linux/kernel/locking/mutex.c
<<
>>
Prefs
   1/*
   2 * kernel/locking/mutex.c
   3 *
   4 * Mutexes: blocking mutual exclusion locks
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *
  10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11 * David Howells for suggestions and improvements.
  12 *
  13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14 *    from the -rt tree, where it was originally implemented for rtmutexes
  15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16 *    and Sven Dietrich.
  17 *
  18 * Also see Documentation/mutex-design.txt.
  19 */
  20#include <linux/mutex.h>
  21#include <linux/ww_mutex.h>
  22#include <linux/sched.h>
  23#include <linux/sched/rt.h>
  24#include <linux/export.h>
  25#include <linux/spinlock.h>
  26#include <linux/interrupt.h>
  27#include <linux/debug_locks.h>
  28#include "mcs_spinlock.h"
  29
  30/*
  31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  32 * which forces all calls into the slowpath:
  33 */
  34#ifdef CONFIG_DEBUG_MUTEXES
  35# include "mutex-debug.h"
  36# include <asm-generic/mutex-null.h>
  37/*
  38 * Must be 0 for the debug case so we do not do the unlock outside of the
  39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
  40 * case.
  41 */
  42# undef __mutex_slowpath_needs_to_unlock
  43# define  __mutex_slowpath_needs_to_unlock()    0
  44#else
  45# include "mutex.h"
  46# include <asm/mutex.h>
  47#endif
  48
  49/*
  50 * A negative mutex count indicates that waiters are sleeping waiting for the
  51 * mutex.
  52 */
  53#define MUTEX_SHOW_NO_WAITER(mutex)     (atomic_read(&(mutex)->count) >= 0)
  54
  55void
  56__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  57{
  58        atomic_set(&lock->count, 1);
  59        spin_lock_init(&lock->wait_lock);
  60        INIT_LIST_HEAD(&lock->wait_list);
  61        mutex_clear_owner(lock);
  62#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  63        lock->osq = NULL;
  64#endif
  65
  66        debug_mutex_init(lock, name, key);
  67}
  68
  69EXPORT_SYMBOL(__mutex_init);
  70
  71#ifndef CONFIG_DEBUG_LOCK_ALLOC
  72/*
  73 * We split the mutex lock/unlock logic into separate fastpath and
  74 * slowpath functions, to reduce the register pressure on the fastpath.
  75 * We also put the fastpath first in the kernel image, to make sure the
  76 * branch is predicted by the CPU as default-untaken.
  77 */
  78__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
  79
  80/**
  81 * mutex_lock - acquire the mutex
  82 * @lock: the mutex to be acquired
  83 *
  84 * Lock the mutex exclusively for this task. If the mutex is not
  85 * available right now, it will sleep until it can get it.
  86 *
  87 * The mutex must later on be released by the same task that
  88 * acquired it. Recursive locking is not allowed. The task
  89 * may not exit without first unlocking the mutex. Also, kernel
  90 * memory where the mutex resides mutex must not be freed with
  91 * the mutex still locked. The mutex must first be initialized
  92 * (or statically defined) before it can be locked. memset()-ing
  93 * the mutex to 0 is not allowed.
  94 *
  95 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  96 *   checks that will enforce the restrictions and will also do
  97 *   deadlock debugging. )
  98 *
  99 * This function is similar to (but not equivalent to) down().
 100 */
 101void __sched mutex_lock(struct mutex *lock)
 102{
 103        might_sleep();
 104        /*
 105         * The locking fastpath is the 1->0 transition from
 106         * 'unlocked' into 'locked' state.
 107         */
 108        __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
 109        mutex_set_owner(lock);
 110}
 111
 112EXPORT_SYMBOL(mutex_lock);
 113#endif
 114
 115#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 116/*
 117 * In order to avoid a stampede of mutex spinners from acquiring the mutex
 118 * more or less simultaneously, the spinners need to acquire a MCS lock
 119 * first before spinning on the owner field.
 120 *
 121 */
 122
 123/*
 124 * Mutex spinning code migrated from kernel/sched/core.c
 125 */
 126
 127static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
 128{
 129        if (lock->owner != owner)
 130                return false;
 131
 132        /*
 133         * Ensure we emit the owner->on_cpu, dereference _after_ checking
 134         * lock->owner still matches owner, if that fails, owner might
 135         * point to free()d memory, if it still matches, the rcu_read_lock()
 136         * ensures the memory stays valid.
 137         */
 138        barrier();
 139
 140        return owner->on_cpu;
 141}
 142
 143/*
 144 * Look out! "owner" is an entirely speculative pointer
 145 * access and not reliable.
 146 */
 147static noinline
 148int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
 149{
 150        rcu_read_lock();
 151        while (owner_running(lock, owner)) {
 152                if (need_resched())
 153                        break;
 154
 155                arch_mutex_cpu_relax();
 156        }
 157        rcu_read_unlock();
 158
 159        /*
 160         * We break out the loop above on need_resched() and when the
 161         * owner changed, which is a sign for heavy contention. Return
 162         * success only when lock->owner is NULL.
 163         */
 164        return lock->owner == NULL;
 165}
 166
 167/*
 168 * Initial check for entering the mutex spinning loop
 169 */
 170static inline int mutex_can_spin_on_owner(struct mutex *lock)
 171{
 172        struct task_struct *owner;
 173        int retval = 1;
 174
 175        if (need_resched())
 176                return 0;
 177
 178        rcu_read_lock();
 179        owner = ACCESS_ONCE(lock->owner);
 180        if (owner)
 181                retval = owner->on_cpu;
 182        rcu_read_unlock();
 183        /*
 184         * if lock->owner is not set, the mutex owner may have just acquired
 185         * it and not set the owner yet or the mutex has been released.
 186         */
 187        return retval;
 188}
 189#endif
 190
 191__visible __used noinline
 192void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
 193
 194/**
 195 * mutex_unlock - release the mutex
 196 * @lock: the mutex to be released
 197 *
 198 * Unlock a mutex that has been locked by this task previously.
 199 *
 200 * This function must not be used in interrupt context. Unlocking
 201 * of a not locked mutex is not allowed.
 202 *
 203 * This function is similar to (but not equivalent to) up().
 204 */
 205void __sched mutex_unlock(struct mutex *lock)
 206{
 207        /*
 208         * The unlocking fastpath is the 0->1 transition from 'locked'
 209         * into 'unlocked' state:
 210         */
 211#ifndef CONFIG_DEBUG_MUTEXES
 212        /*
 213         * When debugging is enabled we must not clear the owner before time,
 214         * the slow path will always be taken, and that clears the owner field
 215         * after verifying that it was indeed current.
 216         */
 217        mutex_clear_owner(lock);
 218#endif
 219        __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
 220}
 221
 222EXPORT_SYMBOL(mutex_unlock);
 223
 224/**
 225 * ww_mutex_unlock - release the w/w mutex
 226 * @lock: the mutex to be released
 227 *
 228 * Unlock a mutex that has been locked by this task previously with any of the
 229 * ww_mutex_lock* functions (with or without an acquire context). It is
 230 * forbidden to release the locks after releasing the acquire context.
 231 *
 232 * This function must not be used in interrupt context. Unlocking
 233 * of a unlocked mutex is not allowed.
 234 */
 235void __sched ww_mutex_unlock(struct ww_mutex *lock)
 236{
 237        /*
 238         * The unlocking fastpath is the 0->1 transition from 'locked'
 239         * into 'unlocked' state:
 240         */
 241        if (lock->ctx) {
 242#ifdef CONFIG_DEBUG_MUTEXES
 243                DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 244#endif
 245                if (lock->ctx->acquired > 0)
 246                        lock->ctx->acquired--;
 247                lock->ctx = NULL;
 248        }
 249
 250#ifndef CONFIG_DEBUG_MUTEXES
 251        /*
 252         * When debugging is enabled we must not clear the owner before time,
 253         * the slow path will always be taken, and that clears the owner field
 254         * after verifying that it was indeed current.
 255         */
 256        mutex_clear_owner(&lock->base);
 257#endif
 258        __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
 259}
 260EXPORT_SYMBOL(ww_mutex_unlock);
 261
 262static inline int __sched
 263__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
 264{
 265        struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 266        struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
 267
 268        if (!hold_ctx)
 269                return 0;
 270
 271        if (unlikely(ctx == hold_ctx))
 272                return -EALREADY;
 273
 274        if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
 275            (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
 276#ifdef CONFIG_DEBUG_MUTEXES
 277                DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
 278                ctx->contending_lock = ww;
 279#endif
 280                return -EDEADLK;
 281        }
 282
 283        return 0;
 284}
 285
 286static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
 287                                                   struct ww_acquire_ctx *ww_ctx)
 288{
 289#ifdef CONFIG_DEBUG_MUTEXES
 290        /*
 291         * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 292         * but released with a normal mutex_unlock in this call.
 293         *
 294         * This should never happen, always use ww_mutex_unlock.
 295         */
 296        DEBUG_LOCKS_WARN_ON(ww->ctx);
 297
 298        /*
 299         * Not quite done after calling ww_acquire_done() ?
 300         */
 301        DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 302
 303        if (ww_ctx->contending_lock) {
 304                /*
 305                 * After -EDEADLK you tried to
 306                 * acquire a different ww_mutex? Bad!
 307                 */
 308                DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 309
 310                /*
 311                 * You called ww_mutex_lock after receiving -EDEADLK,
 312                 * but 'forgot' to unlock everything else first?
 313                 */
 314                DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 315                ww_ctx->contending_lock = NULL;
 316        }
 317
 318        /*
 319         * Naughty, using a different class will lead to undefined behavior!
 320         */
 321        DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 322#endif
 323        ww_ctx->acquired++;
 324}
 325
 326/*
 327 * after acquiring lock with fastpath or when we lost out in contested
 328 * slowpath, set ctx and wake up any waiters so they can recheck.
 329 *
 330 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
 331 * as the fastpath and opportunistic spinning are disabled in that case.
 332 */
 333static __always_inline void
 334ww_mutex_set_context_fastpath(struct ww_mutex *lock,
 335                               struct ww_acquire_ctx *ctx)
 336{
 337        unsigned long flags;
 338        struct mutex_waiter *cur;
 339
 340        ww_mutex_lock_acquired(lock, ctx);
 341
 342        lock->ctx = ctx;
 343
 344        /*
 345         * The lock->ctx update should be visible on all cores before
 346         * the atomic read is done, otherwise contended waiters might be
 347         * missed. The contended waiters will either see ww_ctx == NULL
 348         * and keep spinning, or it will acquire wait_lock, add itself
 349         * to waiter list and sleep.
 350         */
 351        smp_mb(); /* ^^^ */
 352
 353        /*
 354         * Check if lock is contended, if not there is nobody to wake up
 355         */
 356        if (likely(atomic_read(&lock->base.count) == 0))
 357                return;
 358
 359        /*
 360         * Uh oh, we raced in fastpath, wake up everyone in this case,
 361         * so they can see the new lock->ctx.
 362         */
 363        spin_lock_mutex(&lock->base.wait_lock, flags);
 364        list_for_each_entry(cur, &lock->base.wait_list, list) {
 365                debug_mutex_wake_waiter(&lock->base, cur);
 366                wake_up_process(cur->task);
 367        }
 368        spin_unlock_mutex(&lock->base.wait_lock, flags);
 369}
 370
 371/*
 372 * Lock a mutex (possibly interruptible), slowpath:
 373 */
 374static __always_inline int __sched
 375__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 376                    struct lockdep_map *nest_lock, unsigned long ip,
 377                    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 378{
 379        struct task_struct *task = current;
 380        struct mutex_waiter waiter;
 381        unsigned long flags;
 382        int ret;
 383
 384        preempt_disable();
 385        mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 386
 387#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 388        /*
 389         * Optimistic spinning.
 390         *
 391         * We try to spin for acquisition when we find that there are no
 392         * pending waiters and the lock owner is currently running on a
 393         * (different) CPU.
 394         *
 395         * The rationale is that if the lock owner is running, it is likely to
 396         * release the lock soon.
 397         *
 398         * Since this needs the lock owner, and this mutex implementation
 399         * doesn't track the owner atomically in the lock field, we need to
 400         * track it non-atomically.
 401         *
 402         * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
 403         * to serialize everything.
 404         *
 405         * The mutex spinners are queued up using MCS lock so that only one
 406         * spinner can compete for the mutex. However, if mutex spinning isn't
 407         * going to happen, there is no point in going through the lock/unlock
 408         * overhead.
 409         */
 410        if (!mutex_can_spin_on_owner(lock))
 411                goto slowpath;
 412
 413        if (!osq_lock(&lock->osq))
 414                goto slowpath;
 415
 416        for (;;) {
 417                struct task_struct *owner;
 418
 419                if (use_ww_ctx && ww_ctx->acquired > 0) {
 420                        struct ww_mutex *ww;
 421
 422                        ww = container_of(lock, struct ww_mutex, base);
 423                        /*
 424                         * If ww->ctx is set the contents are undefined, only
 425                         * by acquiring wait_lock there is a guarantee that
 426                         * they are not invalid when reading.
 427                         *
 428                         * As such, when deadlock detection needs to be
 429                         * performed the optimistic spinning cannot be done.
 430                         */
 431                        if (ACCESS_ONCE(ww->ctx))
 432                                break;
 433                }
 434
 435                /*
 436                 * If there's an owner, wait for it to either
 437                 * release the lock or go to sleep.
 438                 */
 439                owner = ACCESS_ONCE(lock->owner);
 440                if (owner && !mutex_spin_on_owner(lock, owner))
 441                        break;
 442
 443                if ((atomic_read(&lock->count) == 1) &&
 444                    (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
 445                        lock_acquired(&lock->dep_map, ip);
 446                        if (use_ww_ctx) {
 447                                struct ww_mutex *ww;
 448                                ww = container_of(lock, struct ww_mutex, base);
 449
 450                                ww_mutex_set_context_fastpath(ww, ww_ctx);
 451                        }
 452
 453                        mutex_set_owner(lock);
 454                        osq_unlock(&lock->osq);
 455                        preempt_enable();
 456                        return 0;
 457                }
 458
 459                /*
 460                 * When there's no owner, we might have preempted between the
 461                 * owner acquiring the lock and setting the owner field. If
 462                 * we're an RT task that will live-lock because we won't let
 463                 * the owner complete.
 464                 */
 465                if (!owner && (need_resched() || rt_task(task)))
 466                        break;
 467
 468                /*
 469                 * The cpu_relax() call is a compiler barrier which forces
 470                 * everything in this loop to be re-loaded. We don't need
 471                 * memory barriers as we'll eventually observe the right
 472                 * values at the cost of a few extra spins.
 473                 */
 474                arch_mutex_cpu_relax();
 475        }
 476        osq_unlock(&lock->osq);
 477slowpath:
 478        /*
 479         * If we fell out of the spin path because of need_resched(),
 480         * reschedule now, before we try-lock the mutex. This avoids getting
 481         * scheduled out right after we obtained the mutex.
 482         */
 483        if (need_resched())
 484                schedule_preempt_disabled();
 485#endif
 486        spin_lock_mutex(&lock->wait_lock, flags);
 487
 488        /* once more, can we acquire the lock? */
 489        if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
 490                goto skip_wait;
 491
 492        debug_mutex_lock_common(lock, &waiter);
 493        debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
 494
 495        /* add waiting tasks to the end of the waitqueue (FIFO): */
 496        list_add_tail(&waiter.list, &lock->wait_list);
 497        waiter.task = task;
 498
 499        lock_contended(&lock->dep_map, ip);
 500
 501        for (;;) {
 502                /*
 503                 * Lets try to take the lock again - this is needed even if
 504                 * we get here for the first time (shortly after failing to
 505                 * acquire the lock), to make sure that we get a wakeup once
 506                 * it's unlocked. Later on, if we sleep, this is the
 507                 * operation that gives us the lock. We xchg it to -1, so
 508                 * that when we release the lock, we properly wake up the
 509                 * other waiters:
 510                 */
 511                if (MUTEX_SHOW_NO_WAITER(lock) &&
 512                    (atomic_xchg(&lock->count, -1) == 1))
 513                        break;
 514
 515                /*
 516                 * got a signal? (This code gets eliminated in the
 517                 * TASK_UNINTERRUPTIBLE case.)
 518                 */
 519                if (unlikely(signal_pending_state(state, task))) {
 520                        ret = -EINTR;
 521                        goto err;
 522                }
 523
 524                if (use_ww_ctx && ww_ctx->acquired > 0) {
 525                        ret = __mutex_lock_check_stamp(lock, ww_ctx);
 526                        if (ret)
 527                                goto err;
 528                }
 529
 530                __set_task_state(task, state);
 531
 532                /* didn't get the lock, go to sleep: */
 533                spin_unlock_mutex(&lock->wait_lock, flags);
 534                schedule_preempt_disabled();
 535                spin_lock_mutex(&lock->wait_lock, flags);
 536        }
 537        mutex_remove_waiter(lock, &waiter, current_thread_info());
 538        /* set it to 0 if there are no waiters left: */
 539        if (likely(list_empty(&lock->wait_list)))
 540                atomic_set(&lock->count, 0);
 541        debug_mutex_free_waiter(&waiter);
 542
 543skip_wait:
 544        /* got the lock - cleanup and rejoice! */
 545        lock_acquired(&lock->dep_map, ip);
 546        mutex_set_owner(lock);
 547
 548        if (use_ww_ctx) {
 549                struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 550                struct mutex_waiter *cur;
 551
 552                /*
 553                 * This branch gets optimized out for the common case,
 554                 * and is only important for ww_mutex_lock.
 555                 */
 556                ww_mutex_lock_acquired(ww, ww_ctx);
 557                ww->ctx = ww_ctx;
 558
 559                /*
 560                 * Give any possible sleeping processes the chance to wake up,
 561                 * so they can recheck if they have to back off.
 562                 */
 563                list_for_each_entry(cur, &lock->wait_list, list) {
 564                        debug_mutex_wake_waiter(lock, cur);
 565                        wake_up_process(cur->task);
 566                }
 567        }
 568
 569        spin_unlock_mutex(&lock->wait_lock, flags);
 570        preempt_enable();
 571        return 0;
 572
 573err:
 574        mutex_remove_waiter(lock, &waiter, task_thread_info(task));
 575        spin_unlock_mutex(&lock->wait_lock, flags);
 576        debug_mutex_free_waiter(&waiter);
 577        mutex_release(&lock->dep_map, 1, ip);
 578        preempt_enable();
 579        return ret;
 580}
 581
 582#ifdef CONFIG_DEBUG_LOCK_ALLOC
 583void __sched
 584mutex_lock_nested(struct mutex *lock, unsigned int subclass)
 585{
 586        might_sleep();
 587        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
 588                            subclass, NULL, _RET_IP_, NULL, 0);
 589}
 590
 591EXPORT_SYMBOL_GPL(mutex_lock_nested);
 592
 593void __sched
 594_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
 595{
 596        might_sleep();
 597        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
 598                            0, nest, _RET_IP_, NULL, 0);
 599}
 600
 601EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
 602
 603int __sched
 604mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
 605{
 606        might_sleep();
 607        return __mutex_lock_common(lock, TASK_KILLABLE,
 608                                   subclass, NULL, _RET_IP_, NULL, 0);
 609}
 610EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
 611
 612int __sched
 613mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
 614{
 615        might_sleep();
 616        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
 617                                   subclass, NULL, _RET_IP_, NULL, 0);
 618}
 619
 620EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
 621
 622static inline int
 623ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 624{
 625#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 626        unsigned tmp;
 627
 628        if (ctx->deadlock_inject_countdown-- == 0) {
 629                tmp = ctx->deadlock_inject_interval;
 630                if (tmp > UINT_MAX/4)
 631                        tmp = UINT_MAX;
 632                else
 633                        tmp = tmp*2 + tmp + tmp/2;
 634
 635                ctx->deadlock_inject_interval = tmp;
 636                ctx->deadlock_inject_countdown = tmp;
 637                ctx->contending_lock = lock;
 638
 639                ww_mutex_unlock(lock);
 640
 641                return -EDEADLK;
 642        }
 643#endif
 644
 645        return 0;
 646}
 647
 648int __sched
 649__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 650{
 651        int ret;
 652
 653        might_sleep();
 654        ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
 655                                   0, &ctx->dep_map, _RET_IP_, ctx, 1);
 656        if (!ret && ctx->acquired > 1)
 657                return ww_mutex_deadlock_injection(lock, ctx);
 658
 659        return ret;
 660}
 661EXPORT_SYMBOL_GPL(__ww_mutex_lock);
 662
 663int __sched
 664__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 665{
 666        int ret;
 667
 668        might_sleep();
 669        ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
 670                                  0, &ctx->dep_map, _RET_IP_, ctx, 1);
 671
 672        if (!ret && ctx->acquired > 1)
 673                return ww_mutex_deadlock_injection(lock, ctx);
 674
 675        return ret;
 676}
 677EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
 678
 679#endif
 680
 681/*
 682 * Release the lock, slowpath:
 683 */
 684static inline void
 685__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
 686{
 687        struct mutex *lock = container_of(lock_count, struct mutex, count);
 688        unsigned long flags;
 689
 690        /*
 691         * some architectures leave the lock unlocked in the fastpath failure
 692         * case, others need to leave it locked. In the later case we have to
 693         * unlock it here
 694         */
 695        if (__mutex_slowpath_needs_to_unlock())
 696                atomic_set(&lock->count, 1);
 697
 698        spin_lock_mutex(&lock->wait_lock, flags);
 699        mutex_release(&lock->dep_map, nested, _RET_IP_);
 700        debug_mutex_unlock(lock);
 701
 702        if (!list_empty(&lock->wait_list)) {
 703                /* get the first entry from the wait-list: */
 704                struct mutex_waiter *waiter =
 705                                list_entry(lock->wait_list.next,
 706                                           struct mutex_waiter, list);
 707
 708                debug_mutex_wake_waiter(lock, waiter);
 709
 710                wake_up_process(waiter->task);
 711        }
 712
 713        spin_unlock_mutex(&lock->wait_lock, flags);
 714}
 715
 716/*
 717 * Release the lock, slowpath:
 718 */
 719__visible void
 720__mutex_unlock_slowpath(atomic_t *lock_count)
 721{
 722        __mutex_unlock_common_slowpath(lock_count, 1);
 723}
 724
 725#ifndef CONFIG_DEBUG_LOCK_ALLOC
 726/*
 727 * Here come the less common (and hence less performance-critical) APIs:
 728 * mutex_lock_interruptible() and mutex_trylock().
 729 */
 730static noinline int __sched
 731__mutex_lock_killable_slowpath(struct mutex *lock);
 732
 733static noinline int __sched
 734__mutex_lock_interruptible_slowpath(struct mutex *lock);
 735
 736/**
 737 * mutex_lock_interruptible - acquire the mutex, interruptible
 738 * @lock: the mutex to be acquired
 739 *
 740 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 741 * been acquired or sleep until the mutex becomes available. If a
 742 * signal arrives while waiting for the lock then this function
 743 * returns -EINTR.
 744 *
 745 * This function is similar to (but not equivalent to) down_interruptible().
 746 */
 747int __sched mutex_lock_interruptible(struct mutex *lock)
 748{
 749        int ret;
 750
 751        might_sleep();
 752        ret =  __mutex_fastpath_lock_retval(&lock->count);
 753        if (likely(!ret)) {
 754                mutex_set_owner(lock);
 755                return 0;
 756        } else
 757                return __mutex_lock_interruptible_slowpath(lock);
 758}
 759
 760EXPORT_SYMBOL(mutex_lock_interruptible);
 761
 762int __sched mutex_lock_killable(struct mutex *lock)
 763{
 764        int ret;
 765
 766        might_sleep();
 767        ret = __mutex_fastpath_lock_retval(&lock->count);
 768        if (likely(!ret)) {
 769                mutex_set_owner(lock);
 770                return 0;
 771        } else
 772                return __mutex_lock_killable_slowpath(lock);
 773}
 774EXPORT_SYMBOL(mutex_lock_killable);
 775
 776__visible void __sched
 777__mutex_lock_slowpath(atomic_t *lock_count)
 778{
 779        struct mutex *lock = container_of(lock_count, struct mutex, count);
 780
 781        __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
 782                            NULL, _RET_IP_, NULL, 0);
 783}
 784
 785static noinline int __sched
 786__mutex_lock_killable_slowpath(struct mutex *lock)
 787{
 788        return __mutex_lock_common(lock, TASK_KILLABLE, 0,
 789                                   NULL, _RET_IP_, NULL, 0);
 790}
 791
 792static noinline int __sched
 793__mutex_lock_interruptible_slowpath(struct mutex *lock)
 794{
 795        return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
 796                                   NULL, _RET_IP_, NULL, 0);
 797}
 798
 799static noinline int __sched
 800__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 801{
 802        return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
 803                                   NULL, _RET_IP_, ctx, 1);
 804}
 805
 806static noinline int __sched
 807__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
 808                                            struct ww_acquire_ctx *ctx)
 809{
 810        return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
 811                                   NULL, _RET_IP_, ctx, 1);
 812}
 813
 814#endif
 815
 816/*
 817 * Spinlock based trylock, we take the spinlock and check whether we
 818 * can get the lock:
 819 */
 820static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
 821{
 822        struct mutex *lock = container_of(lock_count, struct mutex, count);
 823        unsigned long flags;
 824        int prev;
 825
 826        spin_lock_mutex(&lock->wait_lock, flags);
 827
 828        prev = atomic_xchg(&lock->count, -1);
 829        if (likely(prev == 1)) {
 830                mutex_set_owner(lock);
 831                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
 832        }
 833
 834        /* Set it back to 0 if there are no waiters: */
 835        if (likely(list_empty(&lock->wait_list)))
 836                atomic_set(&lock->count, 0);
 837
 838        spin_unlock_mutex(&lock->wait_lock, flags);
 839
 840        return prev == 1;
 841}
 842
 843/**
 844 * mutex_trylock - try to acquire the mutex, without waiting
 845 * @lock: the mutex to be acquired
 846 *
 847 * Try to acquire the mutex atomically. Returns 1 if the mutex
 848 * has been acquired successfully, and 0 on contention.
 849 *
 850 * NOTE: this function follows the spin_trylock() convention, so
 851 * it is negated from the down_trylock() return values! Be careful
 852 * about this when converting semaphore users to mutexes.
 853 *
 854 * This function must not be used in interrupt context. The
 855 * mutex must be released by the same task that acquired it.
 856 */
 857int __sched mutex_trylock(struct mutex *lock)
 858{
 859        int ret;
 860
 861        ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
 862        if (ret)
 863                mutex_set_owner(lock);
 864
 865        return ret;
 866}
 867EXPORT_SYMBOL(mutex_trylock);
 868
 869#ifndef CONFIG_DEBUG_LOCK_ALLOC
 870int __sched
 871__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 872{
 873        int ret;
 874
 875        might_sleep();
 876
 877        ret = __mutex_fastpath_lock_retval(&lock->base.count);
 878
 879        if (likely(!ret)) {
 880                ww_mutex_set_context_fastpath(lock, ctx);
 881                mutex_set_owner(&lock->base);
 882        } else
 883                ret = __ww_mutex_lock_slowpath(lock, ctx);
 884        return ret;
 885}
 886EXPORT_SYMBOL(__ww_mutex_lock);
 887
 888int __sched
 889__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 890{
 891        int ret;
 892
 893        might_sleep();
 894
 895        ret = __mutex_fastpath_lock_retval(&lock->base.count);
 896
 897        if (likely(!ret)) {
 898                ww_mutex_set_context_fastpath(lock, ctx);
 899                mutex_set_owner(&lock->base);
 900        } else
 901                ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
 902        return ret;
 903}
 904EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
 905
 906#endif
 907
 908/**
 909 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
 910 * @cnt: the atomic which we are to dec
 911 * @lock: the mutex to return holding if we dec to 0
 912 *
 913 * return true and hold lock if we dec to 0, return false otherwise
 914 */
 915int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
 916{
 917        /* dec if we can't possibly hit 0 */
 918        if (atomic_add_unless(cnt, -1, 1))
 919                return 0;
 920        /* we might hit 0, so take the lock */
 921        mutex_lock(lock);
 922        if (!atomic_dec_and_test(cnt)) {
 923                /* when we actually did the dec, we didn't hit 0 */
 924                mutex_unlock(lock);
 925                return 0;
 926        }
 927        /* we hit 0, and we hold the lock */
 928        return 1;
 929}
 930EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
 931