linux/kernel/stop_machine.c
<<
>>
Prefs
   1/*
   2 * kernel/stop_machine.c
   3 *
   4 * Copyright (C) 2008, 2005     IBM Corporation.
   5 * Copyright (C) 2008, 2005     Rusty Russell rusty@rustcorp.com.au
   6 * Copyright (C) 2010           SUSE Linux Products GmbH
   7 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
   8 *
   9 * This file is released under the GPLv2 and any later version.
  10 */
  11#include <linux/completion.h>
  12#include <linux/cpu.h>
  13#include <linux/init.h>
  14#include <linux/kthread.h>
  15#include <linux/export.h>
  16#include <linux/percpu.h>
  17#include <linux/sched.h>
  18#include <linux/stop_machine.h>
  19#include <linux/interrupt.h>
  20#include <linux/kallsyms.h>
  21#include <linux/smpboot.h>
  22#include <linux/atomic.h>
  23#include <linux/lglock.h>
  24
  25/*
  26 * Structure to determine completion condition and record errors.  May
  27 * be shared by works on different cpus.
  28 */
  29struct cpu_stop_done {
  30        atomic_t                nr_todo;        /* nr left to execute */
  31        bool                    executed;       /* actually executed? */
  32        int                     ret;            /* collected return value */
  33        struct completion       completion;     /* fired if nr_todo reaches 0 */
  34};
  35
  36/* the actual stopper, one per every possible cpu, enabled on online cpus */
  37struct cpu_stopper {
  38        spinlock_t              lock;
  39        bool                    enabled;        /* is this stopper enabled? */
  40        struct list_head        works;          /* list of pending works */
  41};
  42
  43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
  44static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
  45static bool stop_machine_initialized = false;
  46
  47/*
  48 * Avoids a race between stop_two_cpus and global stop_cpus, where
  49 * the stoppers could get queued up in reverse order, leading to
  50 * system deadlock. Using an lglock means stop_two_cpus remains
  51 * relatively cheap.
  52 */
  53DEFINE_STATIC_LGLOCK(stop_cpus_lock);
  54
  55static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
  56{
  57        memset(done, 0, sizeof(*done));
  58        atomic_set(&done->nr_todo, nr_todo);
  59        init_completion(&done->completion);
  60}
  61
  62/* signal completion unless @done is NULL */
  63static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
  64{
  65        if (done) {
  66                if (executed)
  67                        done->executed = true;
  68                if (atomic_dec_and_test(&done->nr_todo))
  69                        complete(&done->completion);
  70        }
  71}
  72
  73/* queue @work to @stopper.  if offline, @work is completed immediately */
  74static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
  75{
  76        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  77        struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
  78
  79        unsigned long flags;
  80
  81        spin_lock_irqsave(&stopper->lock, flags);
  82
  83        if (stopper->enabled) {
  84                list_add_tail(&work->list, &stopper->works);
  85                wake_up_process(p);
  86        } else
  87                cpu_stop_signal_done(work->done, false);
  88
  89        spin_unlock_irqrestore(&stopper->lock, flags);
  90}
  91
  92/**
  93 * stop_one_cpu - stop a cpu
  94 * @cpu: cpu to stop
  95 * @fn: function to execute
  96 * @arg: argument to @fn
  97 *
  98 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
  99 * the highest priority preempting any task on the cpu and
 100 * monopolizing it.  This function returns after the execution is
 101 * complete.
 102 *
 103 * This function doesn't guarantee @cpu stays online till @fn
 104 * completes.  If @cpu goes down in the middle, execution may happen
 105 * partially or fully on different cpus.  @fn should either be ready
 106 * for that or the caller should ensure that @cpu stays online until
 107 * this function completes.
 108 *
 109 * CONTEXT:
 110 * Might sleep.
 111 *
 112 * RETURNS:
 113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
 114 * otherwise, the return value of @fn.
 115 */
 116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
 117{
 118        struct cpu_stop_done done;
 119        struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
 120
 121        cpu_stop_init_done(&done, 1);
 122        cpu_stop_queue_work(cpu, &work);
 123        wait_for_completion(&done.completion);
 124        return done.executed ? done.ret : -ENOENT;
 125}
 126
 127/* This controls the threads on each CPU. */
 128enum multi_stop_state {
 129        /* Dummy starting state for thread. */
 130        MULTI_STOP_NONE,
 131        /* Awaiting everyone to be scheduled. */
 132        MULTI_STOP_PREPARE,
 133        /* Disable interrupts. */
 134        MULTI_STOP_DISABLE_IRQ,
 135        /* Run the function */
 136        MULTI_STOP_RUN,
 137        /* Exit */
 138        MULTI_STOP_EXIT,
 139};
 140
 141struct multi_stop_data {
 142        int                     (*fn)(void *);
 143        void                    *data;
 144        /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
 145        unsigned int            num_threads;
 146        const struct cpumask    *active_cpus;
 147
 148        enum multi_stop_state   state;
 149        atomic_t                thread_ack;
 150};
 151
 152static void set_state(struct multi_stop_data *msdata,
 153                      enum multi_stop_state newstate)
 154{
 155        /* Reset ack counter. */
 156        atomic_set(&msdata->thread_ack, msdata->num_threads);
 157        smp_wmb();
 158        msdata->state = newstate;
 159}
 160
 161/* Last one to ack a state moves to the next state. */
 162static void ack_state(struct multi_stop_data *msdata)
 163{
 164        if (atomic_dec_and_test(&msdata->thread_ack))
 165                set_state(msdata, msdata->state + 1);
 166}
 167
 168/* This is the cpu_stop function which stops the CPU. */
 169static int multi_cpu_stop(void *data)
 170{
 171        struct multi_stop_data *msdata = data;
 172        enum multi_stop_state curstate = MULTI_STOP_NONE;
 173        int cpu = smp_processor_id(), err = 0;
 174        unsigned long flags;
 175        bool is_active;
 176
 177        /*
 178         * When called from stop_machine_from_inactive_cpu(), irq might
 179         * already be disabled.  Save the state and restore it on exit.
 180         */
 181        local_save_flags(flags);
 182
 183        if (!msdata->active_cpus)
 184                is_active = cpu == cpumask_first(cpu_online_mask);
 185        else
 186                is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
 187
 188        /* Simple state machine */
 189        do {
 190                /* Chill out and ensure we re-read multi_stop_state. */
 191                cpu_relax();
 192                if (msdata->state != curstate) {
 193                        curstate = msdata->state;
 194                        switch (curstate) {
 195                        case MULTI_STOP_DISABLE_IRQ:
 196                                local_irq_disable();
 197                                hard_irq_disable();
 198                                break;
 199                        case MULTI_STOP_RUN:
 200                                if (is_active)
 201                                        err = msdata->fn(msdata->data);
 202                                break;
 203                        default:
 204                                break;
 205                        }
 206                        ack_state(msdata);
 207                }
 208        } while (curstate != MULTI_STOP_EXIT);
 209
 210        local_irq_restore(flags);
 211        return err;
 212}
 213
 214struct irq_cpu_stop_queue_work_info {
 215        int cpu1;
 216        int cpu2;
 217        struct cpu_stop_work *work1;
 218        struct cpu_stop_work *work2;
 219};
 220
 221/*
 222 * This function is always run with irqs and preemption disabled.
 223 * This guarantees that both work1 and work2 get queued, before
 224 * our local migrate thread gets the chance to preempt us.
 225 */
 226static void irq_cpu_stop_queue_work(void *arg)
 227{
 228        struct irq_cpu_stop_queue_work_info *info = arg;
 229        cpu_stop_queue_work(info->cpu1, info->work1);
 230        cpu_stop_queue_work(info->cpu2, info->work2);
 231}
 232
 233/**
 234 * stop_two_cpus - stops two cpus
 235 * @cpu1: the cpu to stop
 236 * @cpu2: the other cpu to stop
 237 * @fn: function to execute
 238 * @arg: argument to @fn
 239 *
 240 * Stops both the current and specified CPU and runs @fn on one of them.
 241 *
 242 * returns when both are completed.
 243 */
 244int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
 245{
 246        struct cpu_stop_done done;
 247        struct cpu_stop_work work1, work2;
 248        struct irq_cpu_stop_queue_work_info call_args;
 249        struct multi_stop_data msdata;
 250
 251        preempt_disable();
 252        msdata = (struct multi_stop_data){
 253                .fn = fn,
 254                .data = arg,
 255                .num_threads = 2,
 256                .active_cpus = cpumask_of(cpu1),
 257        };
 258
 259        work1 = work2 = (struct cpu_stop_work){
 260                .fn = multi_cpu_stop,
 261                .arg = &msdata,
 262                .done = &done
 263        };
 264
 265        call_args = (struct irq_cpu_stop_queue_work_info){
 266                .cpu1 = cpu1,
 267                .cpu2 = cpu2,
 268                .work1 = &work1,
 269                .work2 = &work2,
 270        };
 271
 272        cpu_stop_init_done(&done, 2);
 273        set_state(&msdata, MULTI_STOP_PREPARE);
 274
 275        /*
 276         * If we observe both CPUs active we know _cpu_down() cannot yet have
 277         * queued its stop_machine works and therefore ours will get executed
 278         * first. Or its not either one of our CPUs that's getting unplugged,
 279         * in which case we don't care.
 280         *
 281         * This relies on the stopper workqueues to be FIFO.
 282         */
 283        if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
 284                preempt_enable();
 285                return -ENOENT;
 286        }
 287
 288        lg_local_lock(&stop_cpus_lock);
 289        /*
 290         * Queuing needs to be done by the lowest numbered CPU, to ensure
 291         * that works are always queued in the same order on every CPU.
 292         * This prevents deadlocks.
 293         */
 294        smp_call_function_single(min(cpu1, cpu2),
 295                                 &irq_cpu_stop_queue_work,
 296                                 &call_args, 1);
 297        lg_local_unlock(&stop_cpus_lock);
 298        preempt_enable();
 299
 300        wait_for_completion(&done.completion);
 301
 302        return done.executed ? done.ret : -ENOENT;
 303}
 304
 305/**
 306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
 307 * @cpu: cpu to stop
 308 * @fn: function to execute
 309 * @arg: argument to @fn
 310 *
 311 * Similar to stop_one_cpu() but doesn't wait for completion.  The
 312 * caller is responsible for ensuring @work_buf is currently unused
 313 * and will remain untouched until stopper starts executing @fn.
 314 *
 315 * CONTEXT:
 316 * Don't care.
 317 */
 318void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
 319                        struct cpu_stop_work *work_buf)
 320{
 321        *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
 322        cpu_stop_queue_work(cpu, work_buf);
 323}
 324
 325/* static data for stop_cpus */
 326static DEFINE_MUTEX(stop_cpus_mutex);
 327static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
 328
 329static void queue_stop_cpus_work(const struct cpumask *cpumask,
 330                                 cpu_stop_fn_t fn, void *arg,
 331                                 struct cpu_stop_done *done)
 332{
 333        struct cpu_stop_work *work;
 334        unsigned int cpu;
 335
 336        /* initialize works and done */
 337        for_each_cpu(cpu, cpumask) {
 338                work = &per_cpu(stop_cpus_work, cpu);
 339                work->fn = fn;
 340                work->arg = arg;
 341                work->done = done;
 342        }
 343
 344        /*
 345         * Disable preemption while queueing to avoid getting
 346         * preempted by a stopper which might wait for other stoppers
 347         * to enter @fn which can lead to deadlock.
 348         */
 349        lg_global_lock(&stop_cpus_lock);
 350        for_each_cpu(cpu, cpumask)
 351                cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
 352        lg_global_unlock(&stop_cpus_lock);
 353}
 354
 355static int __stop_cpus(const struct cpumask *cpumask,
 356                       cpu_stop_fn_t fn, void *arg)
 357{
 358        struct cpu_stop_done done;
 359
 360        cpu_stop_init_done(&done, cpumask_weight(cpumask));
 361        queue_stop_cpus_work(cpumask, fn, arg, &done);
 362        wait_for_completion(&done.completion);
 363        return done.executed ? done.ret : -ENOENT;
 364}
 365
 366/**
 367 * stop_cpus - stop multiple cpus
 368 * @cpumask: cpus to stop
 369 * @fn: function to execute
 370 * @arg: argument to @fn
 371 *
 372 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
 373 * @fn is run in a process context with the highest priority
 374 * preempting any task on the cpu and monopolizing it.  This function
 375 * returns after all executions are complete.
 376 *
 377 * This function doesn't guarantee the cpus in @cpumask stay online
 378 * till @fn completes.  If some cpus go down in the middle, execution
 379 * on the cpu may happen partially or fully on different cpus.  @fn
 380 * should either be ready for that or the caller should ensure that
 381 * the cpus stay online until this function completes.
 382 *
 383 * All stop_cpus() calls are serialized making it safe for @fn to wait
 384 * for all cpus to start executing it.
 385 *
 386 * CONTEXT:
 387 * Might sleep.
 388 *
 389 * RETURNS:
 390 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
 391 * @cpumask were offline; otherwise, 0 if all executions of @fn
 392 * returned 0, any non zero return value if any returned non zero.
 393 */
 394int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 395{
 396        int ret;
 397
 398        /* static works are used, process one request at a time */
 399        mutex_lock(&stop_cpus_mutex);
 400        ret = __stop_cpus(cpumask, fn, arg);
 401        mutex_unlock(&stop_cpus_mutex);
 402        return ret;
 403}
 404
 405/**
 406 * try_stop_cpus - try to stop multiple cpus
 407 * @cpumask: cpus to stop
 408 * @fn: function to execute
 409 * @arg: argument to @fn
 410 *
 411 * Identical to stop_cpus() except that it fails with -EAGAIN if
 412 * someone else is already using the facility.
 413 *
 414 * CONTEXT:
 415 * Might sleep.
 416 *
 417 * RETURNS:
 418 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
 419 * @fn(@arg) was not executed at all because all cpus in @cpumask were
 420 * offline; otherwise, 0 if all executions of @fn returned 0, any non
 421 * zero return value if any returned non zero.
 422 */
 423int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
 424{
 425        int ret;
 426
 427        /* static works are used, process one request at a time */
 428        if (!mutex_trylock(&stop_cpus_mutex))
 429                return -EAGAIN;
 430        ret = __stop_cpus(cpumask, fn, arg);
 431        mutex_unlock(&stop_cpus_mutex);
 432        return ret;
 433}
 434
 435static int cpu_stop_should_run(unsigned int cpu)
 436{
 437        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 438        unsigned long flags;
 439        int run;
 440
 441        spin_lock_irqsave(&stopper->lock, flags);
 442        run = !list_empty(&stopper->works);
 443        spin_unlock_irqrestore(&stopper->lock, flags);
 444        return run;
 445}
 446
 447static void cpu_stopper_thread(unsigned int cpu)
 448{
 449        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 450        struct cpu_stop_work *work;
 451        int ret;
 452
 453repeat:
 454        work = NULL;
 455        spin_lock_irq(&stopper->lock);
 456        if (!list_empty(&stopper->works)) {
 457                work = list_first_entry(&stopper->works,
 458                                        struct cpu_stop_work, list);
 459                list_del_init(&work->list);
 460        }
 461        spin_unlock_irq(&stopper->lock);
 462
 463        if (work) {
 464                cpu_stop_fn_t fn = work->fn;
 465                void *arg = work->arg;
 466                struct cpu_stop_done *done = work->done;
 467                char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
 468
 469                /* cpu stop callbacks are not allowed to sleep */
 470                preempt_disable();
 471
 472                ret = fn(arg);
 473                if (ret)
 474                        done->ret = ret;
 475
 476                /* restore preemption and check it's still balanced */
 477                preempt_enable();
 478                WARN_ONCE(preempt_count(),
 479                          "cpu_stop: %s(%p) leaked preempt count\n",
 480                          kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
 481                                          ksym_buf), arg);
 482
 483                cpu_stop_signal_done(done, true);
 484                goto repeat;
 485        }
 486}
 487
 488extern void sched_set_stop_task(int cpu, struct task_struct *stop);
 489
 490static void cpu_stop_create(unsigned int cpu)
 491{
 492        sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
 493}
 494
 495static void cpu_stop_park(unsigned int cpu)
 496{
 497        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 498        struct cpu_stop_work *work;
 499        unsigned long flags;
 500
 501        /* drain remaining works */
 502        spin_lock_irqsave(&stopper->lock, flags);
 503        list_for_each_entry(work, &stopper->works, list)
 504                cpu_stop_signal_done(work->done, false);
 505        stopper->enabled = false;
 506        spin_unlock_irqrestore(&stopper->lock, flags);
 507}
 508
 509static void cpu_stop_unpark(unsigned int cpu)
 510{
 511        struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 512
 513        spin_lock_irq(&stopper->lock);
 514        stopper->enabled = true;
 515        spin_unlock_irq(&stopper->lock);
 516}
 517
 518static struct smp_hotplug_thread cpu_stop_threads = {
 519        .store                  = &cpu_stopper_task,
 520        .thread_should_run      = cpu_stop_should_run,
 521        .thread_fn              = cpu_stopper_thread,
 522        .thread_comm            = "migration/%u",
 523        .create                 = cpu_stop_create,
 524        .setup                  = cpu_stop_unpark,
 525        .park                   = cpu_stop_park,
 526        .pre_unpark             = cpu_stop_unpark,
 527        .selfparking            = true,
 528};
 529
 530static int __init cpu_stop_init(void)
 531{
 532        unsigned int cpu;
 533
 534        for_each_possible_cpu(cpu) {
 535                struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 536
 537                spin_lock_init(&stopper->lock);
 538                INIT_LIST_HEAD(&stopper->works);
 539        }
 540
 541        BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 542        stop_machine_initialized = true;
 543        return 0;
 544}
 545early_initcall(cpu_stop_init);
 546
 547#ifdef CONFIG_STOP_MACHINE
 548
 549int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
 550{
 551        struct multi_stop_data msdata = {
 552                .fn = fn,
 553                .data = data,
 554                .num_threads = num_online_cpus(),
 555                .active_cpus = cpus,
 556        };
 557
 558        if (!stop_machine_initialized) {
 559                /*
 560                 * Handle the case where stop_machine() is called
 561                 * early in boot before stop_machine() has been
 562                 * initialized.
 563                 */
 564                unsigned long flags;
 565                int ret;
 566
 567                WARN_ON_ONCE(msdata.num_threads != 1);
 568
 569                local_irq_save(flags);
 570                hard_irq_disable();
 571                ret = (*fn)(data);
 572                local_irq_restore(flags);
 573
 574                return ret;
 575        }
 576
 577        /* Set the initial state and stop all online cpus. */
 578        set_state(&msdata, MULTI_STOP_PREPARE);
 579        return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
 580}
 581
 582int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
 583{
 584        int ret;
 585
 586        /* No CPUs can come up or down during this. */
 587        get_online_cpus();
 588        ret = __stop_machine(fn, data, cpus);
 589        put_online_cpus();
 590        return ret;
 591}
 592EXPORT_SYMBOL_GPL(stop_machine);
 593
 594/**
 595 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
 596 * @fn: the function to run
 597 * @data: the data ptr for the @fn()
 598 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
 599 *
 600 * This is identical to stop_machine() but can be called from a CPU which
 601 * is not active.  The local CPU is in the process of hotplug (so no other
 602 * CPU hotplug can start) and not marked active and doesn't have enough
 603 * context to sleep.
 604 *
 605 * This function provides stop_machine() functionality for such state by
 606 * using busy-wait for synchronization and executing @fn directly for local
 607 * CPU.
 608 *
 609 * CONTEXT:
 610 * Local CPU is inactive.  Temporarily stops all active CPUs.
 611 *
 612 * RETURNS:
 613 * 0 if all executions of @fn returned 0, any non zero return value if any
 614 * returned non zero.
 615 */
 616int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
 617                                  const struct cpumask *cpus)
 618{
 619        struct multi_stop_data msdata = { .fn = fn, .data = data,
 620                                            .active_cpus = cpus };
 621        struct cpu_stop_done done;
 622        int ret;
 623
 624        /* Local CPU must be inactive and CPU hotplug in progress. */
 625        BUG_ON(cpu_active(raw_smp_processor_id()));
 626        msdata.num_threads = num_active_cpus() + 1;     /* +1 for local */
 627
 628        /* No proper task established and can't sleep - busy wait for lock. */
 629        while (!mutex_trylock(&stop_cpus_mutex))
 630                cpu_relax();
 631
 632        /* Schedule work on other CPUs and execute directly for local CPU */
 633        set_state(&msdata, MULTI_STOP_PREPARE);
 634        cpu_stop_init_done(&done, num_active_cpus());
 635        queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
 636                             &done);
 637        ret = multi_cpu_stop(&msdata);
 638
 639        /* Busy wait for completion. */
 640        while (!completion_done(&done.completion))
 641                cpu_relax();
 642
 643        mutex_unlock(&stop_cpus_mutex);
 644        return ret ?: done.ret;
 645}
 646
 647#endif  /* CONFIG_STOP_MACHINE */
 648