linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/pm_qos.h>
  29#include <linux/timer.h>
  30#include <linux/bug.h>
  31#include <linux/delay.h>
  32#include <linux/atomic.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/dmaengine.h>
  39#include <linux/workqueue.h>
  40#include <linux/dynamic_queue_limits.h>
  41
  42#include <linux/ethtool.h>
  43#include <net/net_namespace.h>
  44#include <net/dsa.h>
  45#ifdef CONFIG_DCB
  46#include <net/dcbnl.h>
  47#endif
  48#include <net/netprio_cgroup.h>
  49
  50#include <linux/netdev_features.h>
  51#include <linux/neighbour.h>
  52#include <uapi/linux/netdevice.h>
  53
  54struct netpoll_info;
  55struct device;
  56struct phy_device;
  57/* 802.11 specific */
  58struct wireless_dev;
  59                                        /* source back-compat hooks */
  60#define SET_ETHTOOL_OPS(netdev,ops) \
  61        ( (netdev)->ethtool_ops = (ops) )
  62
  63void netdev_set_default_ethtool_ops(struct net_device *dev,
  64                                    const struct ethtool_ops *ops);
  65
  66/* Backlog congestion levels */
  67#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  68#define NET_RX_DROP             1       /* packet dropped */
  69
  70/*
  71 * Transmit return codes: transmit return codes originate from three different
  72 * namespaces:
  73 *
  74 * - qdisc return codes
  75 * - driver transmit return codes
  76 * - errno values
  77 *
  78 * Drivers are allowed to return any one of those in their hard_start_xmit()
  79 * function. Real network devices commonly used with qdiscs should only return
  80 * the driver transmit return codes though - when qdiscs are used, the actual
  81 * transmission happens asynchronously, so the value is not propagated to
  82 * higher layers. Virtual network devices transmit synchronously, in this case
  83 * the driver transmit return codes are consumed by dev_queue_xmit(), all
  84 * others are propagated to higher layers.
  85 */
  86
  87/* qdisc ->enqueue() return codes. */
  88#define NET_XMIT_SUCCESS        0x00
  89#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  90#define NET_XMIT_CN             0x02    /* congestion notification      */
  91#define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
  92#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
  93
  94/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
  95 * indicates that the device will soon be dropping packets, or already drops
  96 * some packets of the same priority; prompting us to send less aggressively. */
  97#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
  98#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
  99
 100/* Driver transmit return codes */
 101#define NETDEV_TX_MASK          0xf0
 102
 103enum netdev_tx {
 104        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 105        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 106        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 107        NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
 108};
 109typedef enum netdev_tx netdev_tx_t;
 110
 111/*
 112 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 113 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 114 */
 115static inline bool dev_xmit_complete(int rc)
 116{
 117        /*
 118         * Positive cases with an skb consumed by a driver:
 119         * - successful transmission (rc == NETDEV_TX_OK)
 120         * - error while transmitting (rc < 0)
 121         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 122         */
 123        if (likely(rc < NET_XMIT_MASK))
 124                return true;
 125
 126        return false;
 127}
 128
 129/*
 130 *      Compute the worst case header length according to the protocols
 131 *      used.
 132 */
 133
 134#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 135# if defined(CONFIG_MAC80211_MESH)
 136#  define LL_MAX_HEADER 128
 137# else
 138#  define LL_MAX_HEADER 96
 139# endif
 140#else
 141# define LL_MAX_HEADER 32
 142#endif
 143
 144#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 145    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 146#define MAX_HEADER LL_MAX_HEADER
 147#else
 148#define MAX_HEADER (LL_MAX_HEADER + 48)
 149#endif
 150
 151/*
 152 *      Old network device statistics. Fields are native words
 153 *      (unsigned long) so they can be read and written atomically.
 154 */
 155
 156struct net_device_stats {
 157        unsigned long   rx_packets;
 158        unsigned long   tx_packets;
 159        unsigned long   rx_bytes;
 160        unsigned long   tx_bytes;
 161        unsigned long   rx_errors;
 162        unsigned long   tx_errors;
 163        unsigned long   rx_dropped;
 164        unsigned long   tx_dropped;
 165        unsigned long   multicast;
 166        unsigned long   collisions;
 167        unsigned long   rx_length_errors;
 168        unsigned long   rx_over_errors;
 169        unsigned long   rx_crc_errors;
 170        unsigned long   rx_frame_errors;
 171        unsigned long   rx_fifo_errors;
 172        unsigned long   rx_missed_errors;
 173        unsigned long   tx_aborted_errors;
 174        unsigned long   tx_carrier_errors;
 175        unsigned long   tx_fifo_errors;
 176        unsigned long   tx_heartbeat_errors;
 177        unsigned long   tx_window_errors;
 178        unsigned long   rx_compressed;
 179        unsigned long   tx_compressed;
 180};
 181
 182
 183#include <linux/cache.h>
 184#include <linux/skbuff.h>
 185
 186#ifdef CONFIG_RPS
 187#include <linux/static_key.h>
 188extern struct static_key rps_needed;
 189#endif
 190
 191struct neighbour;
 192struct neigh_parms;
 193struct sk_buff;
 194
 195struct netdev_hw_addr {
 196        struct list_head        list;
 197        unsigned char           addr[MAX_ADDR_LEN];
 198        unsigned char           type;
 199#define NETDEV_HW_ADDR_T_LAN            1
 200#define NETDEV_HW_ADDR_T_SAN            2
 201#define NETDEV_HW_ADDR_T_SLAVE          3
 202#define NETDEV_HW_ADDR_T_UNICAST        4
 203#define NETDEV_HW_ADDR_T_MULTICAST      5
 204        bool                    global_use;
 205        int                     sync_cnt;
 206        int                     refcount;
 207        int                     synced;
 208        struct rcu_head         rcu_head;
 209};
 210
 211struct netdev_hw_addr_list {
 212        struct list_head        list;
 213        int                     count;
 214};
 215
 216#define netdev_hw_addr_list_count(l) ((l)->count)
 217#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 218#define netdev_hw_addr_list_for_each(ha, l) \
 219        list_for_each_entry(ha, &(l)->list, list)
 220
 221#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 222#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 223#define netdev_for_each_uc_addr(ha, dev) \
 224        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 225
 226#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 227#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 228#define netdev_for_each_mc_addr(ha, dev) \
 229        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 230
 231struct hh_cache {
 232        u16             hh_len;
 233        u16             __pad;
 234        seqlock_t       hh_lock;
 235
 236        /* cached hardware header; allow for machine alignment needs.        */
 237#define HH_DATA_MOD     16
 238#define HH_DATA_OFF(__len) \
 239        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 240#define HH_DATA_ALIGN(__len) \
 241        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 242        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 243};
 244
 245/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
 246 * Alternative is:
 247 *   dev->hard_header_len ? (dev->hard_header_len +
 248 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 249 *
 250 * We could use other alignment values, but we must maintain the
 251 * relationship HH alignment <= LL alignment.
 252 */
 253#define LL_RESERVED_SPACE(dev) \
 254        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 255#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 256        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 257
 258struct header_ops {
 259        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 260                           unsigned short type, const void *daddr,
 261                           const void *saddr, unsigned int len);
 262        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 263        int     (*rebuild)(struct sk_buff *skb);
 264        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 265        void    (*cache_update)(struct hh_cache *hh,
 266                                const struct net_device *dev,
 267                                const unsigned char *haddr);
 268};
 269
 270/* These flag bits are private to the generic network queueing
 271 * layer, they may not be explicitly referenced by any other
 272 * code.
 273 */
 274
 275enum netdev_state_t {
 276        __LINK_STATE_START,
 277        __LINK_STATE_PRESENT,
 278        __LINK_STATE_NOCARRIER,
 279        __LINK_STATE_LINKWATCH_PENDING,
 280        __LINK_STATE_DORMANT,
 281};
 282
 283
 284/*
 285 * This structure holds at boot time configured netdevice settings. They
 286 * are then used in the device probing.
 287 */
 288struct netdev_boot_setup {
 289        char name[IFNAMSIZ];
 290        struct ifmap map;
 291};
 292#define NETDEV_BOOT_SETUP_MAX 8
 293
 294int __init netdev_boot_setup(char *str);
 295
 296/*
 297 * Structure for NAPI scheduling similar to tasklet but with weighting
 298 */
 299struct napi_struct {
 300        /* The poll_list must only be managed by the entity which
 301         * changes the state of the NAPI_STATE_SCHED bit.  This means
 302         * whoever atomically sets that bit can add this napi_struct
 303         * to the per-cpu poll_list, and whoever clears that bit
 304         * can remove from the list right before clearing the bit.
 305         */
 306        struct list_head        poll_list;
 307
 308        unsigned long           state;
 309        int                     weight;
 310        unsigned int            gro_count;
 311        int                     (*poll)(struct napi_struct *, int);
 312#ifdef CONFIG_NETPOLL
 313        spinlock_t              poll_lock;
 314        int                     poll_owner;
 315#endif
 316        struct net_device       *dev;
 317        struct sk_buff          *gro_list;
 318        struct sk_buff          *skb;
 319        struct list_head        dev_list;
 320        struct hlist_node       napi_hash_node;
 321        unsigned int            napi_id;
 322};
 323
 324enum {
 325        NAPI_STATE_SCHED,       /* Poll is scheduled */
 326        NAPI_STATE_DISABLE,     /* Disable pending */
 327        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 328        NAPI_STATE_HASHED,      /* In NAPI hash */
 329};
 330
 331enum gro_result {
 332        GRO_MERGED,
 333        GRO_MERGED_FREE,
 334        GRO_HELD,
 335        GRO_NORMAL,
 336        GRO_DROP,
 337};
 338typedef enum gro_result gro_result_t;
 339
 340/*
 341 * enum rx_handler_result - Possible return values for rx_handlers.
 342 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 343 * further.
 344 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 345 * case skb->dev was changed by rx_handler.
 346 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 347 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
 348 *
 349 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 350 * special processing of the skb, prior to delivery to protocol handlers.
 351 *
 352 * Currently, a net_device can only have a single rx_handler registered. Trying
 353 * to register a second rx_handler will return -EBUSY.
 354 *
 355 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 356 * To unregister a rx_handler on a net_device, use
 357 * netdev_rx_handler_unregister().
 358 *
 359 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 360 * do with the skb.
 361 *
 362 * If the rx_handler consumed to skb in some way, it should return
 363 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 364 * the skb to be delivered in some other ways.
 365 *
 366 * If the rx_handler changed skb->dev, to divert the skb to another
 367 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 368 * new device will be called if it exists.
 369 *
 370 * If the rx_handler consider the skb should be ignored, it should return
 371 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 372 * are registered on exact device (ptype->dev == skb->dev).
 373 *
 374 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
 375 * delivered, it should return RX_HANDLER_PASS.
 376 *
 377 * A device without a registered rx_handler will behave as if rx_handler
 378 * returned RX_HANDLER_PASS.
 379 */
 380
 381enum rx_handler_result {
 382        RX_HANDLER_CONSUMED,
 383        RX_HANDLER_ANOTHER,
 384        RX_HANDLER_EXACT,
 385        RX_HANDLER_PASS,
 386};
 387typedef enum rx_handler_result rx_handler_result_t;
 388typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 389
 390void __napi_schedule(struct napi_struct *n);
 391
 392static inline bool napi_disable_pending(struct napi_struct *n)
 393{
 394        return test_bit(NAPI_STATE_DISABLE, &n->state);
 395}
 396
 397/**
 398 *      napi_schedule_prep - check if napi can be scheduled
 399 *      @n: napi context
 400 *
 401 * Test if NAPI routine is already running, and if not mark
 402 * it as running.  This is used as a condition variable
 403 * insure only one NAPI poll instance runs.  We also make
 404 * sure there is no pending NAPI disable.
 405 */
 406static inline bool napi_schedule_prep(struct napi_struct *n)
 407{
 408        return !napi_disable_pending(n) &&
 409                !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
 410}
 411
 412/**
 413 *      napi_schedule - schedule NAPI poll
 414 *      @n: napi context
 415 *
 416 * Schedule NAPI poll routine to be called if it is not already
 417 * running.
 418 */
 419static inline void napi_schedule(struct napi_struct *n)
 420{
 421        if (napi_schedule_prep(n))
 422                __napi_schedule(n);
 423}
 424
 425/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 426static inline bool napi_reschedule(struct napi_struct *napi)
 427{
 428        if (napi_schedule_prep(napi)) {
 429                __napi_schedule(napi);
 430                return true;
 431        }
 432        return false;
 433}
 434
 435/**
 436 *      napi_complete - NAPI processing complete
 437 *      @n: napi context
 438 *
 439 * Mark NAPI processing as complete.
 440 */
 441void __napi_complete(struct napi_struct *n);
 442void napi_complete(struct napi_struct *n);
 443
 444/**
 445 *      napi_by_id - lookup a NAPI by napi_id
 446 *      @napi_id: hashed napi_id
 447 *
 448 * lookup @napi_id in napi_hash table
 449 * must be called under rcu_read_lock()
 450 */
 451struct napi_struct *napi_by_id(unsigned int napi_id);
 452
 453/**
 454 *      napi_hash_add - add a NAPI to global hashtable
 455 *      @napi: napi context
 456 *
 457 * generate a new napi_id and store a @napi under it in napi_hash
 458 */
 459void napi_hash_add(struct napi_struct *napi);
 460
 461/**
 462 *      napi_hash_del - remove a NAPI from global table
 463 *      @napi: napi context
 464 *
 465 * Warning: caller must observe rcu grace period
 466 * before freeing memory containing @napi
 467 */
 468void napi_hash_del(struct napi_struct *napi);
 469
 470/**
 471 *      napi_disable - prevent NAPI from scheduling
 472 *      @n: napi context
 473 *
 474 * Stop NAPI from being scheduled on this context.
 475 * Waits till any outstanding processing completes.
 476 */
 477static inline void napi_disable(struct napi_struct *n)
 478{
 479        might_sleep();
 480        set_bit(NAPI_STATE_DISABLE, &n->state);
 481        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
 482                msleep(1);
 483        clear_bit(NAPI_STATE_DISABLE, &n->state);
 484}
 485
 486/**
 487 *      napi_enable - enable NAPI scheduling
 488 *      @n: napi context
 489 *
 490 * Resume NAPI from being scheduled on this context.
 491 * Must be paired with napi_disable.
 492 */
 493static inline void napi_enable(struct napi_struct *n)
 494{
 495        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 496        smp_mb__before_clear_bit();
 497        clear_bit(NAPI_STATE_SCHED, &n->state);
 498}
 499
 500#ifdef CONFIG_SMP
 501/**
 502 *      napi_synchronize - wait until NAPI is not running
 503 *      @n: napi context
 504 *
 505 * Wait until NAPI is done being scheduled on this context.
 506 * Waits till any outstanding processing completes but
 507 * does not disable future activations.
 508 */
 509static inline void napi_synchronize(const struct napi_struct *n)
 510{
 511        while (test_bit(NAPI_STATE_SCHED, &n->state))
 512                msleep(1);
 513}
 514#else
 515# define napi_synchronize(n)    barrier()
 516#endif
 517
 518enum netdev_queue_state_t {
 519        __QUEUE_STATE_DRV_XOFF,
 520        __QUEUE_STATE_STACK_XOFF,
 521        __QUEUE_STATE_FROZEN,
 522};
 523
 524#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 525#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 526#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 527
 528#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 529#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 530                                        QUEUE_STATE_FROZEN)
 531#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 532                                        QUEUE_STATE_FROZEN)
 533
 534/*
 535 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 536 * netif_tx_* functions below are used to manipulate this flag.  The
 537 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 538 * queue independently.  The netif_xmit_*stopped functions below are called
 539 * to check if the queue has been stopped by the driver or stack (either
 540 * of the XOFF bits are set in the state).  Drivers should not need to call
 541 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 542 */
 543
 544struct netdev_queue {
 545/*
 546 * read mostly part
 547 */
 548        struct net_device       *dev;
 549        struct Qdisc            *qdisc;
 550        struct Qdisc            *qdisc_sleeping;
 551#ifdef CONFIG_SYSFS
 552        struct kobject          kobj;
 553#endif
 554#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 555        int                     numa_node;
 556#endif
 557/*
 558 * write mostly part
 559 */
 560        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 561        int                     xmit_lock_owner;
 562        /*
 563         * please use this field instead of dev->trans_start
 564         */
 565        unsigned long           trans_start;
 566
 567        /*
 568         * Number of TX timeouts for this queue
 569         * (/sys/class/net/DEV/Q/trans_timeout)
 570         */
 571        unsigned long           trans_timeout;
 572
 573        unsigned long           state;
 574
 575#ifdef CONFIG_BQL
 576        struct dql              dql;
 577#endif
 578} ____cacheline_aligned_in_smp;
 579
 580static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 581{
 582#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 583        return q->numa_node;
 584#else
 585        return NUMA_NO_NODE;
 586#endif
 587}
 588
 589static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 590{
 591#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 592        q->numa_node = node;
 593#endif
 594}
 595
 596#ifdef CONFIG_RPS
 597/*
 598 * This structure holds an RPS map which can be of variable length.  The
 599 * map is an array of CPUs.
 600 */
 601struct rps_map {
 602        unsigned int len;
 603        struct rcu_head rcu;
 604        u16 cpus[0];
 605};
 606#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 607
 608/*
 609 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 610 * tail pointer for that CPU's input queue at the time of last enqueue, and
 611 * a hardware filter index.
 612 */
 613struct rps_dev_flow {
 614        u16 cpu;
 615        u16 filter;
 616        unsigned int last_qtail;
 617};
 618#define RPS_NO_FILTER 0xffff
 619
 620/*
 621 * The rps_dev_flow_table structure contains a table of flow mappings.
 622 */
 623struct rps_dev_flow_table {
 624        unsigned int mask;
 625        struct rcu_head rcu;
 626        struct rps_dev_flow flows[0];
 627};
 628#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 629    ((_num) * sizeof(struct rps_dev_flow)))
 630
 631/*
 632 * The rps_sock_flow_table contains mappings of flows to the last CPU
 633 * on which they were processed by the application (set in recvmsg).
 634 */
 635struct rps_sock_flow_table {
 636        unsigned int mask;
 637        u16 ents[0];
 638};
 639#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
 640    ((_num) * sizeof(u16)))
 641
 642#define RPS_NO_CPU 0xffff
 643
 644static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 645                                        u32 hash)
 646{
 647        if (table && hash) {
 648                unsigned int cpu, index = hash & table->mask;
 649
 650                /* We only give a hint, preemption can change cpu under us */
 651                cpu = raw_smp_processor_id();
 652
 653                if (table->ents[index] != cpu)
 654                        table->ents[index] = cpu;
 655        }
 656}
 657
 658static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
 659                                       u32 hash)
 660{
 661        if (table && hash)
 662                table->ents[hash & table->mask] = RPS_NO_CPU;
 663}
 664
 665extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 666
 667#ifdef CONFIG_RFS_ACCEL
 668bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 669                         u16 filter_id);
 670#endif
 671#endif /* CONFIG_RPS */
 672
 673/* This structure contains an instance of an RX queue. */
 674struct netdev_rx_queue {
 675#ifdef CONFIG_RPS
 676        struct rps_map __rcu            *rps_map;
 677        struct rps_dev_flow_table __rcu *rps_flow_table;
 678#endif
 679        struct kobject                  kobj;
 680        struct net_device               *dev;
 681} ____cacheline_aligned_in_smp;
 682
 683/*
 684 * RX queue sysfs structures and functions.
 685 */
 686struct rx_queue_attribute {
 687        struct attribute attr;
 688        ssize_t (*show)(struct netdev_rx_queue *queue,
 689            struct rx_queue_attribute *attr, char *buf);
 690        ssize_t (*store)(struct netdev_rx_queue *queue,
 691            struct rx_queue_attribute *attr, const char *buf, size_t len);
 692};
 693
 694#ifdef CONFIG_XPS
 695/*
 696 * This structure holds an XPS map which can be of variable length.  The
 697 * map is an array of queues.
 698 */
 699struct xps_map {
 700        unsigned int len;
 701        unsigned int alloc_len;
 702        struct rcu_head rcu;
 703        u16 queues[0];
 704};
 705#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 706#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
 707    / sizeof(u16))
 708
 709/*
 710 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 711 */
 712struct xps_dev_maps {
 713        struct rcu_head rcu;
 714        struct xps_map __rcu *cpu_map[0];
 715};
 716#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
 717    (nr_cpu_ids * sizeof(struct xps_map *)))
 718#endif /* CONFIG_XPS */
 719
 720#define TC_MAX_QUEUE    16
 721#define TC_BITMASK      15
 722/* HW offloaded queuing disciplines txq count and offset maps */
 723struct netdev_tc_txq {
 724        u16 count;
 725        u16 offset;
 726};
 727
 728#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 729/*
 730 * This structure is to hold information about the device
 731 * configured to run FCoE protocol stack.
 732 */
 733struct netdev_fcoe_hbainfo {
 734        char    manufacturer[64];
 735        char    serial_number[64];
 736        char    hardware_version[64];
 737        char    driver_version[64];
 738        char    optionrom_version[64];
 739        char    firmware_version[64];
 740        char    model[256];
 741        char    model_description[256];
 742};
 743#endif
 744
 745#define MAX_PHYS_PORT_ID_LEN 32
 746
 747/* This structure holds a unique identifier to identify the
 748 * physical port used by a netdevice.
 749 */
 750struct netdev_phys_port_id {
 751        unsigned char id[MAX_PHYS_PORT_ID_LEN];
 752        unsigned char id_len;
 753};
 754
 755typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 756                                       struct sk_buff *skb);
 757
 758/*
 759 * This structure defines the management hooks for network devices.
 760 * The following hooks can be defined; unless noted otherwise, they are
 761 * optional and can be filled with a null pointer.
 762 *
 763 * int (*ndo_init)(struct net_device *dev);
 764 *     This function is called once when network device is registered.
 765 *     The network device can use this to any late stage initializaton
 766 *     or semantic validattion. It can fail with an error code which will
 767 *     be propogated back to register_netdev
 768 *
 769 * void (*ndo_uninit)(struct net_device *dev);
 770 *     This function is called when device is unregistered or when registration
 771 *     fails. It is not called if init fails.
 772 *
 773 * int (*ndo_open)(struct net_device *dev);
 774 *     This function is called when network device transistions to the up
 775 *     state.
 776 *
 777 * int (*ndo_stop)(struct net_device *dev);
 778 *     This function is called when network device transistions to the down
 779 *     state.
 780 *
 781 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 782 *                               struct net_device *dev);
 783 *      Called when a packet needs to be transmitted.
 784 *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
 785 *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
 786 *      Required can not be NULL.
 787 *
 788 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 789 *                         void *accel_priv, select_queue_fallback_t fallback);
 790 *      Called to decide which queue to when device supports multiple
 791 *      transmit queues.
 792 *
 793 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 794 *      This function is called to allow device receiver to make
 795 *      changes to configuration when multicast or promiscious is enabled.
 796 *
 797 * void (*ndo_set_rx_mode)(struct net_device *dev);
 798 *      This function is called device changes address list filtering.
 799 *      If driver handles unicast address filtering, it should set
 800 *      IFF_UNICAST_FLT to its priv_flags.
 801 *
 802 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 803 *      This function  is called when the Media Access Control address
 804 *      needs to be changed. If this interface is not defined, the
 805 *      mac address can not be changed.
 806 *
 807 * int (*ndo_validate_addr)(struct net_device *dev);
 808 *      Test if Media Access Control address is valid for the device.
 809 *
 810 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 811 *      Called when a user request an ioctl which can't be handled by
 812 *      the generic interface code. If not defined ioctl's return
 813 *      not supported error code.
 814 *
 815 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 816 *      Used to set network devices bus interface parameters. This interface
 817 *      is retained for legacy reason, new devices should use the bus
 818 *      interface (PCI) for low level management.
 819 *
 820 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 821 *      Called when a user wants to change the Maximum Transfer Unit
 822 *      of a device. If not defined, any request to change MTU will
 823 *      will return an error.
 824 *
 825 * void (*ndo_tx_timeout)(struct net_device *dev);
 826 *      Callback uses when the transmitter has not made any progress
 827 *      for dev->watchdog ticks.
 828 *
 829 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
 830 *                      struct rtnl_link_stats64 *storage);
 831 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 832 *      Called when a user wants to get the network device usage
 833 *      statistics. Drivers must do one of the following:
 834 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 835 *         rtnl_link_stats64 structure passed by the caller.
 836 *      2. Define @ndo_get_stats to update a net_device_stats structure
 837 *         (which should normally be dev->stats) and return a pointer to
 838 *         it. The structure may be changed asynchronously only if each
 839 *         field is written atomically.
 840 *      3. Update dev->stats asynchronously and atomically, and define
 841 *         neither operation.
 842 *
 843 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
 844 *      If device support VLAN filtering this function is called when a
 845 *      VLAN id is registered.
 846 *
 847 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
 848 *      If device support VLAN filtering this function is called when a
 849 *      VLAN id is unregistered.
 850 *
 851 * void (*ndo_poll_controller)(struct net_device *dev);
 852 *
 853 *      SR-IOV management functions.
 854 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 855 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
 856 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
 857 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 858 * int (*ndo_get_vf_config)(struct net_device *dev,
 859 *                          int vf, struct ifla_vf_info *ivf);
 860 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 861 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 862 *                        struct nlattr *port[]);
 863 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 864 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
 865 *      Called to setup 'tc' number of traffic classes in the net device. This
 866 *      is always called from the stack with the rtnl lock held and netif tx
 867 *      queues stopped. This allows the netdevice to perform queue management
 868 *      safely.
 869 *
 870 *      Fiber Channel over Ethernet (FCoE) offload functions.
 871 * int (*ndo_fcoe_enable)(struct net_device *dev);
 872 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
 873 *      so the underlying device can perform whatever needed configuration or
 874 *      initialization to support acceleration of FCoE traffic.
 875 *
 876 * int (*ndo_fcoe_disable)(struct net_device *dev);
 877 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
 878 *      so the underlying device can perform whatever needed clean-ups to
 879 *      stop supporting acceleration of FCoE traffic.
 880 *
 881 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
 882 *                           struct scatterlist *sgl, unsigned int sgc);
 883 *      Called when the FCoE Initiator wants to initialize an I/O that
 884 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 885 *      perform necessary setup and returns 1 to indicate the device is set up
 886 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 887 *
 888 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
 889 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
 890 *      indicated by the FC exchange id 'xid', so the underlying device can
 891 *      clean up and reuse resources for later DDP requests.
 892 *
 893 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
 894 *                            struct scatterlist *sgl, unsigned int sgc);
 895 *      Called when the FCoE Target wants to initialize an I/O that
 896 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
 897 *      perform necessary setup and returns 1 to indicate the device is set up
 898 *      successfully to perform DDP on this I/O, otherwise this returns 0.
 899 *
 900 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
 901 *                             struct netdev_fcoe_hbainfo *hbainfo);
 902 *      Called when the FCoE Protocol stack wants information on the underlying
 903 *      device. This information is utilized by the FCoE protocol stack to
 904 *      register attributes with Fiber Channel management service as per the
 905 *      FC-GS Fabric Device Management Information(FDMI) specification.
 906 *
 907 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
 908 *      Called when the underlying device wants to override default World Wide
 909 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
 910 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
 911 *      protocol stack to use.
 912 *
 913 *      RFS acceleration.
 914 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
 915 *                          u16 rxq_index, u32 flow_id);
 916 *      Set hardware filter for RFS.  rxq_index is the target queue index;
 917 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
 918 *      Return the filter ID on success, or a negative error code.
 919 *
 920 *      Slave management functions (for bridge, bonding, etc).
 921 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
 922 *      Called to make another netdev an underling.
 923 *
 924 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
 925 *      Called to release previously enslaved netdev.
 926 *
 927 *      Feature/offload setting functions.
 928 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
 929 *              netdev_features_t features);
 930 *      Adjusts the requested feature flags according to device-specific
 931 *      constraints, and returns the resulting flags. Must not modify
 932 *      the device state.
 933 *
 934 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
 935 *      Called to update device configuration to new features. Passed
 936 *      feature set might be less than what was returned by ndo_fix_features()).
 937 *      Must return >0 or -errno if it changed dev->features itself.
 938 *
 939 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
 940 *                    struct net_device *dev,
 941 *                    const unsigned char *addr, u16 flags)
 942 *      Adds an FDB entry to dev for addr.
 943 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
 944 *                    struct net_device *dev,
 945 *                    const unsigned char *addr)
 946 *      Deletes the FDB entry from dev coresponding to addr.
 947 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
 948 *                     struct net_device *dev, int idx)
 949 *      Used to add FDB entries to dump requests. Implementers should add
 950 *      entries to skb and update idx with the number of entries.
 951 *
 952 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
 953 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
 954 *                           struct net_device *dev, u32 filter_mask)
 955 *
 956 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
 957 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
 958 *      which do not represent real hardware may define this to allow their
 959 *      userspace components to manage their virtual carrier state. Devices
 960 *      that determine carrier state from physical hardware properties (eg
 961 *      network cables) or protocol-dependent mechanisms (eg
 962 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
 963 *
 964 * int (*ndo_get_phys_port_id)(struct net_device *dev,
 965 *                             struct netdev_phys_port_id *ppid);
 966 *      Called to get ID of physical port of this device. If driver does
 967 *      not implement this, it is assumed that the hw is not able to have
 968 *      multiple net devices on single physical port.
 969 *
 970 * void (*ndo_add_vxlan_port)(struct  net_device *dev,
 971 *                            sa_family_t sa_family, __be16 port);
 972 *      Called by vxlan to notiy a driver about the UDP port and socket
 973 *      address family that vxlan is listnening to. It is called only when
 974 *      a new port starts listening. The operation is protected by the
 975 *      vxlan_net->sock_lock.
 976 *
 977 * void (*ndo_del_vxlan_port)(struct  net_device *dev,
 978 *                            sa_family_t sa_family, __be16 port);
 979 *      Called by vxlan to notify the driver about a UDP port and socket
 980 *      address family that vxlan is not listening to anymore. The operation
 981 *      is protected by the vxlan_net->sock_lock.
 982 *
 983 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
 984 *                               struct net_device *dev)
 985 *      Called by upper layer devices to accelerate switching or other
 986 *      station functionality into hardware. 'pdev is the lowerdev
 987 *      to use for the offload and 'dev' is the net device that will
 988 *      back the offload. Returns a pointer to the private structure
 989 *      the upper layer will maintain.
 990 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
 991 *      Called by upper layer device to delete the station created
 992 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
 993 *      the station and priv is the structure returned by the add
 994 *      operation.
 995 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
 996 *                                    struct net_device *dev,
 997 *                                    void *priv);
 998 *      Callback to use for xmit over the accelerated station. This
 999 *      is used in place of ndo_start_xmit on accelerated net
1000 *      devices.
1001 */
1002struct net_device_ops {
1003        int                     (*ndo_init)(struct net_device *dev);
1004        void                    (*ndo_uninit)(struct net_device *dev);
1005        int                     (*ndo_open)(struct net_device *dev);
1006        int                     (*ndo_stop)(struct net_device *dev);
1007        netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1008                                                   struct net_device *dev);
1009        u16                     (*ndo_select_queue)(struct net_device *dev,
1010                                                    struct sk_buff *skb,
1011                                                    void *accel_priv,
1012                                                    select_queue_fallback_t fallback);
1013        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1014                                                       int flags);
1015        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1016        int                     (*ndo_set_mac_address)(struct net_device *dev,
1017                                                       void *addr);
1018        int                     (*ndo_validate_addr)(struct net_device *dev);
1019        int                     (*ndo_do_ioctl)(struct net_device *dev,
1020                                                struct ifreq *ifr, int cmd);
1021        int                     (*ndo_set_config)(struct net_device *dev,
1022                                                  struct ifmap *map);
1023        int                     (*ndo_change_mtu)(struct net_device *dev,
1024                                                  int new_mtu);
1025        int                     (*ndo_neigh_setup)(struct net_device *dev,
1026                                                   struct neigh_parms *);
1027        void                    (*ndo_tx_timeout) (struct net_device *dev);
1028
1029        struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030                                                     struct rtnl_link_stats64 *storage);
1031        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032
1033        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034                                                       __be16 proto, u16 vid);
1035        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036                                                        __be16 proto, u16 vid);
1037#ifdef CONFIG_NET_POLL_CONTROLLER
1038        void                    (*ndo_poll_controller)(struct net_device *dev);
1039        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1040                                                     struct netpoll_info *info);
1041        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1042#endif
1043#ifdef CONFIG_NET_RX_BUSY_POLL
1044        int                     (*ndo_busy_poll)(struct napi_struct *dev);
1045#endif
1046        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1047                                                  int queue, u8 *mac);
1048        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1049                                                   int queue, u16 vlan, u8 qos);
1050        int                     (*ndo_set_vf_tx_rate)(struct net_device *dev,
1051                                                      int vf, int rate);
1052        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1053                                                       int vf, bool setting);
1054        int                     (*ndo_get_vf_config)(struct net_device *dev,
1055                                                     int vf,
1056                                                     struct ifla_vf_info *ivf);
1057        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1058                                                         int vf, int link_state);
1059        int                     (*ndo_set_vf_port)(struct net_device *dev,
1060                                                   int vf,
1061                                                   struct nlattr *port[]);
1062        int                     (*ndo_get_vf_port)(struct net_device *dev,
1063                                                   int vf, struct sk_buff *skb);
1064        int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1065#if IS_ENABLED(CONFIG_FCOE)
1066        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1067        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1068        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1069                                                      u16 xid,
1070                                                      struct scatterlist *sgl,
1071                                                      unsigned int sgc);
1072        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1073                                                     u16 xid);
1074        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1075                                                       u16 xid,
1076                                                       struct scatterlist *sgl,
1077                                                       unsigned int sgc);
1078        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1079                                                        struct netdev_fcoe_hbainfo *hbainfo);
1080#endif
1081
1082#if IS_ENABLED(CONFIG_LIBFCOE)
1083#define NETDEV_FCOE_WWNN 0
1084#define NETDEV_FCOE_WWPN 1
1085        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1086                                                    u64 *wwn, int type);
1087#endif
1088
1089#ifdef CONFIG_RFS_ACCEL
1090        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1091                                                     const struct sk_buff *skb,
1092                                                     u16 rxq_index,
1093                                                     u32 flow_id);
1094#endif
1095        int                     (*ndo_add_slave)(struct net_device *dev,
1096                                                 struct net_device *slave_dev);
1097        int                     (*ndo_del_slave)(struct net_device *dev,
1098                                                 struct net_device *slave_dev);
1099        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1100                                                    netdev_features_t features);
1101        int                     (*ndo_set_features)(struct net_device *dev,
1102                                                    netdev_features_t features);
1103        int                     (*ndo_neigh_construct)(struct neighbour *n);
1104        void                    (*ndo_neigh_destroy)(struct neighbour *n);
1105
1106        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1107                                               struct nlattr *tb[],
1108                                               struct net_device *dev,
1109                                               const unsigned char *addr,
1110                                               u16 flags);
1111        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1112                                               struct nlattr *tb[],
1113                                               struct net_device *dev,
1114                                               const unsigned char *addr);
1115        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1116                                                struct netlink_callback *cb,
1117                                                struct net_device *dev,
1118                                                int idx);
1119
1120        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1121                                                      struct nlmsghdr *nlh);
1122        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1123                                                      u32 pid, u32 seq,
1124                                                      struct net_device *dev,
1125                                                      u32 filter_mask);
1126        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1127                                                      struct nlmsghdr *nlh);
1128        int                     (*ndo_change_carrier)(struct net_device *dev,
1129                                                      bool new_carrier);
1130        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1131                                                        struct netdev_phys_port_id *ppid);
1132        void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1133                                                      sa_family_t sa_family,
1134                                                      __be16 port);
1135        void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1136                                                      sa_family_t sa_family,
1137                                                      __be16 port);
1138
1139        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1140                                                        struct net_device *dev);
1141        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1142                                                        void *priv);
1143
1144        netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1145                                                        struct net_device *dev,
1146                                                        void *priv);
1147        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1148};
1149
1150/**
1151 * enum net_device_priv_flags - &struct net_device priv_flags
1152 *
1153 * These are the &struct net_device, they are only set internally
1154 * by drivers and used in the kernel. These flags are invisible to
1155 * userspace, this means that the order of these flags can change
1156 * during any kernel release.
1157 *
1158 * You should have a pretty good reason to be extending these flags.
1159 *
1160 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1161 * @IFF_EBRIDGE: Ethernet bridging device
1162 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1163 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1164 * @IFF_MASTER_ALB: bonding master, balance-alb
1165 * @IFF_BONDING: bonding master or slave
1166 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1167 * @IFF_ISATAP: ISATAP interface (RFC4214)
1168 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1169 * @IFF_WAN_HDLC: WAN HDLC device
1170 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1171 *      release skb->dst
1172 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1173 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1174 * @IFF_MACVLAN_PORT: device used as macvlan port
1175 * @IFF_BRIDGE_PORT: device used as bridge port
1176 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1177 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1178 * @IFF_UNICAST_FLT: Supports unicast filtering
1179 * @IFF_TEAM_PORT: device used as team port
1180 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1181 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1182 *      change when it's running
1183 * @IFF_MACVLAN: Macvlan device
1184 */
1185enum netdev_priv_flags {
1186        IFF_802_1Q_VLAN                 = 1<<0,
1187        IFF_EBRIDGE                     = 1<<1,
1188        IFF_SLAVE_INACTIVE              = 1<<2,
1189        IFF_MASTER_8023AD               = 1<<3,
1190        IFF_MASTER_ALB                  = 1<<4,
1191        IFF_BONDING                     = 1<<5,
1192        IFF_SLAVE_NEEDARP               = 1<<6,
1193        IFF_ISATAP                      = 1<<7,
1194        IFF_MASTER_ARPMON               = 1<<8,
1195        IFF_WAN_HDLC                    = 1<<9,
1196        IFF_XMIT_DST_RELEASE            = 1<<10,
1197        IFF_DONT_BRIDGE                 = 1<<11,
1198        IFF_DISABLE_NETPOLL             = 1<<12,
1199        IFF_MACVLAN_PORT                = 1<<13,
1200        IFF_BRIDGE_PORT                 = 1<<14,
1201        IFF_OVS_DATAPATH                = 1<<15,
1202        IFF_TX_SKB_SHARING              = 1<<16,
1203        IFF_UNICAST_FLT                 = 1<<17,
1204        IFF_TEAM_PORT                   = 1<<18,
1205        IFF_SUPP_NOFCS                  = 1<<19,
1206        IFF_LIVE_ADDR_CHANGE            = 1<<20,
1207        IFF_MACVLAN                     = 1<<21,
1208};
1209
1210#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1211#define IFF_EBRIDGE                     IFF_EBRIDGE
1212#define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1213#define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1214#define IFF_MASTER_ALB                  IFF_MASTER_ALB
1215#define IFF_BONDING                     IFF_BONDING
1216#define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1217#define IFF_ISATAP                      IFF_ISATAP
1218#define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1219#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1220#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1221#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1222#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1223#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1224#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1225#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1226#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1227#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1228#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1229#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1230#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1231#define IFF_MACVLAN                     IFF_MACVLAN
1232
1233/*
1234 *      The DEVICE structure.
1235 *      Actually, this whole structure is a big mistake.  It mixes I/O
1236 *      data with strictly "high-level" data, and it has to know about
1237 *      almost every data structure used in the INET module.
1238 *
1239 *      FIXME: cleanup struct net_device such that network protocol info
1240 *      moves out.
1241 */
1242
1243struct net_device {
1244
1245        /*
1246         * This is the first field of the "visible" part of this structure
1247         * (i.e. as seen by users in the "Space.c" file).  It is the name
1248         * of the interface.
1249         */
1250        char                    name[IFNAMSIZ];
1251
1252        /* device name hash chain, please keep it close to name[] */
1253        struct hlist_node       name_hlist;
1254
1255        /* snmp alias */
1256        char                    *ifalias;
1257
1258        /*
1259         *      I/O specific fields
1260         *      FIXME: Merge these and struct ifmap into one
1261         */
1262        unsigned long           mem_end;        /* shared mem end       */
1263        unsigned long           mem_start;      /* shared mem start     */
1264        unsigned long           base_addr;      /* device I/O address   */
1265        int                     irq;            /* device IRQ number    */
1266
1267        /*
1268         *      Some hardware also needs these fields, but they are not
1269         *      part of the usual set specified in Space.c.
1270         */
1271
1272        unsigned long           state;
1273
1274        struct list_head        dev_list;
1275        struct list_head        napi_list;
1276        struct list_head        unreg_list;
1277        struct list_head        close_list;
1278
1279        /* directly linked devices, like slaves for bonding */
1280        struct {
1281                struct list_head upper;
1282                struct list_head lower;
1283        } adj_list;
1284
1285        /* all linked devices, *including* neighbours */
1286        struct {
1287                struct list_head upper;
1288                struct list_head lower;
1289        } all_adj_list;
1290
1291
1292        /* currently active device features */
1293        netdev_features_t       features;
1294        /* user-changeable features */
1295        netdev_features_t       hw_features;
1296        /* user-requested features */
1297        netdev_features_t       wanted_features;
1298        /* mask of features inheritable by VLAN devices */
1299        netdev_features_t       vlan_features;
1300        /* mask of features inherited by encapsulating devices
1301         * This field indicates what encapsulation offloads
1302         * the hardware is capable of doing, and drivers will
1303         * need to set them appropriately.
1304         */
1305        netdev_features_t       hw_enc_features;
1306        /* mask of fetures inheritable by MPLS */
1307        netdev_features_t       mpls_features;
1308
1309        /* Interface index. Unique device identifier    */
1310        int                     ifindex;
1311        int                     iflink;
1312
1313        struct net_device_stats stats;
1314
1315        /* dropped packets by core network, Do not use this in drivers */
1316        atomic_long_t           rx_dropped;
1317        atomic_long_t           tx_dropped;
1318
1319        /* Stats to monitor carrier on<->off transitions */
1320        atomic_t                carrier_changes;
1321
1322#ifdef CONFIG_WIRELESS_EXT
1323        /* List of functions to handle Wireless Extensions (instead of ioctl).
1324         * See <net/iw_handler.h> for details. Jean II */
1325        const struct iw_handler_def *   wireless_handlers;
1326        /* Instance data managed by the core of Wireless Extensions. */
1327        struct iw_public_data * wireless_data;
1328#endif
1329        /* Management operations */
1330        const struct net_device_ops *netdev_ops;
1331        const struct ethtool_ops *ethtool_ops;
1332        const struct forwarding_accel_ops *fwd_ops;
1333
1334        /* Hardware header description */
1335        const struct header_ops *header_ops;
1336
1337        unsigned int            flags;  /* interface flags (a la BSD)   */
1338        unsigned int            priv_flags; /* Like 'flags' but invisible to userspace.
1339                                             * See if.h for definitions. */
1340        unsigned short          gflags;
1341        unsigned short          padded; /* How much padding added by alloc_netdev() */
1342
1343        unsigned char           operstate; /* RFC2863 operstate */
1344        unsigned char           link_mode; /* mapping policy to operstate */
1345
1346        unsigned char           if_port;        /* Selectable AUI, TP,..*/
1347        unsigned char           dma;            /* DMA channel          */
1348
1349        unsigned int            mtu;    /* interface MTU value          */
1350        unsigned short          type;   /* interface hardware type      */
1351        unsigned short          hard_header_len;        /* hardware hdr length  */
1352
1353        /* extra head- and tailroom the hardware may need, but not in all cases
1354         * can this be guaranteed, especially tailroom. Some cases also use
1355         * LL_MAX_HEADER instead to allocate the skb.
1356         */
1357        unsigned short          needed_headroom;
1358        unsigned short          needed_tailroom;
1359
1360        /* Interface address info. */
1361        unsigned char           perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1362        unsigned char           addr_assign_type; /* hw address assignment type */
1363        unsigned char           addr_len;       /* hardware address length      */
1364        unsigned short          neigh_priv_len;
1365        unsigned short          dev_id;         /* Used to differentiate devices
1366                                                 * that share the same link
1367                                                 * layer address
1368                                                 */
1369        unsigned short          dev_port;       /* Used to differentiate
1370                                                 * devices that share the same
1371                                                 * function
1372                                                 */
1373        spinlock_t              addr_list_lock;
1374        struct netdev_hw_addr_list      uc;     /* Unicast mac addresses */
1375        struct netdev_hw_addr_list      mc;     /* Multicast mac addresses */
1376        struct netdev_hw_addr_list      dev_addrs; /* list of device
1377                                                    * hw addresses
1378                                                    */
1379#ifdef CONFIG_SYSFS
1380        struct kset             *queues_kset;
1381#endif
1382
1383        bool                    uc_promisc;
1384        unsigned int            promiscuity;
1385        unsigned int            allmulti;
1386
1387
1388        /* Protocol specific pointers */
1389
1390#if IS_ENABLED(CONFIG_VLAN_8021Q)
1391        struct vlan_info __rcu  *vlan_info;     /* VLAN info */
1392#endif
1393#if IS_ENABLED(CONFIG_NET_DSA)
1394        struct dsa_switch_tree  *dsa_ptr;       /* dsa specific data */
1395#endif
1396#if IS_ENABLED(CONFIG_TIPC)
1397        struct tipc_bearer __rcu *tipc_ptr;     /* TIPC specific data */
1398#endif
1399        void                    *atalk_ptr;     /* AppleTalk link       */
1400        struct in_device __rcu  *ip_ptr;        /* IPv4 specific data   */
1401        struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1402        struct inet6_dev __rcu  *ip6_ptr;       /* IPv6 specific data */
1403        void                    *ax25_ptr;      /* AX.25 specific data */
1404        struct wireless_dev     *ieee80211_ptr; /* IEEE 802.11 specific data,
1405                                                   assign before registering */
1406
1407/*
1408 * Cache lines mostly used on receive path (including eth_type_trans())
1409 */
1410        unsigned long           last_rx;        /* Time of last Rx */
1411
1412        /* Interface address info used in eth_type_trans() */
1413        unsigned char           *dev_addr;      /* hw address, (before bcast
1414                                                   because most packets are
1415                                                   unicast) */
1416
1417
1418#ifdef CONFIG_SYSFS
1419        struct netdev_rx_queue  *_rx;
1420
1421        /* Number of RX queues allocated at register_netdev() time */
1422        unsigned int            num_rx_queues;
1423
1424        /* Number of RX queues currently active in device */
1425        unsigned int            real_num_rx_queues;
1426
1427#endif
1428
1429        rx_handler_func_t __rcu *rx_handler;
1430        void __rcu              *rx_handler_data;
1431
1432        struct netdev_queue __rcu *ingress_queue;
1433        unsigned char           broadcast[MAX_ADDR_LEN];        /* hw bcast add */
1434
1435
1436/*
1437 * Cache lines mostly used on transmit path
1438 */
1439        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1440
1441        /* Number of TX queues allocated at alloc_netdev_mq() time  */
1442        unsigned int            num_tx_queues;
1443
1444        /* Number of TX queues currently active in device  */
1445        unsigned int            real_num_tx_queues;
1446
1447        /* root qdisc from userspace point of view */
1448        struct Qdisc            *qdisc;
1449
1450        unsigned long           tx_queue_len;   /* Max frames per queue allowed */
1451        spinlock_t              tx_global_lock;
1452
1453#ifdef CONFIG_XPS
1454        struct xps_dev_maps __rcu *xps_maps;
1455#endif
1456#ifdef CONFIG_RFS_ACCEL
1457        /* CPU reverse-mapping for RX completion interrupts, indexed
1458         * by RX queue number.  Assigned by driver.  This must only be
1459         * set if the ndo_rx_flow_steer operation is defined. */
1460        struct cpu_rmap         *rx_cpu_rmap;
1461#endif
1462
1463        /* These may be needed for future network-power-down code. */
1464
1465        /*
1466         * trans_start here is expensive for high speed devices on SMP,
1467         * please use netdev_queue->trans_start instead.
1468         */
1469        unsigned long           trans_start;    /* Time (in jiffies) of last Tx */
1470
1471        int                     watchdog_timeo; /* used by dev_watchdog() */
1472        struct timer_list       watchdog_timer;
1473
1474        /* Number of references to this device */
1475        int __percpu            *pcpu_refcnt;
1476
1477        /* delayed register/unregister */
1478        struct list_head        todo_list;
1479        /* device index hash chain */
1480        struct hlist_node       index_hlist;
1481
1482        struct list_head        link_watch_list;
1483
1484        /* register/unregister state machine */
1485        enum { NETREG_UNINITIALIZED=0,
1486               NETREG_REGISTERED,       /* completed register_netdevice */
1487               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1488               NETREG_UNREGISTERED,     /* completed unregister todo */
1489               NETREG_RELEASED,         /* called free_netdev */
1490               NETREG_DUMMY,            /* dummy device for NAPI poll */
1491        } reg_state:8;
1492
1493        bool dismantle; /* device is going do be freed */
1494
1495        enum {
1496                RTNL_LINK_INITIALIZED,
1497                RTNL_LINK_INITIALIZING,
1498        } rtnl_link_state:16;
1499
1500        /* Called from unregister, can be used to call free_netdev */
1501        void (*destructor)(struct net_device *dev);
1502
1503#ifdef CONFIG_NETPOLL
1504        struct netpoll_info __rcu       *npinfo;
1505#endif
1506
1507#ifdef CONFIG_NET_NS
1508        /* Network namespace this network device is inside */
1509        struct net              *nd_net;
1510#endif
1511
1512        /* mid-layer private */
1513        union {
1514                void                            *ml_priv;
1515                struct pcpu_lstats __percpu     *lstats; /* loopback stats */
1516                struct pcpu_sw_netstats __percpu        *tstats;
1517                struct pcpu_dstats __percpu     *dstats; /* dummy stats */
1518                struct pcpu_vstats __percpu     *vstats; /* veth stats */
1519        };
1520        /* GARP */
1521        struct garp_port __rcu  *garp_port;
1522        /* MRP */
1523        struct mrp_port __rcu   *mrp_port;
1524
1525        /* class/net/name entry */
1526        struct device           dev;
1527        /* space for optional device, statistics, and wireless sysfs groups */
1528        const struct attribute_group *sysfs_groups[4];
1529        /* space for optional per-rx queue attributes */
1530        const struct attribute_group *sysfs_rx_queue_group;
1531
1532        /* rtnetlink link ops */
1533        const struct rtnl_link_ops *rtnl_link_ops;
1534
1535        /* for setting kernel sock attribute on TCP connection setup */
1536#define GSO_MAX_SIZE            65536
1537        unsigned int            gso_max_size;
1538#define GSO_MAX_SEGS            65535
1539        u16                     gso_max_segs;
1540
1541#ifdef CONFIG_DCB
1542        /* Data Center Bridging netlink ops */
1543        const struct dcbnl_rtnl_ops *dcbnl_ops;
1544#endif
1545        u8 num_tc;
1546        struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1547        u8 prio_tc_map[TC_BITMASK + 1];
1548
1549#if IS_ENABLED(CONFIG_FCOE)
1550        /* max exchange id for FCoE LRO by ddp */
1551        unsigned int            fcoe_ddp_xid;
1552#endif
1553#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1554        struct netprio_map __rcu *priomap;
1555#endif
1556        /* phy device may attach itself for hardware timestamping */
1557        struct phy_device *phydev;
1558
1559        struct lock_class_key *qdisc_tx_busylock;
1560
1561        /* group the device belongs to */
1562        int group;
1563
1564        struct pm_qos_request   pm_qos_req;
1565};
1566#define to_net_dev(d) container_of(d, struct net_device, dev)
1567
1568#define NETDEV_ALIGN            32
1569
1570static inline
1571int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1572{
1573        return dev->prio_tc_map[prio & TC_BITMASK];
1574}
1575
1576static inline
1577int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1578{
1579        if (tc >= dev->num_tc)
1580                return -EINVAL;
1581
1582        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1583        return 0;
1584}
1585
1586static inline
1587void netdev_reset_tc(struct net_device *dev)
1588{
1589        dev->num_tc = 0;
1590        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1591        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1592}
1593
1594static inline
1595int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1596{
1597        if (tc >= dev->num_tc)
1598                return -EINVAL;
1599
1600        dev->tc_to_txq[tc].count = count;
1601        dev->tc_to_txq[tc].offset = offset;
1602        return 0;
1603}
1604
1605static inline
1606int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1607{
1608        if (num_tc > TC_MAX_QUEUE)
1609                return -EINVAL;
1610
1611        dev->num_tc = num_tc;
1612        return 0;
1613}
1614
1615static inline
1616int netdev_get_num_tc(struct net_device *dev)
1617{
1618        return dev->num_tc;
1619}
1620
1621static inline
1622struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1623                                         unsigned int index)
1624{
1625        return &dev->_tx[index];
1626}
1627
1628static inline void netdev_for_each_tx_queue(struct net_device *dev,
1629                                            void (*f)(struct net_device *,
1630                                                      struct netdev_queue *,
1631                                                      void *),
1632                                            void *arg)
1633{
1634        unsigned int i;
1635
1636        for (i = 0; i < dev->num_tx_queues; i++)
1637                f(dev, &dev->_tx[i], arg);
1638}
1639
1640struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1641                                    struct sk_buff *skb,
1642                                    void *accel_priv);
1643
1644/*
1645 * Net namespace inlines
1646 */
1647static inline
1648struct net *dev_net(const struct net_device *dev)
1649{
1650        return read_pnet(&dev->nd_net);
1651}
1652
1653static inline
1654void dev_net_set(struct net_device *dev, struct net *net)
1655{
1656#ifdef CONFIG_NET_NS
1657        release_net(dev->nd_net);
1658        dev->nd_net = hold_net(net);
1659#endif
1660}
1661
1662static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1663{
1664#ifdef CONFIG_NET_DSA_TAG_DSA
1665        if (dev->dsa_ptr != NULL)
1666                return dsa_uses_dsa_tags(dev->dsa_ptr);
1667#endif
1668
1669        return 0;
1670}
1671
1672static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1673{
1674#ifdef CONFIG_NET_DSA_TAG_TRAILER
1675        if (dev->dsa_ptr != NULL)
1676                return dsa_uses_trailer_tags(dev->dsa_ptr);
1677#endif
1678
1679        return 0;
1680}
1681
1682/**
1683 *      netdev_priv - access network device private data
1684 *      @dev: network device
1685 *
1686 * Get network device private data
1687 */
1688static inline void *netdev_priv(const struct net_device *dev)
1689{
1690        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1691}
1692
1693/* Set the sysfs physical device reference for the network logical device
1694 * if set prior to registration will cause a symlink during initialization.
1695 */
1696#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1697
1698/* Set the sysfs device type for the network logical device to allow
1699 * fine-grained identification of different network device types. For
1700 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1701 */
1702#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1703
1704/* Default NAPI poll() weight
1705 * Device drivers are strongly advised to not use bigger value
1706 */
1707#define NAPI_POLL_WEIGHT 64
1708
1709/**
1710 *      netif_napi_add - initialize a napi context
1711 *      @dev:  network device
1712 *      @napi: napi context
1713 *      @poll: polling function
1714 *      @weight: default weight
1715 *
1716 * netif_napi_add() must be used to initialize a napi context prior to calling
1717 * *any* of the other napi related functions.
1718 */
1719void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1720                    int (*poll)(struct napi_struct *, int), int weight);
1721
1722/**
1723 *  netif_napi_del - remove a napi context
1724 *  @napi: napi context
1725 *
1726 *  netif_napi_del() removes a napi context from the network device napi list
1727 */
1728void netif_napi_del(struct napi_struct *napi);
1729
1730struct napi_gro_cb {
1731        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1732        void *frag0;
1733
1734        /* Length of frag0. */
1735        unsigned int frag0_len;
1736
1737        /* This indicates where we are processing relative to skb->data. */
1738        int data_offset;
1739
1740        /* This is non-zero if the packet cannot be merged with the new skb. */
1741        u16     flush;
1742
1743        /* Save the IP ID here and check when we get to the transport layer */
1744        u16     flush_id;
1745
1746        /* Number of segments aggregated. */
1747        u16     count;
1748
1749        /* This is non-zero if the packet may be of the same flow. */
1750        u8      same_flow;
1751
1752        /* Free the skb? */
1753        u8      free;
1754#define NAPI_GRO_FREE             1
1755#define NAPI_GRO_FREE_STOLEN_HEAD 2
1756
1757        /* jiffies when first packet was created/queued */
1758        unsigned long age;
1759
1760        /* Used in ipv6_gro_receive() */
1761        u16     proto;
1762
1763        /* Used in udp_gro_receive */
1764        u16     udp_mark;
1765
1766        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1767        __wsum  csum;
1768
1769        /* used in skb_gro_receive() slow path */
1770        struct sk_buff *last;
1771};
1772
1773#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1774
1775struct packet_type {
1776        __be16                  type;   /* This is really htons(ether_type). */
1777        struct net_device       *dev;   /* NULL is wildcarded here           */
1778        int                     (*func) (struct sk_buff *,
1779                                         struct net_device *,
1780                                         struct packet_type *,
1781                                         struct net_device *);
1782        bool                    (*id_match)(struct packet_type *ptype,
1783                                            struct sock *sk);
1784        void                    *af_packet_priv;
1785        struct list_head        list;
1786};
1787
1788struct offload_callbacks {
1789        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1790                                                netdev_features_t features);
1791        int                     (*gso_send_check)(struct sk_buff *skb);
1792        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1793                                               struct sk_buff *skb);
1794        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1795};
1796
1797struct packet_offload {
1798        __be16                   type;  /* This is really htons(ether_type). */
1799        struct offload_callbacks callbacks;
1800        struct list_head         list;
1801};
1802
1803struct udp_offload {
1804        __be16                   port;
1805        struct offload_callbacks callbacks;
1806};
1807
1808/* often modified stats are per cpu, other are shared (netdev->stats) */
1809struct pcpu_sw_netstats {
1810        u64     rx_packets;
1811        u64     rx_bytes;
1812        u64     tx_packets;
1813        u64     tx_bytes;
1814        struct u64_stats_sync   syncp;
1815};
1816
1817#define netdev_alloc_pcpu_stats(type)                           \
1818({                                                              \
1819        typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1820        if (pcpu_stats) {                                       \
1821                int i;                                          \
1822                for_each_possible_cpu(i) {                      \
1823                        typeof(type) *stat;                     \
1824                        stat = per_cpu_ptr(pcpu_stats, i);      \
1825                        u64_stats_init(&stat->syncp);           \
1826                }                                               \
1827        }                                                       \
1828        pcpu_stats;                                             \
1829})
1830
1831#include <linux/notifier.h>
1832
1833/* netdevice notifier chain. Please remember to update the rtnetlink
1834 * notification exclusion list in rtnetlink_event() when adding new
1835 * types.
1836 */
1837#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
1838#define NETDEV_DOWN     0x0002
1839#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
1840                                   detected a hardware crash and restarted
1841                                   - we can use this eg to kick tcp sessions
1842                                   once done */
1843#define NETDEV_CHANGE   0x0004  /* Notify device state change */
1844#define NETDEV_REGISTER 0x0005
1845#define NETDEV_UNREGISTER       0x0006
1846#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
1847#define NETDEV_CHANGEADDR       0x0008
1848#define NETDEV_GOING_DOWN       0x0009
1849#define NETDEV_CHANGENAME       0x000A
1850#define NETDEV_FEAT_CHANGE      0x000B
1851#define NETDEV_BONDING_FAILOVER 0x000C
1852#define NETDEV_PRE_UP           0x000D
1853#define NETDEV_PRE_TYPE_CHANGE  0x000E
1854#define NETDEV_POST_TYPE_CHANGE 0x000F
1855#define NETDEV_POST_INIT        0x0010
1856#define NETDEV_UNREGISTER_FINAL 0x0011
1857#define NETDEV_RELEASE          0x0012
1858#define NETDEV_NOTIFY_PEERS     0x0013
1859#define NETDEV_JOIN             0x0014
1860#define NETDEV_CHANGEUPPER      0x0015
1861#define NETDEV_RESEND_IGMP      0x0016
1862#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
1863
1864int register_netdevice_notifier(struct notifier_block *nb);
1865int unregister_netdevice_notifier(struct notifier_block *nb);
1866
1867struct netdev_notifier_info {
1868        struct net_device *dev;
1869};
1870
1871struct netdev_notifier_change_info {
1872        struct netdev_notifier_info info; /* must be first */
1873        unsigned int flags_changed;
1874};
1875
1876static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1877                                             struct net_device *dev)
1878{
1879        info->dev = dev;
1880}
1881
1882static inline struct net_device *
1883netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1884{
1885        return info->dev;
1886}
1887
1888int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1889
1890
1891extern rwlock_t                         dev_base_lock;          /* Device list lock */
1892
1893#define for_each_netdev(net, d)         \
1894                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1895#define for_each_netdev_reverse(net, d) \
1896                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1897#define for_each_netdev_rcu(net, d)             \
1898                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1899#define for_each_netdev_safe(net, d, n) \
1900                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1901#define for_each_netdev_continue(net, d)                \
1902                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1903#define for_each_netdev_continue_rcu(net, d)            \
1904        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1905#define for_each_netdev_in_bond_rcu(bond, slave)        \
1906                for_each_netdev_rcu(&init_net, slave)   \
1907                        if (netdev_master_upper_dev_get_rcu(slave) == bond)
1908#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
1909
1910static inline struct net_device *next_net_device(struct net_device *dev)
1911{
1912        struct list_head *lh;
1913        struct net *net;
1914
1915        net = dev_net(dev);
1916        lh = dev->dev_list.next;
1917        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1918}
1919
1920static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1921{
1922        struct list_head *lh;
1923        struct net *net;
1924
1925        net = dev_net(dev);
1926        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1927        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1928}
1929
1930static inline struct net_device *first_net_device(struct net *net)
1931{
1932        return list_empty(&net->dev_base_head) ? NULL :
1933                net_device_entry(net->dev_base_head.next);
1934}
1935
1936static inline struct net_device *first_net_device_rcu(struct net *net)
1937{
1938        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1939
1940        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1941}
1942
1943int netdev_boot_setup_check(struct net_device *dev);
1944unsigned long netdev_boot_base(const char *prefix, int unit);
1945struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1946                                       const char *hwaddr);
1947struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1948struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1949void dev_add_pack(struct packet_type *pt);
1950void dev_remove_pack(struct packet_type *pt);
1951void __dev_remove_pack(struct packet_type *pt);
1952void dev_add_offload(struct packet_offload *po);
1953void dev_remove_offload(struct packet_offload *po);
1954
1955struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1956                                        unsigned short mask);
1957struct net_device *dev_get_by_name(struct net *net, const char *name);
1958struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1959struct net_device *__dev_get_by_name(struct net *net, const char *name);
1960int dev_alloc_name(struct net_device *dev, const char *name);
1961int dev_open(struct net_device *dev);
1962int dev_close(struct net_device *dev);
1963void dev_disable_lro(struct net_device *dev);
1964int dev_loopback_xmit(struct sk_buff *newskb);
1965int dev_queue_xmit(struct sk_buff *skb);
1966int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1967int register_netdevice(struct net_device *dev);
1968void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1969void unregister_netdevice_many(struct list_head *head);
1970static inline void unregister_netdevice(struct net_device *dev)
1971{
1972        unregister_netdevice_queue(dev, NULL);
1973}
1974
1975int netdev_refcnt_read(const struct net_device *dev);
1976void free_netdev(struct net_device *dev);
1977void netdev_freemem(struct net_device *dev);
1978void synchronize_net(void);
1979int init_dummy_netdev(struct net_device *dev);
1980
1981struct net_device *dev_get_by_index(struct net *net, int ifindex);
1982struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1983struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1984int netdev_get_name(struct net *net, char *name, int ifindex);
1985int dev_restart(struct net_device *dev);
1986int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1987
1988static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1989{
1990        return NAPI_GRO_CB(skb)->data_offset;
1991}
1992
1993static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1994{
1995        return skb->len - NAPI_GRO_CB(skb)->data_offset;
1996}
1997
1998static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1999{
2000        NAPI_GRO_CB(skb)->data_offset += len;
2001}
2002
2003static inline void *skb_gro_header_fast(struct sk_buff *skb,
2004                                        unsigned int offset)
2005{
2006        return NAPI_GRO_CB(skb)->frag0 + offset;
2007}
2008
2009static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2010{
2011        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2012}
2013
2014static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2015                                        unsigned int offset)
2016{
2017        if (!pskb_may_pull(skb, hlen))
2018                return NULL;
2019
2020        NAPI_GRO_CB(skb)->frag0 = NULL;
2021        NAPI_GRO_CB(skb)->frag0_len = 0;
2022        return skb->data + offset;
2023}
2024
2025static inline void *skb_gro_network_header(struct sk_buff *skb)
2026{
2027        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2028               skb_network_offset(skb);
2029}
2030
2031static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2032                                        const void *start, unsigned int len)
2033{
2034        if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2036                                                  csum_partial(start, len, 0));
2037}
2038
2039static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2040                                  unsigned short type,
2041                                  const void *daddr, const void *saddr,
2042                                  unsigned int len)
2043{
2044        if (!dev->header_ops || !dev->header_ops->create)
2045                return 0;
2046
2047        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2048}
2049
2050static inline int dev_parse_header(const struct sk_buff *skb,
2051                                   unsigned char *haddr)
2052{
2053        const struct net_device *dev = skb->dev;
2054
2055        if (!dev->header_ops || !dev->header_ops->parse)
2056                return 0;
2057        return dev->header_ops->parse(skb, haddr);
2058}
2059
2060static inline int dev_rebuild_header(struct sk_buff *skb)
2061{
2062        const struct net_device *dev = skb->dev;
2063
2064        if (!dev->header_ops || !dev->header_ops->rebuild)
2065                return 0;
2066        return dev->header_ops->rebuild(skb);
2067}
2068
2069typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2070int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2071static inline int unregister_gifconf(unsigned int family)
2072{
2073        return register_gifconf(family, NULL);
2074}
2075
2076#ifdef CONFIG_NET_FLOW_LIMIT
2077#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2078struct sd_flow_limit {
2079        u64                     count;
2080        unsigned int            num_buckets;
2081        unsigned int            history_head;
2082        u16                     history[FLOW_LIMIT_HISTORY];
2083        u8                      buckets[];
2084};
2085
2086extern int netdev_flow_limit_table_len;
2087#endif /* CONFIG_NET_FLOW_LIMIT */
2088
2089/*
2090 * Incoming packets are placed on per-cpu queues
2091 */
2092struct softnet_data {
2093        struct Qdisc            *output_queue;
2094        struct Qdisc            **output_queue_tailp;
2095        struct list_head        poll_list;
2096        struct sk_buff          *completion_queue;
2097        struct sk_buff_head     process_queue;
2098
2099        /* stats */
2100        unsigned int            processed;
2101        unsigned int            time_squeeze;
2102        unsigned int            cpu_collision;
2103        unsigned int            received_rps;
2104
2105#ifdef CONFIG_RPS
2106        struct softnet_data     *rps_ipi_list;
2107
2108        /* Elements below can be accessed between CPUs for RPS */
2109        struct call_single_data csd ____cacheline_aligned_in_smp;
2110        struct softnet_data     *rps_ipi_next;
2111        unsigned int            cpu;
2112        unsigned int            input_queue_head;
2113        unsigned int            input_queue_tail;
2114#endif
2115        unsigned int            dropped;
2116        struct sk_buff_head     input_pkt_queue;
2117        struct napi_struct      backlog;
2118
2119#ifdef CONFIG_NET_FLOW_LIMIT
2120        struct sd_flow_limit __rcu *flow_limit;
2121#endif
2122};
2123
2124static inline void input_queue_head_incr(struct softnet_data *sd)
2125{
2126#ifdef CONFIG_RPS
2127        sd->input_queue_head++;
2128#endif
2129}
2130
2131static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2132                                              unsigned int *qtail)
2133{
2134#ifdef CONFIG_RPS
2135        *qtail = ++sd->input_queue_tail;
2136#endif
2137}
2138
2139DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2140
2141void __netif_schedule(struct Qdisc *q);
2142
2143static inline void netif_schedule_queue(struct netdev_queue *txq)
2144{
2145        if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2146                __netif_schedule(txq->qdisc);
2147}
2148
2149static inline void netif_tx_schedule_all(struct net_device *dev)
2150{
2151        unsigned int i;
2152
2153        for (i = 0; i < dev->num_tx_queues; i++)
2154                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2155}
2156
2157static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2158{
2159        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2160}
2161
2162/**
2163 *      netif_start_queue - allow transmit
2164 *      @dev: network device
2165 *
2166 *      Allow upper layers to call the device hard_start_xmit routine.
2167 */
2168static inline void netif_start_queue(struct net_device *dev)
2169{
2170        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2171}
2172
2173static inline void netif_tx_start_all_queues(struct net_device *dev)
2174{
2175        unsigned int i;
2176
2177        for (i = 0; i < dev->num_tx_queues; i++) {
2178                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2179                netif_tx_start_queue(txq);
2180        }
2181}
2182
2183static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2184{
2185        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2186                __netif_schedule(dev_queue->qdisc);
2187}
2188
2189/**
2190 *      netif_wake_queue - restart transmit
2191 *      @dev: network device
2192 *
2193 *      Allow upper layers to call the device hard_start_xmit routine.
2194 *      Used for flow control when transmit resources are available.
2195 */
2196static inline void netif_wake_queue(struct net_device *dev)
2197{
2198        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2199}
2200
2201static inline void netif_tx_wake_all_queues(struct net_device *dev)
2202{
2203        unsigned int i;
2204
2205        for (i = 0; i < dev->num_tx_queues; i++) {
2206                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2207                netif_tx_wake_queue(txq);
2208        }
2209}
2210
2211static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2212{
2213        if (WARN_ON(!dev_queue)) {
2214                pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2215                return;
2216        }
2217        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2218}
2219
2220/**
2221 *      netif_stop_queue - stop transmitted packets
2222 *      @dev: network device
2223 *
2224 *      Stop upper layers calling the device hard_start_xmit routine.
2225 *      Used for flow control when transmit resources are unavailable.
2226 */
2227static inline void netif_stop_queue(struct net_device *dev)
2228{
2229        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2230}
2231
2232static inline void netif_tx_stop_all_queues(struct net_device *dev)
2233{
2234        unsigned int i;
2235
2236        for (i = 0; i < dev->num_tx_queues; i++) {
2237                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2238                netif_tx_stop_queue(txq);
2239        }
2240}
2241
2242static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2243{
2244        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2245}
2246
2247/**
2248 *      netif_queue_stopped - test if transmit queue is flowblocked
2249 *      @dev: network device
2250 *
2251 *      Test if transmit queue on device is currently unable to send.
2252 */
2253static inline bool netif_queue_stopped(const struct net_device *dev)
2254{
2255        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2256}
2257
2258static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2259{
2260        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2261}
2262
2263static inline bool
2264netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2265{
2266        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2267}
2268
2269static inline bool
2270netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2271{
2272        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2273}
2274
2275static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2276                                        unsigned int bytes)
2277{
2278#ifdef CONFIG_BQL
2279        dql_queued(&dev_queue->dql, bytes);
2280
2281        if (likely(dql_avail(&dev_queue->dql) >= 0))
2282                return;
2283
2284        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2285
2286        /*
2287         * The XOFF flag must be set before checking the dql_avail below,
2288         * because in netdev_tx_completed_queue we update the dql_completed
2289         * before checking the XOFF flag.
2290         */
2291        smp_mb();
2292
2293        /* check again in case another CPU has just made room avail */
2294        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2295                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2296#endif
2297}
2298
2299/**
2300 *      netdev_sent_queue - report the number of bytes queued to hardware
2301 *      @dev: network device
2302 *      @bytes: number of bytes queued to the hardware device queue
2303 *
2304 *      Report the number of bytes queued for sending/completion to the network
2305 *      device hardware queue. @bytes should be a good approximation and should
2306 *      exactly match netdev_completed_queue() @bytes
2307 */
2308static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2309{
2310        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2311}
2312
2313static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2314                                             unsigned int pkts, unsigned int bytes)
2315{
2316#ifdef CONFIG_BQL
2317        if (unlikely(!bytes))
2318                return;
2319
2320        dql_completed(&dev_queue->dql, bytes);
2321
2322        /*
2323         * Without the memory barrier there is a small possiblity that
2324         * netdev_tx_sent_queue will miss the update and cause the queue to
2325         * be stopped forever
2326         */
2327        smp_mb();
2328
2329        if (dql_avail(&dev_queue->dql) < 0)
2330                return;
2331
2332        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2333                netif_schedule_queue(dev_queue);
2334#endif
2335}
2336
2337/**
2338 *      netdev_completed_queue - report bytes and packets completed by device
2339 *      @dev: network device
2340 *      @pkts: actual number of packets sent over the medium
2341 *      @bytes: actual number of bytes sent over the medium
2342 *
2343 *      Report the number of bytes and packets transmitted by the network device
2344 *      hardware queue over the physical medium, @bytes must exactly match the
2345 *      @bytes amount passed to netdev_sent_queue()
2346 */
2347static inline void netdev_completed_queue(struct net_device *dev,
2348                                          unsigned int pkts, unsigned int bytes)
2349{
2350        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2351}
2352
2353static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2354{
2355#ifdef CONFIG_BQL
2356        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2357        dql_reset(&q->dql);
2358#endif
2359}
2360
2361/**
2362 *      netdev_reset_queue - reset the packets and bytes count of a network device
2363 *      @dev_queue: network device
2364 *
2365 *      Reset the bytes and packet count of a network device and clear the
2366 *      software flow control OFF bit for this network device
2367 */
2368static inline void netdev_reset_queue(struct net_device *dev_queue)
2369{
2370        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2371}
2372
2373/**
2374 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2375 *      @dev: network device
2376 *      @queue_index: given tx queue index
2377 *
2378 *      Returns 0 if given tx queue index >= number of device tx queues,
2379 *      otherwise returns the originally passed tx queue index.
2380 */
2381static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2382{
2383        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2384                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2385                                     dev->name, queue_index,
2386                                     dev->real_num_tx_queues);
2387                return 0;
2388        }
2389
2390        return queue_index;
2391}
2392
2393/**
2394 *      netif_running - test if up
2395 *      @dev: network device
2396 *
2397 *      Test if the device has been brought up.
2398 */
2399static inline bool netif_running(const struct net_device *dev)
2400{
2401        return test_bit(__LINK_STATE_START, &dev->state);
2402}
2403
2404/*
2405 * Routines to manage the subqueues on a device.  We only need start
2406 * stop, and a check if it's stopped.  All other device management is
2407 * done at the overall netdevice level.
2408 * Also test the device if we're multiqueue.
2409 */
2410
2411/**
2412 *      netif_start_subqueue - allow sending packets on subqueue
2413 *      @dev: network device
2414 *      @queue_index: sub queue index
2415 *
2416 * Start individual transmit queue of a device with multiple transmit queues.
2417 */
2418static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2419{
2420        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422        netif_tx_start_queue(txq);
2423}
2424
2425/**
2426 *      netif_stop_subqueue - stop sending packets on subqueue
2427 *      @dev: network device
2428 *      @queue_index: sub queue index
2429 *
2430 * Stop individual transmit queue of a device with multiple transmit queues.
2431 */
2432static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2433{
2434        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2435        netif_tx_stop_queue(txq);
2436}
2437
2438/**
2439 *      netif_subqueue_stopped - test status of subqueue
2440 *      @dev: network device
2441 *      @queue_index: sub queue index
2442 *
2443 * Check individual transmit queue of a device with multiple transmit queues.
2444 */
2445static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2446                                            u16 queue_index)
2447{
2448        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2449
2450        return netif_tx_queue_stopped(txq);
2451}
2452
2453static inline bool netif_subqueue_stopped(const struct net_device *dev,
2454                                          struct sk_buff *skb)
2455{
2456        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2457}
2458
2459/**
2460 *      netif_wake_subqueue - allow sending packets on subqueue
2461 *      @dev: network device
2462 *      @queue_index: sub queue index
2463 *
2464 * Resume individual transmit queue of a device with multiple transmit queues.
2465 */
2466static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2467{
2468        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2469        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2470                __netif_schedule(txq->qdisc);
2471}
2472
2473#ifdef CONFIG_XPS
2474int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2475                        u16 index);
2476#else
2477static inline int netif_set_xps_queue(struct net_device *dev,
2478                                      const struct cpumask *mask,
2479                                      u16 index)
2480{
2481        return 0;
2482}
2483#endif
2484
2485/*
2486 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2487 * as a distribution range limit for the returned value.
2488 */
2489static inline u16 skb_tx_hash(const struct net_device *dev,
2490                              const struct sk_buff *skb)
2491{
2492        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2493}
2494
2495/**
2496 *      netif_is_multiqueue - test if device has multiple transmit queues
2497 *      @dev: network device
2498 *
2499 * Check if device has multiple transmit queues
2500 */
2501static inline bool netif_is_multiqueue(const struct net_device *dev)
2502{
2503        return dev->num_tx_queues > 1;
2504}
2505
2506int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2507
2508#ifdef CONFIG_SYSFS
2509int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2510#else
2511static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2512                                                unsigned int rxq)
2513{
2514        return 0;
2515}
2516#endif
2517
2518static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2519                                             const struct net_device *from_dev)
2520{
2521        int err;
2522
2523        err = netif_set_real_num_tx_queues(to_dev,
2524                                           from_dev->real_num_tx_queues);
2525        if (err)
2526                return err;
2527#ifdef CONFIG_SYSFS
2528        return netif_set_real_num_rx_queues(to_dev,
2529                                            from_dev->real_num_rx_queues);
2530#else
2531        return 0;
2532#endif
2533}
2534
2535#ifdef CONFIG_SYSFS
2536static inline unsigned int get_netdev_rx_queue_index(
2537                struct netdev_rx_queue *queue)
2538{
2539        struct net_device *dev = queue->dev;
2540        int index = queue - dev->_rx;
2541
2542        BUG_ON(index >= dev->num_rx_queues);
2543        return index;
2544}
2545#endif
2546
2547#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2548int netif_get_num_default_rss_queues(void);
2549
2550enum skb_free_reason {
2551        SKB_REASON_CONSUMED,
2552        SKB_REASON_DROPPED,
2553};
2554
2555void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2556void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2557
2558/*
2559 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2560 * interrupt context or with hardware interrupts being disabled.
2561 * (in_irq() || irqs_disabled())
2562 *
2563 * We provide four helpers that can be used in following contexts :
2564 *
2565 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2566 *  replacing kfree_skb(skb)
2567 *
2568 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2569 *  Typically used in place of consume_skb(skb) in TX completion path
2570 *
2571 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2572 *  replacing kfree_skb(skb)
2573 *
2574 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2575 *  and consumed a packet. Used in place of consume_skb(skb)
2576 */
2577static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2578{
2579        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2580}
2581
2582static inline void dev_consume_skb_irq(struct sk_buff *skb)
2583{
2584        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2585}
2586
2587static inline void dev_kfree_skb_any(struct sk_buff *skb)
2588{
2589        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2590}
2591
2592static inline void dev_consume_skb_any(struct sk_buff *skb)
2593{
2594        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2595}
2596
2597int netif_rx(struct sk_buff *skb);
2598int netif_rx_ni(struct sk_buff *skb);
2599int netif_receive_skb(struct sk_buff *skb);
2600gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2601void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2602struct sk_buff *napi_get_frags(struct napi_struct *napi);
2603gro_result_t napi_gro_frags(struct napi_struct *napi);
2604struct packet_offload *gro_find_receive_by_type(__be16 type);
2605struct packet_offload *gro_find_complete_by_type(__be16 type);
2606
2607static inline void napi_free_frags(struct napi_struct *napi)
2608{
2609        kfree_skb(napi->skb);
2610        napi->skb = NULL;
2611}
2612
2613int netdev_rx_handler_register(struct net_device *dev,
2614                               rx_handler_func_t *rx_handler,
2615                               void *rx_handler_data);
2616void netdev_rx_handler_unregister(struct net_device *dev);
2617
2618bool dev_valid_name(const char *name);
2619int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2620int dev_ethtool(struct net *net, struct ifreq *);
2621unsigned int dev_get_flags(const struct net_device *);
2622int __dev_change_flags(struct net_device *, unsigned int flags);
2623int dev_change_flags(struct net_device *, unsigned int);
2624void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2625                        unsigned int gchanges);
2626int dev_change_name(struct net_device *, const char *);
2627int dev_set_alias(struct net_device *, const char *, size_t);
2628int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2629int dev_set_mtu(struct net_device *, int);
2630void dev_set_group(struct net_device *, int);
2631int dev_set_mac_address(struct net_device *, struct sockaddr *);
2632int dev_change_carrier(struct net_device *, bool new_carrier);
2633int dev_get_phys_port_id(struct net_device *dev,
2634                         struct netdev_phys_port_id *ppid);
2635int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2636                        struct netdev_queue *txq);
2637int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2638bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2639
2640extern int              netdev_budget;
2641
2642/* Called by rtnetlink.c:rtnl_unlock() */
2643void netdev_run_todo(void);
2644
2645/**
2646 *      dev_put - release reference to device
2647 *      @dev: network device
2648 *
2649 * Release reference to device to allow it to be freed.
2650 */
2651static inline void dev_put(struct net_device *dev)
2652{
2653        this_cpu_dec(*dev->pcpu_refcnt);
2654}
2655
2656/**
2657 *      dev_hold - get reference to device
2658 *      @dev: network device
2659 *
2660 * Hold reference to device to keep it from being freed.
2661 */
2662static inline void dev_hold(struct net_device *dev)
2663{
2664        this_cpu_inc(*dev->pcpu_refcnt);
2665}
2666
2667/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2668 * and _off may be called from IRQ context, but it is caller
2669 * who is responsible for serialization of these calls.
2670 *
2671 * The name carrier is inappropriate, these functions should really be
2672 * called netif_lowerlayer_*() because they represent the state of any
2673 * kind of lower layer not just hardware media.
2674 */
2675
2676void linkwatch_init_dev(struct net_device *dev);
2677void linkwatch_fire_event(struct net_device *dev);
2678void linkwatch_forget_dev(struct net_device *dev);
2679
2680/**
2681 *      netif_carrier_ok - test if carrier present
2682 *      @dev: network device
2683 *
2684 * Check if carrier is present on device
2685 */
2686static inline bool netif_carrier_ok(const struct net_device *dev)
2687{
2688        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2689}
2690
2691unsigned long dev_trans_start(struct net_device *dev);
2692
2693void __netdev_watchdog_up(struct net_device *dev);
2694
2695void netif_carrier_on(struct net_device *dev);
2696
2697void netif_carrier_off(struct net_device *dev);
2698
2699/**
2700 *      netif_dormant_on - mark device as dormant.
2701 *      @dev: network device
2702 *
2703 * Mark device as dormant (as per RFC2863).
2704 *
2705 * The dormant state indicates that the relevant interface is not
2706 * actually in a condition to pass packets (i.e., it is not 'up') but is
2707 * in a "pending" state, waiting for some external event.  For "on-
2708 * demand" interfaces, this new state identifies the situation where the
2709 * interface is waiting for events to place it in the up state.
2710 *
2711 */
2712static inline void netif_dormant_on(struct net_device *dev)
2713{
2714        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2715                linkwatch_fire_event(dev);
2716}
2717
2718/**
2719 *      netif_dormant_off - set device as not dormant.
2720 *      @dev: network device
2721 *
2722 * Device is not in dormant state.
2723 */
2724static inline void netif_dormant_off(struct net_device *dev)
2725{
2726        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2727                linkwatch_fire_event(dev);
2728}
2729
2730/**
2731 *      netif_dormant - test if carrier present
2732 *      @dev: network device
2733 *
2734 * Check if carrier is present on device
2735 */
2736static inline bool netif_dormant(const struct net_device *dev)
2737{
2738        return test_bit(__LINK_STATE_DORMANT, &dev->state);
2739}
2740
2741
2742/**
2743 *      netif_oper_up - test if device is operational
2744 *      @dev: network device
2745 *
2746 * Check if carrier is operational
2747 */
2748static inline bool netif_oper_up(const struct net_device *dev)
2749{
2750        return (dev->operstate == IF_OPER_UP ||
2751                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2752}
2753
2754/**
2755 *      netif_device_present - is device available or removed
2756 *      @dev: network device
2757 *
2758 * Check if device has not been removed from system.
2759 */
2760static inline bool netif_device_present(struct net_device *dev)
2761{
2762        return test_bit(__LINK_STATE_PRESENT, &dev->state);
2763}
2764
2765void netif_device_detach(struct net_device *dev);
2766
2767void netif_device_attach(struct net_device *dev);
2768
2769/*
2770 * Network interface message level settings
2771 */
2772
2773enum {
2774        NETIF_MSG_DRV           = 0x0001,
2775        NETIF_MSG_PROBE         = 0x0002,
2776        NETIF_MSG_LINK          = 0x0004,
2777        NETIF_MSG_TIMER         = 0x0008,
2778        NETIF_MSG_IFDOWN        = 0x0010,
2779        NETIF_MSG_IFUP          = 0x0020,
2780        NETIF_MSG_RX_ERR        = 0x0040,
2781        NETIF_MSG_TX_ERR        = 0x0080,
2782        NETIF_MSG_TX_QUEUED     = 0x0100,
2783        NETIF_MSG_INTR          = 0x0200,
2784        NETIF_MSG_TX_DONE       = 0x0400,
2785        NETIF_MSG_RX_STATUS     = 0x0800,
2786        NETIF_MSG_PKTDATA       = 0x1000,
2787        NETIF_MSG_HW            = 0x2000,
2788        NETIF_MSG_WOL           = 0x4000,
2789};
2790
2791#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
2792#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
2793#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
2794#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
2795#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
2796#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
2797#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
2798#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
2799#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2800#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
2801#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
2802#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2803#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
2804#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
2805#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
2806
2807static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2808{
2809        /* use default */
2810        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2811                return default_msg_enable_bits;
2812        if (debug_value == 0)   /* no output */
2813                return 0;
2814        /* set low N bits */
2815        return (1 << debug_value) - 1;
2816}
2817
2818static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2819{
2820        spin_lock(&txq->_xmit_lock);
2821        txq->xmit_lock_owner = cpu;
2822}
2823
2824static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2825{
2826        spin_lock_bh(&txq->_xmit_lock);
2827        txq->xmit_lock_owner = smp_processor_id();
2828}
2829
2830static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2831{
2832        bool ok = spin_trylock(&txq->_xmit_lock);
2833        if (likely(ok))
2834                txq->xmit_lock_owner = smp_processor_id();
2835        return ok;
2836}
2837
2838static inline void __netif_tx_unlock(struct netdev_queue *txq)
2839{
2840        txq->xmit_lock_owner = -1;
2841        spin_unlock(&txq->_xmit_lock);
2842}
2843
2844static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2845{
2846        txq->xmit_lock_owner = -1;
2847        spin_unlock_bh(&txq->_xmit_lock);
2848}
2849
2850static inline void txq_trans_update(struct netdev_queue *txq)
2851{
2852        if (txq->xmit_lock_owner != -1)
2853                txq->trans_start = jiffies;
2854}
2855
2856/**
2857 *      netif_tx_lock - grab network device transmit lock
2858 *      @dev: network device
2859 *
2860 * Get network device transmit lock
2861 */
2862static inline void netif_tx_lock(struct net_device *dev)
2863{
2864        unsigned int i;
2865        int cpu;
2866
2867        spin_lock(&dev->tx_global_lock);
2868        cpu = smp_processor_id();
2869        for (i = 0; i < dev->num_tx_queues; i++) {
2870                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2871
2872                /* We are the only thread of execution doing a
2873                 * freeze, but we have to grab the _xmit_lock in
2874                 * order to synchronize with threads which are in
2875                 * the ->hard_start_xmit() handler and already
2876                 * checked the frozen bit.
2877                 */
2878                __netif_tx_lock(txq, cpu);
2879                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2880                __netif_tx_unlock(txq);
2881        }
2882}
2883
2884static inline void netif_tx_lock_bh(struct net_device *dev)
2885{
2886        local_bh_disable();
2887        netif_tx_lock(dev);
2888}
2889
2890static inline void netif_tx_unlock(struct net_device *dev)
2891{
2892        unsigned int i;
2893
2894        for (i = 0; i < dev->num_tx_queues; i++) {
2895                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2896
2897                /* No need to grab the _xmit_lock here.  If the
2898                 * queue is not stopped for another reason, we
2899                 * force a schedule.
2900                 */
2901                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2902                netif_schedule_queue(txq);
2903        }
2904        spin_unlock(&dev->tx_global_lock);
2905}
2906
2907static inline void netif_tx_unlock_bh(struct net_device *dev)
2908{
2909        netif_tx_unlock(dev);
2910        local_bh_enable();
2911}
2912
2913#define HARD_TX_LOCK(dev, txq, cpu) {                   \
2914        if ((dev->features & NETIF_F_LLTX) == 0) {      \
2915                __netif_tx_lock(txq, cpu);              \
2916        }                                               \
2917}
2918
2919#define HARD_TX_TRYLOCK(dev, txq)                       \
2920        (((dev->features & NETIF_F_LLTX) == 0) ?        \
2921                __netif_tx_trylock(txq) :               \
2922                true )
2923
2924#define HARD_TX_UNLOCK(dev, txq) {                      \
2925        if ((dev->features & NETIF_F_LLTX) == 0) {      \
2926                __netif_tx_unlock(txq);                 \
2927        }                                               \
2928}
2929
2930static inline void netif_tx_disable(struct net_device *dev)
2931{
2932        unsigned int i;
2933        int cpu;
2934
2935        local_bh_disable();
2936        cpu = smp_processor_id();
2937        for (i = 0; i < dev->num_tx_queues; i++) {
2938                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2939
2940                __netif_tx_lock(txq, cpu);
2941                netif_tx_stop_queue(txq);
2942                __netif_tx_unlock(txq);
2943        }
2944        local_bh_enable();
2945}
2946
2947static inline void netif_addr_lock(struct net_device *dev)
2948{
2949        spin_lock(&dev->addr_list_lock);
2950}
2951
2952static inline void netif_addr_lock_nested(struct net_device *dev)
2953{
2954        int subclass = SINGLE_DEPTH_NESTING;
2955
2956        if (dev->netdev_ops->ndo_get_lock_subclass)
2957                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
2958
2959        spin_lock_nested(&dev->addr_list_lock, subclass);
2960}
2961
2962static inline void netif_addr_lock_bh(struct net_device *dev)
2963{
2964        spin_lock_bh(&dev->addr_list_lock);
2965}
2966
2967static inline void netif_addr_unlock(struct net_device *dev)
2968{
2969        spin_unlock(&dev->addr_list_lock);
2970}
2971
2972static inline void netif_addr_unlock_bh(struct net_device *dev)
2973{
2974        spin_unlock_bh(&dev->addr_list_lock);
2975}
2976
2977/*
2978 * dev_addrs walker. Should be used only for read access. Call with
2979 * rcu_read_lock held.
2980 */
2981#define for_each_dev_addr(dev, ha) \
2982                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2983
2984/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2985
2986void ether_setup(struct net_device *dev);
2987
2988/* Support for loadable net-drivers */
2989struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2990                                    void (*setup)(struct net_device *),
2991                                    unsigned int txqs, unsigned int rxqs);
2992#define alloc_netdev(sizeof_priv, name, setup) \
2993        alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2994
2995#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2996        alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2997
2998int register_netdev(struct net_device *dev);
2999void unregister_netdev(struct net_device *dev);
3000
3001/* General hardware address lists handling functions */
3002int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3003                   struct netdev_hw_addr_list *from_list, int addr_len);
3004void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3005                      struct netdev_hw_addr_list *from_list, int addr_len);
3006void __hw_addr_init(struct netdev_hw_addr_list *list);
3007
3008/* Functions used for device addresses handling */
3009int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3010                 unsigned char addr_type);
3011int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3012                 unsigned char addr_type);
3013void dev_addr_flush(struct net_device *dev);
3014int dev_addr_init(struct net_device *dev);
3015
3016/* Functions used for unicast addresses handling */
3017int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3018int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3019int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3020int dev_uc_sync(struct net_device *to, struct net_device *from);
3021int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3022void dev_uc_unsync(struct net_device *to, struct net_device *from);
3023void dev_uc_flush(struct net_device *dev);
3024void dev_uc_init(struct net_device *dev);
3025
3026/* Functions used for multicast addresses handling */
3027int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3028int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3029int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3030int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3031int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3032int dev_mc_sync(struct net_device *to, struct net_device *from);
3033int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3034void dev_mc_unsync(struct net_device *to, struct net_device *from);
3035void dev_mc_flush(struct net_device *dev);
3036void dev_mc_init(struct net_device *dev);
3037
3038/* Functions used for secondary unicast and multicast support */
3039void dev_set_rx_mode(struct net_device *dev);
3040void __dev_set_rx_mode(struct net_device *dev);
3041int dev_set_promiscuity(struct net_device *dev, int inc);
3042int dev_set_allmulti(struct net_device *dev, int inc);
3043void netdev_state_change(struct net_device *dev);
3044void netdev_notify_peers(struct net_device *dev);
3045void netdev_features_change(struct net_device *dev);
3046/* Load a device via the kmod */
3047void dev_load(struct net *net, const char *name);
3048struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3049                                        struct rtnl_link_stats64 *storage);
3050void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3051                             const struct net_device_stats *netdev_stats);
3052
3053extern int              netdev_max_backlog;
3054extern int              netdev_tstamp_prequeue;
3055extern int              weight_p;
3056extern int              bpf_jit_enable;
3057
3058bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3059struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3060                                                     struct list_head **iter);
3061struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3062                                                     struct list_head **iter);
3063
3064/* iterate through upper list, must be called under RCU read lock */
3065#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3066        for (iter = &(dev)->adj_list.upper, \
3067             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3068             updev; \
3069             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3070
3071/* iterate through upper list, must be called under RCU read lock */
3072#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3073        for (iter = &(dev)->all_adj_list.upper, \
3074             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3075             updev; \
3076             updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3077
3078void *netdev_lower_get_next_private(struct net_device *dev,
3079                                    struct list_head **iter);
3080void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3081                                        struct list_head **iter);
3082
3083#define netdev_for_each_lower_private(dev, priv, iter) \
3084        for (iter = (dev)->adj_list.lower.next, \
3085             priv = netdev_lower_get_next_private(dev, &(iter)); \
3086             priv; \
3087             priv = netdev_lower_get_next_private(dev, &(iter)))
3088
3089#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3090        for (iter = &(dev)->adj_list.lower, \
3091             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3092             priv; \
3093             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3094
3095void *netdev_lower_get_next(struct net_device *dev,
3096                                struct list_head **iter);
3097#define netdev_for_each_lower_dev(dev, ldev, iter) \
3098        for (iter = &(dev)->adj_list.lower, \
3099             ldev = netdev_lower_get_next(dev, &(iter)); \
3100             ldev; \
3101             ldev = netdev_lower_get_next(dev, &(iter)))
3102
3103void *netdev_adjacent_get_private(struct list_head *adj_list);
3104void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3105struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3106struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3107int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3108int netdev_master_upper_dev_link(struct net_device *dev,
3109                                 struct net_device *upper_dev);
3110int netdev_master_upper_dev_link_private(struct net_device *dev,
3111                                         struct net_device *upper_dev,
3112                                         void *private);
3113void netdev_upper_dev_unlink(struct net_device *dev,
3114                             struct net_device *upper_dev);
3115void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3116void *netdev_lower_dev_get_private(struct net_device *dev,
3117                                   struct net_device *lower_dev);
3118int dev_get_nest_level(struct net_device *dev,
3119                       bool (*type_check)(struct net_device *dev));
3120int skb_checksum_help(struct sk_buff *skb);
3121struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3122                                  netdev_features_t features, bool tx_path);
3123struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3124                                    netdev_features_t features);
3125
3126static inline
3127struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3128{
3129        return __skb_gso_segment(skb, features, true);
3130}
3131__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3132
3133static inline bool can_checksum_protocol(netdev_features_t features,
3134                                         __be16 protocol)
3135{
3136        return ((features & NETIF_F_GEN_CSUM) ||
3137                ((features & NETIF_F_V4_CSUM) &&
3138                 protocol == htons(ETH_P_IP)) ||
3139                ((features & NETIF_F_V6_CSUM) &&
3140                 protocol == htons(ETH_P_IPV6)) ||
3141                ((features & NETIF_F_FCOE_CRC) &&
3142                 protocol == htons(ETH_P_FCOE)));
3143}
3144
3145#ifdef CONFIG_BUG
3146void netdev_rx_csum_fault(struct net_device *dev);
3147#else
3148static inline void netdev_rx_csum_fault(struct net_device *dev)
3149{
3150}
3151#endif
3152/* rx skb timestamps */
3153void net_enable_timestamp(void);
3154void net_disable_timestamp(void);
3155
3156#ifdef CONFIG_PROC_FS
3157int __init dev_proc_init(void);
3158#else
3159#define dev_proc_init() 0
3160#endif
3161
3162int netdev_class_create_file_ns(struct class_attribute *class_attr,
3163                                const void *ns);
3164void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3165                                 const void *ns);
3166
3167static inline int netdev_class_create_file(struct class_attribute *class_attr)
3168{
3169        return netdev_class_create_file_ns(class_attr, NULL);
3170}
3171
3172static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3173{
3174        netdev_class_remove_file_ns(class_attr, NULL);
3175}
3176
3177extern struct kobj_ns_type_operations net_ns_type_operations;
3178
3179const char *netdev_drivername(const struct net_device *dev);
3180
3181void linkwatch_run_queue(void);
3182
3183static inline netdev_features_t netdev_get_wanted_features(
3184        struct net_device *dev)
3185{
3186        return (dev->features & ~dev->hw_features) | dev->wanted_features;
3187}
3188netdev_features_t netdev_increment_features(netdev_features_t all,
3189        netdev_features_t one, netdev_features_t mask);
3190
3191/* Allow TSO being used on stacked device :
3192 * Performing the GSO segmentation before last device
3193 * is a performance improvement.
3194 */
3195static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3196                                                        netdev_features_t mask)
3197{
3198        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3199}
3200
3201int __netdev_update_features(struct net_device *dev);
3202void netdev_update_features(struct net_device *dev);
3203void netdev_change_features(struct net_device *dev);
3204
3205void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3206                                        struct net_device *dev);
3207
3208netdev_features_t netif_skb_features(struct sk_buff *skb);
3209
3210static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3211{
3212        netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3213
3214        /* check flags correspondence */
3215        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3216        BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3217        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3218        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3219        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3220        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3221
3222        return (features & feature) == feature;
3223}
3224
3225static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3226{
3227        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3228               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3229}
3230
3231static inline bool netif_needs_gso(struct sk_buff *skb,
3232                                   netdev_features_t features)
3233{
3234        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3235                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3236                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3237}
3238
3239static inline void netif_set_gso_max_size(struct net_device *dev,
3240                                          unsigned int size)
3241{
3242        dev->gso_max_size = size;
3243}
3244
3245static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3246                                        int pulled_hlen, u16 mac_offset,
3247                                        int mac_len)
3248{
3249        skb->protocol = protocol;
3250        skb->encapsulation = 1;
3251        skb_push(skb, pulled_hlen);
3252        skb_reset_transport_header(skb);
3253        skb->mac_header = mac_offset;
3254        skb->network_header = skb->mac_header + mac_len;
3255        skb->mac_len = mac_len;
3256}
3257
3258static inline bool netif_is_macvlan(struct net_device *dev)
3259{
3260        return dev->priv_flags & IFF_MACVLAN;
3261}
3262
3263static inline bool netif_is_bond_master(struct net_device *dev)
3264{
3265        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3266}
3267
3268static inline bool netif_is_bond_slave(struct net_device *dev)
3269{
3270        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3271}
3272
3273static inline bool netif_supports_nofcs(struct net_device *dev)
3274{
3275        return dev->priv_flags & IFF_SUPP_NOFCS;
3276}
3277
3278extern struct pernet_operations __net_initdata loopback_net_ops;
3279
3280/* Logging, debugging and troubleshooting/diagnostic helpers. */
3281
3282/* netdev_printk helpers, similar to dev_printk */
3283
3284static inline const char *netdev_name(const struct net_device *dev)
3285{
3286        if (dev->reg_state != NETREG_REGISTERED)
3287                return "(unregistered net_device)";
3288        return dev->name;
3289}
3290
3291__printf(3, 4)
3292int netdev_printk(const char *level, const struct net_device *dev,
3293                  const char *format, ...);
3294__printf(2, 3)
3295int netdev_emerg(const struct net_device *dev, const char *format, ...);
3296__printf(2, 3)
3297int netdev_alert(const struct net_device *dev, const char *format, ...);
3298__printf(2, 3)
3299int netdev_crit(const struct net_device *dev, const char *format, ...);
3300__printf(2, 3)
3301int netdev_err(const struct net_device *dev, const char *format, ...);
3302__printf(2, 3)
3303int netdev_warn(const struct net_device *dev, const char *format, ...);
3304__printf(2, 3)
3305int netdev_notice(const struct net_device *dev, const char *format, ...);
3306__printf(2, 3)
3307int netdev_info(const struct net_device *dev, const char *format, ...);
3308
3309#define MODULE_ALIAS_NETDEV(device) \
3310        MODULE_ALIAS("netdev-" device)
3311
3312#if defined(CONFIG_DYNAMIC_DEBUG)
3313#define netdev_dbg(__dev, format, args...)                      \
3314do {                                                            \
3315        dynamic_netdev_dbg(__dev, format, ##args);              \
3316} while (0)
3317#elif defined(DEBUG)
3318#define netdev_dbg(__dev, format, args...)                      \
3319        netdev_printk(KERN_DEBUG, __dev, format, ##args)
3320#else
3321#define netdev_dbg(__dev, format, args...)                      \
3322({                                                              \
3323        if (0)                                                  \
3324                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3325        0;                                                      \
3326})
3327#endif
3328
3329#if defined(VERBOSE_DEBUG)
3330#define netdev_vdbg     netdev_dbg
3331#else
3332
3333#define netdev_vdbg(dev, format, args...)                       \
3334({                                                              \
3335        if (0)                                                  \
3336                netdev_printk(KERN_DEBUG, dev, format, ##args); \
3337        0;                                                      \
3338})
3339#endif
3340
3341/*
3342 * netdev_WARN() acts like dev_printk(), but with the key difference
3343 * of using a WARN/WARN_ON to get the message out, including the
3344 * file/line information and a backtrace.
3345 */
3346#define netdev_WARN(dev, format, args...)                       \
3347        WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3348
3349/* netif printk helpers, similar to netdev_printk */
3350
3351#define netif_printk(priv, type, level, dev, fmt, args...)      \
3352do {                                                            \
3353        if (netif_msg_##type(priv))                             \
3354                netdev_printk(level, (dev), fmt, ##args);       \
3355} while (0)
3356
3357#define netif_level(level, priv, type, dev, fmt, args...)       \
3358do {                                                            \
3359        if (netif_msg_##type(priv))                             \
3360                netdev_##level(dev, fmt, ##args);               \
3361} while (0)
3362
3363#define netif_emerg(priv, type, dev, fmt, args...)              \
3364        netif_level(emerg, priv, type, dev, fmt, ##args)
3365#define netif_alert(priv, type, dev, fmt, args...)              \
3366        netif_level(alert, priv, type, dev, fmt, ##args)
3367#define netif_crit(priv, type, dev, fmt, args...)               \
3368        netif_level(crit, priv, type, dev, fmt, ##args)
3369#define netif_err(priv, type, dev, fmt, args...)                \
3370        netif_level(err, priv, type, dev, fmt, ##args)
3371#define netif_warn(priv, type, dev, fmt, args...)               \
3372        netif_level(warn, priv, type, dev, fmt, ##args)
3373#define netif_notice(priv, type, dev, fmt, args...)             \
3374        netif_level(notice, priv, type, dev, fmt, ##args)
3375#define netif_info(priv, type, dev, fmt, args...)               \
3376        netif_level(info, priv, type, dev, fmt, ##args)
3377
3378#if defined(CONFIG_DYNAMIC_DEBUG)
3379#define netif_dbg(priv, type, netdev, format, args...)          \
3380do {                                                            \
3381        if (netif_msg_##type(priv))                             \
3382                dynamic_netdev_dbg(netdev, format, ##args);     \
3383} while (0)
3384#elif defined(DEBUG)
3385#define netif_dbg(priv, type, dev, format, args...)             \
3386        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3387#else
3388#define netif_dbg(priv, type, dev, format, args...)                     \
3389({                                                                      \
3390        if (0)                                                          \
3391                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3392        0;                                                              \
3393})
3394#endif
3395
3396#if defined(VERBOSE_DEBUG)
3397#define netif_vdbg      netif_dbg
3398#else
3399#define netif_vdbg(priv, type, dev, format, args...)            \
3400({                                                              \
3401        if (0)                                                  \
3402                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3403        0;                                                      \
3404})
3405#endif
3406
3407/*
3408 *      The list of packet types we will receive (as opposed to discard)
3409 *      and the routines to invoke.
3410 *
3411 *      Why 16. Because with 16 the only overlap we get on a hash of the
3412 *      low nibble of the protocol value is RARP/SNAP/X.25.
3413 *
3414 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3415 *             sure which should go first, but I bet it won't make much
3416 *             difference if we are running VLANs.  The good news is that
3417 *             this protocol won't be in the list unless compiled in, so
3418 *             the average user (w/out VLANs) will not be adversely affected.
3419 *             --BLG
3420 *
3421 *              0800    IP
3422 *              8100    802.1Q VLAN
3423 *              0001    802.3
3424 *              0002    AX.25
3425 *              0004    802.2
3426 *              8035    RARP
3427 *              0005    SNAP
3428 *              0805    X.25
3429 *              0806    ARP
3430 *              8137    IPX
3431 *              0009    Localtalk
3432 *              86DD    IPv6
3433 */
3434#define PTYPE_HASH_SIZE (16)
3435#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3436
3437#endif  /* _LINUX_NETDEVICE_H */
3438