linux/include/linux/percpu.h
<<
>>
Prefs
   1#ifndef __LINUX_PERCPU_H
   2#define __LINUX_PERCPU_H
   3
   4#include <linux/mmdebug.h>
   5#include <linux/preempt.h>
   6#include <linux/smp.h>
   7#include <linux/cpumask.h>
   8#include <linux/pfn.h>
   9#include <linux/init.h>
  10
  11#include <asm/percpu.h>
  12
  13/* enough to cover all DEFINE_PER_CPUs in modules */
  14#ifdef CONFIG_MODULES
  15#define PERCPU_MODULE_RESERVE           (8 << 10)
  16#else
  17#define PERCPU_MODULE_RESERVE           0
  18#endif
  19
  20#ifndef PERCPU_ENOUGH_ROOM
  21#define PERCPU_ENOUGH_ROOM                                              \
  22        (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +      \
  23         PERCPU_MODULE_RESERVE)
  24#endif
  25
  26/*
  27 * Must be an lvalue. Since @var must be a simple identifier,
  28 * we force a syntax error here if it isn't.
  29 */
  30#define get_cpu_var(var) (*({                           \
  31        preempt_disable();                              \
  32        &__get_cpu_var(var); }))
  33
  34/*
  35 * The weird & is necessary because sparse considers (void)(var) to be
  36 * a direct dereference of percpu variable (var).
  37 */
  38#define put_cpu_var(var) do {                           \
  39        (void)&(var);                                   \
  40        preempt_enable();                               \
  41} while (0)
  42
  43#define get_cpu_ptr(var) ({                             \
  44        preempt_disable();                              \
  45        this_cpu_ptr(var); })
  46
  47#define put_cpu_ptr(var) do {                           \
  48        (void)(var);                                    \
  49        preempt_enable();                               \
  50} while (0)
  51
  52/* minimum unit size, also is the maximum supported allocation size */
  53#define PCPU_MIN_UNIT_SIZE              PFN_ALIGN(32 << 10)
  54
  55/*
  56 * Percpu allocator can serve percpu allocations before slab is
  57 * initialized which allows slab to depend on the percpu allocator.
  58 * The following two parameters decide how much resource to
  59 * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or
  60 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
  61 */
  62#define PERCPU_DYNAMIC_EARLY_SLOTS      128
  63#define PERCPU_DYNAMIC_EARLY_SIZE       (12 << 10)
  64
  65/*
  66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
  67 * back on the first chunk for dynamic percpu allocation if arch is
  68 * manually allocating and mapping it for faster access (as a part of
  69 * large page mapping for example).
  70 *
  71 * The following values give between one and two pages of free space
  72 * after typical minimal boot (2-way SMP, single disk and NIC) with
  73 * both defconfig and a distro config on x86_64 and 32.  More
  74 * intelligent way to determine this would be nice.
  75 */
  76#if BITS_PER_LONG > 32
  77#define PERCPU_DYNAMIC_RESERVE          (20 << 10)
  78#else
  79#define PERCPU_DYNAMIC_RESERVE          (12 << 10)
  80#endif
  81
  82extern void *pcpu_base_addr;
  83extern const unsigned long *pcpu_unit_offsets;
  84
  85struct pcpu_group_info {
  86        int                     nr_units;       /* aligned # of units */
  87        unsigned long           base_offset;    /* base address offset */
  88        unsigned int            *cpu_map;       /* unit->cpu map, empty
  89                                                 * entries contain NR_CPUS */
  90};
  91
  92struct pcpu_alloc_info {
  93        size_t                  static_size;
  94        size_t                  reserved_size;
  95        size_t                  dyn_size;
  96        size_t                  unit_size;
  97        size_t                  atom_size;
  98        size_t                  alloc_size;
  99        size_t                  __ai_size;      /* internal, don't use */
 100        int                     nr_groups;      /* 0 if grouping unnecessary */
 101        struct pcpu_group_info  groups[];
 102};
 103
 104enum pcpu_fc {
 105        PCPU_FC_AUTO,
 106        PCPU_FC_EMBED,
 107        PCPU_FC_PAGE,
 108
 109        PCPU_FC_NR,
 110};
 111extern const char * const pcpu_fc_names[PCPU_FC_NR];
 112
 113extern enum pcpu_fc pcpu_chosen_fc;
 114
 115typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
 116                                     size_t align);
 117typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
 118typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
 119typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
 120
 121extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
 122                                                             int nr_units);
 123extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
 124
 125extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
 126                                         void *base_addr);
 127
 128#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
 129extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
 130                                size_t atom_size,
 131                                pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
 132                                pcpu_fc_alloc_fn_t alloc_fn,
 133                                pcpu_fc_free_fn_t free_fn);
 134#endif
 135
 136#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
 137extern int __init pcpu_page_first_chunk(size_t reserved_size,
 138                                pcpu_fc_alloc_fn_t alloc_fn,
 139                                pcpu_fc_free_fn_t free_fn,
 140                                pcpu_fc_populate_pte_fn_t populate_pte_fn);
 141#endif
 142
 143/*
 144 * Use this to get to a cpu's version of the per-cpu object
 145 * dynamically allocated. Non-atomic access to the current CPU's
 146 * version should probably be combined with get_cpu()/put_cpu().
 147 */
 148#ifdef CONFIG_SMP
 149#define per_cpu_ptr(ptr, cpu)   SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
 150#else
 151#define per_cpu_ptr(ptr, cpu)   ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
 152#endif
 153
 154extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
 155extern bool is_kernel_percpu_address(unsigned long addr);
 156
 157#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
 158extern void __init setup_per_cpu_areas(void);
 159#endif
 160extern void __init percpu_init_late(void);
 161
 162extern void __percpu *__alloc_percpu(size_t size, size_t align);
 163extern void free_percpu(void __percpu *__pdata);
 164extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
 165
 166#define alloc_percpu(type)      \
 167        (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
 168
 169/*
 170 * Branching function to split up a function into a set of functions that
 171 * are called for different scalar sizes of the objects handled.
 172 */
 173
 174extern void __bad_size_call_parameter(void);
 175
 176#ifdef CONFIG_DEBUG_PREEMPT
 177extern void __this_cpu_preempt_check(const char *op);
 178#else
 179static inline void __this_cpu_preempt_check(const char *op) { }
 180#endif
 181
 182#define __pcpu_size_call_return(stem, variable)                         \
 183({      typeof(variable) pscr_ret__;                                    \
 184        __verify_pcpu_ptr(&(variable));                                 \
 185        switch(sizeof(variable)) {                                      \
 186        case 1: pscr_ret__ = stem##1(variable);break;                   \
 187        case 2: pscr_ret__ = stem##2(variable);break;                   \
 188        case 4: pscr_ret__ = stem##4(variable);break;                   \
 189        case 8: pscr_ret__ = stem##8(variable);break;                   \
 190        default:                                                        \
 191                __bad_size_call_parameter();break;                      \
 192        }                                                               \
 193        pscr_ret__;                                                     \
 194})
 195
 196#define __pcpu_size_call_return2(stem, variable, ...)                   \
 197({                                                                      \
 198        typeof(variable) pscr2_ret__;                                   \
 199        __verify_pcpu_ptr(&(variable));                                 \
 200        switch(sizeof(variable)) {                                      \
 201        case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;    \
 202        case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;    \
 203        case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;    \
 204        case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;    \
 205        default:                                                        \
 206                __bad_size_call_parameter(); break;                     \
 207        }                                                               \
 208        pscr2_ret__;                                                    \
 209})
 210
 211/*
 212 * Special handling for cmpxchg_double.  cmpxchg_double is passed two
 213 * percpu variables.  The first has to be aligned to a double word
 214 * boundary and the second has to follow directly thereafter.
 215 * We enforce this on all architectures even if they don't support
 216 * a double cmpxchg instruction, since it's a cheap requirement, and it
 217 * avoids breaking the requirement for architectures with the instruction.
 218 */
 219#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)           \
 220({                                                                      \
 221        bool pdcrb_ret__;                                               \
 222        __verify_pcpu_ptr(&pcp1);                                       \
 223        BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));                     \
 224        VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1)));         \
 225        VM_BUG_ON((unsigned long)(&pcp2) !=                             \
 226                  (unsigned long)(&pcp1) + sizeof(pcp1));               \
 227        switch(sizeof(pcp1)) {                                          \
 228        case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;  \
 229        case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;  \
 230        case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;  \
 231        case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;  \
 232        default:                                                        \
 233                __bad_size_call_parameter(); break;                     \
 234        }                                                               \
 235        pdcrb_ret__;                                                    \
 236})
 237
 238#define __pcpu_size_call(stem, variable, ...)                           \
 239do {                                                                    \
 240        __verify_pcpu_ptr(&(variable));                                 \
 241        switch(sizeof(variable)) {                                      \
 242                case 1: stem##1(variable, __VA_ARGS__);break;           \
 243                case 2: stem##2(variable, __VA_ARGS__);break;           \
 244                case 4: stem##4(variable, __VA_ARGS__);break;           \
 245                case 8: stem##8(variable, __VA_ARGS__);break;           \
 246                default:                                                \
 247                        __bad_size_call_parameter();break;              \
 248        }                                                               \
 249} while (0)
 250
 251/*
 252 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
 253 *
 254 * Optimized manipulation for memory allocated through the per cpu
 255 * allocator or for addresses of per cpu variables.
 256 *
 257 * These operation guarantee exclusivity of access for other operations
 258 * on the *same* processor. The assumption is that per cpu data is only
 259 * accessed by a single processor instance (the current one).
 260 *
 261 * The first group is used for accesses that must be done in a
 262 * preemption safe way since we know that the context is not preempt
 263 * safe. Interrupts may occur. If the interrupt modifies the variable
 264 * too then RMW actions will not be reliable.
 265 *
 266 * The arch code can provide optimized functions in two ways:
 267 *
 268 * 1. Override the function completely. F.e. define this_cpu_add().
 269 *    The arch must then ensure that the various scalar format passed
 270 *    are handled correctly.
 271 *
 272 * 2. Provide functions for certain scalar sizes. F.e. provide
 273 *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte
 274 *    sized RMW actions. If arch code does not provide operations for
 275 *    a scalar size then the fallback in the generic code will be
 276 *    used.
 277 */
 278
 279#define _this_cpu_generic_read(pcp)                                     \
 280({      typeof(pcp) ret__;                                              \
 281        preempt_disable();                                              \
 282        ret__ = *this_cpu_ptr(&(pcp));                                  \
 283        preempt_enable();                                               \
 284        ret__;                                                          \
 285})
 286
 287#ifndef this_cpu_read
 288# ifndef this_cpu_read_1
 289#  define this_cpu_read_1(pcp)  _this_cpu_generic_read(pcp)
 290# endif
 291# ifndef this_cpu_read_2
 292#  define this_cpu_read_2(pcp)  _this_cpu_generic_read(pcp)
 293# endif
 294# ifndef this_cpu_read_4
 295#  define this_cpu_read_4(pcp)  _this_cpu_generic_read(pcp)
 296# endif
 297# ifndef this_cpu_read_8
 298#  define this_cpu_read_8(pcp)  _this_cpu_generic_read(pcp)
 299# endif
 300# define this_cpu_read(pcp)     __pcpu_size_call_return(this_cpu_read_, (pcp))
 301#endif
 302
 303#define _this_cpu_generic_to_op(pcp, val, op)                           \
 304do {                                                                    \
 305        unsigned long flags;                                            \
 306        raw_local_irq_save(flags);                                      \
 307        *raw_cpu_ptr(&(pcp)) op val;                                    \
 308        raw_local_irq_restore(flags);                                   \
 309} while (0)
 310
 311#ifndef this_cpu_write
 312# ifndef this_cpu_write_1
 313#  define this_cpu_write_1(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 314# endif
 315# ifndef this_cpu_write_2
 316#  define this_cpu_write_2(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 317# endif
 318# ifndef this_cpu_write_4
 319#  define this_cpu_write_4(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 320# endif
 321# ifndef this_cpu_write_8
 322#  define this_cpu_write_8(pcp, val)    _this_cpu_generic_to_op((pcp), (val), =)
 323# endif
 324# define this_cpu_write(pcp, val)       __pcpu_size_call(this_cpu_write_, (pcp), (val))
 325#endif
 326
 327#ifndef this_cpu_add
 328# ifndef this_cpu_add_1
 329#  define this_cpu_add_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 330# endif
 331# ifndef this_cpu_add_2
 332#  define this_cpu_add_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 333# endif
 334# ifndef this_cpu_add_4
 335#  define this_cpu_add_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 336# endif
 337# ifndef this_cpu_add_8
 338#  define this_cpu_add_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), +=)
 339# endif
 340# define this_cpu_add(pcp, val)         __pcpu_size_call(this_cpu_add_, (pcp), (val))
 341#endif
 342
 343#ifndef this_cpu_sub
 344# define this_cpu_sub(pcp, val)         this_cpu_add((pcp), -(typeof(pcp))(val))
 345#endif
 346
 347#ifndef this_cpu_inc
 348# define this_cpu_inc(pcp)              this_cpu_add((pcp), 1)
 349#endif
 350
 351#ifndef this_cpu_dec
 352# define this_cpu_dec(pcp)              this_cpu_sub((pcp), 1)
 353#endif
 354
 355#ifndef this_cpu_and
 356# ifndef this_cpu_and_1
 357#  define this_cpu_and_1(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 358# endif
 359# ifndef this_cpu_and_2
 360#  define this_cpu_and_2(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 361# endif
 362# ifndef this_cpu_and_4
 363#  define this_cpu_and_4(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 364# endif
 365# ifndef this_cpu_and_8
 366#  define this_cpu_and_8(pcp, val)      _this_cpu_generic_to_op((pcp), (val), &=)
 367# endif
 368# define this_cpu_and(pcp, val)         __pcpu_size_call(this_cpu_and_, (pcp), (val))
 369#endif
 370
 371#ifndef this_cpu_or
 372# ifndef this_cpu_or_1
 373#  define this_cpu_or_1(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 374# endif
 375# ifndef this_cpu_or_2
 376#  define this_cpu_or_2(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 377# endif
 378# ifndef this_cpu_or_4
 379#  define this_cpu_or_4(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 380# endif
 381# ifndef this_cpu_or_8
 382#  define this_cpu_or_8(pcp, val)       _this_cpu_generic_to_op((pcp), (val), |=)
 383# endif
 384# define this_cpu_or(pcp, val)          __pcpu_size_call(this_cpu_or_, (pcp), (val))
 385#endif
 386
 387#define _this_cpu_generic_add_return(pcp, val)                          \
 388({                                                                      \
 389        typeof(pcp) ret__;                                              \
 390        unsigned long flags;                                            \
 391        raw_local_irq_save(flags);                                      \
 392        raw_cpu_add(pcp, val);                                  \
 393        ret__ = raw_cpu_read(pcp);                                      \
 394        raw_local_irq_restore(flags);                                   \
 395        ret__;                                                          \
 396})
 397
 398#ifndef this_cpu_add_return
 399# ifndef this_cpu_add_return_1
 400#  define this_cpu_add_return_1(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 401# endif
 402# ifndef this_cpu_add_return_2
 403#  define this_cpu_add_return_2(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 404# endif
 405# ifndef this_cpu_add_return_4
 406#  define this_cpu_add_return_4(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 407# endif
 408# ifndef this_cpu_add_return_8
 409#  define this_cpu_add_return_8(pcp, val)       _this_cpu_generic_add_return(pcp, val)
 410# endif
 411# define this_cpu_add_return(pcp, val)  __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
 412#endif
 413
 414#define this_cpu_sub_return(pcp, val)   this_cpu_add_return(pcp, -(typeof(pcp))(val))
 415#define this_cpu_inc_return(pcp)        this_cpu_add_return(pcp, 1)
 416#define this_cpu_dec_return(pcp)        this_cpu_add_return(pcp, -1)
 417
 418#define _this_cpu_generic_xchg(pcp, nval)                               \
 419({      typeof(pcp) ret__;                                              \
 420        unsigned long flags;                                            \
 421        raw_local_irq_save(flags);                                      \
 422        ret__ = raw_cpu_read(pcp);                                      \
 423        raw_cpu_write(pcp, nval);                                       \
 424        raw_local_irq_restore(flags);                                   \
 425        ret__;                                                          \
 426})
 427
 428#ifndef this_cpu_xchg
 429# ifndef this_cpu_xchg_1
 430#  define this_cpu_xchg_1(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 431# endif
 432# ifndef this_cpu_xchg_2
 433#  define this_cpu_xchg_2(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 434# endif
 435# ifndef this_cpu_xchg_4
 436#  define this_cpu_xchg_4(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 437# endif
 438# ifndef this_cpu_xchg_8
 439#  define this_cpu_xchg_8(pcp, nval)    _this_cpu_generic_xchg(pcp, nval)
 440# endif
 441# define this_cpu_xchg(pcp, nval)       \
 442        __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
 443#endif
 444
 445#define _this_cpu_generic_cmpxchg(pcp, oval, nval)                      \
 446({                                                                      \
 447        typeof(pcp) ret__;                                              \
 448        unsigned long flags;                                            \
 449        raw_local_irq_save(flags);                                      \
 450        ret__ = raw_cpu_read(pcp);                                      \
 451        if (ret__ == (oval))                                            \
 452                raw_cpu_write(pcp, nval);                               \
 453        raw_local_irq_restore(flags);                                   \
 454        ret__;                                                          \
 455})
 456
 457#ifndef this_cpu_cmpxchg
 458# ifndef this_cpu_cmpxchg_1
 459#  define this_cpu_cmpxchg_1(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 460# endif
 461# ifndef this_cpu_cmpxchg_2
 462#  define this_cpu_cmpxchg_2(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 463# endif
 464# ifndef this_cpu_cmpxchg_4
 465#  define this_cpu_cmpxchg_4(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 466# endif
 467# ifndef this_cpu_cmpxchg_8
 468#  define this_cpu_cmpxchg_8(pcp, oval, nval)   _this_cpu_generic_cmpxchg(pcp, oval, nval)
 469# endif
 470# define this_cpu_cmpxchg(pcp, oval, nval)      \
 471        __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
 472#endif
 473
 474/*
 475 * cmpxchg_double replaces two adjacent scalars at once.  The first
 476 * two parameters are per cpu variables which have to be of the same
 477 * size.  A truth value is returned to indicate success or failure
 478 * (since a double register result is difficult to handle).  There is
 479 * very limited hardware support for these operations, so only certain
 480 * sizes may work.
 481 */
 482#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)        \
 483({                                                                      \
 484        int ret__;                                                      \
 485        unsigned long flags;                                            \
 486        raw_local_irq_save(flags);                                      \
 487        ret__ = raw_cpu_generic_cmpxchg_double(pcp1, pcp2,              \
 488                        oval1, oval2, nval1, nval2);                    \
 489        raw_local_irq_restore(flags);                                   \
 490        ret__;                                                          \
 491})
 492
 493#ifndef this_cpu_cmpxchg_double
 494# ifndef this_cpu_cmpxchg_double_1
 495#  define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
 496        _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 497# endif
 498# ifndef this_cpu_cmpxchg_double_2
 499#  define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
 500        _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 501# endif
 502# ifndef this_cpu_cmpxchg_double_4
 503#  define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
 504        _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 505# endif
 506# ifndef this_cpu_cmpxchg_double_8
 507#  define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)     \
 508        _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 509# endif
 510# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)        \
 511        __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
 512#endif
 513
 514/*
 515 * Generic percpu operations for contexts where we do not want to do
 516 * any checks for preemptiosn.
 517 *
 518 * If there is no other protection through preempt disable and/or
 519 * disabling interupts then one of these RMW operations can show unexpected
 520 * behavior because the execution thread was rescheduled on another processor
 521 * or an interrupt occurred and the same percpu variable was modified from
 522 * the interrupt context.
 523 */
 524#ifndef raw_cpu_read
 525# ifndef raw_cpu_read_1
 526#  define raw_cpu_read_1(pcp)   (*raw_cpu_ptr(&(pcp)))
 527# endif
 528# ifndef raw_cpu_read_2
 529#  define raw_cpu_read_2(pcp)   (*raw_cpu_ptr(&(pcp)))
 530# endif
 531# ifndef raw_cpu_read_4
 532#  define raw_cpu_read_4(pcp)   (*raw_cpu_ptr(&(pcp)))
 533# endif
 534# ifndef raw_cpu_read_8
 535#  define raw_cpu_read_8(pcp)   (*raw_cpu_ptr(&(pcp)))
 536# endif
 537# define raw_cpu_read(pcp)      __pcpu_size_call_return(raw_cpu_read_, (pcp))
 538#endif
 539
 540#define raw_cpu_generic_to_op(pcp, val, op)                             \
 541do {                                                                    \
 542        *raw_cpu_ptr(&(pcp)) op val;                                    \
 543} while (0)
 544
 545
 546#ifndef raw_cpu_write
 547# ifndef raw_cpu_write_1
 548#  define raw_cpu_write_1(pcp, val)     raw_cpu_generic_to_op((pcp), (val), =)
 549# endif
 550# ifndef raw_cpu_write_2
 551#  define raw_cpu_write_2(pcp, val)     raw_cpu_generic_to_op((pcp), (val), =)
 552# endif
 553# ifndef raw_cpu_write_4
 554#  define raw_cpu_write_4(pcp, val)     raw_cpu_generic_to_op((pcp), (val), =)
 555# endif
 556# ifndef raw_cpu_write_8
 557#  define raw_cpu_write_8(pcp, val)     raw_cpu_generic_to_op((pcp), (val), =)
 558# endif
 559# define raw_cpu_write(pcp, val)        __pcpu_size_call(raw_cpu_write_, (pcp), (val))
 560#endif
 561
 562#ifndef raw_cpu_add
 563# ifndef raw_cpu_add_1
 564#  define raw_cpu_add_1(pcp, val)       raw_cpu_generic_to_op((pcp), (val), +=)
 565# endif
 566# ifndef raw_cpu_add_2
 567#  define raw_cpu_add_2(pcp, val)       raw_cpu_generic_to_op((pcp), (val), +=)
 568# endif
 569# ifndef raw_cpu_add_4
 570#  define raw_cpu_add_4(pcp, val)       raw_cpu_generic_to_op((pcp), (val), +=)
 571# endif
 572# ifndef raw_cpu_add_8
 573#  define raw_cpu_add_8(pcp, val)       raw_cpu_generic_to_op((pcp), (val), +=)
 574# endif
 575# define raw_cpu_add(pcp, val)  __pcpu_size_call(raw_cpu_add_, (pcp), (val))
 576#endif
 577
 578#ifndef raw_cpu_sub
 579# define raw_cpu_sub(pcp, val)  raw_cpu_add((pcp), -(val))
 580#endif
 581
 582#ifndef raw_cpu_inc
 583# define raw_cpu_inc(pcp)               raw_cpu_add((pcp), 1)
 584#endif
 585
 586#ifndef raw_cpu_dec
 587# define raw_cpu_dec(pcp)               raw_cpu_sub((pcp), 1)
 588#endif
 589
 590#ifndef raw_cpu_and
 591# ifndef raw_cpu_and_1
 592#  define raw_cpu_and_1(pcp, val)       raw_cpu_generic_to_op((pcp), (val), &=)
 593# endif
 594# ifndef raw_cpu_and_2
 595#  define raw_cpu_and_2(pcp, val)       raw_cpu_generic_to_op((pcp), (val), &=)
 596# endif
 597# ifndef raw_cpu_and_4
 598#  define raw_cpu_and_4(pcp, val)       raw_cpu_generic_to_op((pcp), (val), &=)
 599# endif
 600# ifndef raw_cpu_and_8
 601#  define raw_cpu_and_8(pcp, val)       raw_cpu_generic_to_op((pcp), (val), &=)
 602# endif
 603# define raw_cpu_and(pcp, val)  __pcpu_size_call(raw_cpu_and_, (pcp), (val))
 604#endif
 605
 606#ifndef raw_cpu_or
 607# ifndef raw_cpu_or_1
 608#  define raw_cpu_or_1(pcp, val)        raw_cpu_generic_to_op((pcp), (val), |=)
 609# endif
 610# ifndef raw_cpu_or_2
 611#  define raw_cpu_or_2(pcp, val)        raw_cpu_generic_to_op((pcp), (val), |=)
 612# endif
 613# ifndef raw_cpu_or_4
 614#  define raw_cpu_or_4(pcp, val)        raw_cpu_generic_to_op((pcp), (val), |=)
 615# endif
 616# ifndef raw_cpu_or_8
 617#  define raw_cpu_or_8(pcp, val)        raw_cpu_generic_to_op((pcp), (val), |=)
 618# endif
 619# define raw_cpu_or(pcp, val)   __pcpu_size_call(raw_cpu_or_, (pcp), (val))
 620#endif
 621
 622#define raw_cpu_generic_add_return(pcp, val)                            \
 623({                                                                      \
 624        raw_cpu_add(pcp, val);                                          \
 625        raw_cpu_read(pcp);                                              \
 626})
 627
 628#ifndef raw_cpu_add_return
 629# ifndef raw_cpu_add_return_1
 630#  define raw_cpu_add_return_1(pcp, val)        raw_cpu_generic_add_return(pcp, val)
 631# endif
 632# ifndef raw_cpu_add_return_2
 633#  define raw_cpu_add_return_2(pcp, val)        raw_cpu_generic_add_return(pcp, val)
 634# endif
 635# ifndef raw_cpu_add_return_4
 636#  define raw_cpu_add_return_4(pcp, val)        raw_cpu_generic_add_return(pcp, val)
 637# endif
 638# ifndef raw_cpu_add_return_8
 639#  define raw_cpu_add_return_8(pcp, val)        raw_cpu_generic_add_return(pcp, val)
 640# endif
 641# define raw_cpu_add_return(pcp, val)   \
 642        __pcpu_size_call_return2(raw_add_return_, pcp, val)
 643#endif
 644
 645#define raw_cpu_sub_return(pcp, val)    raw_cpu_add_return(pcp, -(typeof(pcp))(val))
 646#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1)
 647#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1)
 648
 649#define raw_cpu_generic_xchg(pcp, nval)                                 \
 650({      typeof(pcp) ret__;                                              \
 651        ret__ = raw_cpu_read(pcp);                                      \
 652        raw_cpu_write(pcp, nval);                                       \
 653        ret__;                                                          \
 654})
 655
 656#ifndef raw_cpu_xchg
 657# ifndef raw_cpu_xchg_1
 658#  define raw_cpu_xchg_1(pcp, nval)     raw_cpu_generic_xchg(pcp, nval)
 659# endif
 660# ifndef raw_cpu_xchg_2
 661#  define raw_cpu_xchg_2(pcp, nval)     raw_cpu_generic_xchg(pcp, nval)
 662# endif
 663# ifndef raw_cpu_xchg_4
 664#  define raw_cpu_xchg_4(pcp, nval)     raw_cpu_generic_xchg(pcp, nval)
 665# endif
 666# ifndef raw_cpu_xchg_8
 667#  define raw_cpu_xchg_8(pcp, nval)     raw_cpu_generic_xchg(pcp, nval)
 668# endif
 669# define raw_cpu_xchg(pcp, nval)        \
 670        __pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval)
 671#endif
 672
 673#define raw_cpu_generic_cmpxchg(pcp, oval, nval)                        \
 674({                                                                      \
 675        typeof(pcp) ret__;                                              \
 676        ret__ = raw_cpu_read(pcp);                                      \
 677        if (ret__ == (oval))                                            \
 678                raw_cpu_write(pcp, nval);                               \
 679        ret__;                                                          \
 680})
 681
 682#ifndef raw_cpu_cmpxchg
 683# ifndef raw_cpu_cmpxchg_1
 684#  define raw_cpu_cmpxchg_1(pcp, oval, nval)    raw_cpu_generic_cmpxchg(pcp, oval, nval)
 685# endif
 686# ifndef raw_cpu_cmpxchg_2
 687#  define raw_cpu_cmpxchg_2(pcp, oval, nval)    raw_cpu_generic_cmpxchg(pcp, oval, nval)
 688# endif
 689# ifndef raw_cpu_cmpxchg_4
 690#  define raw_cpu_cmpxchg_4(pcp, oval, nval)    raw_cpu_generic_cmpxchg(pcp, oval, nval)
 691# endif
 692# ifndef raw_cpu_cmpxchg_8
 693#  define raw_cpu_cmpxchg_8(pcp, oval, nval)    raw_cpu_generic_cmpxchg(pcp, oval, nval)
 694# endif
 695# define raw_cpu_cmpxchg(pcp, oval, nval)       \
 696        __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
 697#endif
 698
 699#define raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)  \
 700({                                                                      \
 701        int __ret = 0;                                                  \
 702        if (raw_cpu_read(pcp1) == (oval1) &&                            \
 703                         raw_cpu_read(pcp2)  == (oval2)) {              \
 704                raw_cpu_write(pcp1, (nval1));                           \
 705                raw_cpu_write(pcp2, (nval2));                           \
 706                __ret = 1;                                              \
 707        }                                                               \
 708        (__ret);                                                        \
 709})
 710
 711#ifndef raw_cpu_cmpxchg_double
 712# ifndef raw_cpu_cmpxchg_double_1
 713#  define raw_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)      \
 714        raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 715# endif
 716# ifndef raw_cpu_cmpxchg_double_2
 717#  define raw_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)      \
 718        raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 719# endif
 720# ifndef raw_cpu_cmpxchg_double_4
 721#  define raw_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)      \
 722        raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 723# endif
 724# ifndef raw_cpu_cmpxchg_double_8
 725#  define raw_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)      \
 726        raw_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
 727# endif
 728# define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
 729        __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
 730#endif
 731
 732/*
 733 * Generic percpu operations for context that are safe from preemption/interrupts.
 734 */
 735#ifndef __this_cpu_read
 736# define __this_cpu_read(pcp) \
 737        (__this_cpu_preempt_check("read"),__pcpu_size_call_return(raw_cpu_read_, (pcp)))
 738#endif
 739
 740#ifndef __this_cpu_write
 741# define __this_cpu_write(pcp, val)                                     \
 742do { __this_cpu_preempt_check("write");                                 \
 743     __pcpu_size_call(raw_cpu_write_, (pcp), (val));                    \
 744} while (0)
 745#endif
 746
 747#ifndef __this_cpu_add
 748# define __this_cpu_add(pcp, val)                                        \
 749do { __this_cpu_preempt_check("add");                                   \
 750        __pcpu_size_call(raw_cpu_add_, (pcp), (val));                   \
 751} while (0)
 752#endif
 753
 754#ifndef __this_cpu_sub
 755# define __this_cpu_sub(pcp, val)       __this_cpu_add((pcp), -(typeof(pcp))(val))
 756#endif
 757
 758#ifndef __this_cpu_inc
 759# define __this_cpu_inc(pcp)            __this_cpu_add((pcp), 1)
 760#endif
 761
 762#ifndef __this_cpu_dec
 763# define __this_cpu_dec(pcp)            __this_cpu_sub((pcp), 1)
 764#endif
 765
 766#ifndef __this_cpu_and
 767# define __this_cpu_and(pcp, val)                                       \
 768do { __this_cpu_preempt_check("and");                                   \
 769        __pcpu_size_call(raw_cpu_and_, (pcp), (val));                   \
 770} while (0)
 771
 772#endif
 773
 774#ifndef __this_cpu_or
 775# define __this_cpu_or(pcp, val)                                        \
 776do { __this_cpu_preempt_check("or");                                    \
 777        __pcpu_size_call(raw_cpu_or_, (pcp), (val));                    \
 778} while (0)
 779#endif
 780
 781#ifndef __this_cpu_add_return
 782# define __this_cpu_add_return(pcp, val)        \
 783        (__this_cpu_preempt_check("add_return"),__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val))
 784#endif
 785
 786#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
 787#define __this_cpu_inc_return(pcp)      __this_cpu_add_return(pcp, 1)
 788#define __this_cpu_dec_return(pcp)      __this_cpu_add_return(pcp, -1)
 789
 790#ifndef __this_cpu_xchg
 791# define __this_cpu_xchg(pcp, nval)     \
 792        (__this_cpu_preempt_check("xchg"),__pcpu_size_call_return2(raw_cpu_xchg_, (pcp), nval))
 793#endif
 794
 795#ifndef __this_cpu_cmpxchg
 796# define __this_cpu_cmpxchg(pcp, oval, nval)    \
 797        (__this_cpu_preempt_check("cmpxchg"),__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval))
 798#endif
 799
 800#ifndef __this_cpu_cmpxchg_double
 801# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)      \
 802        (__this_cpu_preempt_check("cmpxchg_double"),__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)))
 803#endif
 804
 805#endif /* __LINUX_PERCPU_H */
 806