linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/tty.h>
  67#include <linux/binfmts.h>
  68#include <linux/highmem.h>
  69#include <linux/syscalls.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74
  75#include "audit.h"
  76
  77/* flags stating the success for a syscall */
  78#define AUDITSC_INVALID 0
  79#define AUDITSC_SUCCESS 1
  80#define AUDITSC_FAILURE 2
  81
  82/* no execve audit message should be longer than this (userspace limits) */
  83#define MAX_EXECVE_AUDIT_LEN 7500
  84
  85/* max length to print of cmdline/proctitle value during audit */
  86#define MAX_PROCTITLE_AUDIT_LEN 128
  87
  88/* number of audit rules */
  89int audit_n_rules;
  90
  91/* determines whether we collect data for signals sent */
  92int audit_signals;
  93
  94struct audit_aux_data {
  95        struct audit_aux_data   *next;
  96        int                     type;
  97};
  98
  99#define AUDIT_AUX_IPCPERM       0
 100
 101/* Number of target pids per aux struct. */
 102#define AUDIT_AUX_PIDS  16
 103
 104struct audit_aux_data_pids {
 105        struct audit_aux_data   d;
 106        pid_t                   target_pid[AUDIT_AUX_PIDS];
 107        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 108        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 109        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 110        u32                     target_sid[AUDIT_AUX_PIDS];
 111        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 112        int                     pid_count;
 113};
 114
 115struct audit_aux_data_bprm_fcaps {
 116        struct audit_aux_data   d;
 117        struct audit_cap_data   fcap;
 118        unsigned int            fcap_ver;
 119        struct audit_cap_data   old_pcap;
 120        struct audit_cap_data   new_pcap;
 121};
 122
 123struct audit_tree_refs {
 124        struct audit_tree_refs *next;
 125        struct audit_chunk *c[31];
 126};
 127
 128static inline int open_arg(int flags, int mask)
 129{
 130        int n = ACC_MODE(flags);
 131        if (flags & (O_TRUNC | O_CREAT))
 132                n |= AUDIT_PERM_WRITE;
 133        return n & mask;
 134}
 135
 136static int audit_match_perm(struct audit_context *ctx, int mask)
 137{
 138        unsigned n;
 139        if (unlikely(!ctx))
 140                return 0;
 141        n = ctx->major;
 142
 143        switch (audit_classify_syscall(ctx->arch, n)) {
 144        case 0: /* native */
 145                if ((mask & AUDIT_PERM_WRITE) &&
 146                     audit_match_class(AUDIT_CLASS_WRITE, n))
 147                        return 1;
 148                if ((mask & AUDIT_PERM_READ) &&
 149                     audit_match_class(AUDIT_CLASS_READ, n))
 150                        return 1;
 151                if ((mask & AUDIT_PERM_ATTR) &&
 152                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 153                        return 1;
 154                return 0;
 155        case 1: /* 32bit on biarch */
 156                if ((mask & AUDIT_PERM_WRITE) &&
 157                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 158                        return 1;
 159                if ((mask & AUDIT_PERM_READ) &&
 160                     audit_match_class(AUDIT_CLASS_READ_32, n))
 161                        return 1;
 162                if ((mask & AUDIT_PERM_ATTR) &&
 163                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 164                        return 1;
 165                return 0;
 166        case 2: /* open */
 167                return mask & ACC_MODE(ctx->argv[1]);
 168        case 3: /* openat */
 169                return mask & ACC_MODE(ctx->argv[2]);
 170        case 4: /* socketcall */
 171                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 172        case 5: /* execve */
 173                return mask & AUDIT_PERM_EXEC;
 174        default:
 175                return 0;
 176        }
 177}
 178
 179static int audit_match_filetype(struct audit_context *ctx, int val)
 180{
 181        struct audit_names *n;
 182        umode_t mode = (umode_t)val;
 183
 184        if (unlikely(!ctx))
 185                return 0;
 186
 187        list_for_each_entry(n, &ctx->names_list, list) {
 188                if ((n->ino != -1) &&
 189                    ((n->mode & S_IFMT) == mode))
 190                        return 1;
 191        }
 192
 193        return 0;
 194}
 195
 196/*
 197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 198 * ->first_trees points to its beginning, ->trees - to the current end of data.
 199 * ->tree_count is the number of free entries in array pointed to by ->trees.
 200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 201 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 202 * it's going to remain 1-element for almost any setup) until we free context itself.
 203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 204 */
 205
 206#ifdef CONFIG_AUDIT_TREE
 207static void audit_set_auditable(struct audit_context *ctx)
 208{
 209        if (!ctx->prio) {
 210                ctx->prio = 1;
 211                ctx->current_state = AUDIT_RECORD_CONTEXT;
 212        }
 213}
 214
 215static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 216{
 217        struct audit_tree_refs *p = ctx->trees;
 218        int left = ctx->tree_count;
 219        if (likely(left)) {
 220                p->c[--left] = chunk;
 221                ctx->tree_count = left;
 222                return 1;
 223        }
 224        if (!p)
 225                return 0;
 226        p = p->next;
 227        if (p) {
 228                p->c[30] = chunk;
 229                ctx->trees = p;
 230                ctx->tree_count = 30;
 231                return 1;
 232        }
 233        return 0;
 234}
 235
 236static int grow_tree_refs(struct audit_context *ctx)
 237{
 238        struct audit_tree_refs *p = ctx->trees;
 239        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 240        if (!ctx->trees) {
 241                ctx->trees = p;
 242                return 0;
 243        }
 244        if (p)
 245                p->next = ctx->trees;
 246        else
 247                ctx->first_trees = ctx->trees;
 248        ctx->tree_count = 31;
 249        return 1;
 250}
 251#endif
 252
 253static void unroll_tree_refs(struct audit_context *ctx,
 254                      struct audit_tree_refs *p, int count)
 255{
 256#ifdef CONFIG_AUDIT_TREE
 257        struct audit_tree_refs *q;
 258        int n;
 259        if (!p) {
 260                /* we started with empty chain */
 261                p = ctx->first_trees;
 262                count = 31;
 263                /* if the very first allocation has failed, nothing to do */
 264                if (!p)
 265                        return;
 266        }
 267        n = count;
 268        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 269                while (n--) {
 270                        audit_put_chunk(q->c[n]);
 271                        q->c[n] = NULL;
 272                }
 273        }
 274        while (n-- > ctx->tree_count) {
 275                audit_put_chunk(q->c[n]);
 276                q->c[n] = NULL;
 277        }
 278        ctx->trees = p;
 279        ctx->tree_count = count;
 280#endif
 281}
 282
 283static void free_tree_refs(struct audit_context *ctx)
 284{
 285        struct audit_tree_refs *p, *q;
 286        for (p = ctx->first_trees; p; p = q) {
 287                q = p->next;
 288                kfree(p);
 289        }
 290}
 291
 292static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 293{
 294#ifdef CONFIG_AUDIT_TREE
 295        struct audit_tree_refs *p;
 296        int n;
 297        if (!tree)
 298                return 0;
 299        /* full ones */
 300        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 301                for (n = 0; n < 31; n++)
 302                        if (audit_tree_match(p->c[n], tree))
 303                                return 1;
 304        }
 305        /* partial */
 306        if (p) {
 307                for (n = ctx->tree_count; n < 31; n++)
 308                        if (audit_tree_match(p->c[n], tree))
 309                                return 1;
 310        }
 311#endif
 312        return 0;
 313}
 314
 315static int audit_compare_uid(kuid_t uid,
 316                             struct audit_names *name,
 317                             struct audit_field *f,
 318                             struct audit_context *ctx)
 319{
 320        struct audit_names *n;
 321        int rc;
 322 
 323        if (name) {
 324                rc = audit_uid_comparator(uid, f->op, name->uid);
 325                if (rc)
 326                        return rc;
 327        }
 328 
 329        if (ctx) {
 330                list_for_each_entry(n, &ctx->names_list, list) {
 331                        rc = audit_uid_comparator(uid, f->op, n->uid);
 332                        if (rc)
 333                                return rc;
 334                }
 335        }
 336        return 0;
 337}
 338
 339static int audit_compare_gid(kgid_t gid,
 340                             struct audit_names *name,
 341                             struct audit_field *f,
 342                             struct audit_context *ctx)
 343{
 344        struct audit_names *n;
 345        int rc;
 346 
 347        if (name) {
 348                rc = audit_gid_comparator(gid, f->op, name->gid);
 349                if (rc)
 350                        return rc;
 351        }
 352 
 353        if (ctx) {
 354                list_for_each_entry(n, &ctx->names_list, list) {
 355                        rc = audit_gid_comparator(gid, f->op, n->gid);
 356                        if (rc)
 357                                return rc;
 358                }
 359        }
 360        return 0;
 361}
 362
 363static int audit_field_compare(struct task_struct *tsk,
 364                               const struct cred *cred,
 365                               struct audit_field *f,
 366                               struct audit_context *ctx,
 367                               struct audit_names *name)
 368{
 369        switch (f->val) {
 370        /* process to file object comparisons */
 371        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 372                return audit_compare_uid(cred->uid, name, f, ctx);
 373        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 374                return audit_compare_gid(cred->gid, name, f, ctx);
 375        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 376                return audit_compare_uid(cred->euid, name, f, ctx);
 377        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 378                return audit_compare_gid(cred->egid, name, f, ctx);
 379        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 380                return audit_compare_uid(tsk->loginuid, name, f, ctx);
 381        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 382                return audit_compare_uid(cred->suid, name, f, ctx);
 383        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 384                return audit_compare_gid(cred->sgid, name, f, ctx);
 385        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 386                return audit_compare_uid(cred->fsuid, name, f, ctx);
 387        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 388                return audit_compare_gid(cred->fsgid, name, f, ctx);
 389        /* uid comparisons */
 390        case AUDIT_COMPARE_UID_TO_AUID:
 391                return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 392        case AUDIT_COMPARE_UID_TO_EUID:
 393                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 394        case AUDIT_COMPARE_UID_TO_SUID:
 395                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 396        case AUDIT_COMPARE_UID_TO_FSUID:
 397                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 398        /* auid comparisons */
 399        case AUDIT_COMPARE_AUID_TO_EUID:
 400                return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 401        case AUDIT_COMPARE_AUID_TO_SUID:
 402                return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 403        case AUDIT_COMPARE_AUID_TO_FSUID:
 404                return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 405        /* euid comparisons */
 406        case AUDIT_COMPARE_EUID_TO_SUID:
 407                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 408        case AUDIT_COMPARE_EUID_TO_FSUID:
 409                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 410        /* suid comparisons */
 411        case AUDIT_COMPARE_SUID_TO_FSUID:
 412                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 413        /* gid comparisons */
 414        case AUDIT_COMPARE_GID_TO_EGID:
 415                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 416        case AUDIT_COMPARE_GID_TO_SGID:
 417                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 418        case AUDIT_COMPARE_GID_TO_FSGID:
 419                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 420        /* egid comparisons */
 421        case AUDIT_COMPARE_EGID_TO_SGID:
 422                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 423        case AUDIT_COMPARE_EGID_TO_FSGID:
 424                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 425        /* sgid comparison */
 426        case AUDIT_COMPARE_SGID_TO_FSGID:
 427                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 428        default:
 429                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 430                return 0;
 431        }
 432        return 0;
 433}
 434
 435/* Determine if any context name data matches a rule's watch data */
 436/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 437 * otherwise.
 438 *
 439 * If task_creation is true, this is an explicit indication that we are
 440 * filtering a task rule at task creation time.  This and tsk == current are
 441 * the only situations where tsk->cred may be accessed without an rcu read lock.
 442 */
 443static int audit_filter_rules(struct task_struct *tsk,
 444                              struct audit_krule *rule,
 445                              struct audit_context *ctx,
 446                              struct audit_names *name,
 447                              enum audit_state *state,
 448                              bool task_creation)
 449{
 450        const struct cred *cred;
 451        int i, need_sid = 1;
 452        u32 sid;
 453
 454        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 455
 456        for (i = 0; i < rule->field_count; i++) {
 457                struct audit_field *f = &rule->fields[i];
 458                struct audit_names *n;
 459                int result = 0;
 460                pid_t pid;
 461
 462                switch (f->type) {
 463                case AUDIT_PID:
 464                        pid = task_pid_nr(tsk);
 465                        result = audit_comparator(pid, f->op, f->val);
 466                        break;
 467                case AUDIT_PPID:
 468                        if (ctx) {
 469                                if (!ctx->ppid)
 470                                        ctx->ppid = task_ppid_nr(tsk);
 471                                result = audit_comparator(ctx->ppid, f->op, f->val);
 472                        }
 473                        break;
 474                case AUDIT_UID:
 475                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 476                        break;
 477                case AUDIT_EUID:
 478                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 479                        break;
 480                case AUDIT_SUID:
 481                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 482                        break;
 483                case AUDIT_FSUID:
 484                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 485                        break;
 486                case AUDIT_GID:
 487                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 488                        if (f->op == Audit_equal) {
 489                                if (!result)
 490                                        result = in_group_p(f->gid);
 491                        } else if (f->op == Audit_not_equal) {
 492                                if (result)
 493                                        result = !in_group_p(f->gid);
 494                        }
 495                        break;
 496                case AUDIT_EGID:
 497                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 498                        if (f->op == Audit_equal) {
 499                                if (!result)
 500                                        result = in_egroup_p(f->gid);
 501                        } else if (f->op == Audit_not_equal) {
 502                                if (result)
 503                                        result = !in_egroup_p(f->gid);
 504                        }
 505                        break;
 506                case AUDIT_SGID:
 507                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 508                        break;
 509                case AUDIT_FSGID:
 510                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 511                        break;
 512                case AUDIT_PERS:
 513                        result = audit_comparator(tsk->personality, f->op, f->val);
 514                        break;
 515                case AUDIT_ARCH:
 516                        if (ctx)
 517                                result = audit_comparator(ctx->arch, f->op, f->val);
 518                        break;
 519
 520                case AUDIT_EXIT:
 521                        if (ctx && ctx->return_valid)
 522                                result = audit_comparator(ctx->return_code, f->op, f->val);
 523                        break;
 524                case AUDIT_SUCCESS:
 525                        if (ctx && ctx->return_valid) {
 526                                if (f->val)
 527                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 528                                else
 529                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 530                        }
 531                        break;
 532                case AUDIT_DEVMAJOR:
 533                        if (name) {
 534                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 535                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 536                                        ++result;
 537                        } else if (ctx) {
 538                                list_for_each_entry(n, &ctx->names_list, list) {
 539                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 540                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 541                                                ++result;
 542                                                break;
 543                                        }
 544                                }
 545                        }
 546                        break;
 547                case AUDIT_DEVMINOR:
 548                        if (name) {
 549                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 550                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 551                                        ++result;
 552                        } else if (ctx) {
 553                                list_for_each_entry(n, &ctx->names_list, list) {
 554                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 555                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 556                                                ++result;
 557                                                break;
 558                                        }
 559                                }
 560                        }
 561                        break;
 562                case AUDIT_INODE:
 563                        if (name)
 564                                result = audit_comparator(name->ino, f->op, f->val);
 565                        else if (ctx) {
 566                                list_for_each_entry(n, &ctx->names_list, list) {
 567                                        if (audit_comparator(n->ino, f->op, f->val)) {
 568                                                ++result;
 569                                                break;
 570                                        }
 571                                }
 572                        }
 573                        break;
 574                case AUDIT_OBJ_UID:
 575                        if (name) {
 576                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 577                        } else if (ctx) {
 578                                list_for_each_entry(n, &ctx->names_list, list) {
 579                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 580                                                ++result;
 581                                                break;
 582                                        }
 583                                }
 584                        }
 585                        break;
 586                case AUDIT_OBJ_GID:
 587                        if (name) {
 588                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 589                        } else if (ctx) {
 590                                list_for_each_entry(n, &ctx->names_list, list) {
 591                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 592                                                ++result;
 593                                                break;
 594                                        }
 595                                }
 596                        }
 597                        break;
 598                case AUDIT_WATCH:
 599                        if (name)
 600                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 601                        break;
 602                case AUDIT_DIR:
 603                        if (ctx)
 604                                result = match_tree_refs(ctx, rule->tree);
 605                        break;
 606                case AUDIT_LOGINUID:
 607                        result = 0;
 608                        if (ctx)
 609                                result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 610                        break;
 611                case AUDIT_LOGINUID_SET:
 612                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 613                        break;
 614                case AUDIT_SUBJ_USER:
 615                case AUDIT_SUBJ_ROLE:
 616                case AUDIT_SUBJ_TYPE:
 617                case AUDIT_SUBJ_SEN:
 618                case AUDIT_SUBJ_CLR:
 619                        /* NOTE: this may return negative values indicating
 620                           a temporary error.  We simply treat this as a
 621                           match for now to avoid losing information that
 622                           may be wanted.   An error message will also be
 623                           logged upon error */
 624                        if (f->lsm_rule) {
 625                                if (need_sid) {
 626                                        security_task_getsecid(tsk, &sid);
 627                                        need_sid = 0;
 628                                }
 629                                result = security_audit_rule_match(sid, f->type,
 630                                                                  f->op,
 631                                                                  f->lsm_rule,
 632                                                                  ctx);
 633                        }
 634                        break;
 635                case AUDIT_OBJ_USER:
 636                case AUDIT_OBJ_ROLE:
 637                case AUDIT_OBJ_TYPE:
 638                case AUDIT_OBJ_LEV_LOW:
 639                case AUDIT_OBJ_LEV_HIGH:
 640                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 641                           also applies here */
 642                        if (f->lsm_rule) {
 643                                /* Find files that match */
 644                                if (name) {
 645                                        result = security_audit_rule_match(
 646                                                   name->osid, f->type, f->op,
 647                                                   f->lsm_rule, ctx);
 648                                } else if (ctx) {
 649                                        list_for_each_entry(n, &ctx->names_list, list) {
 650                                                if (security_audit_rule_match(n->osid, f->type,
 651                                                                              f->op, f->lsm_rule,
 652                                                                              ctx)) {
 653                                                        ++result;
 654                                                        break;
 655                                                }
 656                                        }
 657                                }
 658                                /* Find ipc objects that match */
 659                                if (!ctx || ctx->type != AUDIT_IPC)
 660                                        break;
 661                                if (security_audit_rule_match(ctx->ipc.osid,
 662                                                              f->type, f->op,
 663                                                              f->lsm_rule, ctx))
 664                                        ++result;
 665                        }
 666                        break;
 667                case AUDIT_ARG0:
 668                case AUDIT_ARG1:
 669                case AUDIT_ARG2:
 670                case AUDIT_ARG3:
 671                        if (ctx)
 672                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 673                        break;
 674                case AUDIT_FILTERKEY:
 675                        /* ignore this field for filtering */
 676                        result = 1;
 677                        break;
 678                case AUDIT_PERM:
 679                        result = audit_match_perm(ctx, f->val);
 680                        break;
 681                case AUDIT_FILETYPE:
 682                        result = audit_match_filetype(ctx, f->val);
 683                        break;
 684                case AUDIT_FIELD_COMPARE:
 685                        result = audit_field_compare(tsk, cred, f, ctx, name);
 686                        break;
 687                }
 688                if (!result)
 689                        return 0;
 690        }
 691
 692        if (ctx) {
 693                if (rule->prio <= ctx->prio)
 694                        return 0;
 695                if (rule->filterkey) {
 696                        kfree(ctx->filterkey);
 697                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 698                }
 699                ctx->prio = rule->prio;
 700        }
 701        switch (rule->action) {
 702        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 703        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 704        }
 705        return 1;
 706}
 707
 708/* At process creation time, we can determine if system-call auditing is
 709 * completely disabled for this task.  Since we only have the task
 710 * structure at this point, we can only check uid and gid.
 711 */
 712static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 713{
 714        struct audit_entry *e;
 715        enum audit_state   state;
 716
 717        rcu_read_lock();
 718        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 719                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 720                                       &state, true)) {
 721                        if (state == AUDIT_RECORD_CONTEXT)
 722                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 723                        rcu_read_unlock();
 724                        return state;
 725                }
 726        }
 727        rcu_read_unlock();
 728        return AUDIT_BUILD_CONTEXT;
 729}
 730
 731/* At syscall entry and exit time, this filter is called if the
 732 * audit_state is not low enough that auditing cannot take place, but is
 733 * also not high enough that we already know we have to write an audit
 734 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 735 */
 736static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 737                                             struct audit_context *ctx,
 738                                             struct list_head *list)
 739{
 740        struct audit_entry *e;
 741        enum audit_state state;
 742
 743        if (audit_pid && tsk->tgid == audit_pid)
 744                return AUDIT_DISABLED;
 745
 746        rcu_read_lock();
 747        if (!list_empty(list)) {
 748                int word = AUDIT_WORD(ctx->major);
 749                int bit  = AUDIT_BIT(ctx->major);
 750
 751                list_for_each_entry_rcu(e, list, list) {
 752                        if ((e->rule.mask[word] & bit) == bit &&
 753                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 754                                               &state, false)) {
 755                                rcu_read_unlock();
 756                                ctx->current_state = state;
 757                                return state;
 758                        }
 759                }
 760        }
 761        rcu_read_unlock();
 762        return AUDIT_BUILD_CONTEXT;
 763}
 764
 765/*
 766 * Given an audit_name check the inode hash table to see if they match.
 767 * Called holding the rcu read lock to protect the use of audit_inode_hash
 768 */
 769static int audit_filter_inode_name(struct task_struct *tsk,
 770                                   struct audit_names *n,
 771                                   struct audit_context *ctx) {
 772        int word, bit;
 773        int h = audit_hash_ino((u32)n->ino);
 774        struct list_head *list = &audit_inode_hash[h];
 775        struct audit_entry *e;
 776        enum audit_state state;
 777
 778        word = AUDIT_WORD(ctx->major);
 779        bit  = AUDIT_BIT(ctx->major);
 780
 781        if (list_empty(list))
 782                return 0;
 783
 784        list_for_each_entry_rcu(e, list, list) {
 785                if ((e->rule.mask[word] & bit) == bit &&
 786                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 787                        ctx->current_state = state;
 788                        return 1;
 789                }
 790        }
 791
 792        return 0;
 793}
 794
 795/* At syscall exit time, this filter is called if any audit_names have been
 796 * collected during syscall processing.  We only check rules in sublists at hash
 797 * buckets applicable to the inode numbers in audit_names.
 798 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 799 */
 800void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 801{
 802        struct audit_names *n;
 803
 804        if (audit_pid && tsk->tgid == audit_pid)
 805                return;
 806
 807        rcu_read_lock();
 808
 809        list_for_each_entry(n, &ctx->names_list, list) {
 810                if (audit_filter_inode_name(tsk, n, ctx))
 811                        break;
 812        }
 813        rcu_read_unlock();
 814}
 815
 816/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 817static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 818                                                      int return_valid,
 819                                                      long return_code)
 820{
 821        struct audit_context *context = tsk->audit_context;
 822
 823        if (!context)
 824                return NULL;
 825        context->return_valid = return_valid;
 826
 827        /*
 828         * we need to fix up the return code in the audit logs if the actual
 829         * return codes are later going to be fixed up by the arch specific
 830         * signal handlers
 831         *
 832         * This is actually a test for:
 833         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 834         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 835         *
 836         * but is faster than a bunch of ||
 837         */
 838        if (unlikely(return_code <= -ERESTARTSYS) &&
 839            (return_code >= -ERESTART_RESTARTBLOCK) &&
 840            (return_code != -ENOIOCTLCMD))
 841                context->return_code = -EINTR;
 842        else
 843                context->return_code  = return_code;
 844
 845        if (context->in_syscall && !context->dummy) {
 846                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 847                audit_filter_inodes(tsk, context);
 848        }
 849
 850        tsk->audit_context = NULL;
 851        return context;
 852}
 853
 854static inline void audit_proctitle_free(struct audit_context *context)
 855{
 856        kfree(context->proctitle.value);
 857        context->proctitle.value = NULL;
 858        context->proctitle.len = 0;
 859}
 860
 861static inline void audit_free_names(struct audit_context *context)
 862{
 863        struct audit_names *n, *next;
 864
 865#if AUDIT_DEBUG == 2
 866        if (context->put_count + context->ino_count != context->name_count) {
 867                int i = 0;
 868
 869                pr_err("%s:%d(:%d): major=%d in_syscall=%d"
 870                       " name_count=%d put_count=%d ino_count=%d"
 871                       " [NOT freeing]\n", __FILE__, __LINE__,
 872                       context->serial, context->major, context->in_syscall,
 873                       context->name_count, context->put_count,
 874                       context->ino_count);
 875                list_for_each_entry(n, &context->names_list, list) {
 876                        pr_err("names[%d] = %p = %s\n", i++, n->name,
 877                               n->name->name ?: "(null)");
 878                }
 879                dump_stack();
 880                return;
 881        }
 882#endif
 883#if AUDIT_DEBUG
 884        context->put_count  = 0;
 885        context->ino_count  = 0;
 886#endif
 887
 888        list_for_each_entry_safe(n, next, &context->names_list, list) {
 889                list_del(&n->list);
 890                if (n->name && n->name_put)
 891                        final_putname(n->name);
 892                if (n->should_free)
 893                        kfree(n);
 894        }
 895        context->name_count = 0;
 896        path_put(&context->pwd);
 897        context->pwd.dentry = NULL;
 898        context->pwd.mnt = NULL;
 899}
 900
 901static inline void audit_free_aux(struct audit_context *context)
 902{
 903        struct audit_aux_data *aux;
 904
 905        while ((aux = context->aux)) {
 906                context->aux = aux->next;
 907                kfree(aux);
 908        }
 909        while ((aux = context->aux_pids)) {
 910                context->aux_pids = aux->next;
 911                kfree(aux);
 912        }
 913}
 914
 915static inline struct audit_context *audit_alloc_context(enum audit_state state)
 916{
 917        struct audit_context *context;
 918
 919        context = kzalloc(sizeof(*context), GFP_KERNEL);
 920        if (!context)
 921                return NULL;
 922        context->state = state;
 923        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 924        INIT_LIST_HEAD(&context->killed_trees);
 925        INIT_LIST_HEAD(&context->names_list);
 926        return context;
 927}
 928
 929/**
 930 * audit_alloc - allocate an audit context block for a task
 931 * @tsk: task
 932 *
 933 * Filter on the task information and allocate a per-task audit context
 934 * if necessary.  Doing so turns on system call auditing for the
 935 * specified task.  This is called from copy_process, so no lock is
 936 * needed.
 937 */
 938int audit_alloc(struct task_struct *tsk)
 939{
 940        struct audit_context *context;
 941        enum audit_state     state;
 942        char *key = NULL;
 943
 944        if (likely(!audit_ever_enabled))
 945                return 0; /* Return if not auditing. */
 946
 947        state = audit_filter_task(tsk, &key);
 948        if (state == AUDIT_DISABLED) {
 949                clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 950                return 0;
 951        }
 952
 953        if (!(context = audit_alloc_context(state))) {
 954                kfree(key);
 955                audit_log_lost("out of memory in audit_alloc");
 956                return -ENOMEM;
 957        }
 958        context->filterkey = key;
 959
 960        tsk->audit_context  = context;
 961        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 962        return 0;
 963}
 964
 965static inline void audit_free_context(struct audit_context *context)
 966{
 967        audit_free_names(context);
 968        unroll_tree_refs(context, NULL, 0);
 969        free_tree_refs(context);
 970        audit_free_aux(context);
 971        kfree(context->filterkey);
 972        kfree(context->sockaddr);
 973        audit_proctitle_free(context);
 974        kfree(context);
 975}
 976
 977static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 978                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
 979                                 u32 sid, char *comm)
 980{
 981        struct audit_buffer *ab;
 982        char *ctx = NULL;
 983        u32 len;
 984        int rc = 0;
 985
 986        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 987        if (!ab)
 988                return rc;
 989
 990        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 991                         from_kuid(&init_user_ns, auid),
 992                         from_kuid(&init_user_ns, uid), sessionid);
 993        if (sid) {
 994                if (security_secid_to_secctx(sid, &ctx, &len)) {
 995                        audit_log_format(ab, " obj=(none)");
 996                        rc = 1;
 997                } else {
 998                        audit_log_format(ab, " obj=%s", ctx);
 999                        security_release_secctx(ctx, len);
1000                }
1001        }
1002        audit_log_format(ab, " ocomm=");
1003        audit_log_untrustedstring(ab, comm);
1004        audit_log_end(ab);
1005
1006        return rc;
1007}
1008
1009/*
1010 * to_send and len_sent accounting are very loose estimates.  We aren't
1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1012 * within about 500 bytes (next page boundary)
1013 *
1014 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1015 * logging that a[%d]= was going to be 16 characters long we would be wasting
1016 * space in every audit message.  In one 7500 byte message we can log up to
1017 * about 1000 min size arguments.  That comes down to about 50% waste of space
1018 * if we didn't do the snprintf to find out how long arg_num_len was.
1019 */
1020static int audit_log_single_execve_arg(struct audit_context *context,
1021                                        struct audit_buffer **ab,
1022                                        int arg_num,
1023                                        size_t *len_sent,
1024                                        const char __user *p,
1025                                        char *buf)
1026{
1027        char arg_num_len_buf[12];
1028        const char __user *tmp_p = p;
1029        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1030        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1031        size_t len, len_left, to_send;
1032        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1033        unsigned int i, has_cntl = 0, too_long = 0;
1034        int ret;
1035
1036        /* strnlen_user includes the null we don't want to send */
1037        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1038
1039        /*
1040         * We just created this mm, if we can't find the strings
1041         * we just copied into it something is _very_ wrong. Similar
1042         * for strings that are too long, we should not have created
1043         * any.
1044         */
1045        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1046                WARN_ON(1);
1047                send_sig(SIGKILL, current, 0);
1048                return -1;
1049        }
1050
1051        /* walk the whole argument looking for non-ascii chars */
1052        do {
1053                if (len_left > MAX_EXECVE_AUDIT_LEN)
1054                        to_send = MAX_EXECVE_AUDIT_LEN;
1055                else
1056                        to_send = len_left;
1057                ret = copy_from_user(buf, tmp_p, to_send);
1058                /*
1059                 * There is no reason for this copy to be short. We just
1060                 * copied them here, and the mm hasn't been exposed to user-
1061                 * space yet.
1062                 */
1063                if (ret) {
1064                        WARN_ON(1);
1065                        send_sig(SIGKILL, current, 0);
1066                        return -1;
1067                }
1068                buf[to_send] = '\0';
1069                has_cntl = audit_string_contains_control(buf, to_send);
1070                if (has_cntl) {
1071                        /*
1072                         * hex messages get logged as 2 bytes, so we can only
1073                         * send half as much in each message
1074                         */
1075                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1076                        break;
1077                }
1078                len_left -= to_send;
1079                tmp_p += to_send;
1080        } while (len_left > 0);
1081
1082        len_left = len;
1083
1084        if (len > max_execve_audit_len)
1085                too_long = 1;
1086
1087        /* rewalk the argument actually logging the message */
1088        for (i = 0; len_left > 0; i++) {
1089                int room_left;
1090
1091                if (len_left > max_execve_audit_len)
1092                        to_send = max_execve_audit_len;
1093                else
1094                        to_send = len_left;
1095
1096                /* do we have space left to send this argument in this ab? */
1097                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1098                if (has_cntl)
1099                        room_left -= (to_send * 2);
1100                else
1101                        room_left -= to_send;
1102                if (room_left < 0) {
1103                        *len_sent = 0;
1104                        audit_log_end(*ab);
1105                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1106                        if (!*ab)
1107                                return 0;
1108                }
1109
1110                /*
1111                 * first record needs to say how long the original string was
1112                 * so we can be sure nothing was lost.
1113                 */
1114                if ((i == 0) && (too_long))
1115                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1116                                         has_cntl ? 2*len : len);
1117
1118                /*
1119                 * normally arguments are small enough to fit and we already
1120                 * filled buf above when we checked for control characters
1121                 * so don't bother with another copy_from_user
1122                 */
1123                if (len >= max_execve_audit_len)
1124                        ret = copy_from_user(buf, p, to_send);
1125                else
1126                        ret = 0;
1127                if (ret) {
1128                        WARN_ON(1);
1129                        send_sig(SIGKILL, current, 0);
1130                        return -1;
1131                }
1132                buf[to_send] = '\0';
1133
1134                /* actually log it */
1135                audit_log_format(*ab, " a%d", arg_num);
1136                if (too_long)
1137                        audit_log_format(*ab, "[%d]", i);
1138                audit_log_format(*ab, "=");
1139                if (has_cntl)
1140                        audit_log_n_hex(*ab, buf, to_send);
1141                else
1142                        audit_log_string(*ab, buf);
1143
1144                p += to_send;
1145                len_left -= to_send;
1146                *len_sent += arg_num_len;
1147                if (has_cntl)
1148                        *len_sent += to_send * 2;
1149                else
1150                        *len_sent += to_send;
1151        }
1152        /* include the null we didn't log */
1153        return len + 1;
1154}
1155
1156static void audit_log_execve_info(struct audit_context *context,
1157                                  struct audit_buffer **ab)
1158{
1159        int i, len;
1160        size_t len_sent = 0;
1161        const char __user *p;
1162        char *buf;
1163
1164        p = (const char __user *)current->mm->arg_start;
1165
1166        audit_log_format(*ab, "argc=%d", context->execve.argc);
1167
1168        /*
1169         * we need some kernel buffer to hold the userspace args.  Just
1170         * allocate one big one rather than allocating one of the right size
1171         * for every single argument inside audit_log_single_execve_arg()
1172         * should be <8k allocation so should be pretty safe.
1173         */
1174        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1175        if (!buf) {
1176                audit_panic("out of memory for argv string");
1177                return;
1178        }
1179
1180        for (i = 0; i < context->execve.argc; i++) {
1181                len = audit_log_single_execve_arg(context, ab, i,
1182                                                  &len_sent, p, buf);
1183                if (len <= 0)
1184                        break;
1185                p += len;
1186        }
1187        kfree(buf);
1188}
1189
1190static void show_special(struct audit_context *context, int *call_panic)
1191{
1192        struct audit_buffer *ab;
1193        int i;
1194
1195        ab = audit_log_start(context, GFP_KERNEL, context->type);
1196        if (!ab)
1197                return;
1198
1199        switch (context->type) {
1200        case AUDIT_SOCKETCALL: {
1201                int nargs = context->socketcall.nargs;
1202                audit_log_format(ab, "nargs=%d", nargs);
1203                for (i = 0; i < nargs; i++)
1204                        audit_log_format(ab, " a%d=%lx", i,
1205                                context->socketcall.args[i]);
1206                break; }
1207        case AUDIT_IPC: {
1208                u32 osid = context->ipc.osid;
1209
1210                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1211                                 from_kuid(&init_user_ns, context->ipc.uid),
1212                                 from_kgid(&init_user_ns, context->ipc.gid),
1213                                 context->ipc.mode);
1214                if (osid) {
1215                        char *ctx = NULL;
1216                        u32 len;
1217                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1218                                audit_log_format(ab, " osid=%u", osid);
1219                                *call_panic = 1;
1220                        } else {
1221                                audit_log_format(ab, " obj=%s", ctx);
1222                                security_release_secctx(ctx, len);
1223                        }
1224                }
1225                if (context->ipc.has_perm) {
1226                        audit_log_end(ab);
1227                        ab = audit_log_start(context, GFP_KERNEL,
1228                                             AUDIT_IPC_SET_PERM);
1229                        if (unlikely(!ab))
1230                                return;
1231                        audit_log_format(ab,
1232                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1233                                context->ipc.qbytes,
1234                                context->ipc.perm_uid,
1235                                context->ipc.perm_gid,
1236                                context->ipc.perm_mode);
1237                }
1238                break; }
1239        case AUDIT_MQ_OPEN: {
1240                audit_log_format(ab,
1241                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1242                        "mq_msgsize=%ld mq_curmsgs=%ld",
1243                        context->mq_open.oflag, context->mq_open.mode,
1244                        context->mq_open.attr.mq_flags,
1245                        context->mq_open.attr.mq_maxmsg,
1246                        context->mq_open.attr.mq_msgsize,
1247                        context->mq_open.attr.mq_curmsgs);
1248                break; }
1249        case AUDIT_MQ_SENDRECV: {
1250                audit_log_format(ab,
1251                        "mqdes=%d msg_len=%zd msg_prio=%u "
1252                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1253                        context->mq_sendrecv.mqdes,
1254                        context->mq_sendrecv.msg_len,
1255                        context->mq_sendrecv.msg_prio,
1256                        context->mq_sendrecv.abs_timeout.tv_sec,
1257                        context->mq_sendrecv.abs_timeout.tv_nsec);
1258                break; }
1259        case AUDIT_MQ_NOTIFY: {
1260                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1261                                context->mq_notify.mqdes,
1262                                context->mq_notify.sigev_signo);
1263                break; }
1264        case AUDIT_MQ_GETSETATTR: {
1265                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1266                audit_log_format(ab,
1267                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1268                        "mq_curmsgs=%ld ",
1269                        context->mq_getsetattr.mqdes,
1270                        attr->mq_flags, attr->mq_maxmsg,
1271                        attr->mq_msgsize, attr->mq_curmsgs);
1272                break; }
1273        case AUDIT_CAPSET: {
1274                audit_log_format(ab, "pid=%d", context->capset.pid);
1275                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1276                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1277                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1278                break; }
1279        case AUDIT_MMAP: {
1280                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1281                                 context->mmap.flags);
1282                break; }
1283        case AUDIT_EXECVE: {
1284                audit_log_execve_info(context, &ab);
1285                break; }
1286        }
1287        audit_log_end(ab);
1288}
1289
1290static inline int audit_proctitle_rtrim(char *proctitle, int len)
1291{
1292        char *end = proctitle + len - 1;
1293        while (end > proctitle && !isprint(*end))
1294                end--;
1295
1296        /* catch the case where proctitle is only 1 non-print character */
1297        len = end - proctitle + 1;
1298        len -= isprint(proctitle[len-1]) == 0;
1299        return len;
1300}
1301
1302static void audit_log_proctitle(struct task_struct *tsk,
1303                         struct audit_context *context)
1304{
1305        int res;
1306        char *buf;
1307        char *msg = "(null)";
1308        int len = strlen(msg);
1309        struct audit_buffer *ab;
1310
1311        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1312        if (!ab)
1313                return; /* audit_panic or being filtered */
1314
1315        audit_log_format(ab, "proctitle=");
1316
1317        /* Not  cached */
1318        if (!context->proctitle.value) {
1319                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1320                if (!buf)
1321                        goto out;
1322                /* Historically called this from procfs naming */
1323                res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1324                if (res == 0) {
1325                        kfree(buf);
1326                        goto out;
1327                }
1328                res = audit_proctitle_rtrim(buf, res);
1329                if (res == 0) {
1330                        kfree(buf);
1331                        goto out;
1332                }
1333                context->proctitle.value = buf;
1334                context->proctitle.len = res;
1335        }
1336        msg = context->proctitle.value;
1337        len = context->proctitle.len;
1338out:
1339        audit_log_n_untrustedstring(ab, msg, len);
1340        audit_log_end(ab);
1341}
1342
1343static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1344{
1345        int i, call_panic = 0;
1346        struct audit_buffer *ab;
1347        struct audit_aux_data *aux;
1348        struct audit_names *n;
1349
1350        /* tsk == current */
1351        context->personality = tsk->personality;
1352
1353        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1354        if (!ab)
1355                return;         /* audit_panic has been called */
1356        audit_log_format(ab, "arch=%x syscall=%d",
1357                         context->arch, context->major);
1358        if (context->personality != PER_LINUX)
1359                audit_log_format(ab, " per=%lx", context->personality);
1360        if (context->return_valid)
1361                audit_log_format(ab, " success=%s exit=%ld",
1362                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1363                                 context->return_code);
1364
1365        audit_log_format(ab,
1366                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1367                         context->argv[0],
1368                         context->argv[1],
1369                         context->argv[2],
1370                         context->argv[3],
1371                         context->name_count);
1372
1373        audit_log_task_info(ab, tsk);
1374        audit_log_key(ab, context->filterkey);
1375        audit_log_end(ab);
1376
1377        for (aux = context->aux; aux; aux = aux->next) {
1378
1379                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1380                if (!ab)
1381                        continue; /* audit_panic has been called */
1382
1383                switch (aux->type) {
1384
1385                case AUDIT_BPRM_FCAPS: {
1386                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1387                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1388                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1389                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1390                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1391                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1392                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1393                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1394                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1395                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1396                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1397                        break; }
1398
1399                }
1400                audit_log_end(ab);
1401        }
1402
1403        if (context->type)
1404                show_special(context, &call_panic);
1405
1406        if (context->fds[0] >= 0) {
1407                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1408                if (ab) {
1409                        audit_log_format(ab, "fd0=%d fd1=%d",
1410                                        context->fds[0], context->fds[1]);
1411                        audit_log_end(ab);
1412                }
1413        }
1414
1415        if (context->sockaddr_len) {
1416                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1417                if (ab) {
1418                        audit_log_format(ab, "saddr=");
1419                        audit_log_n_hex(ab, (void *)context->sockaddr,
1420                                        context->sockaddr_len);
1421                        audit_log_end(ab);
1422                }
1423        }
1424
1425        for (aux = context->aux_pids; aux; aux = aux->next) {
1426                struct audit_aux_data_pids *axs = (void *)aux;
1427
1428                for (i = 0; i < axs->pid_count; i++)
1429                        if (audit_log_pid_context(context, axs->target_pid[i],
1430                                                  axs->target_auid[i],
1431                                                  axs->target_uid[i],
1432                                                  axs->target_sessionid[i],
1433                                                  axs->target_sid[i],
1434                                                  axs->target_comm[i]))
1435                                call_panic = 1;
1436        }
1437
1438        if (context->target_pid &&
1439            audit_log_pid_context(context, context->target_pid,
1440                                  context->target_auid, context->target_uid,
1441                                  context->target_sessionid,
1442                                  context->target_sid, context->target_comm))
1443                        call_panic = 1;
1444
1445        if (context->pwd.dentry && context->pwd.mnt) {
1446                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1447                if (ab) {
1448                        audit_log_d_path(ab, " cwd=", &context->pwd);
1449                        audit_log_end(ab);
1450                }
1451        }
1452
1453        i = 0;
1454        list_for_each_entry(n, &context->names_list, list) {
1455                if (n->hidden)
1456                        continue;
1457                audit_log_name(context, n, NULL, i++, &call_panic);
1458        }
1459
1460        audit_log_proctitle(tsk, context);
1461
1462        /* Send end of event record to help user space know we are finished */
1463        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1464        if (ab)
1465                audit_log_end(ab);
1466        if (call_panic)
1467                audit_panic("error converting sid to string");
1468}
1469
1470/**
1471 * audit_free - free a per-task audit context
1472 * @tsk: task whose audit context block to free
1473 *
1474 * Called from copy_process and do_exit
1475 */
1476void __audit_free(struct task_struct *tsk)
1477{
1478        struct audit_context *context;
1479
1480        context = audit_take_context(tsk, 0, 0);
1481        if (!context)
1482                return;
1483
1484        /* Check for system calls that do not go through the exit
1485         * function (e.g., exit_group), then free context block.
1486         * We use GFP_ATOMIC here because we might be doing this
1487         * in the context of the idle thread */
1488        /* that can happen only if we are called from do_exit() */
1489        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1490                audit_log_exit(context, tsk);
1491        if (!list_empty(&context->killed_trees))
1492                audit_kill_trees(&context->killed_trees);
1493
1494        audit_free_context(context);
1495}
1496
1497/**
1498 * audit_syscall_entry - fill in an audit record at syscall entry
1499 * @arch: architecture type
1500 * @major: major syscall type (function)
1501 * @a1: additional syscall register 1
1502 * @a2: additional syscall register 2
1503 * @a3: additional syscall register 3
1504 * @a4: additional syscall register 4
1505 *
1506 * Fill in audit context at syscall entry.  This only happens if the
1507 * audit context was created when the task was created and the state or
1508 * filters demand the audit context be built.  If the state from the
1509 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1510 * then the record will be written at syscall exit time (otherwise, it
1511 * will only be written if another part of the kernel requests that it
1512 * be written).
1513 */
1514void __audit_syscall_entry(int arch, int major,
1515                         unsigned long a1, unsigned long a2,
1516                         unsigned long a3, unsigned long a4)
1517{
1518        struct task_struct *tsk = current;
1519        struct audit_context *context = tsk->audit_context;
1520        enum audit_state     state;
1521
1522        if (!context)
1523                return;
1524
1525        BUG_ON(context->in_syscall || context->name_count);
1526
1527        if (!audit_enabled)
1528                return;
1529
1530        context->arch       = arch;
1531        context->major      = major;
1532        context->argv[0]    = a1;
1533        context->argv[1]    = a2;
1534        context->argv[2]    = a3;
1535        context->argv[3]    = a4;
1536
1537        state = context->state;
1538        context->dummy = !audit_n_rules;
1539        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1540                context->prio = 0;
1541                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1542        }
1543        if (state == AUDIT_DISABLED)
1544                return;
1545
1546        context->serial     = 0;
1547        context->ctime      = CURRENT_TIME;
1548        context->in_syscall = 1;
1549        context->current_state  = state;
1550        context->ppid       = 0;
1551}
1552
1553/**
1554 * audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1557 *
1558 * Tear down after system call.  If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information.  In call cases,
1562 * free the names stored from getname().
1563 */
1564void __audit_syscall_exit(int success, long return_code)
1565{
1566        struct task_struct *tsk = current;
1567        struct audit_context *context;
1568
1569        if (success)
1570                success = AUDITSC_SUCCESS;
1571        else
1572                success = AUDITSC_FAILURE;
1573
1574        context = audit_take_context(tsk, success, return_code);
1575        if (!context)
1576                return;
1577
1578        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1579                audit_log_exit(context, tsk);
1580
1581        context->in_syscall = 0;
1582        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1583
1584        if (!list_empty(&context->killed_trees))
1585                audit_kill_trees(&context->killed_trees);
1586
1587        audit_free_names(context);
1588        unroll_tree_refs(context, NULL, 0);
1589        audit_free_aux(context);
1590        context->aux = NULL;
1591        context->aux_pids = NULL;
1592        context->target_pid = 0;
1593        context->target_sid = 0;
1594        context->sockaddr_len = 0;
1595        context->type = 0;
1596        context->fds[0] = -1;
1597        if (context->state != AUDIT_RECORD_CONTEXT) {
1598                kfree(context->filterkey);
1599                context->filterkey = NULL;
1600        }
1601        tsk->audit_context = context;
1602}
1603
1604static inline void handle_one(const struct inode *inode)
1605{
1606#ifdef CONFIG_AUDIT_TREE
1607        struct audit_context *context;
1608        struct audit_tree_refs *p;
1609        struct audit_chunk *chunk;
1610        int count;
1611        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1612                return;
1613        context = current->audit_context;
1614        p = context->trees;
1615        count = context->tree_count;
1616        rcu_read_lock();
1617        chunk = audit_tree_lookup(inode);
1618        rcu_read_unlock();
1619        if (!chunk)
1620                return;
1621        if (likely(put_tree_ref(context, chunk)))
1622                return;
1623        if (unlikely(!grow_tree_refs(context))) {
1624                pr_warn("out of memory, audit has lost a tree reference\n");
1625                audit_set_auditable(context);
1626                audit_put_chunk(chunk);
1627                unroll_tree_refs(context, p, count);
1628                return;
1629        }
1630        put_tree_ref(context, chunk);
1631#endif
1632}
1633
1634static void handle_path(const struct dentry *dentry)
1635{
1636#ifdef CONFIG_AUDIT_TREE
1637        struct audit_context *context;
1638        struct audit_tree_refs *p;
1639        const struct dentry *d, *parent;
1640        struct audit_chunk *drop;
1641        unsigned long seq;
1642        int count;
1643
1644        context = current->audit_context;
1645        p = context->trees;
1646        count = context->tree_count;
1647retry:
1648        drop = NULL;
1649        d = dentry;
1650        rcu_read_lock();
1651        seq = read_seqbegin(&rename_lock);
1652        for(;;) {
1653                struct inode *inode = d->d_inode;
1654                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1655                        struct audit_chunk *chunk;
1656                        chunk = audit_tree_lookup(inode);
1657                        if (chunk) {
1658                                if (unlikely(!put_tree_ref(context, chunk))) {
1659                                        drop = chunk;
1660                                        break;
1661                                }
1662                        }
1663                }
1664                parent = d->d_parent;
1665                if (parent == d)
1666                        break;
1667                d = parent;
1668        }
1669        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1670                rcu_read_unlock();
1671                if (!drop) {
1672                        /* just a race with rename */
1673                        unroll_tree_refs(context, p, count);
1674                        goto retry;
1675                }
1676                audit_put_chunk(drop);
1677                if (grow_tree_refs(context)) {
1678                        /* OK, got more space */
1679                        unroll_tree_refs(context, p, count);
1680                        goto retry;
1681                }
1682                /* too bad */
1683                pr_warn("out of memory, audit has lost a tree reference\n");
1684                unroll_tree_refs(context, p, count);
1685                audit_set_auditable(context);
1686                return;
1687        }
1688        rcu_read_unlock();
1689#endif
1690}
1691
1692static struct audit_names *audit_alloc_name(struct audit_context *context,
1693                                                unsigned char type)
1694{
1695        struct audit_names *aname;
1696
1697        if (context->name_count < AUDIT_NAMES) {
1698                aname = &context->preallocated_names[context->name_count];
1699                memset(aname, 0, sizeof(*aname));
1700        } else {
1701                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1702                if (!aname)
1703                        return NULL;
1704                aname->should_free = true;
1705        }
1706
1707        aname->ino = (unsigned long)-1;
1708        aname->type = type;
1709        list_add_tail(&aname->list, &context->names_list);
1710
1711        context->name_count++;
1712#if AUDIT_DEBUG
1713        context->ino_count++;
1714#endif
1715        return aname;
1716}
1717
1718/**
1719 * audit_reusename - fill out filename with info from existing entry
1720 * @uptr: userland ptr to pathname
1721 *
1722 * Search the audit_names list for the current audit context. If there is an
1723 * existing entry with a matching "uptr" then return the filename
1724 * associated with that audit_name. If not, return NULL.
1725 */
1726struct filename *
1727__audit_reusename(const __user char *uptr)
1728{
1729        struct audit_context *context = current->audit_context;
1730        struct audit_names *n;
1731
1732        list_for_each_entry(n, &context->names_list, list) {
1733                if (!n->name)
1734                        continue;
1735                if (n->name->uptr == uptr)
1736                        return n->name;
1737        }
1738        return NULL;
1739}
1740
1741/**
1742 * audit_getname - add a name to the list
1743 * @name: name to add
1744 *
1745 * Add a name to the list of audit names for this context.
1746 * Called from fs/namei.c:getname().
1747 */
1748void __audit_getname(struct filename *name)
1749{
1750        struct audit_context *context = current->audit_context;
1751        struct audit_names *n;
1752
1753        if (!context->in_syscall) {
1754#if AUDIT_DEBUG == 2
1755                pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756                       __FILE__, __LINE__, context->serial, name);
1757                dump_stack();
1758#endif
1759                return;
1760        }
1761
1762#if AUDIT_DEBUG
1763        /* The filename _must_ have a populated ->name */
1764        BUG_ON(!name->name);
1765#endif
1766
1767        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1768        if (!n)
1769                return;
1770
1771        n->name = name;
1772        n->name_len = AUDIT_NAME_FULL;
1773        n->name_put = true;
1774        name->aname = n;
1775
1776        if (!context->pwd.dentry)
1777                get_fs_pwd(current->fs, &context->pwd);
1778}
1779
1780/* audit_putname - intercept a putname request
1781 * @name: name to intercept and delay for putname
1782 *
1783 * If we have stored the name from getname in the audit context,
1784 * then we delay the putname until syscall exit.
1785 * Called from include/linux/fs.h:putname().
1786 */
1787void audit_putname(struct filename *name)
1788{
1789        struct audit_context *context = current->audit_context;
1790
1791        BUG_ON(!context);
1792        if (!name->aname || !context->in_syscall) {
1793#if AUDIT_DEBUG == 2
1794                pr_err("%s:%d(:%d): final_putname(%p)\n",
1795                       __FILE__, __LINE__, context->serial, name);
1796                if (context->name_count) {
1797                        struct audit_names *n;
1798                        int i = 0;
1799
1800                        list_for_each_entry(n, &context->names_list, list)
1801                                pr_err("name[%d] = %p = %s\n", i++, n->name,
1802                                       n->name->name ?: "(null)");
1803                        }
1804#endif
1805                final_putname(name);
1806        }
1807#if AUDIT_DEBUG
1808        else {
1809                ++context->put_count;
1810                if (context->put_count > context->name_count) {
1811                        pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812                               " name_count=%d put_count=%d\n",
1813                               __FILE__, __LINE__,
1814                               context->serial, context->major,
1815                               context->in_syscall, name->name,
1816                               context->name_count, context->put_count);
1817                        dump_stack();
1818                }
1819        }
1820#endif
1821}
1822
1823/**
1824 * __audit_inode - store the inode and device from a lookup
1825 * @name: name being audited
1826 * @dentry: dentry being audited
1827 * @flags: attributes for this particular entry
1828 */
1829void __audit_inode(struct filename *name, const struct dentry *dentry,
1830                   unsigned int flags)
1831{
1832        struct audit_context *context = current->audit_context;
1833        const struct inode *inode = dentry->d_inode;
1834        struct audit_names *n;
1835        bool parent = flags & AUDIT_INODE_PARENT;
1836
1837        if (!context->in_syscall)
1838                return;
1839
1840        if (!name)
1841                goto out_alloc;
1842
1843#if AUDIT_DEBUG
1844        /* The struct filename _must_ have a populated ->name */
1845        BUG_ON(!name->name);
1846#endif
1847        /*
1848         * If we have a pointer to an audit_names entry already, then we can
1849         * just use it directly if the type is correct.
1850         */
1851        n = name->aname;
1852        if (n) {
1853                if (parent) {
1854                        if (n->type == AUDIT_TYPE_PARENT ||
1855                            n->type == AUDIT_TYPE_UNKNOWN)
1856                                goto out;
1857                } else {
1858                        if (n->type != AUDIT_TYPE_PARENT)
1859                                goto out;
1860                }
1861        }
1862
1863        list_for_each_entry_reverse(n, &context->names_list, list) {
1864                /* does the name pointer match? */
1865                if (!n->name || n->name->name != name->name)
1866                        continue;
1867
1868                /* match the correct record type */
1869                if (parent) {
1870                        if (n->type == AUDIT_TYPE_PARENT ||
1871                            n->type == AUDIT_TYPE_UNKNOWN)
1872                                goto out;
1873                } else {
1874                        if (n->type != AUDIT_TYPE_PARENT)
1875                                goto out;
1876                }
1877        }
1878
1879out_alloc:
1880        /* unable to find the name from a previous getname(). Allocate a new
1881         * anonymous entry.
1882         */
1883        n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1884        if (!n)
1885                return;
1886out:
1887        if (parent) {
1888                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1889                n->type = AUDIT_TYPE_PARENT;
1890                if (flags & AUDIT_INODE_HIDDEN)
1891                        n->hidden = true;
1892        } else {
1893                n->name_len = AUDIT_NAME_FULL;
1894                n->type = AUDIT_TYPE_NORMAL;
1895        }
1896        handle_path(dentry);
1897        audit_copy_inode(n, dentry, inode);
1898}
1899
1900/**
1901 * __audit_inode_child - collect inode info for created/removed objects
1902 * @parent: inode of dentry parent
1903 * @dentry: dentry being audited
1904 * @type:   AUDIT_TYPE_* value that we're looking for
1905 *
1906 * For syscalls that create or remove filesystem objects, audit_inode
1907 * can only collect information for the filesystem object's parent.
1908 * This call updates the audit context with the child's information.
1909 * Syscalls that create a new filesystem object must be hooked after
1910 * the object is created.  Syscalls that remove a filesystem object
1911 * must be hooked prior, in order to capture the target inode during
1912 * unsuccessful attempts.
1913 */
1914void __audit_inode_child(const struct inode *parent,
1915                         const struct dentry *dentry,
1916                         const unsigned char type)
1917{
1918        struct audit_context *context = current->audit_context;
1919        const struct inode *inode = dentry->d_inode;
1920        const char *dname = dentry->d_name.name;
1921        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1922
1923        if (!context->in_syscall)
1924                return;
1925
1926        if (inode)
1927                handle_one(inode);
1928
1929        /* look for a parent entry first */
1930        list_for_each_entry(n, &context->names_list, list) {
1931                if (!n->name || n->type != AUDIT_TYPE_PARENT)
1932                        continue;
1933
1934                if (n->ino == parent->i_ino &&
1935                    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1936                        found_parent = n;
1937                        break;
1938                }
1939        }
1940
1941        /* is there a matching child entry? */
1942        list_for_each_entry(n, &context->names_list, list) {
1943                /* can only match entries that have a name */
1944                if (!n->name || n->type != type)
1945                        continue;
1946
1947                /* if we found a parent, make sure this one is a child of it */
1948                if (found_parent && (n->name != found_parent->name))
1949                        continue;
1950
1951                if (!strcmp(dname, n->name->name) ||
1952                    !audit_compare_dname_path(dname, n->name->name,
1953                                                found_parent ?
1954                                                found_parent->name_len :
1955                                                AUDIT_NAME_FULL)) {
1956                        found_child = n;
1957                        break;
1958                }
1959        }
1960
1961        if (!found_parent) {
1962                /* create a new, "anonymous" parent record */
1963                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1964                if (!n)
1965                        return;
1966                audit_copy_inode(n, NULL, parent);
1967        }
1968
1969        if (!found_child) {
1970                found_child = audit_alloc_name(context, type);
1971                if (!found_child)
1972                        return;
1973
1974                /* Re-use the name belonging to the slot for a matching parent
1975                 * directory. All names for this context are relinquished in
1976                 * audit_free_names() */
1977                if (found_parent) {
1978                        found_child->name = found_parent->name;
1979                        found_child->name_len = AUDIT_NAME_FULL;
1980                        /* don't call __putname() */
1981                        found_child->name_put = false;
1982                }
1983        }
1984        if (inode)
1985                audit_copy_inode(found_child, dentry, inode);
1986        else
1987                found_child->ino = (unsigned long)-1;
1988}
1989EXPORT_SYMBOL_GPL(__audit_inode_child);
1990
1991/**
1992 * auditsc_get_stamp - get local copies of audit_context values
1993 * @ctx: audit_context for the task
1994 * @t: timespec to store time recorded in the audit_context
1995 * @serial: serial value that is recorded in the audit_context
1996 *
1997 * Also sets the context as auditable.
1998 */
1999int auditsc_get_stamp(struct audit_context *ctx,
2000                       struct timespec *t, unsigned int *serial)
2001{
2002        if (!ctx->in_syscall)
2003                return 0;
2004        if (!ctx->serial)
2005                ctx->serial = audit_serial();
2006        t->tv_sec  = ctx->ctime.tv_sec;
2007        t->tv_nsec = ctx->ctime.tv_nsec;
2008        *serial    = ctx->serial;
2009        if (!ctx->prio) {
2010                ctx->prio = 1;
2011                ctx->current_state = AUDIT_RECORD_CONTEXT;
2012        }
2013        return 1;
2014}
2015
2016/* global counter which is incremented every time something logs in */
2017static atomic_t session_id = ATOMIC_INIT(0);
2018
2019static int audit_set_loginuid_perm(kuid_t loginuid)
2020{
2021        /* if we are unset, we don't need privs */
2022        if (!audit_loginuid_set(current))
2023                return 0;
2024        /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2025        if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2026                return -EPERM;
2027        /* it is set, you need permission */
2028        if (!capable(CAP_AUDIT_CONTROL))
2029                return -EPERM;
2030        /* reject if this is not an unset and we don't allow that */
2031        if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2032                return -EPERM;
2033        return 0;
2034}
2035
2036static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2037                                   unsigned int oldsessionid, unsigned int sessionid,
2038                                   int rc)
2039{
2040        struct audit_buffer *ab;
2041        uid_t uid, oldloginuid, loginuid;
2042
2043        if (!audit_enabled)
2044                return;
2045
2046        uid = from_kuid(&init_user_ns, task_uid(current));
2047        oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2048        loginuid = from_kuid(&init_user_ns, kloginuid),
2049
2050        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2051        if (!ab)
2052                return;
2053        audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2054        audit_log_task_context(ab);
2055        audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2056                         oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2057        audit_log_end(ab);
2058}
2059
2060/**
2061 * audit_set_loginuid - set current task's audit_context loginuid
2062 * @loginuid: loginuid value
2063 *
2064 * Returns 0.
2065 *
2066 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2067 */
2068int audit_set_loginuid(kuid_t loginuid)
2069{
2070        struct task_struct *task = current;
2071        unsigned int oldsessionid, sessionid = (unsigned int)-1;
2072        kuid_t oldloginuid;
2073        int rc;
2074
2075        oldloginuid = audit_get_loginuid(current);
2076        oldsessionid = audit_get_sessionid(current);
2077
2078        rc = audit_set_loginuid_perm(loginuid);
2079        if (rc)
2080                goto out;
2081
2082        /* are we setting or clearing? */
2083        if (uid_valid(loginuid))
2084                sessionid = (unsigned int)atomic_inc_return(&session_id);
2085
2086        task->sessionid = sessionid;
2087        task->loginuid = loginuid;
2088out:
2089        audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2090        return rc;
2091}
2092
2093/**
2094 * __audit_mq_open - record audit data for a POSIX MQ open
2095 * @oflag: open flag
2096 * @mode: mode bits
2097 * @attr: queue attributes
2098 *
2099 */
2100void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2101{
2102        struct audit_context *context = current->audit_context;
2103
2104        if (attr)
2105                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2106        else
2107                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2108
2109        context->mq_open.oflag = oflag;
2110        context->mq_open.mode = mode;
2111
2112        context->type = AUDIT_MQ_OPEN;
2113}
2114
2115/**
2116 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2117 * @mqdes: MQ descriptor
2118 * @msg_len: Message length
2119 * @msg_prio: Message priority
2120 * @abs_timeout: Message timeout in absolute time
2121 *
2122 */
2123void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2124                        const struct timespec *abs_timeout)
2125{
2126        struct audit_context *context = current->audit_context;
2127        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2128
2129        if (abs_timeout)
2130                memcpy(p, abs_timeout, sizeof(struct timespec));
2131        else
2132                memset(p, 0, sizeof(struct timespec));
2133
2134        context->mq_sendrecv.mqdes = mqdes;
2135        context->mq_sendrecv.msg_len = msg_len;
2136        context->mq_sendrecv.msg_prio = msg_prio;
2137
2138        context->type = AUDIT_MQ_SENDRECV;
2139}
2140
2141/**
2142 * __audit_mq_notify - record audit data for a POSIX MQ notify
2143 * @mqdes: MQ descriptor
2144 * @notification: Notification event
2145 *
2146 */
2147
2148void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2149{
2150        struct audit_context *context = current->audit_context;
2151
2152        if (notification)
2153                context->mq_notify.sigev_signo = notification->sigev_signo;
2154        else
2155                context->mq_notify.sigev_signo = 0;
2156
2157        context->mq_notify.mqdes = mqdes;
2158        context->type = AUDIT_MQ_NOTIFY;
2159}
2160
2161/**
2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163 * @mqdes: MQ descriptor
2164 * @mqstat: MQ flags
2165 *
2166 */
2167void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2168{
2169        struct audit_context *context = current->audit_context;
2170        context->mq_getsetattr.mqdes = mqdes;
2171        context->mq_getsetattr.mqstat = *mqstat;
2172        context->type = AUDIT_MQ_GETSETATTR;
2173}
2174
2175/**
2176 * audit_ipc_obj - record audit data for ipc object
2177 * @ipcp: ipc permissions
2178 *
2179 */
2180void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2181{
2182        struct audit_context *context = current->audit_context;
2183        context->ipc.uid = ipcp->uid;
2184        context->ipc.gid = ipcp->gid;
2185        context->ipc.mode = ipcp->mode;
2186        context->ipc.has_perm = 0;
2187        security_ipc_getsecid(ipcp, &context->ipc.osid);
2188        context->type = AUDIT_IPC;
2189}
2190
2191/**
2192 * audit_ipc_set_perm - record audit data for new ipc permissions
2193 * @qbytes: msgq bytes
2194 * @uid: msgq user id
2195 * @gid: msgq group id
2196 * @mode: msgq mode (permissions)
2197 *
2198 * Called only after audit_ipc_obj().
2199 */
2200void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2201{
2202        struct audit_context *context = current->audit_context;
2203
2204        context->ipc.qbytes = qbytes;
2205        context->ipc.perm_uid = uid;
2206        context->ipc.perm_gid = gid;
2207        context->ipc.perm_mode = mode;
2208        context->ipc.has_perm = 1;
2209}
2210
2211void __audit_bprm(struct linux_binprm *bprm)
2212{
2213        struct audit_context *context = current->audit_context;
2214
2215        context->type = AUDIT_EXECVE;
2216        context->execve.argc = bprm->argc;
2217}
2218
2219
2220/**
2221 * audit_socketcall - record audit data for sys_socketcall
2222 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2223 * @args: args array
2224 *
2225 */
2226int __audit_socketcall(int nargs, unsigned long *args)
2227{
2228        struct audit_context *context = current->audit_context;
2229
2230        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2231                return -EINVAL;
2232        context->type = AUDIT_SOCKETCALL;
2233        context->socketcall.nargs = nargs;
2234        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2235        return 0;
2236}
2237
2238/**
2239 * __audit_fd_pair - record audit data for pipe and socketpair
2240 * @fd1: the first file descriptor
2241 * @fd2: the second file descriptor
2242 *
2243 */
2244void __audit_fd_pair(int fd1, int fd2)
2245{
2246        struct audit_context *context = current->audit_context;
2247        context->fds[0] = fd1;
2248        context->fds[1] = fd2;
2249}
2250
2251/**
2252 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2253 * @len: data length in user space
2254 * @a: data address in kernel space
2255 *
2256 * Returns 0 for success or NULL context or < 0 on error.
2257 */
2258int __audit_sockaddr(int len, void *a)
2259{
2260        struct audit_context *context = current->audit_context;
2261
2262        if (!context->sockaddr) {
2263                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2264                if (!p)
2265                        return -ENOMEM;
2266                context->sockaddr = p;
2267        }
2268
2269        context->sockaddr_len = len;
2270        memcpy(context->sockaddr, a, len);
2271        return 0;
2272}
2273
2274void __audit_ptrace(struct task_struct *t)
2275{
2276        struct audit_context *context = current->audit_context;
2277
2278        context->target_pid = task_pid_nr(t);
2279        context->target_auid = audit_get_loginuid(t);
2280        context->target_uid = task_uid(t);
2281        context->target_sessionid = audit_get_sessionid(t);
2282        security_task_getsecid(t, &context->target_sid);
2283        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2284}
2285
2286/**
2287 * audit_signal_info - record signal info for shutting down audit subsystem
2288 * @sig: signal value
2289 * @t: task being signaled
2290 *
2291 * If the audit subsystem is being terminated, record the task (pid)
2292 * and uid that is doing that.
2293 */
2294int __audit_signal_info(int sig, struct task_struct *t)
2295{
2296        struct audit_aux_data_pids *axp;
2297        struct task_struct *tsk = current;
2298        struct audit_context *ctx = tsk->audit_context;
2299        kuid_t uid = current_uid(), t_uid = task_uid(t);
2300
2301        if (audit_pid && t->tgid == audit_pid) {
2302                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2303                        audit_sig_pid = task_pid_nr(tsk);
2304                        if (uid_valid(tsk->loginuid))
2305                                audit_sig_uid = tsk->loginuid;
2306                        else
2307                                audit_sig_uid = uid;
2308                        security_task_getsecid(tsk, &audit_sig_sid);
2309                }
2310                if (!audit_signals || audit_dummy_context())
2311                        return 0;
2312        }
2313
2314        /* optimize the common case by putting first signal recipient directly
2315         * in audit_context */
2316        if (!ctx->target_pid) {
2317                ctx->target_pid = task_tgid_nr(t);
2318                ctx->target_auid = audit_get_loginuid(t);
2319                ctx->target_uid = t_uid;
2320                ctx->target_sessionid = audit_get_sessionid(t);
2321                security_task_getsecid(t, &ctx->target_sid);
2322                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2323                return 0;
2324        }
2325
2326        axp = (void *)ctx->aux_pids;
2327        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2328                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2329                if (!axp)
2330                        return -ENOMEM;
2331
2332                axp->d.type = AUDIT_OBJ_PID;
2333                axp->d.next = ctx->aux_pids;
2334                ctx->aux_pids = (void *)axp;
2335        }
2336        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2337
2338        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2339        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2340        axp->target_uid[axp->pid_count] = t_uid;
2341        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2342        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2343        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2344        axp->pid_count++;
2345
2346        return 0;
2347}
2348
2349/**
2350 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2351 * @bprm: pointer to the bprm being processed
2352 * @new: the proposed new credentials
2353 * @old: the old credentials
2354 *
2355 * Simply check if the proc already has the caps given by the file and if not
2356 * store the priv escalation info for later auditing at the end of the syscall
2357 *
2358 * -Eric
2359 */
2360int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2361                           const struct cred *new, const struct cred *old)
2362{
2363        struct audit_aux_data_bprm_fcaps *ax;
2364        struct audit_context *context = current->audit_context;
2365        struct cpu_vfs_cap_data vcaps;
2366        struct dentry *dentry;
2367
2368        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2369        if (!ax)
2370                return -ENOMEM;
2371
2372        ax->d.type = AUDIT_BPRM_FCAPS;
2373        ax->d.next = context->aux;
2374        context->aux = (void *)ax;
2375
2376        dentry = dget(bprm->file->f_dentry);
2377        get_vfs_caps_from_disk(dentry, &vcaps);
2378        dput(dentry);
2379
2380        ax->fcap.permitted = vcaps.permitted;
2381        ax->fcap.inheritable = vcaps.inheritable;
2382        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2383        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2384
2385        ax->old_pcap.permitted   = old->cap_permitted;
2386        ax->old_pcap.inheritable = old->cap_inheritable;
2387        ax->old_pcap.effective   = old->cap_effective;
2388
2389        ax->new_pcap.permitted   = new->cap_permitted;
2390        ax->new_pcap.inheritable = new->cap_inheritable;
2391        ax->new_pcap.effective   = new->cap_effective;
2392        return 0;
2393}
2394
2395/**
2396 * __audit_log_capset - store information about the arguments to the capset syscall
2397 * @new: the new credentials
2398 * @old: the old (current) credentials
2399 *
2400 * Record the aguments userspace sent to sys_capset for later printing by the
2401 * audit system if applicable
2402 */
2403void __audit_log_capset(const struct cred *new, const struct cred *old)
2404{
2405        struct audit_context *context = current->audit_context;
2406        context->capset.pid = task_pid_nr(current);
2407        context->capset.cap.effective   = new->cap_effective;
2408        context->capset.cap.inheritable = new->cap_effective;
2409        context->capset.cap.permitted   = new->cap_permitted;
2410        context->type = AUDIT_CAPSET;
2411}
2412
2413void __audit_mmap_fd(int fd, int flags)
2414{
2415        struct audit_context *context = current->audit_context;
2416        context->mmap.fd = fd;
2417        context->mmap.flags = flags;
2418        context->type = AUDIT_MMAP;
2419}
2420
2421static void audit_log_task(struct audit_buffer *ab)
2422{
2423        kuid_t auid, uid;
2424        kgid_t gid;
2425        unsigned int sessionid;
2426        struct mm_struct *mm = current->mm;
2427
2428        auid = audit_get_loginuid(current);
2429        sessionid = audit_get_sessionid(current);
2430        current_uid_gid(&uid, &gid);
2431
2432        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2433                         from_kuid(&init_user_ns, auid),
2434                         from_kuid(&init_user_ns, uid),
2435                         from_kgid(&init_user_ns, gid),
2436                         sessionid);
2437        audit_log_task_context(ab);
2438        audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2439        audit_log_untrustedstring(ab, current->comm);
2440        if (mm) {
2441                down_read(&mm->mmap_sem);
2442                if (mm->exe_file)
2443                        audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2444                up_read(&mm->mmap_sem);
2445        } else
2446                audit_log_format(ab, " exe=(null)");
2447}
2448
2449/**
2450 * audit_core_dumps - record information about processes that end abnormally
2451 * @signr: signal value
2452 *
2453 * If a process ends with a core dump, something fishy is going on and we
2454 * should record the event for investigation.
2455 */
2456void audit_core_dumps(long signr)
2457{
2458        struct audit_buffer *ab;
2459
2460        if (!audit_enabled)
2461                return;
2462
2463        if (signr == SIGQUIT)   /* don't care for those */
2464                return;
2465
2466        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2467        if (unlikely(!ab))
2468                return;
2469        audit_log_task(ab);
2470        audit_log_format(ab, " sig=%ld", signr);
2471        audit_log_end(ab);
2472}
2473
2474void __audit_seccomp(unsigned long syscall, long signr, int code)
2475{
2476        struct audit_buffer *ab;
2477
2478        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2479        if (unlikely(!ab))
2480                return;
2481        audit_log_task(ab);
2482        audit_log_format(ab, " sig=%ld", signr);
2483        audit_log_format(ab, " syscall=%ld", syscall);
2484        audit_log_format(ab, " compat=%d", is_compat_task());
2485        audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2486        audit_log_format(ab, " code=0x%x", code);
2487        audit_log_end(ab);
2488}
2489
2490struct list_head *audit_killed_trees(void)
2491{
2492        struct audit_context *ctx = current->audit_context;
2493        if (likely(!ctx || !ctx->in_syscall))
2494                return NULL;
2495        return &ctx->killed_trees;
2496}
2497