_I(inode), &head);
2130        spin_unlock(&inode->i_lock);
2131        spin_unlock(&nfs_access_lru_lock);
2132        nfs_access_free_list(&head);
2133}
2134EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2135
2136static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2137{
2138        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2139        struct nfs_access_entry *entry;
2140
2141        while (n != NULL) {
2142                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2143
2144                if (cred < entry->cred)
2145                        n = n->rb_left;
2146                else if (cred > entry->cred)
2147                        n = n->rb_right;
2148                else
2149                        return entry;
2150        }
2151        return NULL;
2152}
2153
2154static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2155{
2156        struct nfs_inode *nfsi = NFS_I(inode);
2157        struct nfs_access_entry *cache;
2158        int err = -ENOENT;
2159
2160        spin_lock(&inode->i_lock);
2161        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2162                goto out_zap;
2163        cache = nfs_access_search_rbtree(inode, cred);
2164        if (cache == NULL)
2165                goto out;
2166        if (!nfs_have_delegated_attributes(inode) &&
2167            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2168                goto out_stale;
2169        res->jiffies = cache->jiffies;
2170        res->cred = cache->cred;
2171        res->mask = cache->mask;
2172        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2173        err = 0;
2174out:
2175        spin_unlock(&inode->i_lock);
2176        return err;
2177out_stale:
2178        rb_erase(&cache->rb_node, &nfsi->access_cache);
2179        list_del(&cache->lru);
2180        spin_unlock(&inode->i_lock);
2181        nfs_access_free_entry(cache);
2182        return -ENOENT;
2183out_zap:
2184        spin_unlock(&inode->i_lock);
2185        nfs_access_zap_cache(inode);
2186        return -ENOENT;
2187}
2188
2189static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2190{
2191        struct nfs_inode *nfsi = NFS_I(inode);
2192        struct rb_root *root_node = &nfsi->access_cache;
2193        struct rb_node **p = &root_node->rb_node;
2194        struct rb_node *parent = NULL;
2195        struct nfs_access_entry *entry;
2196
2197        spin_lock(&inode->i_lock);
2198        while (*p != NULL) {
2199                parent = *p;
2200                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2201
2202                if (set->cred < entry->cred)
2203                        p = &parent->rb_left;
2204                else if (set->cred > entry->cred)
2205                        p = &parent->rb_right;
2206                else
2207                        goto found;
2208        }
2209        rb_link_node(&set->rb_node, parent, p);
2210        rb_insert_color(&set->rb_node, root_node);
2211        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2212        spin_unlock(&inode->i_lock);
2213        return;
2214found:
2215        rb_replace_node(parent, &set->rb_node, root_node);
2216        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2217        list_del(&entry->lru);
2218        spin_unlock(&inode->i_lock);
2219        nfs_access_free_entry(entry);
2220}
2221
2222void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2223{
2224        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2225        if (cache == NULL)
2226                return;
2227        RB_CLEAR_NODE(&cache->rb_node);
2228        cache->jiffies = set->jiffies;
2229        cache->cred = get_rpccred(set->cred);
2230        cache->mask = set->mask;
2231
2232        nfs_access_add_rbtree(inode, cache);
2233
2234        /* Update accounting */
2235        smp_mb__before_atomic_inc();
2236        atomic_long_inc(&nfs_access_nr_entries);
2237        smp_mb__after_atomic_inc();
2238
2239        /* Add inode to global LRU list */
2240        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2241                spin_lock(&nfs_access_lru_lock);
2242                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2243                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2244                                        &nfs_access_lru_list);
2245                spin_unlock(&nfs_access_lru_lock);
2246        }
2247}
2248EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2249
2250void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2251{
2252        entry->mask = 0;
2253        if (access_result & NFS4_ACCESS_READ)
2254                entry->mask |= MAY_READ;
2255        if (access_result &
2256            (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2257                entry->mask |= MAY_WRITE;
2258        if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2259                entry->mask |= MAY_EXEC;
2260}
2261EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2262
2263static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2264{
2265        struct nfs_access_entry cache;
2266        int status;
2267
2268        trace_nfs_access_enter(inode);
2269
2270        status = nfs_access_get_cached(inode, cred, &cache);
2271        if (status == 0)
2272                goto out_cached;
2273
2274        /* Be clever: ask server to check for all possible rights */
2275        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2276        cache.cred = cred;
2277        cache.jiffies = jiffies;
2278        status = NFS_PROTO(inode)->access(inode, &cache);
2279        if (status != 0) {
2280                if (status == -ESTALE) {
2281                        nfs_zap_caches(inode);
2282                        if (!S_ISDIR(inode->i_mode))
2283                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2284                }
2285                goto out;
2286        }
2287        nfs_access_add_cache(inode, &cache);
2288out_cached:
2289        if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2290                status = -EACCES;
2291out:
2292        trace_nfs_access_exit(inode, status);
2293        return status;
2294}
2295
2296static int nfs_open_permission_mask(int openflags)
2297{
2298        int mask = 0;
2299
2300        if (openflags & __FMODE_EXEC) {
2301                /* ONLY check exec rights */
2302                mask = MAY_EXEC;
2303        } else {
2304                if ((openflags & O_ACCMODE) != O_WRONLY)
2305                        mask |= MAY_READ;
2306                if ((openflags & O_ACCMODE) != O_RDONLY)
2307                        mask |= MAY_WRITE;
2308        }
2309
2310        return mask;
2311}
2312
2313int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2314{
2315        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2316}
2317EXPORT_SYMBOL_GPL(nfs_may_open);
2318
2319int nfs_permission(struct inode *inode, int mask)
2320{
2321        struct rpc_cred *cred;
2322        int res = 0;
2323
2324        if (mask & MAY_NOT_BLOCK)
2325                return -ECHILD;
2326
2327        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2328
2329        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2330                goto out;
2331        /* Is this sys_access() ? */
2332        if (mask & (MAY_ACCESS | MAY_CHDIR))
2333                goto force_lookup;
2334
2335        switch (inode->i_mode & S_IFMT) {
2336                case S_IFLNK:
2337                        goto out;
2338                case S_IFREG:
2339                        break;
2340                case S_IFDIR:
2341                        /*
2342                         * Optimize away all write operations, since the server
2343                         * will check permissions when we perform the op.
2344                         */
2345                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2346                                goto out;
2347        }
2348
2349force_lookup:
2350        if (!NFS_PROTO(inode)->access)
2351                goto out_notsup;
2352
2353        cred = rpc_lookup_cred();
2354        if (!IS_ERR(cred)) {
2355                res = nfs_do_access(inode, cred, mask);
2356                put_rpccred(cred);
2357        } else
2358                res = PTR_ERR(cred);
2359out:
2360        if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2361                res = -EACCES;
2362
2363        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2364                inode->i_sb->s_id, inode->i_ino, mask, res);
2365        return res;
2366out_notsup:
2367        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2368        if (res == 0)
2369                res = generic_permission(inode, mask);
2370        goto out;
2371}
2372EXPORT_SYMBOL_GPL(nfs_permission);
2373
2374/*
2375 * Local variables:
2376 *  version-control: t
2377 *  kept-new-versions: 5
2378 * End:
2379 */
2380