linux/fs/xfs/xfs_buf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
  37#include "xfs_log_format.h"
  38#include "xfs_trans_resv.h"
  39#include "xfs_sb.h"
  40#include "xfs_ag.h"
  41#include "xfs_mount.h"
  42#include "xfs_trace.h"
  43#include "xfs_log.h"
  44
  45static kmem_zone_t *xfs_buf_zone;
  46
  47static struct workqueue_struct *xfslogd_workqueue;
  48
  49#ifdef XFS_BUF_LOCK_TRACKING
  50# define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
  51# define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
  52# define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
  53#else
  54# define XB_SET_OWNER(bp)       do { } while (0)
  55# define XB_CLEAR_OWNER(bp)     do { } while (0)
  56# define XB_GET_OWNER(bp)       do { } while (0)
  57#endif
  58
  59#define xb_to_gfp(flags) \
  60        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  61
  62
  63static inline int
  64xfs_buf_is_vmapped(
  65        struct xfs_buf  *bp)
  66{
  67        /*
  68         * Return true if the buffer is vmapped.
  69         *
  70         * b_addr is null if the buffer is not mapped, but the code is clever
  71         * enough to know it doesn't have to map a single page, so the check has
  72         * to be both for b_addr and bp->b_page_count > 1.
  73         */
  74        return bp->b_addr && bp->b_page_count > 1;
  75}
  76
  77static inline int
  78xfs_buf_vmap_len(
  79        struct xfs_buf  *bp)
  80{
  81        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  82}
  83
  84/*
  85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  86 * b_lru_ref count so that the buffer is freed immediately when the buffer
  87 * reference count falls to zero. If the buffer is already on the LRU, we need
  88 * to remove the reference that LRU holds on the buffer.
  89 *
  90 * This prevents build-up of stale buffers on the LRU.
  91 */
  92void
  93xfs_buf_stale(
  94        struct xfs_buf  *bp)
  95{
  96        ASSERT(xfs_buf_islocked(bp));
  97
  98        bp->b_flags |= XBF_STALE;
  99
 100        /*
 101         * Clear the delwri status so that a delwri queue walker will not
 102         * flush this buffer to disk now that it is stale. The delwri queue has
 103         * a reference to the buffer, so this is safe to do.
 104         */
 105        bp->b_flags &= ~_XBF_DELWRI_Q;
 106
 107        spin_lock(&bp->b_lock);
 108        atomic_set(&bp->b_lru_ref, 0);
 109        if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 110            (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 111                atomic_dec(&bp->b_hold);
 112
 113        ASSERT(atomic_read(&bp->b_hold) >= 1);
 114        spin_unlock(&bp->b_lock);
 115}
 116
 117static int
 118xfs_buf_get_maps(
 119        struct xfs_buf          *bp,
 120        int                     map_count)
 121{
 122        ASSERT(bp->b_maps == NULL);
 123        bp->b_map_count = map_count;
 124
 125        if (map_count == 1) {
 126                bp->b_maps = &bp->__b_map;
 127                return 0;
 128        }
 129
 130        bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 131                                KM_NOFS);
 132        if (!bp->b_maps)
 133                return ENOMEM;
 134        return 0;
 135}
 136
 137/*
 138 *      Frees b_pages if it was allocated.
 139 */
 140static void
 141xfs_buf_free_maps(
 142        struct xfs_buf  *bp)
 143{
 144        if (bp->b_maps != &bp->__b_map) {
 145                kmem_free(bp->b_maps);
 146                bp->b_maps = NULL;
 147        }
 148}
 149
 150struct xfs_buf *
 151_xfs_buf_alloc(
 152        struct xfs_buftarg      *target,
 153        struct xfs_buf_map      *map,
 154        int                     nmaps,
 155        xfs_buf_flags_t         flags)
 156{
 157        struct xfs_buf          *bp;
 158        int                     error;
 159        int                     i;
 160
 161        bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 162        if (unlikely(!bp))
 163                return NULL;
 164
 165        /*
 166         * We don't want certain flags to appear in b_flags unless they are
 167         * specifically set by later operations on the buffer.
 168         */
 169        flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 170
 171        atomic_set(&bp->b_hold, 1);
 172        atomic_set(&bp->b_lru_ref, 1);
 173        init_completion(&bp->b_iowait);
 174        INIT_LIST_HEAD(&bp->b_lru);
 175        INIT_LIST_HEAD(&bp->b_list);
 176        RB_CLEAR_NODE(&bp->b_rbnode);
 177        sema_init(&bp->b_sema, 0); /* held, no waiters */
 178        spin_lock_init(&bp->b_lock);
 179        XB_SET_OWNER(bp);
 180        bp->b_target = target;
 181        bp->b_flags = flags;
 182
 183        /*
 184         * Set length and io_length to the same value initially.
 185         * I/O routines should use io_length, which will be the same in
 186         * most cases but may be reset (e.g. XFS recovery).
 187         */
 188        error = xfs_buf_get_maps(bp, nmaps);
 189        if (error)  {
 190                kmem_zone_free(xfs_buf_zone, bp);
 191                return NULL;
 192        }
 193
 194        bp->b_bn = map[0].bm_bn;
 195        bp->b_length = 0;
 196        for (i = 0; i < nmaps; i++) {
 197                bp->b_maps[i].bm_bn = map[i].bm_bn;
 198                bp->b_maps[i].bm_len = map[i].bm_len;
 199                bp->b_length += map[i].bm_len;
 200        }
 201        bp->b_io_length = bp->b_length;
 202
 203        atomic_set(&bp->b_pin_count, 0);
 204        init_waitqueue_head(&bp->b_waiters);
 205
 206        XFS_STATS_INC(xb_create);
 207        trace_xfs_buf_init(bp, _RET_IP_);
 208
 209        return bp;
 210}
 211
 212/*
 213 *      Allocate a page array capable of holding a specified number
 214 *      of pages, and point the page buf at it.
 215 */
 216STATIC int
 217_xfs_buf_get_pages(
 218        xfs_buf_t               *bp,
 219        int                     page_count,
 220        xfs_buf_flags_t         flags)
 221{
 222        /* Make sure that we have a page list */
 223        if (bp->b_pages == NULL) {
 224                bp->b_page_count = page_count;
 225                if (page_count <= XB_PAGES) {
 226                        bp->b_pages = bp->b_page_array;
 227                } else {
 228                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 229                                                 page_count, KM_NOFS);
 230                        if (bp->b_pages == NULL)
 231                                return -ENOMEM;
 232                }
 233                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 234        }
 235        return 0;
 236}
 237
 238/*
 239 *      Frees b_pages if it was allocated.
 240 */
 241STATIC void
 242_xfs_buf_free_pages(
 243        xfs_buf_t       *bp)
 244{
 245        if (bp->b_pages != bp->b_page_array) {
 246                kmem_free(bp->b_pages);
 247                bp->b_pages = NULL;
 248        }
 249}
 250
 251/*
 252 *      Releases the specified buffer.
 253 *
 254 *      The modification state of any associated pages is left unchanged.
 255 *      The buffer must not be on any hash - use xfs_buf_rele instead for
 256 *      hashed and refcounted buffers
 257 */
 258void
 259xfs_buf_free(
 260        xfs_buf_t               *bp)
 261{
 262        trace_xfs_buf_free(bp, _RET_IP_);
 263
 264        ASSERT(list_empty(&bp->b_lru));
 265
 266        if (bp->b_flags & _XBF_PAGES) {
 267                uint            i;
 268
 269                if (xfs_buf_is_vmapped(bp))
 270                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 271                                        bp->b_page_count);
 272
 273                for (i = 0; i < bp->b_page_count; i++) {
 274                        struct page     *page = bp->b_pages[i];
 275
 276                        __free_page(page);
 277                }
 278        } else if (bp->b_flags & _XBF_KMEM)
 279                kmem_free(bp->b_addr);
 280        _xfs_buf_free_pages(bp);
 281        xfs_buf_free_maps(bp);
 282        kmem_zone_free(xfs_buf_zone, bp);
 283}
 284
 285/*
 286 * Allocates all the pages for buffer in question and builds it's page list.
 287 */
 288STATIC int
 289xfs_buf_allocate_memory(
 290        xfs_buf_t               *bp,
 291        uint                    flags)
 292{
 293        size_t                  size;
 294        size_t                  nbytes, offset;
 295        gfp_t                   gfp_mask = xb_to_gfp(flags);
 296        unsigned short          page_count, i;
 297        xfs_off_t               start, end;
 298        int                     error;
 299
 300        /*
 301         * for buffers that are contained within a single page, just allocate
 302         * the memory from the heap - there's no need for the complexity of
 303         * page arrays to keep allocation down to order 0.
 304         */
 305        size = BBTOB(bp->b_length);
 306        if (size < PAGE_SIZE) {
 307                bp->b_addr = kmem_alloc(size, KM_NOFS);
 308                if (!bp->b_addr) {
 309                        /* low memory - use alloc_page loop instead */
 310                        goto use_alloc_page;
 311                }
 312
 313                if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 314                    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 315                        /* b_addr spans two pages - use alloc_page instead */
 316                        kmem_free(bp->b_addr);
 317                        bp->b_addr = NULL;
 318                        goto use_alloc_page;
 319                }
 320                bp->b_offset = offset_in_page(bp->b_addr);
 321                bp->b_pages = bp->b_page_array;
 322                bp->b_pages[0] = virt_to_page(bp->b_addr);
 323                bp->b_page_count = 1;
 324                bp->b_flags |= _XBF_KMEM;
 325                return 0;
 326        }
 327
 328use_alloc_page:
 329        start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 330        end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 331                                                                >> PAGE_SHIFT;
 332        page_count = end - start;
 333        error = _xfs_buf_get_pages(bp, page_count, flags);
 334        if (unlikely(error))
 335                return error;
 336
 337        offset = bp->b_offset;
 338        bp->b_flags |= _XBF_PAGES;
 339
 340        for (i = 0; i < bp->b_page_count; i++) {
 341                struct page     *page;
 342                uint            retries = 0;
 343retry:
 344                page = alloc_page(gfp_mask);
 345                if (unlikely(page == NULL)) {
 346                        if (flags & XBF_READ_AHEAD) {
 347                                bp->b_page_count = i;
 348                                error = ENOMEM;
 349                                goto out_free_pages;
 350                        }
 351
 352                        /*
 353                         * This could deadlock.
 354                         *
 355                         * But until all the XFS lowlevel code is revamped to
 356                         * handle buffer allocation failures we can't do much.
 357                         */
 358                        if (!(++retries % 100))
 359                                xfs_err(NULL,
 360                "possible memory allocation deadlock in %s (mode:0x%x)",
 361                                        __func__, gfp_mask);
 362
 363                        XFS_STATS_INC(xb_page_retries);
 364                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 365                        goto retry;
 366                }
 367
 368                XFS_STATS_INC(xb_page_found);
 369
 370                nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 371                size -= nbytes;
 372                bp->b_pages[i] = page;
 373                offset = 0;
 374        }
 375        return 0;
 376
 377out_free_pages:
 378        for (i = 0; i < bp->b_page_count; i++)
 379                __free_page(bp->b_pages[i]);
 380        return error;
 381}
 382
 383/*
 384 *      Map buffer into kernel address-space if necessary.
 385 */
 386STATIC int
 387_xfs_buf_map_pages(
 388        xfs_buf_t               *bp,
 389        uint                    flags)
 390{
 391        ASSERT(bp->b_flags & _XBF_PAGES);
 392        if (bp->b_page_count == 1) {
 393                /* A single page buffer is always mappable */
 394                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 395        } else if (flags & XBF_UNMAPPED) {
 396                bp->b_addr = NULL;
 397        } else {
 398                int retried = 0;
 399                unsigned noio_flag;
 400
 401                /*
 402                 * vm_map_ram() will allocate auxillary structures (e.g.
 403                 * pagetables) with GFP_KERNEL, yet we are likely to be under
 404                 * GFP_NOFS context here. Hence we need to tell memory reclaim
 405                 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
 406                 * memory reclaim re-entering the filesystem here and
 407                 * potentially deadlocking.
 408                 */
 409                noio_flag = memalloc_noio_save();
 410                do {
 411                        bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 412                                                -1, PAGE_KERNEL);
 413                        if (bp->b_addr)
 414                                break;
 415                        vm_unmap_aliases();
 416                } while (retried++ <= 1);
 417                memalloc_noio_restore(noio_flag);
 418
 419                if (!bp->b_addr)
 420                        return -ENOMEM;
 421                bp->b_addr += bp->b_offset;
 422        }
 423
 424        return 0;
 425}
 426
 427/*
 428 *      Finding and Reading Buffers
 429 */
 430
 431/*
 432 *      Look up, and creates if absent, a lockable buffer for
 433 *      a given range of an inode.  The buffer is returned
 434 *      locked. No I/O is implied by this call.
 435 */
 436xfs_buf_t *
 437_xfs_buf_find(
 438        struct xfs_buftarg      *btp,
 439        struct xfs_buf_map      *map,
 440        int                     nmaps,
 441        xfs_buf_flags_t         flags,
 442        xfs_buf_t               *new_bp)
 443{
 444        size_t                  numbytes;
 445        struct xfs_perag        *pag;
 446        struct rb_node          **rbp;
 447        struct rb_node          *parent;
 448        xfs_buf_t               *bp;
 449        xfs_daddr_t             blkno = map[0].bm_bn;
 450        xfs_daddr_t             eofs;
 451        int                     numblks = 0;
 452        int                     i;
 453
 454        for (i = 0; i < nmaps; i++)
 455                numblks += map[i].bm_len;
 456        numbytes = BBTOB(numblks);
 457
 458        /* Check for IOs smaller than the sector size / not sector aligned */
 459        ASSERT(!(numbytes < btp->bt_meta_sectorsize));
 460        ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
 461
 462        /*
 463         * Corrupted block numbers can get through to here, unfortunately, so we
 464         * have to check that the buffer falls within the filesystem bounds.
 465         */
 466        eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 467        if (blkno >= eofs) {
 468                /*
 469                 * XXX (dgc): we should really be returning EFSCORRUPTED here,
 470                 * but none of the higher level infrastructure supports
 471                 * returning a specific error on buffer lookup failures.
 472                 */
 473                xfs_alert(btp->bt_mount,
 474                          "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
 475                          __func__, blkno, eofs);
 476                WARN_ON(1);
 477                return NULL;
 478        }
 479
 480        /* get tree root */
 481        pag = xfs_perag_get(btp->bt_mount,
 482                                xfs_daddr_to_agno(btp->bt_mount, blkno));
 483
 484        /* walk tree */
 485        spin_lock(&pag->pag_buf_lock);
 486        rbp = &pag->pag_buf_tree.rb_node;
 487        parent = NULL;
 488        bp = NULL;
 489        while (*rbp) {
 490                parent = *rbp;
 491                bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 492
 493                if (blkno < bp->b_bn)
 494                        rbp = &(*rbp)->rb_left;
 495                else if (blkno > bp->b_bn)
 496                        rbp = &(*rbp)->rb_right;
 497                else {
 498                        /*
 499                         * found a block number match. If the range doesn't
 500                         * match, the only way this is allowed is if the buffer
 501                         * in the cache is stale and the transaction that made
 502                         * it stale has not yet committed. i.e. we are
 503                         * reallocating a busy extent. Skip this buffer and
 504                         * continue searching to the right for an exact match.
 505                         */
 506                        if (bp->b_length != numblks) {
 507                                ASSERT(bp->b_flags & XBF_STALE);
 508                                rbp = &(*rbp)->rb_right;
 509                                continue;
 510                        }
 511                        atomic_inc(&bp->b_hold);
 512                        goto found;
 513                }
 514        }
 515
 516        /* No match found */
 517        if (new_bp) {
 518                rb_link_node(&new_bp->b_rbnode, parent, rbp);
 519                rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 520                /* the buffer keeps the perag reference until it is freed */
 521                new_bp->b_pag = pag;
 522                spin_unlock(&pag->pag_buf_lock);
 523        } else {
 524                XFS_STATS_INC(xb_miss_locked);
 525                spin_unlock(&pag->pag_buf_lock);
 526                xfs_perag_put(pag);
 527        }
 528        return new_bp;
 529
 530found:
 531        spin_unlock(&pag->pag_buf_lock);
 532        xfs_perag_put(pag);
 533
 534        if (!xfs_buf_trylock(bp)) {
 535                if (flags & XBF_TRYLOCK) {
 536                        xfs_buf_rele(bp);
 537                        XFS_STATS_INC(xb_busy_locked);
 538                        return NULL;
 539                }
 540                xfs_buf_lock(bp);
 541                XFS_STATS_INC(xb_get_locked_waited);
 542        }
 543
 544        /*
 545         * if the buffer is stale, clear all the external state associated with
 546         * it. We need to keep flags such as how we allocated the buffer memory
 547         * intact here.
 548         */
 549        if (bp->b_flags & XBF_STALE) {
 550                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 551                ASSERT(bp->b_iodone == NULL);
 552                bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 553                bp->b_ops = NULL;
 554        }
 555
 556        trace_xfs_buf_find(bp, flags, _RET_IP_);
 557        XFS_STATS_INC(xb_get_locked);
 558        return bp;
 559}
 560
 561/*
 562 * Assembles a buffer covering the specified range. The code is optimised for
 563 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 564 * more hits than misses.
 565 */
 566struct xfs_buf *
 567xfs_buf_get_map(
 568        struct xfs_buftarg      *target,
 569        struct xfs_buf_map      *map,
 570        int                     nmaps,
 571        xfs_buf_flags_t         flags)
 572{
 573        struct xfs_buf          *bp;
 574        struct xfs_buf          *new_bp;
 575        int                     error = 0;
 576
 577        bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
 578        if (likely(bp))
 579                goto found;
 580
 581        new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 582        if (unlikely(!new_bp))
 583                return NULL;
 584
 585        error = xfs_buf_allocate_memory(new_bp, flags);
 586        if (error) {
 587                xfs_buf_free(new_bp);
 588                return NULL;
 589        }
 590
 591        bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
 592        if (!bp) {
 593                xfs_buf_free(new_bp);
 594                return NULL;
 595        }
 596
 597        if (bp != new_bp)
 598                xfs_buf_free(new_bp);
 599
 600found:
 601        if (!bp->b_addr) {
 602                error = _xfs_buf_map_pages(bp, flags);
 603                if (unlikely(error)) {
 604                        xfs_warn(target->bt_mount,
 605                                "%s: failed to map pagesn", __func__);
 606                        xfs_buf_relse(bp);
 607                        return NULL;
 608                }
 609        }
 610
 611        XFS_STATS_INC(xb_get);
 612        trace_xfs_buf_get(bp, flags, _RET_IP_);
 613        return bp;
 614}
 615
 616STATIC int
 617_xfs_buf_read(
 618        xfs_buf_t               *bp,
 619        xfs_buf_flags_t         flags)
 620{
 621        ASSERT(!(flags & XBF_WRITE));
 622        ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 623
 624        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 625        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 626
 627        xfs_buf_iorequest(bp);
 628        if (flags & XBF_ASYNC)
 629                return 0;
 630        return xfs_buf_iowait(bp);
 631}
 632
 633xfs_buf_t *
 634xfs_buf_read_map(
 635        struct xfs_buftarg      *target,
 636        struct xfs_buf_map      *map,
 637        int                     nmaps,
 638        xfs_buf_flags_t         flags,
 639        const struct xfs_buf_ops *ops)
 640{
 641        struct xfs_buf          *bp;
 642
 643        flags |= XBF_READ;
 644
 645        bp = xfs_buf_get_map(target, map, nmaps, flags);
 646        if (bp) {
 647                trace_xfs_buf_read(bp, flags, _RET_IP_);
 648
 649                if (!XFS_BUF_ISDONE(bp)) {
 650                        XFS_STATS_INC(xb_get_read);
 651                        bp->b_ops = ops;
 652                        _xfs_buf_read(bp, flags);
 653                } else if (flags & XBF_ASYNC) {
 654                        /*
 655                         * Read ahead call which is already satisfied,
 656                         * drop the buffer
 657                         */
 658                        xfs_buf_relse(bp);
 659                        return NULL;
 660                } else {
 661                        /* We do not want read in the flags */
 662                        bp->b_flags &= ~XBF_READ;
 663                }
 664        }
 665
 666        return bp;
 667}
 668
 669/*
 670 *      If we are not low on memory then do the readahead in a deadlock
 671 *      safe manner.
 672 */
 673void
 674xfs_buf_readahead_map(
 675        struct xfs_buftarg      *target,
 676        struct xfs_buf_map      *map,
 677        int                     nmaps,
 678        const struct xfs_buf_ops *ops)
 679{
 680        if (bdi_read_congested(target->bt_bdi))
 681                return;
 682
 683        xfs_buf_read_map(target, map, nmaps,
 684                     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 685}
 686
 687/*
 688 * Read an uncached buffer from disk. Allocates and returns a locked
 689 * buffer containing the disk contents or nothing.
 690 */
 691struct xfs_buf *
 692xfs_buf_read_uncached(
 693        struct xfs_buftarg      *target,
 694        xfs_daddr_t             daddr,
 695        size_t                  numblks,
 696        int                     flags,
 697        const struct xfs_buf_ops *ops)
 698{
 699        struct xfs_buf          *bp;
 700
 701        bp = xfs_buf_get_uncached(target, numblks, flags);
 702        if (!bp)
 703                return NULL;
 704
 705        /* set up the buffer for a read IO */
 706        ASSERT(bp->b_map_count == 1);
 707        bp->b_bn = daddr;
 708        bp->b_maps[0].bm_bn = daddr;
 709        bp->b_flags |= XBF_READ;
 710        bp->b_ops = ops;
 711
 712        if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
 713                xfs_buf_relse(bp);
 714                return NULL;
 715        }
 716        xfs_buf_iorequest(bp);
 717        xfs_buf_iowait(bp);
 718        return bp;
 719}
 720
 721/*
 722 * Return a buffer allocated as an empty buffer and associated to external
 723 * memory via xfs_buf_associate_memory() back to it's empty state.
 724 */
 725void
 726xfs_buf_set_empty(
 727        struct xfs_buf          *bp,
 728        size_t                  numblks)
 729{
 730        if (bp->b_pages)
 731                _xfs_buf_free_pages(bp);
 732
 733        bp->b_pages = NULL;
 734        bp->b_page_count = 0;
 735        bp->b_addr = NULL;
 736        bp->b_length = numblks;
 737        bp->b_io_length = numblks;
 738
 739        ASSERT(bp->b_map_count == 1);
 740        bp->b_bn = XFS_BUF_DADDR_NULL;
 741        bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
 742        bp->b_maps[0].bm_len = bp->b_length;
 743}
 744
 745static inline struct page *
 746mem_to_page(
 747        void                    *addr)
 748{
 749        if ((!is_vmalloc_addr(addr))) {
 750                return virt_to_page(addr);
 751        } else {
 752                return vmalloc_to_page(addr);
 753        }
 754}
 755
 756int
 757xfs_buf_associate_memory(
 758        xfs_buf_t               *bp,
 759        void                    *mem,
 760        size_t                  len)
 761{
 762        int                     rval;
 763        int                     i = 0;
 764        unsigned long           pageaddr;
 765        unsigned long           offset;
 766        size_t                  buflen;
 767        int                     page_count;
 768
 769        pageaddr = (unsigned long)mem & PAGE_MASK;
 770        offset = (unsigned long)mem - pageaddr;
 771        buflen = PAGE_ALIGN(len + offset);
 772        page_count = buflen >> PAGE_SHIFT;
 773
 774        /* Free any previous set of page pointers */
 775        if (bp->b_pages)
 776                _xfs_buf_free_pages(bp);
 777
 778        bp->b_pages = NULL;
 779        bp->b_addr = mem;
 780
 781        rval = _xfs_buf_get_pages(bp, page_count, 0);
 782        if (rval)
 783                return rval;
 784
 785        bp->b_offset = offset;
 786
 787        for (i = 0; i < bp->b_page_count; i++) {
 788                bp->b_pages[i] = mem_to_page((void *)pageaddr);
 789                pageaddr += PAGE_SIZE;
 790        }
 791
 792        bp->b_io_length = BTOBB(len);
 793        bp->b_length = BTOBB(buflen);
 794
 795        return 0;
 796}
 797
 798xfs_buf_t *
 799xfs_buf_get_uncached(
 800        struct xfs_buftarg      *target,
 801        size_t                  numblks,
 802        int                     flags)
 803{
 804        unsigned long           page_count;
 805        int                     error, i;
 806        struct xfs_buf          *bp;
 807        DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 808
 809        bp = _xfs_buf_alloc(target, &map, 1, 0);
 810        if (unlikely(bp == NULL))
 811                goto fail;
 812
 813        page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 814        error = _xfs_buf_get_pages(bp, page_count, 0);
 815        if (error)
 816                goto fail_free_buf;
 817
 818        for (i = 0; i < page_count; i++) {
 819                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 820                if (!bp->b_pages[i])
 821                        goto fail_free_mem;
 822        }
 823        bp->b_flags |= _XBF_PAGES;
 824
 825        error = _xfs_buf_map_pages(bp, 0);
 826        if (unlikely(error)) {
 827                xfs_warn(target->bt_mount,
 828                        "%s: failed to map pages", __func__);
 829                goto fail_free_mem;
 830        }
 831
 832        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 833        return bp;
 834
 835 fail_free_mem:
 836        while (--i >= 0)
 837                __free_page(bp->b_pages[i]);
 838        _xfs_buf_free_pages(bp);
 839 fail_free_buf:
 840        xfs_buf_free_maps(bp);
 841        kmem_zone_free(xfs_buf_zone, bp);
 842 fail:
 843        return NULL;
 844}
 845
 846/*
 847 *      Increment reference count on buffer, to hold the buffer concurrently
 848 *      with another thread which may release (free) the buffer asynchronously.
 849 *      Must hold the buffer already to call this function.
 850 */
 851void
 852xfs_buf_hold(
 853        xfs_buf_t               *bp)
 854{
 855        trace_xfs_buf_hold(bp, _RET_IP_);
 856        atomic_inc(&bp->b_hold);
 857}
 858
 859/*
 860 *      Releases a hold on the specified buffer.  If the
 861 *      the hold count is 1, calls xfs_buf_free.
 862 */
 863void
 864xfs_buf_rele(
 865        xfs_buf_t               *bp)
 866{
 867        struct xfs_perag        *pag = bp->b_pag;
 868
 869        trace_xfs_buf_rele(bp, _RET_IP_);
 870
 871        if (!pag) {
 872                ASSERT(list_empty(&bp->b_lru));
 873                ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 874                if (atomic_dec_and_test(&bp->b_hold))
 875                        xfs_buf_free(bp);
 876                return;
 877        }
 878
 879        ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 880
 881        ASSERT(atomic_read(&bp->b_hold) > 0);
 882        if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 883                spin_lock(&bp->b_lock);
 884                if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
 885                        /*
 886                         * If the buffer is added to the LRU take a new
 887                         * reference to the buffer for the LRU and clear the
 888                         * (now stale) dispose list state flag
 889                         */
 890                        if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
 891                                bp->b_state &= ~XFS_BSTATE_DISPOSE;
 892                                atomic_inc(&bp->b_hold);
 893                        }
 894                        spin_unlock(&bp->b_lock);
 895                        spin_unlock(&pag->pag_buf_lock);
 896                } else {
 897                        /*
 898                         * most of the time buffers will already be removed from
 899                         * the LRU, so optimise that case by checking for the
 900                         * XFS_BSTATE_DISPOSE flag indicating the last list the
 901                         * buffer was on was the disposal list
 902                         */
 903                        if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
 904                                list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
 905                        } else {
 906                                ASSERT(list_empty(&bp->b_lru));
 907                        }
 908                        spin_unlock(&bp->b_lock);
 909
 910                        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 911                        rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 912                        spin_unlock(&pag->pag_buf_lock);
 913                        xfs_perag_put(pag);
 914                        xfs_buf_free(bp);
 915                }
 916        }
 917}
 918
 919
 920/*
 921 *      Lock a buffer object, if it is not already locked.
 922 *
 923 *      If we come across a stale, pinned, locked buffer, we know that we are
 924 *      being asked to lock a buffer that has been reallocated. Because it is
 925 *      pinned, we know that the log has not been pushed to disk and hence it
 926 *      will still be locked.  Rather than continuing to have trylock attempts
 927 *      fail until someone else pushes the log, push it ourselves before
 928 *      returning.  This means that the xfsaild will not get stuck trying
 929 *      to push on stale inode buffers.
 930 */
 931int
 932xfs_buf_trylock(
 933        struct xfs_buf          *bp)
 934{
 935        int                     locked;
 936
 937        locked = down_trylock(&bp->b_sema) == 0;
 938        if (locked)
 939                XB_SET_OWNER(bp);
 940
 941        trace_xfs_buf_trylock(bp, _RET_IP_);
 942        return locked;
 943}
 944
 945/*
 946 *      Lock a buffer object.
 947 *
 948 *      If we come across a stale, pinned, locked buffer, we know that we
 949 *      are being asked to lock a buffer that has been reallocated. Because
 950 *      it is pinned, we know that the log has not been pushed to disk and
 951 *      hence it will still be locked. Rather than sleeping until someone
 952 *      else pushes the log, push it ourselves before trying to get the lock.
 953 */
 954void
 955xfs_buf_lock(
 956        struct xfs_buf          *bp)
 957{
 958        trace_xfs_buf_lock(bp, _RET_IP_);
 959
 960        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 961                xfs_log_force(bp->b_target->bt_mount, 0);
 962        down(&bp->b_sema);
 963        XB_SET_OWNER(bp);
 964
 965        trace_xfs_buf_lock_done(bp, _RET_IP_);
 966}
 967
 968void
 969xfs_buf_unlock(
 970        struct xfs_buf          *bp)
 971{
 972        XB_CLEAR_OWNER(bp);
 973        up(&bp->b_sema);
 974
 975        trace_xfs_buf_unlock(bp, _RET_IP_);
 976}
 977
 978STATIC void
 979xfs_buf_wait_unpin(
 980        xfs_buf_t               *bp)
 981{
 982        DECLARE_WAITQUEUE       (wait, current);
 983
 984        if (atomic_read(&bp->b_pin_count) == 0)
 985                return;
 986
 987        add_wait_queue(&bp->b_waiters, &wait);
 988        for (;;) {
 989                set_current_state(TASK_UNINTERRUPTIBLE);
 990                if (atomic_read(&bp->b_pin_count) == 0)
 991                        break;
 992                io_schedule();
 993        }
 994        remove_wait_queue(&bp->b_waiters, &wait);
 995        set_current_state(TASK_RUNNING);
 996}
 997
 998/*
 999 *      Buffer Utility Routines
1000 */
1001
1002STATIC void
1003xfs_buf_iodone_work(
1004        struct work_struct      *work)
1005{
1006        struct xfs_buf          *bp =
1007                container_of(work, xfs_buf_t, b_iodone_work);
1008        bool                    read = !!(bp->b_flags & XBF_READ);
1009
1010        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1011
1012        /* only validate buffers that were read without errors */
1013        if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1014                bp->b_ops->verify_read(bp);
1015
1016        if (bp->b_iodone)
1017                (*(bp->b_iodone))(bp);
1018        else if (bp->b_flags & XBF_ASYNC)
1019                xfs_buf_relse(bp);
1020        else {
1021                ASSERT(read && bp->b_ops);
1022                complete(&bp->b_iowait);
1023        }
1024}
1025
1026void
1027xfs_buf_ioend(
1028        struct xfs_buf  *bp,
1029        int             schedule)
1030{
1031        bool            read = !!(bp->b_flags & XBF_READ);
1032
1033        trace_xfs_buf_iodone(bp, _RET_IP_);
1034
1035        if (bp->b_error == 0)
1036                bp->b_flags |= XBF_DONE;
1037
1038        if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1039                if (schedule) {
1040                        INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1041                        queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1042                } else {
1043                        xfs_buf_iodone_work(&bp->b_iodone_work);
1044                }
1045        } else {
1046                bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1047                complete(&bp->b_iowait);
1048        }
1049}
1050
1051void
1052xfs_buf_ioerror(
1053        xfs_buf_t               *bp,
1054        int                     error)
1055{
1056        ASSERT(error >= 0 && error <= 0xffff);
1057        bp->b_error = (unsigned short)error;
1058        trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1059}
1060
1061void
1062xfs_buf_ioerror_alert(
1063        struct xfs_buf          *bp,
1064        const char              *func)
1065{
1066        xfs_alert(bp->b_target->bt_mount,
1067"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1068                (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1069}
1070
1071/*
1072 * Called when we want to stop a buffer from getting written or read.
1073 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1074 * so that the proper iodone callbacks get called.
1075 */
1076STATIC int
1077xfs_bioerror(
1078        xfs_buf_t *bp)
1079{
1080#ifdef XFSERRORDEBUG
1081        ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1082#endif
1083
1084        /*
1085         * No need to wait until the buffer is unpinned, we aren't flushing it.
1086         */
1087        xfs_buf_ioerror(bp, EIO);
1088
1089        /*
1090         * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1091         */
1092        XFS_BUF_UNREAD(bp);
1093        XFS_BUF_UNDONE(bp);
1094        xfs_buf_stale(bp);
1095
1096        xfs_buf_ioend(bp, 0);
1097
1098        return EIO;
1099}
1100
1101/*
1102 * Same as xfs_bioerror, except that we are releasing the buffer
1103 * here ourselves, and avoiding the xfs_buf_ioend call.
1104 * This is meant for userdata errors; metadata bufs come with
1105 * iodone functions attached, so that we can track down errors.
1106 */
1107int
1108xfs_bioerror_relse(
1109        struct xfs_buf  *bp)
1110{
1111        int64_t         fl = bp->b_flags;
1112        /*
1113         * No need to wait until the buffer is unpinned.
1114         * We aren't flushing it.
1115         *
1116         * chunkhold expects B_DONE to be set, whether
1117         * we actually finish the I/O or not. We don't want to
1118         * change that interface.
1119         */
1120        XFS_BUF_UNREAD(bp);
1121        XFS_BUF_DONE(bp);
1122        xfs_buf_stale(bp);
1123        bp->b_iodone = NULL;
1124        if (!(fl & XBF_ASYNC)) {
1125                /*
1126                 * Mark b_error and B_ERROR _both_.
1127                 * Lot's of chunkcache code assumes that.
1128                 * There's no reason to mark error for
1129                 * ASYNC buffers.
1130                 */
1131                xfs_buf_ioerror(bp, EIO);
1132                complete(&bp->b_iowait);
1133        } else {
1134                xfs_buf_relse(bp);
1135        }
1136
1137        return EIO;
1138}
1139
1140STATIC int
1141xfs_bdstrat_cb(
1142        struct xfs_buf  *bp)
1143{
1144        if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1145                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1146                /*
1147                 * Metadata write that didn't get logged but
1148                 * written delayed anyway. These aren't associated
1149                 * with a transaction, and can be ignored.
1150                 */
1151                if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1152                        return xfs_bioerror_relse(bp);
1153                else
1154                        return xfs_bioerror(bp);
1155        }
1156
1157        xfs_buf_iorequest(bp);
1158        return 0;
1159}
1160
1161int
1162xfs_bwrite(
1163        struct xfs_buf          *bp)
1164{
1165        int                     error;
1166
1167        ASSERT(xfs_buf_islocked(bp));
1168
1169        bp->b_flags |= XBF_WRITE;
1170        bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
1171
1172        xfs_bdstrat_cb(bp);
1173
1174        error = xfs_buf_iowait(bp);
1175        if (error) {
1176                xfs_force_shutdown(bp->b_target->bt_mount,
1177                                   SHUTDOWN_META_IO_ERROR);
1178        }
1179        return error;
1180}
1181
1182STATIC void
1183_xfs_buf_ioend(
1184        xfs_buf_t               *bp,
1185        int                     schedule)
1186{
1187        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1188                xfs_buf_ioend(bp, schedule);
1189}
1190
1191STATIC void
1192xfs_buf_bio_end_io(
1193        struct bio              *bio,
1194        int                     error)
1195{
1196        xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1197
1198        /*
1199         * don't overwrite existing errors - otherwise we can lose errors on
1200         * buffers that require multiple bios to complete.
1201         */
1202        if (!bp->b_error)
1203                xfs_buf_ioerror(bp, -error);
1204
1205        if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1206                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1207
1208        _xfs_buf_ioend(bp, 1);
1209        bio_put(bio);
1210}
1211
1212static void
1213xfs_buf_ioapply_map(
1214        struct xfs_buf  *bp,
1215        int             map,
1216        int             *buf_offset,
1217        int             *count,
1218        int             rw)
1219{
1220        int             page_index;
1221        int             total_nr_pages = bp->b_page_count;
1222        int             nr_pages;
1223        struct bio      *bio;
1224        sector_t        sector =  bp->b_maps[map].bm_bn;
1225        int             size;
1226        int             offset;
1227
1228        total_nr_pages = bp->b_page_count;
1229
1230        /* skip the pages in the buffer before the start offset */
1231        page_index = 0;
1232        offset = *buf_offset;
1233        while (offset >= PAGE_SIZE) {
1234                page_index++;
1235                offset -= PAGE_SIZE;
1236        }
1237
1238        /*
1239         * Limit the IO size to the length of the current vector, and update the
1240         * remaining IO count for the next time around.
1241         */
1242        size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1243        *count -= size;
1244        *buf_offset += size;
1245
1246next_chunk:
1247        atomic_inc(&bp->b_io_remaining);
1248        nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1249        if (nr_pages > total_nr_pages)
1250                nr_pages = total_nr_pages;
1251
1252        bio = bio_alloc(GFP_NOIO, nr_pages);
1253        bio->bi_bdev = bp->b_target->bt_bdev;
1254        bio->bi_iter.bi_sector = sector;
1255        bio->bi_end_io = xfs_buf_bio_end_io;
1256        bio->bi_private = bp;
1257
1258
1259        for (; size && nr_pages; nr_pages--, page_index++) {
1260                int     rbytes, nbytes = PAGE_SIZE - offset;
1261
1262                if (nbytes > size)
1263                        nbytes = size;
1264
1265                rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1266                                      offset);
1267                if (rbytes < nbytes)
1268                        break;
1269
1270                offset = 0;
1271                sector += BTOBB(nbytes);
1272                size -= nbytes;
1273                total_nr_pages--;
1274        }
1275
1276        if (likely(bio->bi_iter.bi_size)) {
1277                if (xfs_buf_is_vmapped(bp)) {
1278                        flush_kernel_vmap_range(bp->b_addr,
1279                                                xfs_buf_vmap_len(bp));
1280                }
1281                submit_bio(rw, bio);
1282                if (size)
1283                        goto next_chunk;
1284        } else {
1285                /*
1286                 * This is guaranteed not to be the last io reference count
1287                 * because the caller (xfs_buf_iorequest) holds a count itself.
1288                 */
1289                atomic_dec(&bp->b_io_remaining);
1290                xfs_buf_ioerror(bp, EIO);
1291                bio_put(bio);
1292        }
1293
1294}
1295
1296STATIC void
1297_xfs_buf_ioapply(
1298        struct xfs_buf  *bp)
1299{
1300        struct blk_plug plug;
1301        int             rw;
1302        int             offset;
1303        int             size;
1304        int             i;
1305
1306        /*
1307         * Make sure we capture only current IO errors rather than stale errors
1308         * left over from previous use of the buffer (e.g. failed readahead).
1309         */
1310        bp->b_error = 0;
1311
1312        if (bp->b_flags & XBF_WRITE) {
1313                if (bp->b_flags & XBF_SYNCIO)
1314                        rw = WRITE_SYNC;
1315                else
1316                        rw = WRITE;
1317                if (bp->b_flags & XBF_FUA)
1318                        rw |= REQ_FUA;
1319                if (bp->b_flags & XBF_FLUSH)
1320                        rw |= REQ_FLUSH;
1321
1322                /*
1323                 * Run the write verifier callback function if it exists. If
1324                 * this function fails it will mark the buffer with an error and
1325                 * the IO should not be dispatched.
1326                 */
1327                if (bp->b_ops) {
1328                        bp->b_ops->verify_write(bp);
1329                        if (bp->b_error) {
1330                                xfs_force_shutdown(bp->b_target->bt_mount,
1331                                                   SHUTDOWN_CORRUPT_INCORE);
1332                                return;
1333                        }
1334                }
1335        } else if (bp->b_flags & XBF_READ_AHEAD) {
1336                rw = READA;
1337        } else {
1338                rw = READ;
1339        }
1340
1341        /* we only use the buffer cache for meta-data */
1342        rw |= REQ_META;
1343
1344        /*
1345         * Walk all the vectors issuing IO on them. Set up the initial offset
1346         * into the buffer and the desired IO size before we start -
1347         * _xfs_buf_ioapply_vec() will modify them appropriately for each
1348         * subsequent call.
1349         */
1350        offset = bp->b_offset;
1351        size = BBTOB(bp->b_io_length);
1352        blk_start_plug(&plug);
1353        for (i = 0; i < bp->b_map_count; i++) {
1354                xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1355                if (bp->b_error)
1356                        break;
1357                if (size <= 0)
1358                        break;  /* all done */
1359        }
1360        blk_finish_plug(&plug);
1361}
1362
1363void
1364xfs_buf_iorequest(
1365        xfs_buf_t               *bp)
1366{
1367        trace_xfs_buf_iorequest(bp, _RET_IP_);
1368
1369        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1370
1371        if (bp->b_flags & XBF_WRITE)
1372                xfs_buf_wait_unpin(bp);
1373        xfs_buf_hold(bp);
1374
1375        /*
1376         * Set the count to 1 initially, this will stop an I/O
1377         * completion callout which happens before we have started
1378         * all the I/O from calling xfs_buf_ioend too early.
1379         */
1380        atomic_set(&bp->b_io_remaining, 1);
1381        _xfs_buf_ioapply(bp);
1382        /*
1383         * If _xfs_buf_ioapply failed, we'll get back here with
1384         * only the reference we took above.  _xfs_buf_ioend will
1385         * drop it to zero, so we'd better not queue it for later,
1386         * or we'll free it before it's done.
1387         */
1388        _xfs_buf_ioend(bp, bp->b_error ? 0 : 1);
1389
1390        xfs_buf_rele(bp);
1391}
1392
1393/*
1394 * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1395 * no I/O is pending or there is already a pending error on the buffer, in which
1396 * case nothing will ever complete.  It returns the I/O error code, if any, or
1397 * 0 if there was no error.
1398 */
1399int
1400xfs_buf_iowait(
1401        xfs_buf_t               *bp)
1402{
1403        trace_xfs_buf_iowait(bp, _RET_IP_);
1404
1405        if (!bp->b_error)
1406                wait_for_completion(&bp->b_iowait);
1407
1408        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1409        return bp->b_error;
1410}
1411
1412xfs_caddr_t
1413xfs_buf_offset(
1414        xfs_buf_t               *bp,
1415        size_t                  offset)
1416{
1417        struct page             *page;
1418
1419        if (bp->b_addr)
1420                return bp->b_addr + offset;
1421
1422        offset += bp->b_offset;
1423        page = bp->b_pages[offset >> PAGE_SHIFT];
1424        return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1425}
1426
1427/*
1428 *      Move data into or out of a buffer.
1429 */
1430void
1431xfs_buf_iomove(
1432        xfs_buf_t               *bp,    /* buffer to process            */
1433        size_t                  boff,   /* starting buffer offset       */
1434        size_t                  bsize,  /* length to copy               */
1435        void                    *data,  /* data address                 */
1436        xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1437{
1438        size_t                  bend;
1439
1440        bend = boff + bsize;
1441        while (boff < bend) {
1442                struct page     *page;
1443                int             page_index, page_offset, csize;
1444
1445                page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1446                page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1447                page = bp->b_pages[page_index];
1448                csize = min_t(size_t, PAGE_SIZE - page_offset,
1449                                      BBTOB(bp->b_io_length) - boff);
1450
1451                ASSERT((csize + page_offset) <= PAGE_SIZE);
1452
1453                switch (mode) {
1454                case XBRW_ZERO:
1455                        memset(page_address(page) + page_offset, 0, csize);
1456                        break;
1457                case XBRW_READ:
1458                        memcpy(data, page_address(page) + page_offset, csize);
1459                        break;
1460                case XBRW_WRITE:
1461                        memcpy(page_address(page) + page_offset, data, csize);
1462                }
1463
1464                boff += csize;
1465                data += csize;
1466        }
1467}
1468
1469/*
1470 *      Handling of buffer targets (buftargs).
1471 */
1472
1473/*
1474 * Wait for any bufs with callbacks that have been submitted but have not yet
1475 * returned. These buffers will have an elevated hold count, so wait on those
1476 * while freeing all the buffers only held by the LRU.
1477 */
1478static enum lru_status
1479xfs_buftarg_wait_rele(
1480        struct list_head        *item,
1481        spinlock_t              *lru_lock,
1482        void                    *arg)
1483
1484{
1485        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1486        struct list_head        *dispose = arg;
1487
1488        if (atomic_read(&bp->b_hold) > 1) {
1489                /* need to wait, so skip it this pass */
1490                trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1491                return LRU_SKIP;
1492        }
1493        if (!spin_trylock(&bp->b_lock))
1494                return LRU_SKIP;
1495
1496        /*
1497         * clear the LRU reference count so the buffer doesn't get
1498         * ignored in xfs_buf_rele().
1499         */
1500        atomic_set(&bp->b_lru_ref, 0);
1501        bp->b_state |= XFS_BSTATE_DISPOSE;
1502        list_move(item, dispose);
1503        spin_unlock(&bp->b_lock);
1504        return LRU_REMOVED;
1505}
1506
1507void
1508xfs_wait_buftarg(
1509        struct xfs_buftarg      *btp)
1510{
1511        LIST_HEAD(dispose);
1512        int loop = 0;
1513
1514        /* loop until there is nothing left on the lru list. */
1515        while (list_lru_count(&btp->bt_lru)) {
1516                list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1517                              &dispose, LONG_MAX);
1518
1519                while (!list_empty(&dispose)) {
1520                        struct xfs_buf *bp;
1521                        bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1522                        list_del_init(&bp->b_lru);
1523                        if (bp->b_flags & XBF_WRITE_FAIL) {
1524                                xfs_alert(btp->bt_mount,
1525"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1526"Please run xfs_repair to determine the extent of the problem.",
1527                                        (long long)bp->b_bn);
1528                        }
1529                        xfs_buf_rele(bp);
1530                }
1531                if (loop++ != 0)
1532                        delay(100);
1533        }
1534}
1535
1536static enum lru_status
1537xfs_buftarg_isolate(
1538        struct list_head        *item,
1539        spinlock_t              *lru_lock,
1540        void                    *arg)
1541{
1542        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1543        struct list_head        *dispose = arg;
1544
1545        /*
1546         * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1547         * If we fail to get the lock, just skip it.
1548         */
1549        if (!spin_trylock(&bp->b_lock))
1550                return LRU_SKIP;
1551        /*
1552         * Decrement the b_lru_ref count unless the value is already
1553         * zero. If the value is already zero, we need to reclaim the
1554         * buffer, otherwise it gets another trip through the LRU.
1555         */
1556        if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1557                spin_unlock(&bp->b_lock);
1558                return LRU_ROTATE;
1559        }
1560
1561        bp->b_state |= XFS_BSTATE_DISPOSE;
1562        list_move(item, dispose);
1563        spin_unlock(&bp->b_lock);
1564        return LRU_REMOVED;
1565}
1566
1567static unsigned long
1568xfs_buftarg_shrink_scan(
1569        struct shrinker         *shrink,
1570        struct shrink_control   *sc)
1571{
1572        struct xfs_buftarg      *btp = container_of(shrink,
1573                                        struct xfs_buftarg, bt_shrinker);
1574        LIST_HEAD(dispose);
1575        unsigned long           freed;
1576        unsigned long           nr_to_scan = sc->nr_to_scan;
1577
1578        freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1579                                       &dispose, &nr_to_scan);
1580
1581        while (!list_empty(&dispose)) {
1582                struct xfs_buf *bp;
1583                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1584                list_del_init(&bp->b_lru);
1585                xfs_buf_rele(bp);
1586        }
1587
1588        return freed;
1589}
1590
1591static unsigned long
1592xfs_buftarg_shrink_count(
1593        struct shrinker         *shrink,
1594        struct shrink_control   *sc)
1595{
1596        struct xfs_buftarg      *btp = container_of(shrink,
1597                                        struct xfs_buftarg, bt_shrinker);
1598        return list_lru_count_node(&btp->bt_lru, sc->nid);
1599}
1600
1601void
1602xfs_free_buftarg(
1603        struct xfs_mount        *mp,
1604        struct xfs_buftarg      *btp)
1605{
1606        unregister_shrinker(&btp->bt_shrinker);
1607        list_lru_destroy(&btp->bt_lru);
1608
1609        if (mp->m_flags & XFS_MOUNT_BARRIER)
1610                xfs_blkdev_issue_flush(btp);
1611
1612        kmem_free(btp);
1613}
1614
1615int
1616xfs_setsize_buftarg(
1617        xfs_buftarg_t           *btp,
1618        unsigned int            blocksize,
1619        unsigned int            sectorsize)
1620{
1621        /* Set up metadata sector size info */
1622        btp->bt_meta_sectorsize = sectorsize;
1623        btp->bt_meta_sectormask = sectorsize - 1;
1624
1625        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1626                char name[BDEVNAME_SIZE];
1627
1628                bdevname(btp->bt_bdev, name);
1629
1630                xfs_warn(btp->bt_mount,
1631                        "Cannot set_blocksize to %u on device %s",
1632                        sectorsize, name);
1633                return EINVAL;
1634        }
1635
1636        /* Set up device logical sector size mask */
1637        btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1638        btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1639
1640        return 0;
1641}
1642
1643/*
1644 * When allocating the initial buffer target we have not yet
1645 * read in the superblock, so don't know what sized sectors
1646 * are being used at this early stage.  Play safe.
1647 */
1648STATIC int
1649xfs_setsize_buftarg_early(
1650        xfs_buftarg_t           *btp,
1651        struct block_device     *bdev)
1652{
1653        return xfs_setsize_buftarg(btp, PAGE_SIZE,
1654                                   bdev_logical_block_size(bdev));
1655}
1656
1657xfs_buftarg_t *
1658xfs_alloc_buftarg(
1659        struct xfs_mount        *mp,
1660        struct block_device     *bdev,
1661        int                     external,
1662        const char              *fsname)
1663{
1664        xfs_buftarg_t           *btp;
1665
1666        btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1667
1668        btp->bt_mount = mp;
1669        btp->bt_dev =  bdev->bd_dev;
1670        btp->bt_bdev = bdev;
1671        btp->bt_bdi = blk_get_backing_dev_info(bdev);
1672        if (!btp->bt_bdi)
1673                goto error;
1674
1675        if (xfs_setsize_buftarg_early(btp, bdev))
1676                goto error;
1677
1678        if (list_lru_init(&btp->bt_lru))
1679                goto error;
1680
1681        btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1682        btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1683        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1684        btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1685        register_shrinker(&btp->bt_shrinker);
1686        return btp;
1687
1688error:
1689        kmem_free(btp);
1690        return NULL;
1691}
1692
1693/*
1694 * Add a buffer to the delayed write list.
1695 *
1696 * This queues a buffer for writeout if it hasn't already been.  Note that
1697 * neither this routine nor the buffer list submission functions perform
1698 * any internal synchronization.  It is expected that the lists are thread-local
1699 * to the callers.
1700 *
1701 * Returns true if we queued up the buffer, or false if it already had
1702 * been on the buffer list.
1703 */
1704bool
1705xfs_buf_delwri_queue(
1706        struct xfs_buf          *bp,
1707        struct list_head        *list)
1708{
1709        ASSERT(xfs_buf_islocked(bp));
1710        ASSERT(!(bp->b_flags & XBF_READ));
1711
1712        /*
1713         * If the buffer is already marked delwri it already is queued up
1714         * by someone else for imediate writeout.  Just ignore it in that
1715         * case.
1716         */
1717        if (bp->b_flags & _XBF_DELWRI_Q) {
1718                trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1719                return false;
1720        }
1721
1722        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1723
1724        /*
1725         * If a buffer gets written out synchronously or marked stale while it
1726         * is on a delwri list we lazily remove it. To do this, the other party
1727         * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1728         * It remains referenced and on the list.  In a rare corner case it
1729         * might get readded to a delwri list after the synchronous writeout, in
1730         * which case we need just need to re-add the flag here.
1731         */
1732        bp->b_flags |= _XBF_DELWRI_Q;
1733        if (list_empty(&bp->b_list)) {
1734                atomic_inc(&bp->b_hold);
1735                list_add_tail(&bp->b_list, list);
1736        }
1737
1738        return true;
1739}
1740
1741/*
1742 * Compare function is more complex than it needs to be because
1743 * the return value is only 32 bits and we are doing comparisons
1744 * on 64 bit values
1745 */
1746static int
1747xfs_buf_cmp(
1748        void            *priv,
1749        struct list_head *a,
1750        struct list_head *b)
1751{
1752        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1753        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1754        xfs_daddr_t             diff;
1755
1756        diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1757        if (diff < 0)
1758                return -1;
1759        if (diff > 0)
1760                return 1;
1761        return 0;
1762}
1763
1764static int
1765__xfs_buf_delwri_submit(
1766        struct list_head        *buffer_list,
1767        struct list_head        *io_list,
1768        bool                    wait)
1769{
1770        struct blk_plug         plug;
1771        struct xfs_buf          *bp, *n;
1772        int                     pinned = 0;
1773
1774        list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1775                if (!wait) {
1776                        if (xfs_buf_ispinned(bp)) {
1777                                pinned++;
1778                                continue;
1779                        }
1780                        if (!xfs_buf_trylock(bp))
1781                                continue;
1782                } else {
1783                        xfs_buf_lock(bp);
1784                }
1785
1786                /*
1787                 * Someone else might have written the buffer synchronously or
1788                 * marked it stale in the meantime.  In that case only the
1789                 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1790                 * reference and remove it from the list here.
1791                 */
1792                if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1793                        list_del_init(&bp->b_list);
1794                        xfs_buf_relse(bp);
1795                        continue;
1796                }
1797
1798                list_move_tail(&bp->b_list, io_list);
1799                trace_xfs_buf_delwri_split(bp, _RET_IP_);
1800        }
1801
1802        list_sort(NULL, io_list, xfs_buf_cmp);
1803
1804        blk_start_plug(&plug);
1805        list_for_each_entry_safe(bp, n, io_list, b_list) {
1806                bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1807                bp->b_flags |= XBF_WRITE;
1808
1809                if (!wait) {
1810                        bp->b_flags |= XBF_ASYNC;
1811                        list_del_init(&bp->b_list);
1812                }
1813                xfs_bdstrat_cb(bp);
1814        }
1815        blk_finish_plug(&plug);
1816
1817        return pinned;
1818}
1819
1820/*
1821 * Write out a buffer list asynchronously.
1822 *
1823 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1824 * out and not wait for I/O completion on any of the buffers.  This interface
1825 * is only safely useable for callers that can track I/O completion by higher
1826 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1827 * function.
1828 */
1829int
1830xfs_buf_delwri_submit_nowait(
1831        struct list_head        *buffer_list)
1832{
1833        LIST_HEAD               (io_list);
1834        return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1835}
1836
1837/*
1838 * Write out a buffer list synchronously.
1839 *
1840 * This will take the @buffer_list, write all buffers out and wait for I/O
1841 * completion on all of the buffers. @buffer_list is consumed by the function,
1842 * so callers must have some other way of tracking buffers if they require such
1843 * functionality.
1844 */
1845int
1846xfs_buf_delwri_submit(
1847        struct list_head        *buffer_list)
1848{
1849        LIST_HEAD               (io_list);
1850        int                     error = 0, error2;
1851        struct xfs_buf          *bp;
1852
1853        __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1854
1855        /* Wait for IO to complete. */
1856        while (!list_empty(&io_list)) {
1857                bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1858
1859                list_del_init(&bp->b_list);
1860                error2 = xfs_buf_iowait(bp);
1861                xfs_buf_relse(bp);
1862                if (!error)
1863                        error = error2;
1864        }
1865
1866        return error;
1867}
1868
1869int __init
1870xfs_buf_init(void)
1871{
1872        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1873                                                KM_ZONE_HWALIGN, NULL);
1874        if (!xfs_buf_zone)
1875                goto out;
1876
1877        xfslogd_workqueue = alloc_workqueue("xfslogd",
1878                                        WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1879        if (!xfslogd_workqueue)
1880                goto out_free_buf_zone;
1881
1882        return 0;
1883
1884 out_free_buf_zone:
1885        kmem_zone_destroy(xfs_buf_zone);
1886 out:
1887        return -ENOMEM;
1888}
1889
1890void
1891xfs_buf_terminate(void)
1892{
1893        destroy_workqueue(xfslogd_workqueue);
1894        kmem_zone_destroy(xfs_buf_zone);
1895}
1896