linux/kernel/power/snapshot.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/bootmem.h>
  25#include <linux/syscalls.h>
  26#include <linux/console.h>
  27#include <linux/highmem.h>
  28#include <linux/list.h>
  29#include <linux/slab.h>
  30#include <linux/compiler.h>
  31
  32#include <asm/uaccess.h>
  33#include <asm/mmu_context.h>
  34#include <asm/pgtable.h>
  35#include <asm/tlbflush.h>
  36#include <asm/io.h>
  37
  38#include "power.h"
  39
  40static int swsusp_page_is_free(struct page *);
  41static void swsusp_set_page_forbidden(struct page *);
  42static void swsusp_unset_page_forbidden(struct page *);
  43
  44/*
  45 * Number of bytes to reserve for memory allocations made by device drivers
  46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  47 * cause image creation to fail (tunable via /sys/power/reserved_size).
  48 */
  49unsigned long reserved_size;
  50
  51void __init hibernate_reserved_size_init(void)
  52{
  53        reserved_size = SPARE_PAGES * PAGE_SIZE;
  54}
  55
  56/*
  57 * Preferred image size in bytes (tunable via /sys/power/image_size).
  58 * When it is set to N, swsusp will do its best to ensure the image
  59 * size will not exceed N bytes, but if that is impossible, it will
  60 * try to create the smallest image possible.
  61 */
  62unsigned long image_size;
  63
  64void __init hibernate_image_size_init(void)
  65{
  66        image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
  67}
  68
  69/* List of PBEs needed for restoring the pages that were allocated before
  70 * the suspend and included in the suspend image, but have also been
  71 * allocated by the "resume" kernel, so their contents cannot be written
  72 * directly to their "original" page frames.
  73 */
  74struct pbe *restore_pblist;
  75
  76/* Pointer to an auxiliary buffer (1 page) */
  77static void *buffer;
  78
  79/**
  80 *      @safe_needed - on resume, for storing the PBE list and the image,
  81 *      we can only use memory pages that do not conflict with the pages
  82 *      used before suspend.  The unsafe pages have PageNosaveFree set
  83 *      and we count them using unsafe_pages.
  84 *
  85 *      Each allocated image page is marked as PageNosave and PageNosaveFree
  86 *      so that swsusp_free() can release it.
  87 */
  88
  89#define PG_ANY          0
  90#define PG_SAFE         1
  91#define PG_UNSAFE_CLEAR 1
  92#define PG_UNSAFE_KEEP  0
  93
  94static unsigned int allocated_unsafe_pages;
  95
  96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
  97{
  98        void *res;
  99
 100        res = (void *)get_zeroed_page(gfp_mask);
 101        if (safe_needed)
 102                while (res && swsusp_page_is_free(virt_to_page(res))) {
 103                        /* The page is unsafe, mark it for swsusp_free() */
 104                        swsusp_set_page_forbidden(virt_to_page(res));
 105                        allocated_unsafe_pages++;
 106                        res = (void *)get_zeroed_page(gfp_mask);
 107                }
 108        if (res) {
 109                swsusp_set_page_forbidden(virt_to_page(res));
 110                swsusp_set_page_free(virt_to_page(res));
 111        }
 112        return res;
 113}
 114
 115unsigned long get_safe_page(gfp_t gfp_mask)
 116{
 117        return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
 118}
 119
 120static struct page *alloc_image_page(gfp_t gfp_mask)
 121{
 122        struct page *page;
 123
 124        page = alloc_page(gfp_mask);
 125        if (page) {
 126                swsusp_set_page_forbidden(page);
 127                swsusp_set_page_free(page);
 128        }
 129        return page;
 130}
 131
 132/**
 133 *      free_image_page - free page represented by @addr, allocated with
 134 *      get_image_page (page flags set by it must be cleared)
 135 */
 136
 137static inline void free_image_page(void *addr, int clear_nosave_free)
 138{
 139        struct page *page;
 140
 141        BUG_ON(!virt_addr_valid(addr));
 142
 143        page = virt_to_page(addr);
 144
 145        swsusp_unset_page_forbidden(page);
 146        if (clear_nosave_free)
 147                swsusp_unset_page_free(page);
 148
 149        __free_page(page);
 150}
 151
 152/* struct linked_page is used to build chains of pages */
 153
 154#define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
 155
 156struct linked_page {
 157        struct linked_page *next;
 158        char data[LINKED_PAGE_DATA_SIZE];
 159} __packed;
 160
 161static inline void
 162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
 163{
 164        while (list) {
 165                struct linked_page *lp = list->next;
 166
 167                free_image_page(list, clear_page_nosave);
 168                list = lp;
 169        }
 170}
 171
 172/**
 173  *     struct chain_allocator is used for allocating small objects out of
 174  *     a linked list of pages called 'the chain'.
 175  *
 176  *     The chain grows each time when there is no room for a new object in
 177  *     the current page.  The allocated objects cannot be freed individually.
 178  *     It is only possible to free them all at once, by freeing the entire
 179  *     chain.
 180  *
 181  *     NOTE: The chain allocator may be inefficient if the allocated objects
 182  *     are not much smaller than PAGE_SIZE.
 183  */
 184
 185struct chain_allocator {
 186        struct linked_page *chain;      /* the chain */
 187        unsigned int used_space;        /* total size of objects allocated out
 188                                         * of the current page
 189                                         */
 190        gfp_t gfp_mask;         /* mask for allocating pages */
 191        int safe_needed;        /* if set, only "safe" pages are allocated */
 192};
 193
 194static void
 195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
 196{
 197        ca->chain = NULL;
 198        ca->used_space = LINKED_PAGE_DATA_SIZE;
 199        ca->gfp_mask = gfp_mask;
 200        ca->safe_needed = safe_needed;
 201}
 202
 203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 204{
 205        void *ret;
 206
 207        if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 208                struct linked_page *lp;
 209
 210                lp = get_image_page(ca->gfp_mask, ca->safe_needed);
 211                if (!lp)
 212                        return NULL;
 213
 214                lp->next = ca->chain;
 215                ca->chain = lp;
 216                ca->used_space = 0;
 217        }
 218        ret = ca->chain->data + ca->used_space;
 219        ca->used_space += size;
 220        return ret;
 221}
 222
 223/**
 224 *      Data types related to memory bitmaps.
 225 *
 226 *      Memory bitmap is a structure consiting of many linked lists of
 227 *      objects.  The main list's elements are of type struct zone_bitmap
 228 *      and each of them corresonds to one zone.  For each zone bitmap
 229 *      object there is a list of objects of type struct bm_block that
 230 *      represent each blocks of bitmap in which information is stored.
 231 *
 232 *      struct memory_bitmap contains a pointer to the main list of zone
 233 *      bitmap objects, a struct bm_position used for browsing the bitmap,
 234 *      and a pointer to the list of pages used for allocating all of the
 235 *      zone bitmap objects and bitmap block objects.
 236 *
 237 *      NOTE: It has to be possible to lay out the bitmap in memory
 238 *      using only allocations of order 0.  Additionally, the bitmap is
 239 *      designed to work with arbitrary number of zones (this is over the
 240 *      top for now, but let's avoid making unnecessary assumptions ;-).
 241 *
 242 *      struct zone_bitmap contains a pointer to a list of bitmap block
 243 *      objects and a pointer to the bitmap block object that has been
 244 *      most recently used for setting bits.  Additionally, it contains the
 245 *      pfns that correspond to the start and end of the represented zone.
 246 *
 247 *      struct bm_block contains a pointer to the memory page in which
 248 *      information is stored (in the form of a block of bitmap)
 249 *      It also contains the pfns that correspond to the start and end of
 250 *      the represented memory area.
 251 */
 252
 253#define BM_END_OF_MAP   (~0UL)
 254
 255#define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
 256
 257struct bm_block {
 258        struct list_head hook;  /* hook into a list of bitmap blocks */
 259        unsigned long start_pfn;        /* pfn represented by the first bit */
 260        unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
 261        unsigned long *data;    /* bitmap representing pages */
 262};
 263
 264static inline unsigned long bm_block_bits(struct bm_block *bb)
 265{
 266        return bb->end_pfn - bb->start_pfn;
 267}
 268
 269/* strcut bm_position is used for browsing memory bitmaps */
 270
 271struct bm_position {
 272        struct bm_block *block;
 273        int bit;
 274};
 275
 276struct memory_bitmap {
 277        struct list_head blocks;        /* list of bitmap blocks */
 278        struct linked_page *p_list;     /* list of pages used to store zone
 279                                         * bitmap objects and bitmap block
 280                                         * objects
 281                                         */
 282        struct bm_position cur; /* most recently used bit position */
 283};
 284
 285/* Functions that operate on memory bitmaps */
 286
 287static void memory_bm_position_reset(struct memory_bitmap *bm)
 288{
 289        bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
 290        bm->cur.bit = 0;
 291}
 292
 293static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 294
 295/**
 296 *      create_bm_block_list - create a list of block bitmap objects
 297 *      @pages - number of pages to track
 298 *      @list - list to put the allocated blocks into
 299 *      @ca - chain allocator to be used for allocating memory
 300 */
 301static int create_bm_block_list(unsigned long pages,
 302                                struct list_head *list,
 303                                struct chain_allocator *ca)
 304{
 305        unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 306
 307        while (nr_blocks-- > 0) {
 308                struct bm_block *bb;
 309
 310                bb = chain_alloc(ca, sizeof(struct bm_block));
 311                if (!bb)
 312                        return -ENOMEM;
 313                list_add(&bb->hook, list);
 314        }
 315
 316        return 0;
 317}
 318
 319struct mem_extent {
 320        struct list_head hook;
 321        unsigned long start;
 322        unsigned long end;
 323};
 324
 325/**
 326 *      free_mem_extents - free a list of memory extents
 327 *      @list - list of extents to empty
 328 */
 329static void free_mem_extents(struct list_head *list)
 330{
 331        struct mem_extent *ext, *aux;
 332
 333        list_for_each_entry_safe(ext, aux, list, hook) {
 334                list_del(&ext->hook);
 335                kfree(ext);
 336        }
 337}
 338
 339/**
 340 *      create_mem_extents - create a list of memory extents representing
 341 *                           contiguous ranges of PFNs
 342 *      @list - list to put the extents into
 343 *      @gfp_mask - mask to use for memory allocations
 344 */
 345static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 346{
 347        struct zone *zone;
 348
 349        INIT_LIST_HEAD(list);
 350
 351        for_each_populated_zone(zone) {
 352                unsigned long zone_start, zone_end;
 353                struct mem_extent *ext, *cur, *aux;
 354
 355                zone_start = zone->zone_start_pfn;
 356                zone_end = zone_end_pfn(zone);
 357
 358                list_for_each_entry(ext, list, hook)
 359                        if (zone_start <= ext->end)
 360                                break;
 361
 362                if (&ext->hook == list || zone_end < ext->start) {
 363                        /* New extent is necessary */
 364                        struct mem_extent *new_ext;
 365
 366                        new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 367                        if (!new_ext) {
 368                                free_mem_extents(list);
 369                                return -ENOMEM;
 370                        }
 371                        new_ext->start = zone_start;
 372                        new_ext->end = zone_end;
 373                        list_add_tail(&new_ext->hook, &ext->hook);
 374                        continue;
 375                }
 376
 377                /* Merge this zone's range of PFNs with the existing one */
 378                if (zone_start < ext->start)
 379                        ext->start = zone_start;
 380                if (zone_end > ext->end)
 381                        ext->end = zone_end;
 382
 383                /* More merging may be possible */
 384                cur = ext;
 385                list_for_each_entry_safe_continue(cur, aux, list, hook) {
 386                        if (zone_end < cur->start)
 387                                break;
 388                        if (zone_end < cur->end)
 389                                ext->end = cur->end;
 390                        list_del(&cur->hook);
 391                        kfree(cur);
 392                }
 393        }
 394
 395        return 0;
 396}
 397
 398/**
 399  *     memory_bm_create - allocate memory for a memory bitmap
 400  */
 401static int
 402memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
 403{
 404        struct chain_allocator ca;
 405        struct list_head mem_extents;
 406        struct mem_extent *ext;
 407        int error;
 408
 409        chain_init(&ca, gfp_mask, safe_needed);
 410        INIT_LIST_HEAD(&bm->blocks);
 411
 412        error = create_mem_extents(&mem_extents, gfp_mask);
 413        if (error)
 414                return error;
 415
 416        list_for_each_entry(ext, &mem_extents, hook) {
 417                struct bm_block *bb;
 418                unsigned long pfn = ext->start;
 419                unsigned long pages = ext->end - ext->start;
 420
 421                bb = list_entry(bm->blocks.prev, struct bm_block, hook);
 422
 423                error = create_bm_block_list(pages, bm->blocks.prev, &ca);
 424                if (error)
 425                        goto Error;
 426
 427                list_for_each_entry_continue(bb, &bm->blocks, hook) {
 428                        bb->data = get_image_page(gfp_mask, safe_needed);
 429                        if (!bb->data) {
 430                                error = -ENOMEM;
 431                                goto Error;
 432                        }
 433
 434                        bb->start_pfn = pfn;
 435                        if (pages >= BM_BITS_PER_BLOCK) {
 436                                pfn += BM_BITS_PER_BLOCK;
 437                                pages -= BM_BITS_PER_BLOCK;
 438                        } else {
 439                                /* This is executed only once in the loop */
 440                                pfn += pages;
 441                        }
 442                        bb->end_pfn = pfn;
 443                }
 444        }
 445
 446        bm->p_list = ca.chain;
 447        memory_bm_position_reset(bm);
 448 Exit:
 449        free_mem_extents(&mem_extents);
 450        return error;
 451
 452 Error:
 453        bm->p_list = ca.chain;
 454        memory_bm_free(bm, PG_UNSAFE_CLEAR);
 455        goto Exit;
 456}
 457
 458/**
 459  *     memory_bm_free - free memory occupied by the memory bitmap @bm
 460  */
 461static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 462{
 463        struct bm_block *bb;
 464
 465        list_for_each_entry(bb, &bm->blocks, hook)
 466                if (bb->data)
 467                        free_image_page(bb->data, clear_nosave_free);
 468
 469        free_list_of_pages(bm->p_list, clear_nosave_free);
 470
 471        INIT_LIST_HEAD(&bm->blocks);
 472}
 473
 474/**
 475 *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
 476 *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 477 *      of @bm->cur_zone_bm are updated.
 478 */
 479static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 480                                void **addr, unsigned int *bit_nr)
 481{
 482        struct bm_block *bb;
 483
 484        /*
 485         * Check if the pfn corresponds to the current bitmap block and find
 486         * the block where it fits if this is not the case.
 487         */
 488        bb = bm->cur.block;
 489        if (pfn < bb->start_pfn)
 490                list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
 491                        if (pfn >= bb->start_pfn)
 492                                break;
 493
 494        if (pfn >= bb->end_pfn)
 495                list_for_each_entry_continue(bb, &bm->blocks, hook)
 496                        if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
 497                                break;
 498
 499        if (&bb->hook == &bm->blocks)
 500                return -EFAULT;
 501
 502        /* The block has been found */
 503        bm->cur.block = bb;
 504        pfn -= bb->start_pfn;
 505        bm->cur.bit = pfn + 1;
 506        *bit_nr = pfn;
 507        *addr = bb->data;
 508        return 0;
 509}
 510
 511static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 512{
 513        void *addr;
 514        unsigned int bit;
 515        int error;
 516
 517        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 518        BUG_ON(error);
 519        set_bit(bit, addr);
 520}
 521
 522static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 523{
 524        void *addr;
 525        unsigned int bit;
 526        int error;
 527
 528        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 529        if (!error)
 530                set_bit(bit, addr);
 531        return error;
 532}
 533
 534static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 535{
 536        void *addr;
 537        unsigned int bit;
 538        int error;
 539
 540        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 541        BUG_ON(error);
 542        clear_bit(bit, addr);
 543}
 544
 545static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 546{
 547        void *addr;
 548        unsigned int bit;
 549        int error;
 550
 551        error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 552        BUG_ON(error);
 553        return test_bit(bit, addr);
 554}
 555
 556static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 557{
 558        void *addr;
 559        unsigned int bit;
 560
 561        return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 562}
 563
 564/**
 565 *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 566 *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 567 *      returned.
 568 *
 569 *      It is required to run memory_bm_position_reset() before the first call to
 570 *      this function.
 571 */
 572
 573static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 574{
 575        struct bm_block *bb;
 576        int bit;
 577
 578        bb = bm->cur.block;
 579        do {
 580                bit = bm->cur.bit;
 581                bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
 582                if (bit < bm_block_bits(bb))
 583                        goto Return_pfn;
 584
 585                bb = list_entry(bb->hook.next, struct bm_block, hook);
 586                bm->cur.block = bb;
 587                bm->cur.bit = 0;
 588        } while (&bb->hook != &bm->blocks);
 589
 590        memory_bm_position_reset(bm);
 591        return BM_END_OF_MAP;
 592
 593 Return_pfn:
 594        bm->cur.bit = bit + 1;
 595        return bb->start_pfn + bit;
 596}
 597
 598/**
 599 *      This structure represents a range of page frames the contents of which
 600 *      should not be saved during the suspend.
 601 */
 602
 603struct nosave_region {
 604        struct list_head list;
 605        unsigned long start_pfn;
 606        unsigned long end_pfn;
 607};
 608
 609static LIST_HEAD(nosave_regions);
 610
 611/**
 612 *      register_nosave_region - register a range of page frames the contents
 613 *      of which should not be saved during the suspend (to be used in the early
 614 *      initialization code)
 615 */
 616
 617void __init
 618__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
 619                         int use_kmalloc)
 620{
 621        struct nosave_region *region;
 622
 623        if (start_pfn >= end_pfn)
 624                return;
 625
 626        if (!list_empty(&nosave_regions)) {
 627                /* Try to extend the previous region (they should be sorted) */
 628                region = list_entry(nosave_regions.prev,
 629                                        struct nosave_region, list);
 630                if (region->end_pfn == start_pfn) {
 631                        region->end_pfn = end_pfn;
 632                        goto Report;
 633                }
 634        }
 635        if (use_kmalloc) {
 636                /* during init, this shouldn't fail */
 637                region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 638                BUG_ON(!region);
 639        } else
 640                /* This allocation cannot fail */
 641                region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 642        region->start_pfn = start_pfn;
 643        region->end_pfn = end_pfn;
 644        list_add_tail(&region->list, &nosave_regions);
 645 Report:
 646        printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
 647                (unsigned long long) start_pfn << PAGE_SHIFT,
 648                ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 649}
 650
 651/*
 652 * Set bits in this map correspond to the page frames the contents of which
 653 * should not be saved during the suspend.
 654 */
 655static struct memory_bitmap *forbidden_pages_map;
 656
 657/* Set bits in this map correspond to free page frames. */
 658static struct memory_bitmap *free_pages_map;
 659
 660/*
 661 * Each page frame allocated for creating the image is marked by setting the
 662 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 663 */
 664
 665void swsusp_set_page_free(struct page *page)
 666{
 667        if (free_pages_map)
 668                memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 669}
 670
 671static int swsusp_page_is_free(struct page *page)
 672{
 673        return free_pages_map ?
 674                memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
 675}
 676
 677void swsusp_unset_page_free(struct page *page)
 678{
 679        if (free_pages_map)
 680                memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
 681}
 682
 683static void swsusp_set_page_forbidden(struct page *page)
 684{
 685        if (forbidden_pages_map)
 686                memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
 687}
 688
 689int swsusp_page_is_forbidden(struct page *page)
 690{
 691        return forbidden_pages_map ?
 692                memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
 693}
 694
 695static void swsusp_unset_page_forbidden(struct page *page)
 696{
 697        if (forbidden_pages_map)
 698                memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
 699}
 700
 701/**
 702 *      mark_nosave_pages - set bits corresponding to the page frames the
 703 *      contents of which should not be saved in a given bitmap.
 704 */
 705
 706static void mark_nosave_pages(struct memory_bitmap *bm)
 707{
 708        struct nosave_region *region;
 709
 710        if (list_empty(&nosave_regions))
 711                return;
 712
 713        list_for_each_entry(region, &nosave_regions, list) {
 714                unsigned long pfn;
 715
 716                pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
 717                         (unsigned long long) region->start_pfn << PAGE_SHIFT,
 718                         ((unsigned long long) region->end_pfn << PAGE_SHIFT)
 719                                - 1);
 720
 721                for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
 722                        if (pfn_valid(pfn)) {
 723                                /*
 724                                 * It is safe to ignore the result of
 725                                 * mem_bm_set_bit_check() here, since we won't
 726                                 * touch the PFNs for which the error is
 727                                 * returned anyway.
 728                                 */
 729                                mem_bm_set_bit_check(bm, pfn);
 730                        }
 731        }
 732}
 733
 734/**
 735 *      create_basic_memory_bitmaps - create bitmaps needed for marking page
 736 *      frames that should not be saved and free page frames.  The pointers
 737 *      forbidden_pages_map and free_pages_map are only modified if everything
 738 *      goes well, because we don't want the bits to be used before both bitmaps
 739 *      are set up.
 740 */
 741
 742int create_basic_memory_bitmaps(void)
 743{
 744        struct memory_bitmap *bm1, *bm2;
 745        int error = 0;
 746
 747        if (forbidden_pages_map && free_pages_map)
 748                return 0;
 749        else
 750                BUG_ON(forbidden_pages_map || free_pages_map);
 751
 752        bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 753        if (!bm1)
 754                return -ENOMEM;
 755
 756        error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
 757        if (error)
 758                goto Free_first_object;
 759
 760        bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
 761        if (!bm2)
 762                goto Free_first_bitmap;
 763
 764        error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
 765        if (error)
 766                goto Free_second_object;
 767
 768        forbidden_pages_map = bm1;
 769        free_pages_map = bm2;
 770        mark_nosave_pages(forbidden_pages_map);
 771
 772        pr_debug("PM: Basic memory bitmaps created\n");
 773
 774        return 0;
 775
 776 Free_second_object:
 777        kfree(bm2);
 778 Free_first_bitmap:
 779        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 780 Free_first_object:
 781        kfree(bm1);
 782        return -ENOMEM;
 783}
 784
 785/**
 786 *      free_basic_memory_bitmaps - free memory bitmaps allocated by
 787 *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
 788 *      so that the bitmaps themselves are not referred to while they are being
 789 *      freed.
 790 */
 791
 792void free_basic_memory_bitmaps(void)
 793{
 794        struct memory_bitmap *bm1, *bm2;
 795
 796        if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
 797                return;
 798
 799        bm1 = forbidden_pages_map;
 800        bm2 = free_pages_map;
 801        forbidden_pages_map = NULL;
 802        free_pages_map = NULL;
 803        memory_bm_free(bm1, PG_UNSAFE_CLEAR);
 804        kfree(bm1);
 805        memory_bm_free(bm2, PG_UNSAFE_CLEAR);
 806        kfree(bm2);
 807
 808        pr_debug("PM: Basic memory bitmaps freed\n");
 809}
 810
 811/**
 812 *      snapshot_additional_pages - estimate the number of additional pages
 813 *      be needed for setting up the suspend image data structures for given
 814 *      zone (usually the returned value is greater than the exact number)
 815 */
 816
 817unsigned int snapshot_additional_pages(struct zone *zone)
 818{
 819        unsigned int res;
 820
 821        res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
 822        res += DIV_ROUND_UP(res * sizeof(struct bm_block),
 823                            LINKED_PAGE_DATA_SIZE);
 824        return 2 * res;
 825}
 826
 827#ifdef CONFIG_HIGHMEM
 828/**
 829 *      count_free_highmem_pages - compute the total number of free highmem
 830 *      pages, system-wide.
 831 */
 832
 833static unsigned int count_free_highmem_pages(void)
 834{
 835        struct zone *zone;
 836        unsigned int cnt = 0;
 837
 838        for_each_populated_zone(zone)
 839                if (is_highmem(zone))
 840                        cnt += zone_page_state(zone, NR_FREE_PAGES);
 841
 842        return cnt;
 843}
 844
 845/**
 846 *      saveable_highmem_page - Determine whether a highmem page should be
 847 *      included in the suspend image.
 848 *
 849 *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
 850 *      and it isn't a part of a free chunk of pages.
 851 */
 852static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
 853{
 854        struct page *page;
 855
 856        if (!pfn_valid(pfn))
 857                return NULL;
 858
 859        page = pfn_to_page(pfn);
 860        if (page_zone(page) != zone)
 861                return NULL;
 862
 863        BUG_ON(!PageHighMem(page));
 864
 865        if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
 866            PageReserved(page))
 867                return NULL;
 868
 869        if (page_is_guard(page))
 870                return NULL;
 871
 872        return page;
 873}
 874
 875/**
 876 *      count_highmem_pages - compute the total number of saveable highmem
 877 *      pages.
 878 */
 879
 880static unsigned int count_highmem_pages(void)
 881{
 882        struct zone *zone;
 883        unsigned int n = 0;
 884
 885        for_each_populated_zone(zone) {
 886                unsigned long pfn, max_zone_pfn;
 887
 888                if (!is_highmem(zone))
 889                        continue;
 890
 891                mark_free_pages(zone);
 892                max_zone_pfn = zone_end_pfn(zone);
 893                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 894                        if (saveable_highmem_page(zone, pfn))
 895                                n++;
 896        }
 897        return n;
 898}
 899#else
 900static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
 901{
 902        return NULL;
 903}
 904#endif /* CONFIG_HIGHMEM */
 905
 906/**
 907 *      saveable_page - Determine whether a non-highmem page should be included
 908 *      in the suspend image.
 909 *
 910 *      We should save the page if it isn't Nosave, and is not in the range
 911 *      of pages statically defined as 'unsaveable', and it isn't a part of
 912 *      a free chunk of pages.
 913 */
 914static struct page *saveable_page(struct zone *zone, unsigned long pfn)
 915{
 916        struct page *page;
 917
 918        if (!pfn_valid(pfn))
 919                return NULL;
 920
 921        page = pfn_to_page(pfn);
 922        if (page_zone(page) != zone)
 923                return NULL;
 924
 925        BUG_ON(PageHighMem(page));
 926
 927        if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
 928                return NULL;
 929
 930        if (PageReserved(page)
 931            && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
 932                return NULL;
 933
 934        if (page_is_guard(page))
 935                return NULL;
 936
 937        return page;
 938}
 939
 940/**
 941 *      count_data_pages - compute the total number of saveable non-highmem
 942 *      pages.
 943 */
 944
 945static unsigned int count_data_pages(void)
 946{
 947        struct zone *zone;
 948        unsigned long pfn, max_zone_pfn;
 949        unsigned int n = 0;
 950
 951        for_each_populated_zone(zone) {
 952                if (is_highmem(zone))
 953                        continue;
 954
 955                mark_free_pages(zone);
 956                max_zone_pfn = zone_end_pfn(zone);
 957                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
 958                        if (saveable_page(zone, pfn))
 959                                n++;
 960        }
 961        return n;
 962}
 963
 964/* This is needed, because copy_page and memcpy are not usable for copying
 965 * task structs.
 966 */
 967static inline void do_copy_page(long *dst, long *src)
 968{
 969        int n;
 970
 971        for (n = PAGE_SIZE / sizeof(long); n; n--)
 972                *dst++ = *src++;
 973}
 974
 975
 976/**
 977 *      safe_copy_page - check if the page we are going to copy is marked as
 978 *              present in the kernel page tables (this always is the case if
 979 *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
 980 *              kernel_page_present() always returns 'true').
 981 */
 982static void safe_copy_page(void *dst, struct page *s_page)
 983{
 984        if (kernel_page_present(s_page)) {
 985                do_copy_page(dst, page_address(s_page));
 986        } else {
 987                kernel_map_pages(s_page, 1, 1);
 988                do_copy_page(dst, page_address(s_page));
 989                kernel_map_pages(s_page, 1, 0);
 990        }
 991}
 992
 993
 994#ifdef CONFIG_HIGHMEM
 995static inline struct page *
 996page_is_saveable(struct zone *zone, unsigned long pfn)
 997{
 998        return is_highmem(zone) ?
 999                saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1000}
1001
1002static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003{
1004        struct page *s_page, *d_page;
1005        void *src, *dst;
1006
1007        s_page = pfn_to_page(src_pfn);
1008        d_page = pfn_to_page(dst_pfn);
1009        if (PageHighMem(s_page)) {
1010                src = kmap_atomic(s_page);
1011                dst = kmap_atomic(d_page);
1012                do_copy_page(dst, src);
1013                kunmap_atomic(dst);
1014                kunmap_atomic(src);
1015        } else {
1016                if (PageHighMem(d_page)) {
1017                        /* Page pointed to by src may contain some kernel
1018                         * data modified by kmap_atomic()
1019                         */
1020                        safe_copy_page(buffer, s_page);
1021                        dst = kmap_atomic(d_page);
1022                        copy_page(dst, buffer);
1023                        kunmap_atomic(dst);
1024                } else {
1025                        safe_copy_page(page_address(d_page), s_page);
1026                }
1027        }
1028}
1029#else
1030#define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1031
1032static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1033{
1034        safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1035                                pfn_to_page(src_pfn));
1036}
1037#endif /* CONFIG_HIGHMEM */
1038
1039static void
1040copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1041{
1042        struct zone *zone;
1043        unsigned long pfn;
1044
1045        for_each_populated_zone(zone) {
1046                unsigned long max_zone_pfn;
1047
1048                mark_free_pages(zone);
1049                max_zone_pfn = zone_end_pfn(zone);
1050                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051                        if (page_is_saveable(zone, pfn))
1052                                memory_bm_set_bit(orig_bm, pfn);
1053        }
1054        memory_bm_position_reset(orig_bm);
1055        memory_bm_position_reset(copy_bm);
1056        for(;;) {
1057                pfn = memory_bm_next_pfn(orig_bm);
1058                if (unlikely(pfn == BM_END_OF_MAP))
1059                        break;
1060                copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1061        }
1062}
1063
1064/* Total number of image pages */
1065static unsigned int nr_copy_pages;
1066/* Number of pages needed for saving the original pfns of the image pages */
1067static unsigned int nr_meta_pages;
1068/*
1069 * Numbers of normal and highmem page frames allocated for hibernation image
1070 * before suspending devices.
1071 */
1072unsigned int alloc_normal, alloc_highmem;
1073/*
1074 * Memory bitmap used for marking saveable pages (during hibernation) or
1075 * hibernation image pages (during restore)
1076 */
1077static struct memory_bitmap orig_bm;
1078/*
1079 * Memory bitmap used during hibernation for marking allocated page frames that
1080 * will contain copies of saveable pages.  During restore it is initially used
1081 * for marking hibernation image pages, but then the set bits from it are
1082 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1083 * used for marking "safe" highmem pages, but it has to be reinitialized for
1084 * this purpose.
1085 */
1086static struct memory_bitmap copy_bm;
1087
1088/**
1089 *      swsusp_free - free pages allocated for the suspend.
1090 *
1091 *      Suspend pages are alocated before the atomic copy is made, so we
1092 *      need to release them after the resume.
1093 */
1094
1095void swsusp_free(void)
1096{
1097        struct zone *zone;
1098        unsigned long pfn, max_zone_pfn;
1099
1100        for_each_populated_zone(zone) {
1101                max_zone_pfn = zone_end_pfn(zone);
1102                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1103                        if (pfn_valid(pfn)) {
1104                                struct page *page = pfn_to_page(pfn);
1105
1106                                if (swsusp_page_is_forbidden(page) &&
1107                                    swsusp_page_is_free(page)) {
1108                                        swsusp_unset_page_forbidden(page);
1109                                        swsusp_unset_page_free(page);
1110                                        __free_page(page);
1111                                }
1112                        }
1113        }
1114        nr_copy_pages = 0;
1115        nr_meta_pages = 0;
1116        restore_pblist = NULL;
1117        buffer = NULL;
1118        alloc_normal = 0;
1119        alloc_highmem = 0;
1120}
1121
1122/* Helper functions used for the shrinking of memory. */
1123
1124#define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1125
1126/**
1127 * preallocate_image_pages - Allocate a number of pages for hibernation image
1128 * @nr_pages: Number of page frames to allocate.
1129 * @mask: GFP flags to use for the allocation.
1130 *
1131 * Return value: Number of page frames actually allocated
1132 */
1133static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1134{
1135        unsigned long nr_alloc = 0;
1136
1137        while (nr_pages > 0) {
1138                struct page *page;
1139
1140                page = alloc_image_page(mask);
1141                if (!page)
1142                        break;
1143                memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1144                if (PageHighMem(page))
1145                        alloc_highmem++;
1146                else
1147                        alloc_normal++;
1148                nr_pages--;
1149                nr_alloc++;
1150        }
1151
1152        return nr_alloc;
1153}
1154
1155static unsigned long preallocate_image_memory(unsigned long nr_pages,
1156                                              unsigned long avail_normal)
1157{
1158        unsigned long alloc;
1159
1160        if (avail_normal <= alloc_normal)
1161                return 0;
1162
1163        alloc = avail_normal - alloc_normal;
1164        if (nr_pages < alloc)
1165                alloc = nr_pages;
1166
1167        return preallocate_image_pages(alloc, GFP_IMAGE);
1168}
1169
1170#ifdef CONFIG_HIGHMEM
1171static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1172{
1173        return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1174}
1175
1176/**
1177 *  __fraction - Compute (an approximation of) x * (multiplier / base)
1178 */
1179static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1180{
1181        x *= multiplier;
1182        do_div(x, base);
1183        return (unsigned long)x;
1184}
1185
1186static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187                                                unsigned long highmem,
1188                                                unsigned long total)
1189{
1190        unsigned long alloc = __fraction(nr_pages, highmem, total);
1191
1192        return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1193}
1194#else /* CONFIG_HIGHMEM */
1195static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1196{
1197        return 0;
1198}
1199
1200static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1201                                                unsigned long highmem,
1202                                                unsigned long total)
1203{
1204        return 0;
1205}
1206#endif /* CONFIG_HIGHMEM */
1207
1208/**
1209 * free_unnecessary_pages - Release preallocated pages not needed for the image
1210 */
1211static void free_unnecessary_pages(void)
1212{
1213        unsigned long save, to_free_normal, to_free_highmem;
1214
1215        save = count_data_pages();
1216        if (alloc_normal >= save) {
1217                to_free_normal = alloc_normal - save;
1218                save = 0;
1219        } else {
1220                to_free_normal = 0;
1221                save -= alloc_normal;
1222        }
1223        save += count_highmem_pages();
1224        if (alloc_highmem >= save) {
1225                to_free_highmem = alloc_highmem - save;
1226        } else {
1227                to_free_highmem = 0;
1228                save -= alloc_highmem;
1229                if (to_free_normal > save)
1230                        to_free_normal -= save;
1231                else
1232                        to_free_normal = 0;
1233        }
1234
1235        memory_bm_position_reset(&copy_bm);
1236
1237        while (to_free_normal > 0 || to_free_highmem > 0) {
1238                unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1239                struct page *page = pfn_to_page(pfn);
1240
1241                if (PageHighMem(page)) {
1242                        if (!to_free_highmem)
1243                                continue;
1244                        to_free_highmem--;
1245                        alloc_highmem--;
1246                } else {
1247                        if (!to_free_normal)
1248                                continue;
1249                        to_free_normal--;
1250                        alloc_normal--;
1251                }
1252                memory_bm_clear_bit(&copy_bm, pfn);
1253                swsusp_unset_page_forbidden(page);
1254                swsusp_unset_page_free(page);
1255                __free_page(page);
1256        }
1257}
1258
1259/**
1260 * minimum_image_size - Estimate the minimum acceptable size of an image
1261 * @saveable: Number of saveable pages in the system.
1262 *
1263 * We want to avoid attempting to free too much memory too hard, so estimate the
1264 * minimum acceptable size of a hibernation image to use as the lower limit for
1265 * preallocating memory.
1266 *
1267 * We assume that the minimum image size should be proportional to
1268 *
1269 * [number of saveable pages] - [number of pages that can be freed in theory]
1270 *
1271 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273 * minus mapped file pages.
1274 */
1275static unsigned long minimum_image_size(unsigned long saveable)
1276{
1277        unsigned long size;
1278
1279        size = global_page_state(NR_SLAB_RECLAIMABLE)
1280                + global_page_state(NR_ACTIVE_ANON)
1281                + global_page_state(NR_INACTIVE_ANON)
1282                + global_page_state(NR_ACTIVE_FILE)
1283                + global_page_state(NR_INACTIVE_FILE)
1284                - global_page_state(NR_FILE_MAPPED);
1285
1286        return saveable <= size ? 0 : saveable - size;
1287}
1288
1289/**
1290 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1291 *
1292 * To create a hibernation image it is necessary to make a copy of every page
1293 * frame in use.  We also need a number of page frames to be free during
1294 * hibernation for allocations made while saving the image and for device
1295 * drivers, in case they need to allocate memory from their hibernation
1296 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1299 * total number of available page frames and allocate at least
1300 *
1301 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1303 *
1304 * of them, which corresponds to the maximum size of a hibernation image.
1305 *
1306 * If image_size is set below the number following from the above formula,
1307 * the preallocation of memory is continued until the total number of saveable
1308 * pages in the system is below the requested image size or the minimum
1309 * acceptable image size returned by minimum_image_size(), whichever is greater.
1310 */
1311int hibernate_preallocate_memory(void)
1312{
1313        struct zone *zone;
1314        unsigned long saveable, size, max_size, count, highmem, pages = 0;
1315        unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1316        struct timeval start, stop;
1317        int error;
1318
1319        printk(KERN_INFO "PM: Preallocating image memory... ");
1320        do_gettimeofday(&start);
1321
1322        error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1323        if (error)
1324                goto err_out;
1325
1326        error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1327        if (error)
1328                goto err_out;
1329
1330        alloc_normal = 0;
1331        alloc_highmem = 0;
1332
1333        /* Count the number of saveable data pages. */
1334        save_highmem = count_highmem_pages();
1335        saveable = count_data_pages();
1336
1337        /*
1338         * Compute the total number of page frames we can use (count) and the
1339         * number of pages needed for image metadata (size).
1340         */
1341        count = saveable;
1342        saveable += save_highmem;
1343        highmem = save_highmem;
1344        size = 0;
1345        for_each_populated_zone(zone) {
1346                size += snapshot_additional_pages(zone);
1347                if (is_highmem(zone))
1348                        highmem += zone_page_state(zone, NR_FREE_PAGES);
1349                else
1350                        count += zone_page_state(zone, NR_FREE_PAGES);
1351        }
1352        avail_normal = count;
1353        count += highmem;
1354        count -= totalreserve_pages;
1355
1356        /* Add number of pages required for page keys (s390 only). */
1357        size += page_key_additional_pages(saveable);
1358
1359        /* Compute the maximum number of saveable pages to leave in memory. */
1360        max_size = (count - (size + PAGES_FOR_IO)) / 2
1361                        - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1362        /* Compute the desired number of image pages specified by image_size. */
1363        size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1364        if (size > max_size)
1365                size = max_size;
1366        /*
1367         * If the desired number of image pages is at least as large as the
1368         * current number of saveable pages in memory, allocate page frames for
1369         * the image and we're done.
1370         */
1371        if (size >= saveable) {
1372                pages = preallocate_image_highmem(save_highmem);
1373                pages += preallocate_image_memory(saveable - pages, avail_normal);
1374                goto out;
1375        }
1376
1377        /* Estimate the minimum size of the image. */
1378        pages = minimum_image_size(saveable);
1379        /*
1380         * To avoid excessive pressure on the normal zone, leave room in it to
1381         * accommodate an image of the minimum size (unless it's already too
1382         * small, in which case don't preallocate pages from it at all).
1383         */
1384        if (avail_normal > pages)
1385                avail_normal -= pages;
1386        else
1387                avail_normal = 0;
1388        if (size < pages)
1389                size = min_t(unsigned long, pages, max_size);
1390
1391        /*
1392         * Let the memory management subsystem know that we're going to need a
1393         * large number of page frames to allocate and make it free some memory.
1394         * NOTE: If this is not done, performance will be hurt badly in some
1395         * test cases.
1396         */
1397        shrink_all_memory(saveable - size);
1398
1399        /*
1400         * The number of saveable pages in memory was too high, so apply some
1401         * pressure to decrease it.  First, make room for the largest possible
1402         * image and fail if that doesn't work.  Next, try to decrease the size
1403         * of the image as much as indicated by 'size' using allocations from
1404         * highmem and non-highmem zones separately.
1405         */
1406        pages_highmem = preallocate_image_highmem(highmem / 2);
1407        alloc = count - max_size;
1408        if (alloc > pages_highmem)
1409                alloc -= pages_highmem;
1410        else
1411                alloc = 0;
1412        pages = preallocate_image_memory(alloc, avail_normal);
1413        if (pages < alloc) {
1414                /* We have exhausted non-highmem pages, try highmem. */
1415                alloc -= pages;
1416                pages += pages_highmem;
1417                pages_highmem = preallocate_image_highmem(alloc);
1418                if (pages_highmem < alloc)
1419                        goto err_out;
1420                pages += pages_highmem;
1421                /*
1422                 * size is the desired number of saveable pages to leave in
1423                 * memory, so try to preallocate (all memory - size) pages.
1424                 */
1425                alloc = (count - pages) - size;
1426                pages += preallocate_image_highmem(alloc);
1427        } else {
1428                /*
1429                 * There are approximately max_size saveable pages at this point
1430                 * and we want to reduce this number down to size.
1431                 */
1432                alloc = max_size - size;
1433                size = preallocate_highmem_fraction(alloc, highmem, count);
1434                pages_highmem += size;
1435                alloc -= size;
1436                size = preallocate_image_memory(alloc, avail_normal);
1437                pages_highmem += preallocate_image_highmem(alloc - size);
1438                pages += pages_highmem + size;
1439        }
1440
1441        /*
1442         * We only need as many page frames for the image as there are saveable
1443         * pages in memory, but we have allocated more.  Release the excessive
1444         * ones now.
1445         */
1446        free_unnecessary_pages();
1447
1448 out:
1449        do_gettimeofday(&stop);
1450        printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1451        swsusp_show_speed(&start, &stop, pages, "Allocated");
1452
1453        return 0;
1454
1455 err_out:
1456        printk(KERN_CONT "\n");
1457        swsusp_free();
1458        return -ENOMEM;
1459}
1460
1461#ifdef CONFIG_HIGHMEM
1462/**
1463  *     count_pages_for_highmem - compute the number of non-highmem pages
1464  *     that will be necessary for creating copies of highmem pages.
1465  */
1466
1467static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1468{
1469        unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1470
1471        if (free_highmem >= nr_highmem)
1472                nr_highmem = 0;
1473        else
1474                nr_highmem -= free_highmem;
1475
1476        return nr_highmem;
1477}
1478#else
1479static unsigned int
1480count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1481#endif /* CONFIG_HIGHMEM */
1482
1483/**
1484 *      enough_free_mem - Make sure we have enough free memory for the
1485 *      snapshot image.
1486 */
1487
1488static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1489{
1490        struct zone *zone;
1491        unsigned int free = alloc_normal;
1492
1493        for_each_populated_zone(zone)
1494                if (!is_highmem(zone))
1495                        free += zone_page_state(zone, NR_FREE_PAGES);
1496
1497        nr_pages += count_pages_for_highmem(nr_highmem);
1498        pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499                nr_pages, PAGES_FOR_IO, free);
1500
1501        return free > nr_pages + PAGES_FOR_IO;
1502}
1503
1504#ifdef CONFIG_HIGHMEM
1505/**
1506 *      get_highmem_buffer - if there are some highmem pages in the suspend
1507 *      image, we may need the buffer to copy them and/or load their data.
1508 */
1509
1510static inline int get_highmem_buffer(int safe_needed)
1511{
1512        buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1513        return buffer ? 0 : -ENOMEM;
1514}
1515
1516/**
1517 *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1518 *      Try to allocate as many pages as needed, but if the number of free
1519 *      highmem pages is lesser than that, allocate them all.
1520 */
1521
1522static inline unsigned int
1523alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1524{
1525        unsigned int to_alloc = count_free_highmem_pages();
1526
1527        if (to_alloc > nr_highmem)
1528                to_alloc = nr_highmem;
1529
1530        nr_highmem -= to_alloc;
1531        while (to_alloc-- > 0) {
1532                struct page *page;
1533
1534                page = alloc_image_page(__GFP_HIGHMEM);
1535                memory_bm_set_bit(bm, page_to_pfn(page));
1536        }
1537        return nr_highmem;
1538}
1539#else
1540static inline int get_highmem_buffer(int safe_needed) { return 0; }
1541
1542static inline unsigned int
1543alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1544#endif /* CONFIG_HIGHMEM */
1545
1546/**
1547 *      swsusp_alloc - allocate memory for the suspend image
1548 *
1549 *      We first try to allocate as many highmem pages as there are
1550 *      saveable highmem pages in the system.  If that fails, we allocate
1551 *      non-highmem pages for the copies of the remaining highmem ones.
1552 *
1553 *      In this approach it is likely that the copies of highmem pages will
1554 *      also be located in the high memory, because of the way in which
1555 *      copy_data_pages() works.
1556 */
1557
1558static int
1559swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1560                unsigned int nr_pages, unsigned int nr_highmem)
1561{
1562        if (nr_highmem > 0) {
1563                if (get_highmem_buffer(PG_ANY))
1564                        goto err_out;
1565                if (nr_highmem > alloc_highmem) {
1566                        nr_highmem -= alloc_highmem;
1567                        nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1568                }
1569        }
1570        if (nr_pages > alloc_normal) {
1571                nr_pages -= alloc_normal;
1572                while (nr_pages-- > 0) {
1573                        struct page *page;
1574
1575                        page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1576                        if (!page)
1577                                goto err_out;
1578                        memory_bm_set_bit(copy_bm, page_to_pfn(page));
1579                }
1580        }
1581
1582        return 0;
1583
1584 err_out:
1585        swsusp_free();
1586        return -ENOMEM;
1587}
1588
1589asmlinkage __visible int swsusp_save(void)
1590{
1591        unsigned int nr_pages, nr_highmem;
1592
1593        printk(KERN_INFO "PM: Creating hibernation image:\n");
1594
1595        drain_local_pages(NULL);
1596        nr_pages = count_data_pages();
1597        nr_highmem = count_highmem_pages();
1598        printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1599
1600        if (!enough_free_mem(nr_pages, nr_highmem)) {
1601                printk(KERN_ERR "PM: Not enough free memory\n");
1602                return -ENOMEM;
1603        }
1604
1605        if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1606                printk(KERN_ERR "PM: Memory allocation failed\n");
1607                return -ENOMEM;
1608        }
1609
1610        /* During allocating of suspend pagedir, new cold pages may appear.
1611         * Kill them.
1612         */
1613        drain_local_pages(NULL);
1614        copy_data_pages(&copy_bm, &orig_bm);
1615
1616        /*
1617         * End of critical section. From now on, we can write to memory,
1618         * but we should not touch disk. This specially means we must _not_
1619         * touch swap space! Except we must write out our image of course.
1620         */
1621
1622        nr_pages += nr_highmem;
1623        nr_copy_pages = nr_pages;
1624        nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1625
1626        printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1627                nr_pages);
1628
1629        return 0;
1630}
1631
1632#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633static int init_header_complete(struct swsusp_info *info)
1634{
1635        memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1636        info->version_code = LINUX_VERSION_CODE;
1637        return 0;
1638}
1639
1640static char *check_image_kernel(struct swsusp_info *info)
1641{
1642        if (info->version_code != LINUX_VERSION_CODE)
1643                return "kernel version";
1644        if (strcmp(info->uts.sysname,init_utsname()->sysname))
1645                return "system type";
1646        if (strcmp(info->uts.release,init_utsname()->release))
1647                return "kernel release";
1648        if (strcmp(info->uts.version,init_utsname()->version))
1649                return "version";
1650        if (strcmp(info->uts.machine,init_utsname()->machine))
1651                return "machine";
1652        return NULL;
1653}
1654#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1655
1656unsigned long snapshot_get_image_size(void)
1657{
1658        return nr_copy_pages + nr_meta_pages + 1;
1659}
1660
1661static int init_header(struct swsusp_info *info)
1662{
1663        memset(info, 0, sizeof(struct swsusp_info));
1664        info->num_physpages = get_num_physpages();
1665        info->image_pages = nr_copy_pages;
1666        info->pages = snapshot_get_image_size();
1667        info->size = info->pages;
1668        info->size <<= PAGE_SHIFT;
1669        return init_header_complete(info);
1670}
1671
1672/**
1673 *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674 *      are stored in the array @buf[] (1 page at a time)
1675 */
1676
1677static inline void
1678pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1679{
1680        int j;
1681
1682        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1683                buf[j] = memory_bm_next_pfn(bm);
1684                if (unlikely(buf[j] == BM_END_OF_MAP))
1685                        break;
1686                /* Save page key for data page (s390 only). */
1687                page_key_read(buf + j);
1688        }
1689}
1690
1691/**
1692 *      snapshot_read_next - used for reading the system memory snapshot.
1693 *
1694 *      On the first call to it @handle should point to a zeroed
1695 *      snapshot_handle structure.  The structure gets updated and a pointer
1696 *      to it should be passed to this function every next time.
1697 *
1698 *      On success the function returns a positive number.  Then, the caller
1699 *      is allowed to read up to the returned number of bytes from the memory
1700 *      location computed by the data_of() macro.
1701 *
1702 *      The function returns 0 to indicate the end of data stream condition,
1703 *      and a negative number is returned on error.  In such cases the
1704 *      structure pointed to by @handle is not updated and should not be used
1705 *      any more.
1706 */
1707
1708int snapshot_read_next(struct snapshot_handle *handle)
1709{
1710        if (handle->cur > nr_meta_pages + nr_copy_pages)
1711                return 0;
1712
1713        if (!buffer) {
1714                /* This makes the buffer be freed by swsusp_free() */
1715                buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1716                if (!buffer)
1717                        return -ENOMEM;
1718        }
1719        if (!handle->cur) {
1720                int error;
1721
1722                error = init_header((struct swsusp_info *)buffer);
1723                if (error)
1724                        return error;
1725                handle->buffer = buffer;
1726                memory_bm_position_reset(&orig_bm);
1727                memory_bm_position_reset(&copy_bm);
1728        } else if (handle->cur <= nr_meta_pages) {
1729                clear_page(buffer);
1730                pack_pfns(buffer, &orig_bm);
1731        } else {
1732                struct page *page;
1733
1734                page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1735                if (PageHighMem(page)) {
1736                        /* Highmem pages are copied to the buffer,
1737                         * because we can't return with a kmapped
1738                         * highmem page (we may not be called again).
1739                         */
1740                        void *kaddr;
1741
1742                        kaddr = kmap_atomic(page);
1743                        copy_page(buffer, kaddr);
1744                        kunmap_atomic(kaddr);
1745                        handle->buffer = buffer;
1746                } else {
1747                        handle->buffer = page_address(page);
1748                }
1749        }
1750        handle->cur++;
1751        return PAGE_SIZE;
1752}
1753
1754/**
1755 *      mark_unsafe_pages - mark the pages that cannot be used for storing
1756 *      the image during resume, because they conflict with the pages that
1757 *      had been used before suspend
1758 */
1759
1760static int mark_unsafe_pages(struct memory_bitmap *bm)
1761{
1762        struct zone *zone;
1763        unsigned long pfn, max_zone_pfn;
1764
1765        /* Clear page flags */
1766        for_each_populated_zone(zone) {
1767                max_zone_pfn = zone_end_pfn(zone);
1768                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1769                        if (pfn_valid(pfn))
1770                                swsusp_unset_page_free(pfn_to_page(pfn));
1771        }
1772
1773        /* Mark pages that correspond to the "original" pfns as "unsafe" */
1774        memory_bm_position_reset(bm);
1775        do {
1776                pfn = memory_bm_next_pfn(bm);
1777                if (likely(pfn != BM_END_OF_MAP)) {
1778                        if (likely(pfn_valid(pfn)))
1779                                swsusp_set_page_free(pfn_to_page(pfn));
1780                        else
1781                                return -EFAULT;
1782                }
1783        } while (pfn != BM_END_OF_MAP);
1784
1785        allocated_unsafe_pages = 0;
1786
1787        return 0;
1788}
1789
1790static void
1791duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1792{
1793        unsigned long pfn;
1794
1795        memory_bm_position_reset(src);
1796        pfn = memory_bm_next_pfn(src);
1797        while (pfn != BM_END_OF_MAP) {
1798                memory_bm_set_bit(dst, pfn);
1799                pfn = memory_bm_next_pfn(src);
1800        }
1801}
1802
1803static int check_header(struct swsusp_info *info)
1804{
1805        char *reason;
1806
1807        reason = check_image_kernel(info);
1808        if (!reason && info->num_physpages != get_num_physpages())
1809                reason = "memory size";
1810        if (reason) {
1811                printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1812                return -EPERM;
1813        }
1814        return 0;
1815}
1816
1817/**
1818 *      load header - check the image header and copy data from it
1819 */
1820
1821static int
1822load_header(struct swsusp_info *info)
1823{
1824        int error;
1825
1826        restore_pblist = NULL;
1827        error = check_header(info);
1828        if (!error) {
1829                nr_copy_pages = info->image_pages;
1830                nr_meta_pages = info->pages - info->image_pages - 1;
1831        }
1832        return error;
1833}
1834
1835/**
1836 *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837 *      the corresponding bit in the memory bitmap @bm
1838 */
1839static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1840{
1841        int j;
1842
1843        for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1844                if (unlikely(buf[j] == BM_END_OF_MAP))
1845                        break;
1846
1847                /* Extract and buffer page key for data page (s390 only). */
1848                page_key_memorize(buf + j);
1849
1850                if (memory_bm_pfn_present(bm, buf[j]))
1851                        memory_bm_set_bit(bm, buf[j]);
1852                else
1853                        return -EFAULT;
1854        }
1855
1856        return 0;
1857}
1858
1859/* List of "safe" pages that may be used to store data loaded from the suspend
1860 * image
1861 */
1862static struct linked_page *safe_pages_list;
1863
1864#ifdef CONFIG_HIGHMEM
1865/* struct highmem_pbe is used for creating the list of highmem pages that
1866 * should be restored atomically during the resume from disk, because the page
1867 * frames they have occupied before the suspend are in use.
1868 */
1869struct highmem_pbe {
1870        struct page *copy_page; /* data is here now */
1871        struct page *orig_page; /* data was here before the suspend */
1872        struct highmem_pbe *next;
1873};
1874
1875/* List of highmem PBEs needed for restoring the highmem pages that were
1876 * allocated before the suspend and included in the suspend image, but have
1877 * also been allocated by the "resume" kernel, so their contents cannot be
1878 * written directly to their "original" page frames.
1879 */
1880static struct highmem_pbe *highmem_pblist;
1881
1882/**
1883 *      count_highmem_image_pages - compute the number of highmem pages in the
1884 *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1885 *      image pages are assumed to be set.
1886 */
1887
1888static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1889{
1890        unsigned long pfn;
1891        unsigned int cnt = 0;
1892
1893        memory_bm_position_reset(bm);
1894        pfn = memory_bm_next_pfn(bm);
1895        while (pfn != BM_END_OF_MAP) {
1896                if (PageHighMem(pfn_to_page(pfn)))
1897                        cnt++;
1898
1899                pfn = memory_bm_next_pfn(bm);
1900        }
1901        return cnt;
1902}
1903
1904/**
1905 *      prepare_highmem_image - try to allocate as many highmem pages as
1906 *      there are highmem image pages (@nr_highmem_p points to the variable
1907 *      containing the number of highmem image pages).  The pages that are
1908 *      "safe" (ie. will not be overwritten when the suspend image is
1909 *      restored) have the corresponding bits set in @bm (it must be
1910 *      unitialized).
1911 *
1912 *      NOTE: This function should not be called if there are no highmem
1913 *      image pages.
1914 */
1915
1916static unsigned int safe_highmem_pages;
1917
1918static struct memory_bitmap *safe_highmem_bm;
1919
1920static int
1921prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1922{
1923        unsigned int to_alloc;
1924
1925        if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1926                return -ENOMEM;
1927
1928        if (get_highmem_buffer(PG_SAFE))
1929                return -ENOMEM;
1930
1931        to_alloc = count_free_highmem_pages();
1932        if (to_alloc > *nr_highmem_p)
1933                to_alloc = *nr_highmem_p;
1934        else
1935                *nr_highmem_p = to_alloc;
1936
1937        safe_highmem_pages = 0;
1938        while (to_alloc-- > 0) {
1939                struct page *page;
1940
1941                page = alloc_page(__GFP_HIGHMEM);
1942                if (!swsusp_page_is_free(page)) {
1943                        /* The page is "safe", set its bit the bitmap */
1944                        memory_bm_set_bit(bm, page_to_pfn(page));
1945                        safe_highmem_pages++;
1946                }
1947                /* Mark the page as allocated */
1948                swsusp_set_page_forbidden(page);
1949                swsusp_set_page_free(page);
1950        }
1951        memory_bm_position_reset(bm);
1952        safe_highmem_bm = bm;
1953        return 0;
1954}
1955
1956/**
1957 *      get_highmem_page_buffer - for given highmem image page find the buffer
1958 *      that suspend_write_next() should set for its caller to write to.
1959 *
1960 *      If the page is to be saved to its "original" page frame or a copy of
1961 *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1962 *      the copy of the page is to be made in normal memory, so the address of
1963 *      the copy is returned.
1964 *
1965 *      If @buffer is returned, the caller of suspend_write_next() will write
1966 *      the page's contents to @buffer, so they will have to be copied to the
1967 *      right location on the next call to suspend_write_next() and it is done
1968 *      with the help of copy_last_highmem_page().  For this purpose, if
1969 *      @buffer is returned, @last_highmem page is set to the page to which
1970 *      the data will have to be copied from @buffer.
1971 */
1972
1973static struct page *last_highmem_page;
1974
1975static void *
1976get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1977{
1978        struct highmem_pbe *pbe;
1979        void *kaddr;
1980
1981        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1982                /* We have allocated the "original" page frame and we can
1983                 * use it directly to store the loaded page.
1984                 */
1985                last_highmem_page = page;
1986                return buffer;
1987        }
1988        /* The "original" page frame has not been allocated and we have to
1989         * use a "safe" page frame to store the loaded page.
1990         */
1991        pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1992        if (!pbe) {
1993                swsusp_free();
1994                return ERR_PTR(-ENOMEM);
1995        }
1996        pbe->orig_page = page;
1997        if (safe_highmem_pages > 0) {
1998                struct page *tmp;
1999
2000                /* Copy of the page will be stored in high memory */
2001                kaddr = buffer;
2002                tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2003                safe_highmem_pages--;
2004                last_highmem_page = tmp;
2005                pbe->copy_page = tmp;
2006        } else {
2007                /* Copy of the page will be stored in normal memory */
2008                kaddr = safe_pages_list;
2009                safe_pages_list = safe_pages_list->next;
2010                pbe->copy_page = virt_to_page(kaddr);
2011        }
2012        pbe->next = highmem_pblist;
2013        highmem_pblist = pbe;
2014        return kaddr;
2015}
2016
2017/**
2018 *      copy_last_highmem_page - copy the contents of a highmem image from
2019 *      @buffer, where the caller of snapshot_write_next() has place them,
2020 *      to the right location represented by @last_highmem_page .
2021 */
2022
2023static void copy_last_highmem_page(void)
2024{
2025        if (last_highmem_page) {
2026                void *dst;
2027
2028                dst = kmap_atomic(last_highmem_page);
2029                copy_page(dst, buffer);
2030                kunmap_atomic(dst);
2031                last_highmem_page = NULL;
2032        }
2033}
2034
2035static inline int last_highmem_page_copied(void)
2036{
2037        return !last_highmem_page;
2038}
2039
2040static inline void free_highmem_data(void)
2041{
2042        if (safe_highmem_bm)
2043                memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2044
2045        if (buffer)
2046                free_image_page(buffer, PG_UNSAFE_CLEAR);
2047}
2048#else
2049static inline int get_safe_write_buffer(void) { return 0; }
2050
2051static unsigned int
2052count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2053
2054static inline int
2055prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2056{
2057        return 0;
2058}
2059
2060static inline void *
2061get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2062{
2063        return ERR_PTR(-EINVAL);
2064}
2065
2066static inline void copy_last_highmem_page(void) {}
2067static inline int last_highmem_page_copied(void) { return 1; }
2068static inline void free_highmem_data(void) {}
2069#endif /* CONFIG_HIGHMEM */
2070
2071/**
2072 *      prepare_image - use the memory bitmap @bm to mark the pages that will
2073 *      be overwritten in the process of restoring the system memory state
2074 *      from the suspend image ("unsafe" pages) and allocate memory for the
2075 *      image.
2076 *
2077 *      The idea is to allocate a new memory bitmap first and then allocate
2078 *      as many pages as needed for the image data, but not to assign these
2079 *      pages to specific tasks initially.  Instead, we just mark them as
2080 *      allocated and create a lists of "safe" pages that will be used
2081 *      later.  On systems with high memory a list of "safe" highmem pages is
2082 *      also created.
2083 */
2084
2085#define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2086
2087static int
2088prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2089{
2090        unsigned int nr_pages, nr_highmem;
2091        struct linked_page *sp_list, *lp;
2092        int error;
2093
2094        /* If there is no highmem, the buffer will not be necessary */
2095        free_image_page(buffer, PG_UNSAFE_CLEAR);
2096        buffer = NULL;
2097
2098        nr_highmem = count_highmem_image_pages(bm);
2099        error = mark_unsafe_pages(bm);
2100        if (error)
2101                goto Free;
2102
2103        error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2104        if (error)
2105                goto Free;
2106
2107        duplicate_memory_bitmap(new_bm, bm);
2108        memory_bm_free(bm, PG_UNSAFE_KEEP);
2109        if (nr_highmem > 0) {
2110                error = prepare_highmem_image(bm, &nr_highmem);
2111                if (error)
2112                        goto Free;
2113        }
2114        /* Reserve some safe pages for potential later use.
2115         *
2116         * NOTE: This way we make sure there will be enough safe pages for the
2117         * chain_alloc() in get_buffer().  It is a bit wasteful, but
2118         * nr_copy_pages cannot be greater than 50% of the memory anyway.
2119         */
2120        sp_list = NULL;
2121        /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123        nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2124        while (nr_pages > 0) {
2125                lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2126                if (!lp) {
2127                        error = -ENOMEM;
2128                        goto Free;
2129                }
2130                lp->next = sp_list;
2131                sp_list = lp;
2132                nr_pages--;
2133        }
2134        /* Preallocate memory for the image */
2135        safe_pages_list = NULL;
2136        nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2137        while (nr_pages > 0) {
2138                lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2139                if (!lp) {
2140                        error = -ENOMEM;
2141                        goto Free;
2142                }
2143                if (!swsusp_page_is_free(virt_to_page(lp))) {
2144                        /* The page is "safe", add it to the list */
2145                        lp->next = safe_pages_list;
2146                        safe_pages_list = lp;
2147                }
2148                /* Mark the page as allocated */
2149                swsusp_set_page_forbidden(virt_to_page(lp));
2150                swsusp_set_page_free(virt_to_page(lp));
2151                nr_pages--;
2152        }
2153        /* Free the reserved safe pages so that chain_alloc() can use them */
2154        while (sp_list) {
2155                lp = sp_list->next;
2156                free_image_page(sp_list, PG_UNSAFE_CLEAR);
2157                sp_list = lp;
2158        }
2159        return 0;
2160
2161 Free:
2162        swsusp_free();
2163        return error;
2164}
2165
2166/**
2167 *      get_buffer - compute the address that snapshot_write_next() should
2168 *      set for its caller to write to.
2169 */
2170
2171static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2172{
2173        struct pbe *pbe;
2174        struct page *page;
2175        unsigned long pfn = memory_bm_next_pfn(bm);
2176
2177        if (pfn == BM_END_OF_MAP)
2178                return ERR_PTR(-EFAULT);
2179
2180        page = pfn_to_page(pfn);
2181        if (PageHighMem(page))
2182                return get_highmem_page_buffer(page, ca);
2183
2184        if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2185                /* We have allocated the "original" page frame and we can
2186                 * use it directly to store the loaded page.
2187                 */
2188                return page_address(page);
2189
2190        /* The "original" page frame has not been allocated and we have to
2191         * use a "safe" page frame to store the loaded page.
2192         */
2193        pbe = chain_alloc(ca, sizeof(struct pbe));
2194        if (!pbe) {
2195                swsusp_free();
2196                return ERR_PTR(-ENOMEM);
2197        }
2198        pbe->orig_address = page_address(page);
2199        pbe->address = safe_pages_list;
2200        safe_pages_list = safe_pages_list->next;
2201        pbe->next = restore_pblist;
2202        restore_pblist = pbe;
2203        return pbe->address;
2204}
2205
2206/**
2207 *      snapshot_write_next - used for writing the system memory snapshot.
2208 *
2209 *      On the first call to it @handle should point to a zeroed
2210 *      snapshot_handle structure.  The structure gets updated and a pointer
2211 *      to it should be passed to this function every next time.
2212 *
2213 *      On success the function returns a positive number.  Then, the caller
2214 *      is allowed to write up to the returned number of bytes to the memory
2215 *      location computed by the data_of() macro.
2216 *
2217 *      The function returns 0 to indicate the "end of file" condition,
2218 *      and a negative number is returned on error.  In such cases the
2219 *      structure pointed to by @handle is not updated and should not be used
2220 *      any more.
2221 */
2222
2223int snapshot_write_next(struct snapshot_handle *handle)
2224{
2225        static struct chain_allocator ca;
2226        int error = 0;
2227
2228        /* Check if we have already loaded the entire image */
2229        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2230                return 0;
2231
2232        handle->sync_read = 1;
2233
2234        if (!handle->cur) {
2235                if (!buffer)
2236                        /* This makes the buffer be freed by swsusp_free() */
2237                        buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2238
2239                if (!buffer)
2240                        return -ENOMEM;
2241
2242                handle->buffer = buffer;
2243        } else if (handle->cur == 1) {
2244                error = load_header(buffer);
2245                if (error)
2246                        return error;
2247
2248                error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2249                if (error)
2250                        return error;
2251
2252                /* Allocate buffer for page keys. */
2253                error = page_key_alloc(nr_copy_pages);
2254                if (error)
2255                        return error;
2256
2257        } else if (handle->cur <= nr_meta_pages + 1) {
2258                error = unpack_orig_pfns(buffer, &copy_bm);
2259                if (error)
2260                        return error;
2261
2262                if (handle->cur == nr_meta_pages + 1) {
2263                        error = prepare_image(&orig_bm, &copy_bm);
2264                        if (error)
2265                                return error;
2266
2267                        chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2268                        memory_bm_position_reset(&orig_bm);
2269                        restore_pblist = NULL;
2270                        handle->buffer = get_buffer(&orig_bm, &ca);
2271                        handle->sync_read = 0;
2272                        if (IS_ERR(handle->buffer))
2273                                return PTR_ERR(handle->buffer);
2274                }
2275        } else {
2276                copy_last_highmem_page();
2277                /* Restore page key for data page (s390 only). */
2278                page_key_write(handle->buffer);
2279                handle->buffer = get_buffer(&orig_bm, &ca);
2280                if (IS_ERR(handle->buffer))
2281                        return PTR_ERR(handle->buffer);
2282                if (handle->buffer != buffer)
2283                        handle->sync_read = 0;
2284        }
2285        handle->cur++;
2286        return PAGE_SIZE;
2287}
2288
2289/**
2290 *      snapshot_write_finalize - must be called after the last call to
2291 *      snapshot_write_next() in case the last page in the image happens
2292 *      to be a highmem page and its contents should be stored in the
2293 *      highmem.  Additionally, it releases the memory that will not be
2294 *      used any more.
2295 */
2296
2297void snapshot_write_finalize(struct snapshot_handle *handle)
2298{
2299        copy_last_highmem_page();
2300        /* Restore page key for data page (s390 only). */
2301        page_key_write(handle->buffer);
2302        page_key_free();
2303        /* Free only if we have loaded the image entirely */
2304        if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2305                memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2306                free_highmem_data();
2307        }
2308}
2309
2310int snapshot_image_loaded(struct snapshot_handle *handle)
2311{
2312        return !(!nr_copy_pages || !last_highmem_page_copied() ||
2313                        handle->cur <= nr_meta_pages + nr_copy_pages);
2314}
2315
2316#ifdef CONFIG_HIGHMEM
2317/* Assumes that @buf is ready and points to a "safe" page */
2318static inline void
2319swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2320{
2321        void *kaddr1, *kaddr2;
2322
2323        kaddr1 = kmap_atomic(p1);
2324        kaddr2 = kmap_atomic(p2);
2325        copy_page(buf, kaddr1);
2326        copy_page(kaddr1, kaddr2);
2327        copy_page(kaddr2, buf);
2328        kunmap_atomic(kaddr2);
2329        kunmap_atomic(kaddr1);
2330}
2331
2332/**
2333 *      restore_highmem - for each highmem page that was allocated before
2334 *      the suspend and included in the suspend image, and also has been
2335 *      allocated by the "resume" kernel swap its current (ie. "before
2336 *      resume") contents with the previous (ie. "before suspend") one.
2337 *
2338 *      If the resume eventually fails, we can call this function once
2339 *      again and restore the "before resume" highmem state.
2340 */
2341
2342int restore_highmem(void)
2343{
2344        struct highmem_pbe *pbe = highmem_pblist;
2345        void *buf;
2346
2347        if (!pbe)
2348                return 0;
2349
2350        buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2351        if (!buf)
2352                return -ENOMEM;
2353
2354        while (pbe) {
2355                swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2356                pbe = pbe->next;
2357        }
2358        free_image_page(buf, PG_UNSAFE_CLEAR);
2359        return 0;
2360}
2361#endif /* CONFIG_HIGHMEM */
2362