linux/include/linux/mm_types.h
<<
>>
Prefs
   1#ifndef _LINUX_MM_TYPES_H
   2#define _LINUX_MM_TYPES_H
   3
   4#include <linux/auxvec.h>
   5#include <linux/types.h>
   6#include <linux/threads.h>
   7#include <linux/list.h>
   8#include <linux/spinlock.h>
   9#include <linux/rbtree.h>
  10#include <linux/rwsem.h>
  11#include <linux/completion.h>
  12#include <linux/cpumask.h>
  13#include <linux/page-debug-flags.h>
  14#include <linux/uprobes.h>
  15#include <linux/page-flags-layout.h>
  16#include <asm/page.h>
  17#include <asm/mmu.h>
  18
  19#ifndef AT_VECTOR_SIZE_ARCH
  20#define AT_VECTOR_SIZE_ARCH 0
  21#endif
  22#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  23
  24struct address_space;
  25
  26#define USE_SPLIT_PTE_PTLOCKS   (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
  27#define USE_SPLIT_PMD_PTLOCKS   (USE_SPLIT_PTE_PTLOCKS && \
  28                IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
  29#define ALLOC_SPLIT_PTLOCKS     (SPINLOCK_SIZE > BITS_PER_LONG/8)
  30
  31/*
  32 * Each physical page in the system has a struct page associated with
  33 * it to keep track of whatever it is we are using the page for at the
  34 * moment. Note that we have no way to track which tasks are using
  35 * a page, though if it is a pagecache page, rmap structures can tell us
  36 * who is mapping it.
  37 *
  38 * The objects in struct page are organized in double word blocks in
  39 * order to allows us to use atomic double word operations on portions
  40 * of struct page. That is currently only used by slub but the arrangement
  41 * allows the use of atomic double word operations on the flags/mapping
  42 * and lru list pointers also.
  43 */
  44struct page {
  45        /* First double word block */
  46        unsigned long flags;            /* Atomic flags, some possibly
  47                                         * updated asynchronously */
  48        union {
  49                struct address_space *mapping;  /* If low bit clear, points to
  50                                                 * inode address_space, or NULL.
  51                                                 * If page mapped as anonymous
  52                                                 * memory, low bit is set, and
  53                                                 * it points to anon_vma object:
  54                                                 * see PAGE_MAPPING_ANON below.
  55                                                 */
  56                void *s_mem;                    /* slab first object */
  57        };
  58
  59        /* Second double word */
  60        struct {
  61                union {
  62                        pgoff_t index;          /* Our offset within mapping. */
  63                        void *freelist;         /* sl[aou]b first free object */
  64                        bool pfmemalloc;        /* If set by the page allocator,
  65                                                 * ALLOC_NO_WATERMARKS was set
  66                                                 * and the low watermark was not
  67                                                 * met implying that the system
  68                                                 * is under some pressure. The
  69                                                 * caller should try ensure
  70                                                 * this page is only used to
  71                                                 * free other pages.
  72                                                 */
  73                };
  74
  75                union {
  76#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  77        defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  78                        /* Used for cmpxchg_double in slub */
  79                        unsigned long counters;
  80#else
  81                        /*
  82                         * Keep _count separate from slub cmpxchg_double data.
  83                         * As the rest of the double word is protected by
  84                         * slab_lock but _count is not.
  85                         */
  86                        unsigned counters;
  87#endif
  88
  89                        struct {
  90
  91                                union {
  92                                        /*
  93                                         * Count of ptes mapped in
  94                                         * mms, to show when page is
  95                                         * mapped & limit reverse map
  96                                         * searches.
  97                                         *
  98                                         * Used also for tail pages
  99                                         * refcounting instead of
 100                                         * _count. Tail pages cannot
 101                                         * be mapped and keeping the
 102                                         * tail page _count zero at
 103                                         * all times guarantees
 104                                         * get_page_unless_zero() will
 105                                         * never succeed on tail
 106                                         * pages.
 107                                         */
 108                                        atomic_t _mapcount;
 109
 110                                        struct { /* SLUB */
 111                                                unsigned inuse:16;
 112                                                unsigned objects:15;
 113                                                unsigned frozen:1;
 114                                        };
 115                                        int units;      /* SLOB */
 116                                };
 117                                atomic_t _count;                /* Usage count, see below. */
 118                        };
 119                        unsigned int active;    /* SLAB */
 120                };
 121        };
 122
 123        /* Third double word block */
 124        union {
 125                struct list_head lru;   /* Pageout list, eg. active_list
 126                                         * protected by zone->lru_lock !
 127                                         * Can be used as a generic list
 128                                         * by the page owner.
 129                                         */
 130                struct {                /* slub per cpu partial pages */
 131                        struct page *next;      /* Next partial slab */
 132#ifdef CONFIG_64BIT
 133                        int pages;      /* Nr of partial slabs left */
 134                        int pobjects;   /* Approximate # of objects */
 135#else
 136                        short int pages;
 137                        short int pobjects;
 138#endif
 139                };
 140
 141                struct slab *slab_page; /* slab fields */
 142                struct rcu_head rcu_head;       /* Used by SLAB
 143                                                 * when destroying via RCU
 144                                                 */
 145#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
 146                pgtable_t pmd_huge_pte; /* protected by page->ptl */
 147#endif
 148        };
 149
 150        /* Remainder is not double word aligned */
 151        union {
 152                unsigned long private;          /* Mapping-private opaque data:
 153                                                 * usually used for buffer_heads
 154                                                 * if PagePrivate set; used for
 155                                                 * swp_entry_t if PageSwapCache;
 156                                                 * indicates order in the buddy
 157                                                 * system if PG_buddy is set.
 158                                                 */
 159#if USE_SPLIT_PTE_PTLOCKS
 160#if ALLOC_SPLIT_PTLOCKS
 161                spinlock_t *ptl;
 162#else
 163                spinlock_t ptl;
 164#endif
 165#endif
 166                struct kmem_cache *slab_cache;  /* SL[AU]B: Pointer to slab */
 167                struct page *first_page;        /* Compound tail pages */
 168        };
 169
 170        /*
 171         * On machines where all RAM is mapped into kernel address space,
 172         * we can simply calculate the virtual address. On machines with
 173         * highmem some memory is mapped into kernel virtual memory
 174         * dynamically, so we need a place to store that address.
 175         * Note that this field could be 16 bits on x86 ... ;)
 176         *
 177         * Architectures with slow multiplication can define
 178         * WANT_PAGE_VIRTUAL in asm/page.h
 179         */
 180#if defined(WANT_PAGE_VIRTUAL)
 181        void *virtual;                  /* Kernel virtual address (NULL if
 182                                           not kmapped, ie. highmem) */
 183#endif /* WANT_PAGE_VIRTUAL */
 184#ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
 185        unsigned long debug_flags;      /* Use atomic bitops on this */
 186#endif
 187
 188#ifdef CONFIG_KMEMCHECK
 189        /*
 190         * kmemcheck wants to track the status of each byte in a page; this
 191         * is a pointer to such a status block. NULL if not tracked.
 192         */
 193        void *shadow;
 194#endif
 195
 196#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 197        int _last_cpupid;
 198#endif
 199}
 200/*
 201 * The struct page can be forced to be double word aligned so that atomic ops
 202 * on double words work. The SLUB allocator can make use of such a feature.
 203 */
 204#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
 205        __aligned(2 * sizeof(unsigned long))
 206#endif
 207;
 208
 209struct page_frag {
 210        struct page *page;
 211#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 212        __u32 offset;
 213        __u32 size;
 214#else
 215        __u16 offset;
 216        __u16 size;
 217#endif
 218};
 219
 220typedef unsigned long __nocast vm_flags_t;
 221
 222/*
 223 * A region containing a mapping of a non-memory backed file under NOMMU
 224 * conditions.  These are held in a global tree and are pinned by the VMAs that
 225 * map parts of them.
 226 */
 227struct vm_region {
 228        struct rb_node  vm_rb;          /* link in global region tree */
 229        vm_flags_t      vm_flags;       /* VMA vm_flags */
 230        unsigned long   vm_start;       /* start address of region */
 231        unsigned long   vm_end;         /* region initialised to here */
 232        unsigned long   vm_top;         /* region allocated to here */
 233        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 234        struct file     *vm_file;       /* the backing file or NULL */
 235
 236        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 237        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 238                                                * this region */
 239};
 240
 241/*
 242 * This struct defines a memory VMM memory area. There is one of these
 243 * per VM-area/task.  A VM area is any part of the process virtual memory
 244 * space that has a special rule for the page-fault handlers (ie a shared
 245 * library, the executable area etc).
 246 */
 247struct vm_area_struct {
 248        /* The first cache line has the info for VMA tree walking. */
 249
 250        unsigned long vm_start;         /* Our start address within vm_mm. */
 251        unsigned long vm_end;           /* The first byte after our end address
 252                                           within vm_mm. */
 253
 254        /* linked list of VM areas per task, sorted by address */
 255        struct vm_area_struct *vm_next, *vm_prev;
 256
 257        struct rb_node vm_rb;
 258
 259        /*
 260         * Largest free memory gap in bytes to the left of this VMA.
 261         * Either between this VMA and vma->vm_prev, or between one of the
 262         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 263         * get_unmapped_area find a free area of the right size.
 264         */
 265        unsigned long rb_subtree_gap;
 266
 267        /* Second cache line starts here. */
 268
 269        struct mm_struct *vm_mm;        /* The address space we belong to. */
 270        pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
 271        unsigned long vm_flags;         /* Flags, see mm.h. */
 272
 273        /*
 274         * For areas with an address space and backing store,
 275         * linkage into the address_space->i_mmap interval tree, or
 276         * linkage of vma in the address_space->i_mmap_nonlinear list.
 277         */
 278        union {
 279                struct {
 280                        struct rb_node rb;
 281                        unsigned long rb_subtree_last;
 282                } linear;
 283                struct list_head nonlinear;
 284        } shared;
 285
 286        /*
 287         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 288         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 289         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 290         * or brk vma (with NULL file) can only be in an anon_vma list.
 291         */
 292        struct list_head anon_vma_chain; /* Serialized by mmap_sem &
 293                                          * page_table_lock */
 294        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 295
 296        /* Function pointers to deal with this struct. */
 297        const struct vm_operations_struct *vm_ops;
 298
 299        /* Information about our backing store: */
 300        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 301                                           units, *not* PAGE_CACHE_SIZE */
 302        struct file * vm_file;          /* File we map to (can be NULL). */
 303        void * vm_private_data;         /* was vm_pte (shared mem) */
 304
 305#ifndef CONFIG_MMU
 306        struct vm_region *vm_region;    /* NOMMU mapping region */
 307#endif
 308#ifdef CONFIG_NUMA
 309        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 310#endif
 311};
 312
 313struct core_thread {
 314        struct task_struct *task;
 315        struct core_thread *next;
 316};
 317
 318struct core_state {
 319        atomic_t nr_threads;
 320        struct core_thread dumper;
 321        struct completion startup;
 322};
 323
 324enum {
 325        MM_FILEPAGES,
 326        MM_ANONPAGES,
 327        MM_SWAPENTS,
 328        NR_MM_COUNTERS
 329};
 330
 331#if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
 332#define SPLIT_RSS_COUNTING
 333/* per-thread cached information, */
 334struct task_rss_stat {
 335        int events;     /* for synchronization threshold */
 336        int count[NR_MM_COUNTERS];
 337};
 338#endif /* USE_SPLIT_PTE_PTLOCKS */
 339
 340struct mm_rss_stat {
 341        atomic_long_t count[NR_MM_COUNTERS];
 342};
 343
 344struct kioctx_table;
 345struct mm_struct {
 346        struct vm_area_struct *mmap;            /* list of VMAs */
 347        struct rb_root mm_rb;
 348        u32 vmacache_seqnum;                   /* per-thread vmacache */
 349#ifdef CONFIG_MMU
 350        unsigned long (*get_unmapped_area) (struct file *filp,
 351                                unsigned long addr, unsigned long len,
 352                                unsigned long pgoff, unsigned long flags);
 353#endif
 354        unsigned long mmap_base;                /* base of mmap area */
 355        unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
 356        unsigned long task_size;                /* size of task vm space */
 357        unsigned long highest_vm_end;           /* highest vma end address */
 358        pgd_t * pgd;
 359        atomic_t mm_users;                      /* How many users with user space? */
 360        atomic_t mm_count;                      /* How many references to "struct mm_struct" (users count as 1) */
 361        atomic_long_t nr_ptes;                  /* Page table pages */
 362        int map_count;                          /* number of VMAs */
 363
 364        spinlock_t page_table_lock;             /* Protects page tables and some counters */
 365        struct rw_semaphore mmap_sem;
 366
 367        struct list_head mmlist;                /* List of maybe swapped mm's.  These are globally strung
 368                                                 * together off init_mm.mmlist, and are protected
 369                                                 * by mmlist_lock
 370                                                 */
 371
 372
 373        unsigned long hiwater_rss;      /* High-watermark of RSS usage */
 374        unsigned long hiwater_vm;       /* High-water virtual memory usage */
 375
 376        unsigned long total_vm;         /* Total pages mapped */
 377        unsigned long locked_vm;        /* Pages that have PG_mlocked set */
 378        unsigned long pinned_vm;        /* Refcount permanently increased */
 379        unsigned long shared_vm;        /* Shared pages (files) */
 380        unsigned long exec_vm;          /* VM_EXEC & ~VM_WRITE */
 381        unsigned long stack_vm;         /* VM_GROWSUP/DOWN */
 382        unsigned long def_flags;
 383        unsigned long start_code, end_code, start_data, end_data;
 384        unsigned long start_brk, brk, start_stack;
 385        unsigned long arg_start, arg_end, env_start, env_end;
 386
 387        unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 388
 389        /*
 390         * Special counters, in some configurations protected by the
 391         * page_table_lock, in other configurations by being atomic.
 392         */
 393        struct mm_rss_stat rss_stat;
 394
 395        struct linux_binfmt *binfmt;
 396
 397        cpumask_var_t cpu_vm_mask_var;
 398
 399        /* Architecture-specific MM context */
 400        mm_context_t context;
 401
 402        unsigned long flags; /* Must use atomic bitops to access the bits */
 403
 404        struct core_state *core_state; /* coredumping support */
 405#ifdef CONFIG_AIO
 406        spinlock_t                      ioctx_lock;
 407        struct kioctx_table __rcu       *ioctx_table;
 408#endif
 409#ifdef CONFIG_MM_OWNER
 410        /*
 411         * "owner" points to a task that is regarded as the canonical
 412         * user/owner of this mm. All of the following must be true in
 413         * order for it to be changed:
 414         *
 415         * current == mm->owner
 416         * current->mm != mm
 417         * new_owner->mm == mm
 418         * new_owner->alloc_lock is held
 419         */
 420        struct task_struct __rcu *owner;
 421#endif
 422
 423        /* store ref to file /proc/<pid>/exe symlink points to */
 424        struct file *exe_file;
 425#ifdef CONFIG_MMU_NOTIFIER
 426        struct mmu_notifier_mm *mmu_notifier_mm;
 427#endif
 428#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 429        pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 430#endif
 431#ifdef CONFIG_CPUMASK_OFFSTACK
 432        struct cpumask cpumask_allocation;
 433#endif
 434#ifdef CONFIG_NUMA_BALANCING
 435        /*
 436         * numa_next_scan is the next time that the PTEs will be marked
 437         * pte_numa. NUMA hinting faults will gather statistics and migrate
 438         * pages to new nodes if necessary.
 439         */
 440        unsigned long numa_next_scan;
 441
 442        /* Restart point for scanning and setting pte_numa */
 443        unsigned long numa_scan_offset;
 444
 445        /* numa_scan_seq prevents two threads setting pte_numa */
 446        int numa_scan_seq;
 447#endif
 448#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
 449        /*
 450         * An operation with batched TLB flushing is going on. Anything that
 451         * can move process memory needs to flush the TLB when moving a
 452         * PROT_NONE or PROT_NUMA mapped page.
 453         */
 454        bool tlb_flush_pending;
 455#endif
 456        struct uprobes_state uprobes_state;
 457};
 458
 459static inline void mm_init_cpumask(struct mm_struct *mm)
 460{
 461#ifdef CONFIG_CPUMASK_OFFSTACK
 462        mm->cpu_vm_mask_var = &mm->cpumask_allocation;
 463#endif
 464}
 465
 466/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 467static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 468{
 469        return mm->cpu_vm_mask_var;
 470}
 471
 472#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
 473/*
 474 * Memory barriers to keep this state in sync are graciously provided by
 475 * the page table locks, outside of which no page table modifications happen.
 476 * The barriers below prevent the compiler from re-ordering the instructions
 477 * around the memory barriers that are already present in the code.
 478 */
 479static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 480{
 481        barrier();
 482        return mm->tlb_flush_pending;
 483}
 484static inline void set_tlb_flush_pending(struct mm_struct *mm)
 485{
 486        mm->tlb_flush_pending = true;
 487
 488        /*
 489         * Guarantee that the tlb_flush_pending store does not leak into the
 490         * critical section updating the page tables
 491         */
 492        smp_mb__before_spinlock();
 493}
 494/* Clearing is done after a TLB flush, which also provides a barrier. */
 495static inline void clear_tlb_flush_pending(struct mm_struct *mm)
 496{
 497        barrier();
 498        mm->tlb_flush_pending = false;
 499}
 500#else
 501static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 502{
 503        return false;
 504}
 505static inline void set_tlb_flush_pending(struct mm_struct *mm)
 506{
 507}
 508static inline void clear_tlb_flush_pending(struct mm_struct *mm)
 509{
 510}
 511#endif
 512
 513#endif /* _LINUX_MM_TYPES_H */
 514