linux/mm/compaction.c
<<
>>
Prefs
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include <linux/balloon_compaction.h>
  18#include <linux/page-isolation.h>
  19#include "internal.h"
  20
  21#ifdef CONFIG_COMPACTION
  22static inline void count_compact_event(enum vm_event_item item)
  23{
  24        count_vm_event(item);
  25}
  26
  27static inline void count_compact_events(enum vm_event_item item, long delta)
  28{
  29        count_vm_events(item, delta);
  30}
  31#else
  32#define count_compact_event(item) do { } while (0)
  33#define count_compact_events(item, delta) do { } while (0)
  34#endif
  35
  36#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/compaction.h>
  40
  41static unsigned long release_freepages(struct list_head *freelist)
  42{
  43        struct page *page, *next;
  44        unsigned long count = 0;
  45
  46        list_for_each_entry_safe(page, next, freelist, lru) {
  47                list_del(&page->lru);
  48                __free_page(page);
  49                count++;
  50        }
  51
  52        return count;
  53}
  54
  55static void map_pages(struct list_head *list)
  56{
  57        struct page *page;
  58
  59        list_for_each_entry(page, list, lru) {
  60                arch_alloc_page(page, 0);
  61                kernel_map_pages(page, 1, 1);
  62        }
  63}
  64
  65static inline bool migrate_async_suitable(int migratetype)
  66{
  67        return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
  68}
  69
  70#ifdef CONFIG_COMPACTION
  71/* Returns true if the pageblock should be scanned for pages to isolate. */
  72static inline bool isolation_suitable(struct compact_control *cc,
  73                                        struct page *page)
  74{
  75        if (cc->ignore_skip_hint)
  76                return true;
  77
  78        return !get_pageblock_skip(page);
  79}
  80
  81/*
  82 * This function is called to clear all cached information on pageblocks that
  83 * should be skipped for page isolation when the migrate and free page scanner
  84 * meet.
  85 */
  86static void __reset_isolation_suitable(struct zone *zone)
  87{
  88        unsigned long start_pfn = zone->zone_start_pfn;
  89        unsigned long end_pfn = zone_end_pfn(zone);
  90        unsigned long pfn;
  91
  92        zone->compact_cached_migrate_pfn = start_pfn;
  93        zone->compact_cached_free_pfn = end_pfn;
  94        zone->compact_blockskip_flush = false;
  95
  96        /* Walk the zone and mark every pageblock as suitable for isolation */
  97        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  98                struct page *page;
  99
 100                cond_resched();
 101
 102                if (!pfn_valid(pfn))
 103                        continue;
 104
 105                page = pfn_to_page(pfn);
 106                if (zone != page_zone(page))
 107                        continue;
 108
 109                clear_pageblock_skip(page);
 110        }
 111}
 112
 113void reset_isolation_suitable(pg_data_t *pgdat)
 114{
 115        int zoneid;
 116
 117        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 118                struct zone *zone = &pgdat->node_zones[zoneid];
 119                if (!populated_zone(zone))
 120                        continue;
 121
 122                /* Only flush if a full compaction finished recently */
 123                if (zone->compact_blockskip_flush)
 124                        __reset_isolation_suitable(zone);
 125        }
 126}
 127
 128/*
 129 * If no pages were isolated then mark this pageblock to be skipped in the
 130 * future. The information is later cleared by __reset_isolation_suitable().
 131 */
 132static void update_pageblock_skip(struct compact_control *cc,
 133                        struct page *page, unsigned long nr_isolated,
 134                        bool migrate_scanner)
 135{
 136        struct zone *zone = cc->zone;
 137
 138        if (cc->ignore_skip_hint)
 139                return;
 140
 141        if (!page)
 142                return;
 143
 144        if (!nr_isolated) {
 145                unsigned long pfn = page_to_pfn(page);
 146                set_pageblock_skip(page);
 147
 148                /* Update where compaction should restart */
 149                if (migrate_scanner) {
 150                        if (!cc->finished_update_migrate &&
 151                            pfn > zone->compact_cached_migrate_pfn)
 152                                zone->compact_cached_migrate_pfn = pfn;
 153                } else {
 154                        if (!cc->finished_update_free &&
 155                            pfn < zone->compact_cached_free_pfn)
 156                                zone->compact_cached_free_pfn = pfn;
 157                }
 158        }
 159}
 160#else
 161static inline bool isolation_suitable(struct compact_control *cc,
 162                                        struct page *page)
 163{
 164        return true;
 165}
 166
 167static void update_pageblock_skip(struct compact_control *cc,
 168                        struct page *page, unsigned long nr_isolated,
 169                        bool migrate_scanner)
 170{
 171}
 172#endif /* CONFIG_COMPACTION */
 173
 174static inline bool should_release_lock(spinlock_t *lock)
 175{
 176        return need_resched() || spin_is_contended(lock);
 177}
 178
 179/*
 180 * Compaction requires the taking of some coarse locks that are potentially
 181 * very heavily contended. Check if the process needs to be scheduled or
 182 * if the lock is contended. For async compaction, back out in the event
 183 * if contention is severe. For sync compaction, schedule.
 184 *
 185 * Returns true if the lock is held.
 186 * Returns false if the lock is released and compaction should abort
 187 */
 188static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
 189                                      bool locked, struct compact_control *cc)
 190{
 191        if (should_release_lock(lock)) {
 192                if (locked) {
 193                        spin_unlock_irqrestore(lock, *flags);
 194                        locked = false;
 195                }
 196
 197                /* async aborts if taking too long or contended */
 198                if (!cc->sync) {
 199                        cc->contended = true;
 200                        return false;
 201                }
 202
 203                cond_resched();
 204        }
 205
 206        if (!locked)
 207                spin_lock_irqsave(lock, *flags);
 208        return true;
 209}
 210
 211static inline bool compact_trylock_irqsave(spinlock_t *lock,
 212                        unsigned long *flags, struct compact_control *cc)
 213{
 214        return compact_checklock_irqsave(lock, flags, false, cc);
 215}
 216
 217/* Returns true if the page is within a block suitable for migration to */
 218static bool suitable_migration_target(struct page *page)
 219{
 220        /* If the page is a large free page, then disallow migration */
 221        if (PageBuddy(page) && page_order(page) >= pageblock_order)
 222                return false;
 223
 224        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 225        if (migrate_async_suitable(get_pageblock_migratetype(page)))
 226                return true;
 227
 228        /* Otherwise skip the block */
 229        return false;
 230}
 231
 232/*
 233 * Isolate free pages onto a private freelist. If @strict is true, will abort
 234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 235 * (even though it may still end up isolating some pages).
 236 */
 237static unsigned long isolate_freepages_block(struct compact_control *cc,
 238                                unsigned long blockpfn,
 239                                unsigned long end_pfn,
 240                                struct list_head *freelist,
 241                                bool strict)
 242{
 243        int nr_scanned = 0, total_isolated = 0;
 244        struct page *cursor, *valid_page = NULL;
 245        unsigned long flags;
 246        bool locked = false;
 247        bool checked_pageblock = false;
 248
 249        cursor = pfn_to_page(blockpfn);
 250
 251        /* Isolate free pages. */
 252        for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 253                int isolated, i;
 254                struct page *page = cursor;
 255
 256                nr_scanned++;
 257                if (!pfn_valid_within(blockpfn))
 258                        goto isolate_fail;
 259
 260                if (!valid_page)
 261                        valid_page = page;
 262                if (!PageBuddy(page))
 263                        goto isolate_fail;
 264
 265                /*
 266                 * The zone lock must be held to isolate freepages.
 267                 * Unfortunately this is a very coarse lock and can be
 268                 * heavily contended if there are parallel allocations
 269                 * or parallel compactions. For async compaction do not
 270                 * spin on the lock and we acquire the lock as late as
 271                 * possible.
 272                 */
 273                locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
 274                                                                locked, cc);
 275                if (!locked)
 276                        break;
 277
 278                /* Recheck this is a suitable migration target under lock */
 279                if (!strict && !checked_pageblock) {
 280                        /*
 281                         * We need to check suitability of pageblock only once
 282                         * and this isolate_freepages_block() is called with
 283                         * pageblock range, so just check once is sufficient.
 284                         */
 285                        checked_pageblock = true;
 286                        if (!suitable_migration_target(page))
 287                                break;
 288                }
 289
 290                /* Recheck this is a buddy page under lock */
 291                if (!PageBuddy(page))
 292                        goto isolate_fail;
 293
 294                /* Found a free page, break it into order-0 pages */
 295                isolated = split_free_page(page);
 296                total_isolated += isolated;
 297                for (i = 0; i < isolated; i++) {
 298                        list_add(&page->lru, freelist);
 299                        page++;
 300                }
 301
 302                /* If a page was split, advance to the end of it */
 303                if (isolated) {
 304                        blockpfn += isolated - 1;
 305                        cursor += isolated - 1;
 306                        continue;
 307                }
 308
 309isolate_fail:
 310                if (strict)
 311                        break;
 312                else
 313                        continue;
 314
 315        }
 316
 317        trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 318
 319        /*
 320         * If strict isolation is requested by CMA then check that all the
 321         * pages requested were isolated. If there were any failures, 0 is
 322         * returned and CMA will fail.
 323         */
 324        if (strict && blockpfn < end_pfn)
 325                total_isolated = 0;
 326
 327        if (locked)
 328                spin_unlock_irqrestore(&cc->zone->lock, flags);
 329
 330        /* Update the pageblock-skip if the whole pageblock was scanned */
 331        if (blockpfn == end_pfn)
 332                update_pageblock_skip(cc, valid_page, total_isolated, false);
 333
 334        count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 335        if (total_isolated)
 336                count_compact_events(COMPACTISOLATED, total_isolated);
 337        return total_isolated;
 338}
 339
 340/**
 341 * isolate_freepages_range() - isolate free pages.
 342 * @start_pfn: The first PFN to start isolating.
 343 * @end_pfn:   The one-past-last PFN.
 344 *
 345 * Non-free pages, invalid PFNs, or zone boundaries within the
 346 * [start_pfn, end_pfn) range are considered errors, cause function to
 347 * undo its actions and return zero.
 348 *
 349 * Otherwise, function returns one-past-the-last PFN of isolated page
 350 * (which may be greater then end_pfn if end fell in a middle of
 351 * a free page).
 352 */
 353unsigned long
 354isolate_freepages_range(struct compact_control *cc,
 355                        unsigned long start_pfn, unsigned long end_pfn)
 356{
 357        unsigned long isolated, pfn, block_end_pfn;
 358        LIST_HEAD(freelist);
 359
 360        for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
 361                if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
 362                        break;
 363
 364                /*
 365                 * On subsequent iterations ALIGN() is actually not needed,
 366                 * but we keep it that we not to complicate the code.
 367                 */
 368                block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 369                block_end_pfn = min(block_end_pfn, end_pfn);
 370
 371                isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
 372                                                   &freelist, true);
 373
 374                /*
 375                 * In strict mode, isolate_freepages_block() returns 0 if
 376                 * there are any holes in the block (ie. invalid PFNs or
 377                 * non-free pages).
 378                 */
 379                if (!isolated)
 380                        break;
 381
 382                /*
 383                 * If we managed to isolate pages, it is always (1 << n) *
 384                 * pageblock_nr_pages for some non-negative n.  (Max order
 385                 * page may span two pageblocks).
 386                 */
 387        }
 388
 389        /* split_free_page does not map the pages */
 390        map_pages(&freelist);
 391
 392        if (pfn < end_pfn) {
 393                /* Loop terminated early, cleanup. */
 394                release_freepages(&freelist);
 395                return 0;
 396        }
 397
 398        /* We don't use freelists for anything. */
 399        return pfn;
 400}
 401
 402/* Update the number of anon and file isolated pages in the zone */
 403static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
 404{
 405        struct page *page;
 406        unsigned int count[2] = { 0, };
 407
 408        list_for_each_entry(page, &cc->migratepages, lru)
 409                count[!!page_is_file_cache(page)]++;
 410
 411        /* If locked we can use the interrupt unsafe versions */
 412        if (locked) {
 413                __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 414                __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 415        } else {
 416                mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 417                mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 418        }
 419}
 420
 421/* Similar to reclaim, but different enough that they don't share logic */
 422static bool too_many_isolated(struct zone *zone)
 423{
 424        unsigned long active, inactive, isolated;
 425
 426        inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 427                                        zone_page_state(zone, NR_INACTIVE_ANON);
 428        active = zone_page_state(zone, NR_ACTIVE_FILE) +
 429                                        zone_page_state(zone, NR_ACTIVE_ANON);
 430        isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 431                                        zone_page_state(zone, NR_ISOLATED_ANON);
 432
 433        return isolated > (inactive + active) / 2;
 434}
 435
 436/**
 437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 438 * @zone:       Zone pages are in.
 439 * @cc:         Compaction control structure.
 440 * @low_pfn:    The first PFN of the range.
 441 * @end_pfn:    The one-past-the-last PFN of the range.
 442 * @unevictable: true if it allows to isolate unevictable pages
 443 *
 444 * Isolate all pages that can be migrated from the range specified by
 445 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 446 * pending), otherwise PFN of the first page that was not scanned
 447 * (which may be both less, equal to or more then end_pfn).
 448 *
 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 450 * zero.
 451 *
 452 * Apart from cc->migratepages and cc->nr_migratetypes this function
 453 * does not modify any cc's fields, in particular it does not modify
 454 * (or read for that matter) cc->migrate_pfn.
 455 */
 456unsigned long
 457isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
 458                unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
 459{
 460        unsigned long last_pageblock_nr = 0, pageblock_nr;
 461        unsigned long nr_scanned = 0, nr_isolated = 0;
 462        struct list_head *migratelist = &cc->migratepages;
 463        struct lruvec *lruvec;
 464        unsigned long flags;
 465        bool locked = false;
 466        struct page *page = NULL, *valid_page = NULL;
 467        bool skipped_async_unsuitable = false;
 468        const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
 469                                    (unevictable ? ISOLATE_UNEVICTABLE : 0);
 470
 471        /*
 472         * Ensure that there are not too many pages isolated from the LRU
 473         * list by either parallel reclaimers or compaction. If there are,
 474         * delay for some time until fewer pages are isolated
 475         */
 476        while (unlikely(too_many_isolated(zone))) {
 477                /* async migration should just abort */
 478                if (!cc->sync)
 479                        return 0;
 480
 481                congestion_wait(BLK_RW_ASYNC, HZ/10);
 482
 483                if (fatal_signal_pending(current))
 484                        return 0;
 485        }
 486
 487        /* Time to isolate some pages for migration */
 488        cond_resched();
 489        for (; low_pfn < end_pfn; low_pfn++) {
 490                /* give a chance to irqs before checking need_resched() */
 491                if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
 492                        if (should_release_lock(&zone->lru_lock)) {
 493                                spin_unlock_irqrestore(&zone->lru_lock, flags);
 494                                locked = false;
 495                        }
 496                }
 497
 498                /*
 499                 * migrate_pfn does not necessarily start aligned to a
 500                 * pageblock. Ensure that pfn_valid is called when moving
 501                 * into a new MAX_ORDER_NR_PAGES range in case of large
 502                 * memory holes within the zone
 503                 */
 504                if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 505                        if (!pfn_valid(low_pfn)) {
 506                                low_pfn += MAX_ORDER_NR_PAGES - 1;
 507                                continue;
 508                        }
 509                }
 510
 511                if (!pfn_valid_within(low_pfn))
 512                        continue;
 513                nr_scanned++;
 514
 515                /*
 516                 * Get the page and ensure the page is within the same zone.
 517                 * See the comment in isolate_freepages about overlapping
 518                 * nodes. It is deliberate that the new zone lock is not taken
 519                 * as memory compaction should not move pages between nodes.
 520                 */
 521                page = pfn_to_page(low_pfn);
 522                if (page_zone(page) != zone)
 523                        continue;
 524
 525                if (!valid_page)
 526                        valid_page = page;
 527
 528                /* If isolation recently failed, do not retry */
 529                pageblock_nr = low_pfn >> pageblock_order;
 530                if (last_pageblock_nr != pageblock_nr) {
 531                        int mt;
 532
 533                        last_pageblock_nr = pageblock_nr;
 534                        if (!isolation_suitable(cc, page))
 535                                goto next_pageblock;
 536
 537                        /*
 538                         * For async migration, also only scan in MOVABLE
 539                         * blocks. Async migration is optimistic to see if
 540                         * the minimum amount of work satisfies the allocation
 541                         */
 542                        mt = get_pageblock_migratetype(page);
 543                        if (!cc->sync && !migrate_async_suitable(mt)) {
 544                                cc->finished_update_migrate = true;
 545                                skipped_async_unsuitable = true;
 546                                goto next_pageblock;
 547                        }
 548                }
 549
 550                /*
 551                 * Skip if free. page_order cannot be used without zone->lock
 552                 * as nothing prevents parallel allocations or buddy merging.
 553                 */
 554                if (PageBuddy(page))
 555                        continue;
 556
 557                /*
 558                 * Check may be lockless but that's ok as we recheck later.
 559                 * It's possible to migrate LRU pages and balloon pages
 560                 * Skip any other type of page
 561                 */
 562                if (!PageLRU(page)) {
 563                        if (unlikely(balloon_page_movable(page))) {
 564                                if (locked && balloon_page_isolate(page)) {
 565                                        /* Successfully isolated */
 566                                        goto isolate_success;
 567                                }
 568                        }
 569                        continue;
 570                }
 571
 572                /*
 573                 * PageLRU is set. lru_lock normally excludes isolation
 574                 * splitting and collapsing (collapsing has already happened
 575                 * if PageLRU is set) but the lock is not necessarily taken
 576                 * here and it is wasteful to take it just to check transhuge.
 577                 * Check TransHuge without lock and skip the whole pageblock if
 578                 * it's either a transhuge or hugetlbfs page, as calling
 579                 * compound_order() without preventing THP from splitting the
 580                 * page underneath us may return surprising results.
 581                 */
 582                if (PageTransHuge(page)) {
 583                        if (!locked)
 584                                goto next_pageblock;
 585                        low_pfn += (1 << compound_order(page)) - 1;
 586                        continue;
 587                }
 588
 589                /*
 590                 * Migration will fail if an anonymous page is pinned in memory,
 591                 * so avoid taking lru_lock and isolating it unnecessarily in an
 592                 * admittedly racy check.
 593                 */
 594                if (!page_mapping(page) &&
 595                    page_count(page) > page_mapcount(page))
 596                        continue;
 597
 598                /* Check if it is ok to still hold the lock */
 599                locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
 600                                                                locked, cc);
 601                if (!locked || fatal_signal_pending(current))
 602                        break;
 603
 604                /* Recheck PageLRU and PageTransHuge under lock */
 605                if (!PageLRU(page))
 606                        continue;
 607                if (PageTransHuge(page)) {
 608                        low_pfn += (1 << compound_order(page)) - 1;
 609                        continue;
 610                }
 611
 612                lruvec = mem_cgroup_page_lruvec(page, zone);
 613
 614                /* Try isolate the page */
 615                if (__isolate_lru_page(page, mode) != 0)
 616                        continue;
 617
 618                VM_BUG_ON_PAGE(PageTransCompound(page), page);
 619
 620                /* Successfully isolated */
 621                del_page_from_lru_list(page, lruvec, page_lru(page));
 622
 623isolate_success:
 624                cc->finished_update_migrate = true;
 625                list_add(&page->lru, migratelist);
 626                cc->nr_migratepages++;
 627                nr_isolated++;
 628
 629                /* Avoid isolating too much */
 630                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 631                        ++low_pfn;
 632                        break;
 633                }
 634
 635                continue;
 636
 637next_pageblock:
 638                low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
 639        }
 640
 641        acct_isolated(zone, locked, cc);
 642
 643        if (locked)
 644                spin_unlock_irqrestore(&zone->lru_lock, flags);
 645
 646        /*
 647         * Update the pageblock-skip information and cached scanner pfn,
 648         * if the whole pageblock was scanned without isolating any page.
 649         * This is not done when pageblock was skipped due to being unsuitable
 650         * for async compaction, so that eventual sync compaction can try.
 651         */
 652        if (low_pfn == end_pfn && !skipped_async_unsuitable)
 653                update_pageblock_skip(cc, valid_page, nr_isolated, true);
 654
 655        trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 656
 657        count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 658        if (nr_isolated)
 659                count_compact_events(COMPACTISOLATED, nr_isolated);
 660
 661        return low_pfn;
 662}
 663
 664#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 665#ifdef CONFIG_COMPACTION
 666/*
 667 * Based on information in the current compact_control, find blocks
 668 * suitable for isolating free pages from and then isolate them.
 669 */
 670static void isolate_freepages(struct zone *zone,
 671                                struct compact_control *cc)
 672{
 673        struct page *page;
 674        unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
 675        int nr_freepages = cc->nr_freepages;
 676        struct list_head *freelist = &cc->freepages;
 677
 678        /*
 679         * Initialise the free scanner. The starting point is where we last
 680         * successfully isolated from, zone-cached value, or the end of the
 681         * zone when isolating for the first time. We need this aligned to
 682         * the pageblock boundary, because we do pfn -= pageblock_nr_pages
 683         * in the for loop.
 684         * The low boundary is the end of the pageblock the migration scanner
 685         * is using.
 686         */
 687        pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 688        low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 689
 690        /*
 691         * Take care that if the migration scanner is at the end of the zone
 692         * that the free scanner does not accidentally move to the next zone
 693         * in the next isolation cycle.
 694         */
 695        high_pfn = min(low_pfn, pfn);
 696
 697        z_end_pfn = zone_end_pfn(zone);
 698
 699        /*
 700         * Isolate free pages until enough are available to migrate the
 701         * pages on cc->migratepages. We stop searching if the migrate
 702         * and free page scanners meet or enough free pages are isolated.
 703         */
 704        for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
 705                                        pfn -= pageblock_nr_pages) {
 706                unsigned long isolated;
 707                unsigned long end_pfn;
 708
 709                /*
 710                 * This can iterate a massively long zone without finding any
 711                 * suitable migration targets, so periodically check if we need
 712                 * to schedule.
 713                 */
 714                cond_resched();
 715
 716                if (!pfn_valid(pfn))
 717                        continue;
 718
 719                /*
 720                 * Check for overlapping nodes/zones. It's possible on some
 721                 * configurations to have a setup like
 722                 * node0 node1 node0
 723                 * i.e. it's possible that all pages within a zones range of
 724                 * pages do not belong to a single zone.
 725                 */
 726                page = pfn_to_page(pfn);
 727                if (page_zone(page) != zone)
 728                        continue;
 729
 730                /* Check the block is suitable for migration */
 731                if (!suitable_migration_target(page))
 732                        continue;
 733
 734                /* If isolation recently failed, do not retry */
 735                if (!isolation_suitable(cc, page))
 736                        continue;
 737
 738                /* Found a block suitable for isolating free pages from */
 739                isolated = 0;
 740
 741                /*
 742                 * Take care when isolating in last pageblock of a zone which
 743                 * ends in the middle of a pageblock.
 744                 */
 745                end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
 746                isolated = isolate_freepages_block(cc, pfn, end_pfn,
 747                                                   freelist, false);
 748                nr_freepages += isolated;
 749
 750                /*
 751                 * Record the highest PFN we isolated pages from. When next
 752                 * looking for free pages, the search will restart here as
 753                 * page migration may have returned some pages to the allocator
 754                 */
 755                if (isolated) {
 756                        cc->finished_update_free = true;
 757                        high_pfn = max(high_pfn, pfn);
 758                }
 759        }
 760
 761        /* split_free_page does not map the pages */
 762        map_pages(freelist);
 763
 764        /*
 765         * If we crossed the migrate scanner, we want to keep it that way
 766         * so that compact_finished() may detect this
 767         */
 768        if (pfn < low_pfn)
 769                cc->free_pfn = max(pfn, zone->zone_start_pfn);
 770        else
 771                cc->free_pfn = high_pfn;
 772        cc->nr_freepages = nr_freepages;
 773}
 774
 775/*
 776 * This is a migrate-callback that "allocates" freepages by taking pages
 777 * from the isolated freelists in the block we are migrating to.
 778 */
 779static struct page *compaction_alloc(struct page *migratepage,
 780                                        unsigned long data,
 781                                        int **result)
 782{
 783        struct compact_control *cc = (struct compact_control *)data;
 784        struct page *freepage;
 785
 786        /* Isolate free pages if necessary */
 787        if (list_empty(&cc->freepages)) {
 788                isolate_freepages(cc->zone, cc);
 789
 790                if (list_empty(&cc->freepages))
 791                        return NULL;
 792        }
 793
 794        freepage = list_entry(cc->freepages.next, struct page, lru);
 795        list_del(&freepage->lru);
 796        cc->nr_freepages--;
 797
 798        return freepage;
 799}
 800
 801/*
 802 * We cannot control nr_migratepages and nr_freepages fully when migration is
 803 * running as migrate_pages() has no knowledge of compact_control. When
 804 * migration is complete, we count the number of pages on the lists by hand.
 805 */
 806static void update_nr_listpages(struct compact_control *cc)
 807{
 808        int nr_migratepages = 0;
 809        int nr_freepages = 0;
 810        struct page *page;
 811
 812        list_for_each_entry(page, &cc->migratepages, lru)
 813                nr_migratepages++;
 814        list_for_each_entry(page, &cc->freepages, lru)
 815                nr_freepages++;
 816
 817        cc->nr_migratepages = nr_migratepages;
 818        cc->nr_freepages = nr_freepages;
 819}
 820
 821/* possible outcome of isolate_migratepages */
 822typedef enum {
 823        ISOLATE_ABORT,          /* Abort compaction now */
 824        ISOLATE_NONE,           /* No pages isolated, continue scanning */
 825        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
 826} isolate_migrate_t;
 827
 828/*
 829 * Isolate all pages that can be migrated from the block pointed to by
 830 * the migrate scanner within compact_control.
 831 */
 832static isolate_migrate_t isolate_migratepages(struct zone *zone,
 833                                        struct compact_control *cc)
 834{
 835        unsigned long low_pfn, end_pfn;
 836
 837        /* Do not scan outside zone boundaries */
 838        low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
 839
 840        /* Only scan within a pageblock boundary */
 841        end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
 842
 843        /* Do not cross the free scanner or scan within a memory hole */
 844        if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
 845                cc->migrate_pfn = end_pfn;
 846                return ISOLATE_NONE;
 847        }
 848
 849        /* Perform the isolation */
 850        low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
 851        if (!low_pfn || cc->contended)
 852                return ISOLATE_ABORT;
 853
 854        cc->migrate_pfn = low_pfn;
 855
 856        return ISOLATE_SUCCESS;
 857}
 858
 859static int compact_finished(struct zone *zone,
 860                            struct compact_control *cc)
 861{
 862        unsigned int order;
 863        unsigned long watermark;
 864
 865        if (fatal_signal_pending(current))
 866                return COMPACT_PARTIAL;
 867
 868        /* Compaction run completes if the migrate and free scanner meet */
 869        if (cc->free_pfn <= cc->migrate_pfn) {
 870                /* Let the next compaction start anew. */
 871                zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
 872                zone->compact_cached_free_pfn = zone_end_pfn(zone);
 873
 874                /*
 875                 * Mark that the PG_migrate_skip information should be cleared
 876                 * by kswapd when it goes to sleep. kswapd does not set the
 877                 * flag itself as the decision to be clear should be directly
 878                 * based on an allocation request.
 879                 */
 880                if (!current_is_kswapd())
 881                        zone->compact_blockskip_flush = true;
 882
 883                return COMPACT_COMPLETE;
 884        }
 885
 886        /*
 887         * order == -1 is expected when compacting via
 888         * /proc/sys/vm/compact_memory
 889         */
 890        if (cc->order == -1)
 891                return COMPACT_CONTINUE;
 892
 893        /* Compaction run is not finished if the watermark is not met */
 894        watermark = low_wmark_pages(zone);
 895        watermark += (1 << cc->order);
 896
 897        if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
 898                return COMPACT_CONTINUE;
 899
 900        /* Direct compactor: Is a suitable page free? */
 901        for (order = cc->order; order < MAX_ORDER; order++) {
 902                struct free_area *area = &zone->free_area[order];
 903
 904                /* Job done if page is free of the right migratetype */
 905                if (!list_empty(&area->free_list[cc->migratetype]))
 906                        return COMPACT_PARTIAL;
 907
 908                /* Job done if allocation would set block type */
 909                if (cc->order >= pageblock_order && area->nr_free)
 910                        return COMPACT_PARTIAL;
 911        }
 912
 913        return COMPACT_CONTINUE;
 914}
 915
 916/*
 917 * compaction_suitable: Is this suitable to run compaction on this zone now?
 918 * Returns
 919 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 920 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 921 *   COMPACT_CONTINUE - If compaction should run now
 922 */
 923unsigned long compaction_suitable(struct zone *zone, int order)
 924{
 925        int fragindex;
 926        unsigned long watermark;
 927
 928        /*
 929         * order == -1 is expected when compacting via
 930         * /proc/sys/vm/compact_memory
 931         */
 932        if (order == -1)
 933                return COMPACT_CONTINUE;
 934
 935        /*
 936         * Watermarks for order-0 must be met for compaction. Note the 2UL.
 937         * This is because during migration, copies of pages need to be
 938         * allocated and for a short time, the footprint is higher
 939         */
 940        watermark = low_wmark_pages(zone) + (2UL << order);
 941        if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 942                return COMPACT_SKIPPED;
 943
 944        /*
 945         * fragmentation index determines if allocation failures are due to
 946         * low memory or external fragmentation
 947         *
 948         * index of -1000 implies allocations might succeed depending on
 949         * watermarks
 950         * index towards 0 implies failure is due to lack of memory
 951         * index towards 1000 implies failure is due to fragmentation
 952         *
 953         * Only compact if a failure would be due to fragmentation.
 954         */
 955        fragindex = fragmentation_index(zone, order);
 956        if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
 957                return COMPACT_SKIPPED;
 958
 959        if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
 960            0, 0))
 961                return COMPACT_PARTIAL;
 962
 963        return COMPACT_CONTINUE;
 964}
 965
 966static int compact_zone(struct zone *zone, struct compact_control *cc)
 967{
 968        int ret;
 969        unsigned long start_pfn = zone->zone_start_pfn;
 970        unsigned long end_pfn = zone_end_pfn(zone);
 971
 972        ret = compaction_suitable(zone, cc->order);
 973        switch (ret) {
 974        case COMPACT_PARTIAL:
 975        case COMPACT_SKIPPED:
 976                /* Compaction is likely to fail */
 977                return ret;
 978        case COMPACT_CONTINUE:
 979                /* Fall through to compaction */
 980                ;
 981        }
 982
 983        /*
 984         * Clear pageblock skip if there were failures recently and compaction
 985         * is about to be retried after being deferred. kswapd does not do
 986         * this reset as it'll reset the cached information when going to sleep.
 987         */
 988        if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
 989                __reset_isolation_suitable(zone);
 990
 991        /*
 992         * Setup to move all movable pages to the end of the zone. Used cached
 993         * information on where the scanners should start but check that it
 994         * is initialised by ensuring the values are within zone boundaries.
 995         */
 996        cc->migrate_pfn = zone->compact_cached_migrate_pfn;
 997        cc->free_pfn = zone->compact_cached_free_pfn;
 998        if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
 999                cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1000                zone->compact_cached_free_pfn = cc->free_pfn;
1001        }
1002        if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1003                cc->migrate_pfn = start_pfn;
1004                zone->compact_cached_migrate_pfn = cc->migrate_pfn;
1005        }
1006
1007        trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1008
1009        migrate_prep_local();
1010
1011        while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1012                unsigned long nr_migrate, nr_remaining;
1013                int err;
1014
1015                switch (isolate_migratepages(zone, cc)) {
1016                case ISOLATE_ABORT:
1017                        ret = COMPACT_PARTIAL;
1018                        putback_movable_pages(&cc->migratepages);
1019                        cc->nr_migratepages = 0;
1020                        goto out;
1021                case ISOLATE_NONE:
1022                        continue;
1023                case ISOLATE_SUCCESS:
1024                        ;
1025                }
1026
1027                nr_migrate = cc->nr_migratepages;
1028                err = migrate_pages(&cc->migratepages, compaction_alloc,
1029                                (unsigned long)cc,
1030                                cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1031                                MR_COMPACTION);
1032                update_nr_listpages(cc);
1033                nr_remaining = cc->nr_migratepages;
1034
1035                trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1036                                                nr_remaining);
1037
1038                /* Release isolated pages not migrated */
1039                if (err) {
1040                        putback_movable_pages(&cc->migratepages);
1041                        cc->nr_migratepages = 0;
1042                        /*
1043                         * migrate_pages() may return -ENOMEM when scanners meet
1044                         * and we want compact_finished() to detect it
1045                         */
1046                        if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1047                                ret = COMPACT_PARTIAL;
1048                                goto out;
1049                        }
1050                }
1051        }
1052
1053out:
1054        /* Release free pages and check accounting */
1055        cc->nr_freepages -= release_freepages(&cc->freepages);
1056        VM_BUG_ON(cc->nr_freepages != 0);
1057
1058        trace_mm_compaction_end(ret);
1059
1060        return ret;
1061}
1062
1063static unsigned long compact_zone_order(struct zone *zone,
1064                                 int order, gfp_t gfp_mask,
1065                                 bool sync, bool *contended)
1066{
1067        unsigned long ret;
1068        struct compact_control cc = {
1069                .nr_freepages = 0,
1070                .nr_migratepages = 0,
1071                .order = order,
1072                .migratetype = allocflags_to_migratetype(gfp_mask),
1073                .zone = zone,
1074                .sync = sync,
1075        };
1076        INIT_LIST_HEAD(&cc.freepages);
1077        INIT_LIST_HEAD(&cc.migratepages);
1078
1079        ret = compact_zone(zone, &cc);
1080
1081        VM_BUG_ON(!list_empty(&cc.freepages));
1082        VM_BUG_ON(!list_empty(&cc.migratepages));
1083
1084        *contended = cc.contended;
1085        return ret;
1086}
1087
1088int sysctl_extfrag_threshold = 500;
1089
1090/**
1091 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1092 * @zonelist: The zonelist used for the current allocation
1093 * @order: The order of the current allocation
1094 * @gfp_mask: The GFP mask of the current allocation
1095 * @nodemask: The allowed nodes to allocate from
1096 * @sync: Whether migration is synchronous or not
1097 * @contended: Return value that is true if compaction was aborted due to lock contention
1098 * @page: Optionally capture a free page of the requested order during compaction
1099 *
1100 * This is the main entry point for direct page compaction.
1101 */
1102unsigned long try_to_compact_pages(struct zonelist *zonelist,
1103                        int order, gfp_t gfp_mask, nodemask_t *nodemask,
1104                        bool sync, bool *contended)
1105{
1106        enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1107        int may_enter_fs = gfp_mask & __GFP_FS;
1108        int may_perform_io = gfp_mask & __GFP_IO;
1109        struct zoneref *z;
1110        struct zone *zone;
1111        int rc = COMPACT_SKIPPED;
1112        int alloc_flags = 0;
1113
1114        /* Check if the GFP flags allow compaction */
1115        if (!order || !may_enter_fs || !may_perform_io)
1116                return rc;
1117
1118        count_compact_event(COMPACTSTALL);
1119
1120#ifdef CONFIG_CMA
1121        if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1122                alloc_flags |= ALLOC_CMA;
1123#endif
1124        /* Compact each zone in the list */
1125        for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1126                                                                nodemask) {
1127                int status;
1128
1129                status = compact_zone_order(zone, order, gfp_mask, sync,
1130                                                contended);
1131                rc = max(status, rc);
1132
1133                /* If a normal allocation would succeed, stop compacting */
1134                if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1135                                      alloc_flags))
1136                        break;
1137        }
1138
1139        return rc;
1140}
1141
1142
1143/* Compact all zones within a node */
1144static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1145{
1146        int zoneid;
1147        struct zone *zone;
1148
1149        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1150
1151                zone = &pgdat->node_zones[zoneid];
1152                if (!populated_zone(zone))
1153                        continue;
1154
1155                cc->nr_freepages = 0;
1156                cc->nr_migratepages = 0;
1157                cc->zone = zone;
1158                INIT_LIST_HEAD(&cc->freepages);
1159                INIT_LIST_HEAD(&cc->migratepages);
1160
1161                if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1162                        compact_zone(zone, cc);
1163
1164                if (cc->order > 0) {
1165                        if (zone_watermark_ok(zone, cc->order,
1166                                                low_wmark_pages(zone), 0, 0))
1167                                compaction_defer_reset(zone, cc->order, false);
1168                        /* Currently async compaction is never deferred. */
1169                        else if (cc->sync)
1170                                defer_compaction(zone, cc->order);
1171                }
1172
1173                VM_BUG_ON(!list_empty(&cc->freepages));
1174                VM_BUG_ON(!list_empty(&cc->migratepages));
1175        }
1176}
1177
1178void compact_pgdat(pg_data_t *pgdat, int order)
1179{
1180        struct compact_control cc = {
1181                .order = order,
1182                .sync = false,
1183        };
1184
1185        if (!order)
1186                return;
1187
1188        __compact_pgdat(pgdat, &cc);
1189}
1190
1191static void compact_node(int nid)
1192{
1193        struct compact_control cc = {
1194                .order = -1,
1195                .sync = true,
1196                .ignore_skip_hint = true,
1197        };
1198
1199        __compact_pgdat(NODE_DATA(nid), &cc);
1200}
1201
1202/* Compact all nodes in the system */
1203static void compact_nodes(void)
1204{
1205        int nid;
1206
1207        /* Flush pending updates to the LRU lists */
1208        lru_add_drain_all();
1209
1210        for_each_online_node(nid)
1211                compact_node(nid);
1212}
1213
1214/* The written value is actually unused, all memory is compacted */
1215int sysctl_compact_memory;
1216
1217/* This is the entry point for compacting all nodes via /proc/sys/vm */
1218int sysctl_compaction_handler(struct ctl_table *table, int write,
1219                        void __user *buffer, size_t *length, loff_t *ppos)
1220{
1221        if (write)
1222                compact_nodes();
1223
1224        return 0;
1225}
1226
1227int sysctl_extfrag_handler(struct ctl_table *table, int write,
1228                        void __user *buffer, size_t *length, loff_t *ppos)
1229{
1230        proc_dointvec_minmax(table, write, buffer, length, ppos);
1231
1232        return 0;
1233}
1234
1235#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1236static ssize_t sysfs_compact_node(struct device *dev,
1237                        struct device_attribute *attr,
1238                        const char *buf, size_t count)
1239{
1240        int nid = dev->id;
1241
1242        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1243                /* Flush pending updates to the LRU lists */
1244                lru_add_drain_all();
1245
1246                compact_node(nid);
1247        }
1248
1249        return count;
1250}
1251static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1252
1253int compaction_register_node(struct node *node)
1254{
1255        return device_create_file(&node->dev, &dev_attr_compact);
1256}
1257
1258void compaction_unregister_node(struct node *node)
1259{
1260        return device_remove_file(&node->dev, &dev_attr_compact);
1261}
1262#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1263
1264#endif /* CONFIG_COMPACTION */
1265