linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/shrinker.h>
  16#include <linux/mm_inline.h>
  17#include <linux/kthread.h>
  18#include <linux/khugepaged.h>
  19#include <linux/freezer.h>
  20#include <linux/mman.h>
  21#include <linux/pagemap.h>
  22#include <linux/migrate.h>
  23#include <linux/hashtable.h>
  24
  25#include <asm/tlb.h>
  26#include <asm/pgalloc.h>
  27#include "internal.h"
  28
  29/*
  30 * By default transparent hugepage support is disabled in order that avoid
  31 * to risk increase the memory footprint of applications without a guaranteed
  32 * benefit. When transparent hugepage support is enabled, is for all mappings,
  33 * and khugepaged scans all mappings.
  34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  35 * for all hugepage allocations.
  36 */
  37unsigned long transparent_hugepage_flags __read_mostly =
  38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  39        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  40#endif
  41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  42        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  43#endif
  44        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  45        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  46        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  47
  48/* default scan 8*512 pte (or vmas) every 30 second */
  49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  50static unsigned int khugepaged_pages_collapsed;
  51static unsigned int khugepaged_full_scans;
  52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53/* during fragmentation poll the hugepage allocator once every minute */
  54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55static struct task_struct *khugepaged_thread __read_mostly;
  56static DEFINE_MUTEX(khugepaged_mutex);
  57static DEFINE_SPINLOCK(khugepaged_mm_lock);
  58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  59/*
  60 * default collapse hugepages if there is at least one pte mapped like
  61 * it would have happened if the vma was large enough during page
  62 * fault.
  63 */
  64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  65
  66static int khugepaged(void *none);
  67static int khugepaged_slab_init(void);
  68
  69#define MM_SLOTS_HASH_BITS 10
  70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  71
  72static struct kmem_cache *mm_slot_cache __read_mostly;
  73
  74/**
  75 * struct mm_slot - hash lookup from mm to mm_slot
  76 * @hash: hash collision list
  77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  78 * @mm: the mm that this information is valid for
  79 */
  80struct mm_slot {
  81        struct hlist_node hash;
  82        struct list_head mm_node;
  83        struct mm_struct *mm;
  84};
  85
  86/**
  87 * struct khugepaged_scan - cursor for scanning
  88 * @mm_head: the head of the mm list to scan
  89 * @mm_slot: the current mm_slot we are scanning
  90 * @address: the next address inside that to be scanned
  91 *
  92 * There is only the one khugepaged_scan instance of this cursor structure.
  93 */
  94struct khugepaged_scan {
  95        struct list_head mm_head;
  96        struct mm_slot *mm_slot;
  97        unsigned long address;
  98};
  99static struct khugepaged_scan khugepaged_scan = {
 100        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 101};
 102
 103
 104static int set_recommended_min_free_kbytes(void)
 105{
 106        struct zone *zone;
 107        int nr_zones = 0;
 108        unsigned long recommended_min;
 109
 110        if (!khugepaged_enabled())
 111                return 0;
 112
 113        for_each_populated_zone(zone)
 114                nr_zones++;
 115
 116        /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 117        recommended_min = pageblock_nr_pages * nr_zones * 2;
 118
 119        /*
 120         * Make sure that on average at least two pageblocks are almost free
 121         * of another type, one for a migratetype to fall back to and a
 122         * second to avoid subsequent fallbacks of other types There are 3
 123         * MIGRATE_TYPES we care about.
 124         */
 125        recommended_min += pageblock_nr_pages * nr_zones *
 126                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 127
 128        /* don't ever allow to reserve more than 5% of the lowmem */
 129        recommended_min = min(recommended_min,
 130                              (unsigned long) nr_free_buffer_pages() / 20);
 131        recommended_min <<= (PAGE_SHIFT-10);
 132
 133        if (recommended_min > min_free_kbytes) {
 134                if (user_min_free_kbytes >= 0)
 135                        pr_info("raising min_free_kbytes from %d to %lu "
 136                                "to help transparent hugepage allocations\n",
 137                                min_free_kbytes, recommended_min);
 138
 139                min_free_kbytes = recommended_min;
 140        }
 141        setup_per_zone_wmarks();
 142        return 0;
 143}
 144late_initcall(set_recommended_min_free_kbytes);
 145
 146static int start_khugepaged(void)
 147{
 148        int err = 0;
 149        if (khugepaged_enabled()) {
 150                if (!khugepaged_thread)
 151                        khugepaged_thread = kthread_run(khugepaged, NULL,
 152                                                        "khugepaged");
 153                if (unlikely(IS_ERR(khugepaged_thread))) {
 154                        printk(KERN_ERR
 155                               "khugepaged: kthread_run(khugepaged) failed\n");
 156                        err = PTR_ERR(khugepaged_thread);
 157                        khugepaged_thread = NULL;
 158                }
 159
 160                if (!list_empty(&khugepaged_scan.mm_head))
 161                        wake_up_interruptible(&khugepaged_wait);
 162
 163                set_recommended_min_free_kbytes();
 164        } else if (khugepaged_thread) {
 165                kthread_stop(khugepaged_thread);
 166                khugepaged_thread = NULL;
 167        }
 168
 169        return err;
 170}
 171
 172static atomic_t huge_zero_refcount;
 173static struct page *huge_zero_page __read_mostly;
 174
 175static inline bool is_huge_zero_page(struct page *page)
 176{
 177        return ACCESS_ONCE(huge_zero_page) == page;
 178}
 179
 180static inline bool is_huge_zero_pmd(pmd_t pmd)
 181{
 182        return is_huge_zero_page(pmd_page(pmd));
 183}
 184
 185static struct page *get_huge_zero_page(void)
 186{
 187        struct page *zero_page;
 188retry:
 189        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 190                return ACCESS_ONCE(huge_zero_page);
 191
 192        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 193                        HPAGE_PMD_ORDER);
 194        if (!zero_page) {
 195                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 196                return NULL;
 197        }
 198        count_vm_event(THP_ZERO_PAGE_ALLOC);
 199        preempt_disable();
 200        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 201                preempt_enable();
 202                __free_page(zero_page);
 203                goto retry;
 204        }
 205
 206        /* We take additional reference here. It will be put back by shrinker */
 207        atomic_set(&huge_zero_refcount, 2);
 208        preempt_enable();
 209        return ACCESS_ONCE(huge_zero_page);
 210}
 211
 212static void put_huge_zero_page(void)
 213{
 214        /*
 215         * Counter should never go to zero here. Only shrinker can put
 216         * last reference.
 217         */
 218        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 219}
 220
 221static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 222                                        struct shrink_control *sc)
 223{
 224        /* we can free zero page only if last reference remains */
 225        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 226}
 227
 228static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 229                                       struct shrink_control *sc)
 230{
 231        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 232                struct page *zero_page = xchg(&huge_zero_page, NULL);
 233                BUG_ON(zero_page == NULL);
 234                __free_page(zero_page);
 235                return HPAGE_PMD_NR;
 236        }
 237
 238        return 0;
 239}
 240
 241static struct shrinker huge_zero_page_shrinker = {
 242        .count_objects = shrink_huge_zero_page_count,
 243        .scan_objects = shrink_huge_zero_page_scan,
 244        .seeks = DEFAULT_SEEKS,
 245};
 246
 247#ifdef CONFIG_SYSFS
 248
 249static ssize_t double_flag_show(struct kobject *kobj,
 250                                struct kobj_attribute *attr, char *buf,
 251                                enum transparent_hugepage_flag enabled,
 252                                enum transparent_hugepage_flag req_madv)
 253{
 254        if (test_bit(enabled, &transparent_hugepage_flags)) {
 255                VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 256                return sprintf(buf, "[always] madvise never\n");
 257        } else if (test_bit(req_madv, &transparent_hugepage_flags))
 258                return sprintf(buf, "always [madvise] never\n");
 259        else
 260                return sprintf(buf, "always madvise [never]\n");
 261}
 262static ssize_t double_flag_store(struct kobject *kobj,
 263                                 struct kobj_attribute *attr,
 264                                 const char *buf, size_t count,
 265                                 enum transparent_hugepage_flag enabled,
 266                                 enum transparent_hugepage_flag req_madv)
 267{
 268        if (!memcmp("always", buf,
 269                    min(sizeof("always")-1, count))) {
 270                set_bit(enabled, &transparent_hugepage_flags);
 271                clear_bit(req_madv, &transparent_hugepage_flags);
 272        } else if (!memcmp("madvise", buf,
 273                           min(sizeof("madvise")-1, count))) {
 274                clear_bit(enabled, &transparent_hugepage_flags);
 275                set_bit(req_madv, &transparent_hugepage_flags);
 276        } else if (!memcmp("never", buf,
 277                           min(sizeof("never")-1, count))) {
 278                clear_bit(enabled, &transparent_hugepage_flags);
 279                clear_bit(req_madv, &transparent_hugepage_flags);
 280        } else
 281                return -EINVAL;
 282
 283        return count;
 284}
 285
 286static ssize_t enabled_show(struct kobject *kobj,
 287                            struct kobj_attribute *attr, char *buf)
 288{
 289        return double_flag_show(kobj, attr, buf,
 290                                TRANSPARENT_HUGEPAGE_FLAG,
 291                                TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 292}
 293static ssize_t enabled_store(struct kobject *kobj,
 294                             struct kobj_attribute *attr,
 295                             const char *buf, size_t count)
 296{
 297        ssize_t ret;
 298
 299        ret = double_flag_store(kobj, attr, buf, count,
 300                                TRANSPARENT_HUGEPAGE_FLAG,
 301                                TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 302
 303        if (ret > 0) {
 304                int err;
 305
 306                mutex_lock(&khugepaged_mutex);
 307                err = start_khugepaged();
 308                mutex_unlock(&khugepaged_mutex);
 309
 310                if (err)
 311                        ret = err;
 312        }
 313
 314        return ret;
 315}
 316static struct kobj_attribute enabled_attr =
 317        __ATTR(enabled, 0644, enabled_show, enabled_store);
 318
 319static ssize_t single_flag_show(struct kobject *kobj,
 320                                struct kobj_attribute *attr, char *buf,
 321                                enum transparent_hugepage_flag flag)
 322{
 323        return sprintf(buf, "%d\n",
 324                       !!test_bit(flag, &transparent_hugepage_flags));
 325}
 326
 327static ssize_t single_flag_store(struct kobject *kobj,
 328                                 struct kobj_attribute *attr,
 329                                 const char *buf, size_t count,
 330                                 enum transparent_hugepage_flag flag)
 331{
 332        unsigned long value;
 333        int ret;
 334
 335        ret = kstrtoul(buf, 10, &value);
 336        if (ret < 0)
 337                return ret;
 338        if (value > 1)
 339                return -EINVAL;
 340
 341        if (value)
 342                set_bit(flag, &transparent_hugepage_flags);
 343        else
 344                clear_bit(flag, &transparent_hugepage_flags);
 345
 346        return count;
 347}
 348
 349/*
 350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 352 * memory just to allocate one more hugepage.
 353 */
 354static ssize_t defrag_show(struct kobject *kobj,
 355                           struct kobj_attribute *attr, char *buf)
 356{
 357        return double_flag_show(kobj, attr, buf,
 358                                TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 359                                TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 360}
 361static ssize_t defrag_store(struct kobject *kobj,
 362                            struct kobj_attribute *attr,
 363                            const char *buf, size_t count)
 364{
 365        return double_flag_store(kobj, attr, buf, count,
 366                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 367                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 368}
 369static struct kobj_attribute defrag_attr =
 370        __ATTR(defrag, 0644, defrag_show, defrag_store);
 371
 372static ssize_t use_zero_page_show(struct kobject *kobj,
 373                struct kobj_attribute *attr, char *buf)
 374{
 375        return single_flag_show(kobj, attr, buf,
 376                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 377}
 378static ssize_t use_zero_page_store(struct kobject *kobj,
 379                struct kobj_attribute *attr, const char *buf, size_t count)
 380{
 381        return single_flag_store(kobj, attr, buf, count,
 382                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 383}
 384static struct kobj_attribute use_zero_page_attr =
 385        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 386#ifdef CONFIG_DEBUG_VM
 387static ssize_t debug_cow_show(struct kobject *kobj,
 388                                struct kobj_attribute *attr, char *buf)
 389{
 390        return single_flag_show(kobj, attr, buf,
 391                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 392}
 393static ssize_t debug_cow_store(struct kobject *kobj,
 394                               struct kobj_attribute *attr,
 395                               const char *buf, size_t count)
 396{
 397        return single_flag_store(kobj, attr, buf, count,
 398                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 399}
 400static struct kobj_attribute debug_cow_attr =
 401        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 402#endif /* CONFIG_DEBUG_VM */
 403
 404static struct attribute *hugepage_attr[] = {
 405        &enabled_attr.attr,
 406        &defrag_attr.attr,
 407        &use_zero_page_attr.attr,
 408#ifdef CONFIG_DEBUG_VM
 409        &debug_cow_attr.attr,
 410#endif
 411        NULL,
 412};
 413
 414static struct attribute_group hugepage_attr_group = {
 415        .attrs = hugepage_attr,
 416};
 417
 418static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 419                                         struct kobj_attribute *attr,
 420                                         char *buf)
 421{
 422        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 423}
 424
 425static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 426                                          struct kobj_attribute *attr,
 427                                          const char *buf, size_t count)
 428{
 429        unsigned long msecs;
 430        int err;
 431
 432        err = kstrtoul(buf, 10, &msecs);
 433        if (err || msecs > UINT_MAX)
 434                return -EINVAL;
 435
 436        khugepaged_scan_sleep_millisecs = msecs;
 437        wake_up_interruptible(&khugepaged_wait);
 438
 439        return count;
 440}
 441static struct kobj_attribute scan_sleep_millisecs_attr =
 442        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 443               scan_sleep_millisecs_store);
 444
 445static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 446                                          struct kobj_attribute *attr,
 447                                          char *buf)
 448{
 449        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 450}
 451
 452static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 453                                           struct kobj_attribute *attr,
 454                                           const char *buf, size_t count)
 455{
 456        unsigned long msecs;
 457        int err;
 458
 459        err = kstrtoul(buf, 10, &msecs);
 460        if (err || msecs > UINT_MAX)
 461                return -EINVAL;
 462
 463        khugepaged_alloc_sleep_millisecs = msecs;
 464        wake_up_interruptible(&khugepaged_wait);
 465
 466        return count;
 467}
 468static struct kobj_attribute alloc_sleep_millisecs_attr =
 469        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 470               alloc_sleep_millisecs_store);
 471
 472static ssize_t pages_to_scan_show(struct kobject *kobj,
 473                                  struct kobj_attribute *attr,
 474                                  char *buf)
 475{
 476        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 477}
 478static ssize_t pages_to_scan_store(struct kobject *kobj,
 479                                   struct kobj_attribute *attr,
 480                                   const char *buf, size_t count)
 481{
 482        int err;
 483        unsigned long pages;
 484
 485        err = kstrtoul(buf, 10, &pages);
 486        if (err || !pages || pages > UINT_MAX)
 487                return -EINVAL;
 488
 489        khugepaged_pages_to_scan = pages;
 490
 491        return count;
 492}
 493static struct kobj_attribute pages_to_scan_attr =
 494        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 495               pages_to_scan_store);
 496
 497static ssize_t pages_collapsed_show(struct kobject *kobj,
 498                                    struct kobj_attribute *attr,
 499                                    char *buf)
 500{
 501        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 502}
 503static struct kobj_attribute pages_collapsed_attr =
 504        __ATTR_RO(pages_collapsed);
 505
 506static ssize_t full_scans_show(struct kobject *kobj,
 507                               struct kobj_attribute *attr,
 508                               char *buf)
 509{
 510        return sprintf(buf, "%u\n", khugepaged_full_scans);
 511}
 512static struct kobj_attribute full_scans_attr =
 513        __ATTR_RO(full_scans);
 514
 515static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 516                                      struct kobj_attribute *attr, char *buf)
 517{
 518        return single_flag_show(kobj, attr, buf,
 519                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 520}
 521static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 522                                       struct kobj_attribute *attr,
 523                                       const char *buf, size_t count)
 524{
 525        return single_flag_store(kobj, attr, buf, count,
 526                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 527}
 528static struct kobj_attribute khugepaged_defrag_attr =
 529        __ATTR(defrag, 0644, khugepaged_defrag_show,
 530               khugepaged_defrag_store);
 531
 532/*
 533 * max_ptes_none controls if khugepaged should collapse hugepages over
 534 * any unmapped ptes in turn potentially increasing the memory
 535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 536 * reduce the available free memory in the system as it
 537 * runs. Increasing max_ptes_none will instead potentially reduce the
 538 * free memory in the system during the khugepaged scan.
 539 */
 540static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 541                                             struct kobj_attribute *attr,
 542                                             char *buf)
 543{
 544        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 545}
 546static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 547                                              struct kobj_attribute *attr,
 548                                              const char *buf, size_t count)
 549{
 550        int err;
 551        unsigned long max_ptes_none;
 552
 553        err = kstrtoul(buf, 10, &max_ptes_none);
 554        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 555                return -EINVAL;
 556
 557        khugepaged_max_ptes_none = max_ptes_none;
 558
 559        return count;
 560}
 561static struct kobj_attribute khugepaged_max_ptes_none_attr =
 562        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 563               khugepaged_max_ptes_none_store);
 564
 565static struct attribute *khugepaged_attr[] = {
 566        &khugepaged_defrag_attr.attr,
 567        &khugepaged_max_ptes_none_attr.attr,
 568        &pages_to_scan_attr.attr,
 569        &pages_collapsed_attr.attr,
 570        &full_scans_attr.attr,
 571        &scan_sleep_millisecs_attr.attr,
 572        &alloc_sleep_millisecs_attr.attr,
 573        NULL,
 574};
 575
 576static struct attribute_group khugepaged_attr_group = {
 577        .attrs = khugepaged_attr,
 578        .name = "khugepaged",
 579};
 580
 581static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 582{
 583        int err;
 584
 585        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 586        if (unlikely(!*hugepage_kobj)) {
 587                printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
 588                return -ENOMEM;
 589        }
 590
 591        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 592        if (err) {
 593                printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 594                goto delete_obj;
 595        }
 596
 597        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 598        if (err) {
 599                printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 600                goto remove_hp_group;
 601        }
 602
 603        return 0;
 604
 605remove_hp_group:
 606        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 607delete_obj:
 608        kobject_put(*hugepage_kobj);
 609        return err;
 610}
 611
 612static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 613{
 614        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 615        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 616        kobject_put(hugepage_kobj);
 617}
 618#else
 619static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 620{
 621        return 0;
 622}
 623
 624static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 625{
 626}
 627#endif /* CONFIG_SYSFS */
 628
 629static int __init hugepage_init(void)
 630{
 631        int err;
 632        struct kobject *hugepage_kobj;
 633
 634        if (!has_transparent_hugepage()) {
 635                transparent_hugepage_flags = 0;
 636                return -EINVAL;
 637        }
 638
 639        err = hugepage_init_sysfs(&hugepage_kobj);
 640        if (err)
 641                return err;
 642
 643        err = khugepaged_slab_init();
 644        if (err)
 645                goto out;
 646
 647        register_shrinker(&huge_zero_page_shrinker);
 648
 649        /*
 650         * By default disable transparent hugepages on smaller systems,
 651         * where the extra memory used could hurt more than TLB overhead
 652         * is likely to save.  The admin can still enable it through /sys.
 653         */
 654        if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 655                transparent_hugepage_flags = 0;
 656
 657        start_khugepaged();
 658
 659        return 0;
 660out:
 661        hugepage_exit_sysfs(hugepage_kobj);
 662        return err;
 663}
 664subsys_initcall(hugepage_init);
 665
 666static int __init setup_transparent_hugepage(char *str)
 667{
 668        int ret = 0;
 669        if (!str)
 670                goto out;
 671        if (!strcmp(str, "always")) {
 672                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 673                        &transparent_hugepage_flags);
 674                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 675                          &transparent_hugepage_flags);
 676                ret = 1;
 677        } else if (!strcmp(str, "madvise")) {
 678                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 679                          &transparent_hugepage_flags);
 680                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 681                        &transparent_hugepage_flags);
 682                ret = 1;
 683        } else if (!strcmp(str, "never")) {
 684                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 685                          &transparent_hugepage_flags);
 686                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 687                          &transparent_hugepage_flags);
 688                ret = 1;
 689        }
 690out:
 691        if (!ret)
 692                printk(KERN_WARNING
 693                       "transparent_hugepage= cannot parse, ignored\n");
 694        return ret;
 695}
 696__setup("transparent_hugepage=", setup_transparent_hugepage);
 697
 698pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 699{
 700        if (likely(vma->vm_flags & VM_WRITE))
 701                pmd = pmd_mkwrite(pmd);
 702        return pmd;
 703}
 704
 705static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 706{
 707        pmd_t entry;
 708        entry = mk_pmd(page, prot);
 709        entry = pmd_mkhuge(entry);
 710        return entry;
 711}
 712
 713static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 714                                        struct vm_area_struct *vma,
 715                                        unsigned long haddr, pmd_t *pmd,
 716                                        struct page *page)
 717{
 718        pgtable_t pgtable;
 719        spinlock_t *ptl;
 720
 721        VM_BUG_ON_PAGE(!PageCompound(page), page);
 722        pgtable = pte_alloc_one(mm, haddr);
 723        if (unlikely(!pgtable))
 724                return VM_FAULT_OOM;
 725
 726        clear_huge_page(page, haddr, HPAGE_PMD_NR);
 727        /*
 728         * The memory barrier inside __SetPageUptodate makes sure that
 729         * clear_huge_page writes become visible before the set_pmd_at()
 730         * write.
 731         */
 732        __SetPageUptodate(page);
 733
 734        ptl = pmd_lock(mm, pmd);
 735        if (unlikely(!pmd_none(*pmd))) {
 736                spin_unlock(ptl);
 737                mem_cgroup_uncharge_page(page);
 738                put_page(page);
 739                pte_free(mm, pgtable);
 740        } else {
 741                pmd_t entry;
 742                entry = mk_huge_pmd(page, vma->vm_page_prot);
 743                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 744                page_add_new_anon_rmap(page, vma, haddr);
 745                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 746                set_pmd_at(mm, haddr, pmd, entry);
 747                add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 748                atomic_long_inc(&mm->nr_ptes);
 749                spin_unlock(ptl);
 750        }
 751
 752        return 0;
 753}
 754
 755static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 756{
 757        return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 758}
 759
 760static inline struct page *alloc_hugepage_vma(int defrag,
 761                                              struct vm_area_struct *vma,
 762                                              unsigned long haddr, int nd,
 763                                              gfp_t extra_gfp)
 764{
 765        return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 766                               HPAGE_PMD_ORDER, vma, haddr, nd);
 767}
 768
 769/* Caller must hold page table lock. */
 770static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 771                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 772                struct page *zero_page)
 773{
 774        pmd_t entry;
 775        if (!pmd_none(*pmd))
 776                return false;
 777        entry = mk_pmd(zero_page, vma->vm_page_prot);
 778        entry = pmd_wrprotect(entry);
 779        entry = pmd_mkhuge(entry);
 780        pgtable_trans_huge_deposit(mm, pmd, pgtable);
 781        set_pmd_at(mm, haddr, pmd, entry);
 782        atomic_long_inc(&mm->nr_ptes);
 783        return true;
 784}
 785
 786int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 787                               unsigned long address, pmd_t *pmd,
 788                               unsigned int flags)
 789{
 790        struct page *page;
 791        unsigned long haddr = address & HPAGE_PMD_MASK;
 792
 793        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 794                return VM_FAULT_FALLBACK;
 795        if (unlikely(anon_vma_prepare(vma)))
 796                return VM_FAULT_OOM;
 797        if (unlikely(khugepaged_enter(vma)))
 798                return VM_FAULT_OOM;
 799        if (!(flags & FAULT_FLAG_WRITE) &&
 800                        transparent_hugepage_use_zero_page()) {
 801                spinlock_t *ptl;
 802                pgtable_t pgtable;
 803                struct page *zero_page;
 804                bool set;
 805                pgtable = pte_alloc_one(mm, haddr);
 806                if (unlikely(!pgtable))
 807                        return VM_FAULT_OOM;
 808                zero_page = get_huge_zero_page();
 809                if (unlikely(!zero_page)) {
 810                        pte_free(mm, pgtable);
 811                        count_vm_event(THP_FAULT_FALLBACK);
 812                        return VM_FAULT_FALLBACK;
 813                }
 814                ptl = pmd_lock(mm, pmd);
 815                set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
 816                                zero_page);
 817                spin_unlock(ptl);
 818                if (!set) {
 819                        pte_free(mm, pgtable);
 820                        put_huge_zero_page();
 821                }
 822                return 0;
 823        }
 824        page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 825                        vma, haddr, numa_node_id(), 0);
 826        if (unlikely(!page)) {
 827                count_vm_event(THP_FAULT_FALLBACK);
 828                return VM_FAULT_FALLBACK;
 829        }
 830        if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
 831                put_page(page);
 832                count_vm_event(THP_FAULT_FALLBACK);
 833                return VM_FAULT_FALLBACK;
 834        }
 835        if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
 836                mem_cgroup_uncharge_page(page);
 837                put_page(page);
 838                count_vm_event(THP_FAULT_FALLBACK);
 839                return VM_FAULT_FALLBACK;
 840        }
 841
 842        count_vm_event(THP_FAULT_ALLOC);
 843        return 0;
 844}
 845
 846int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 847                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 848                  struct vm_area_struct *vma)
 849{
 850        spinlock_t *dst_ptl, *src_ptl;
 851        struct page *src_page;
 852        pmd_t pmd;
 853        pgtable_t pgtable;
 854        int ret;
 855
 856        ret = -ENOMEM;
 857        pgtable = pte_alloc_one(dst_mm, addr);
 858        if (unlikely(!pgtable))
 859                goto out;
 860
 861        dst_ptl = pmd_lock(dst_mm, dst_pmd);
 862        src_ptl = pmd_lockptr(src_mm, src_pmd);
 863        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 864
 865        ret = -EAGAIN;
 866        pmd = *src_pmd;
 867        if (unlikely(!pmd_trans_huge(pmd))) {
 868                pte_free(dst_mm, pgtable);
 869                goto out_unlock;
 870        }
 871        /*
 872         * When page table lock is held, the huge zero pmd should not be
 873         * under splitting since we don't split the page itself, only pmd to
 874         * a page table.
 875         */
 876        if (is_huge_zero_pmd(pmd)) {
 877                struct page *zero_page;
 878                bool set;
 879                /*
 880                 * get_huge_zero_page() will never allocate a new page here,
 881                 * since we already have a zero page to copy. It just takes a
 882                 * reference.
 883                 */
 884                zero_page = get_huge_zero_page();
 885                set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 886                                zero_page);
 887                BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
 888                ret = 0;
 889                goto out_unlock;
 890        }
 891
 892        if (unlikely(pmd_trans_splitting(pmd))) {
 893                /* split huge page running from under us */
 894                spin_unlock(src_ptl);
 895                spin_unlock(dst_ptl);
 896                pte_free(dst_mm, pgtable);
 897
 898                wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 899                goto out;
 900        }
 901        src_page = pmd_page(pmd);
 902        VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 903        get_page(src_page);
 904        page_dup_rmap(src_page);
 905        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 906
 907        pmdp_set_wrprotect(src_mm, addr, src_pmd);
 908        pmd = pmd_mkold(pmd_wrprotect(pmd));
 909        pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 910        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 911        atomic_long_inc(&dst_mm->nr_ptes);
 912
 913        ret = 0;
 914out_unlock:
 915        spin_unlock(src_ptl);
 916        spin_unlock(dst_ptl);
 917out:
 918        return ret;
 919}
 920
 921void huge_pmd_set_accessed(struct mm_struct *mm,
 922                           struct vm_area_struct *vma,
 923                           unsigned long address,
 924                           pmd_t *pmd, pmd_t orig_pmd,
 925                           int dirty)
 926{
 927        spinlock_t *ptl;
 928        pmd_t entry;
 929        unsigned long haddr;
 930
 931        ptl = pmd_lock(mm, pmd);
 932        if (unlikely(!pmd_same(*pmd, orig_pmd)))
 933                goto unlock;
 934
 935        entry = pmd_mkyoung(orig_pmd);
 936        haddr = address & HPAGE_PMD_MASK;
 937        if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
 938                update_mmu_cache_pmd(vma, address, pmd);
 939
 940unlock:
 941        spin_unlock(ptl);
 942}
 943
 944static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 945                                        struct vm_area_struct *vma,
 946                                        unsigned long address,
 947                                        pmd_t *pmd, pmd_t orig_pmd,
 948                                        struct page *page,
 949                                        unsigned long haddr)
 950{
 951        spinlock_t *ptl;
 952        pgtable_t pgtable;
 953        pmd_t _pmd;
 954        int ret = 0, i;
 955        struct page **pages;
 956        unsigned long mmun_start;       /* For mmu_notifiers */
 957        unsigned long mmun_end;         /* For mmu_notifiers */
 958
 959        pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 960                        GFP_KERNEL);
 961        if (unlikely(!pages)) {
 962                ret |= VM_FAULT_OOM;
 963                goto out;
 964        }
 965
 966        for (i = 0; i < HPAGE_PMD_NR; i++) {
 967                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 968                                               __GFP_OTHER_NODE,
 969                                               vma, address, page_to_nid(page));
 970                if (unlikely(!pages[i] ||
 971                             mem_cgroup_charge_anon(pages[i], mm,
 972                                                       GFP_KERNEL))) {
 973                        if (pages[i])
 974                                put_page(pages[i]);
 975                        mem_cgroup_uncharge_start();
 976                        while (--i >= 0) {
 977                                mem_cgroup_uncharge_page(pages[i]);
 978                                put_page(pages[i]);
 979                        }
 980                        mem_cgroup_uncharge_end();
 981                        kfree(pages);
 982                        ret |= VM_FAULT_OOM;
 983                        goto out;
 984                }
 985        }
 986
 987        for (i = 0; i < HPAGE_PMD_NR; i++) {
 988                copy_user_highpage(pages[i], page + i,
 989                                   haddr + PAGE_SIZE * i, vma);
 990                __SetPageUptodate(pages[i]);
 991                cond_resched();
 992        }
 993
 994        mmun_start = haddr;
 995        mmun_end   = haddr + HPAGE_PMD_SIZE;
 996        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 997
 998        ptl = pmd_lock(mm, pmd);
 999        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000                goto out_free_pages;
1001        VM_BUG_ON_PAGE(!PageHead(page), page);
1002
1003        pmdp_clear_flush(vma, haddr, pmd);
1004        /* leave pmd empty until pte is filled */
1005
1006        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007        pmd_populate(mm, &_pmd, pgtable);
1008
1009        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010                pte_t *pte, entry;
1011                entry = mk_pte(pages[i], vma->vm_page_prot);
1012                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013                page_add_new_anon_rmap(pages[i], vma, haddr);
1014                pte = pte_offset_map(&_pmd, haddr);
1015                VM_BUG_ON(!pte_none(*pte));
1016                set_pte_at(mm, haddr, pte, entry);
1017                pte_unmap(pte);
1018        }
1019        kfree(pages);
1020
1021        smp_wmb(); /* make pte visible before pmd */
1022        pmd_populate(mm, pmd, pgtable);
1023        page_remove_rmap(page);
1024        spin_unlock(ptl);
1025
1026        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027
1028        ret |= VM_FAULT_WRITE;
1029        put_page(page);
1030
1031out:
1032        return ret;
1033
1034out_free_pages:
1035        spin_unlock(ptl);
1036        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037        mem_cgroup_uncharge_start();
1038        for (i = 0; i < HPAGE_PMD_NR; i++) {
1039                mem_cgroup_uncharge_page(pages[i]);
1040                put_page(pages[i]);
1041        }
1042        mem_cgroup_uncharge_end();
1043        kfree(pages);
1044        goto out;
1045}
1046
1047int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048                        unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049{
1050        spinlock_t *ptl;
1051        int ret = 0;
1052        struct page *page = NULL, *new_page;
1053        unsigned long haddr;
1054        unsigned long mmun_start;       /* For mmu_notifiers */
1055        unsigned long mmun_end;         /* For mmu_notifiers */
1056
1057        ptl = pmd_lockptr(mm, pmd);
1058        VM_BUG_ON(!vma->anon_vma);
1059        haddr = address & HPAGE_PMD_MASK;
1060        if (is_huge_zero_pmd(orig_pmd))
1061                goto alloc;
1062        spin_lock(ptl);
1063        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064                goto out_unlock;
1065
1066        page = pmd_page(orig_pmd);
1067        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068        if (page_mapcount(page) == 1) {
1069                pmd_t entry;
1070                entry = pmd_mkyoung(orig_pmd);
1071                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072                if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073                        update_mmu_cache_pmd(vma, address, pmd);
1074                ret |= VM_FAULT_WRITE;
1075                goto out_unlock;
1076        }
1077        get_page(page);
1078        spin_unlock(ptl);
1079alloc:
1080        if (transparent_hugepage_enabled(vma) &&
1081            !transparent_hugepage_debug_cow())
1082                new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083                                              vma, haddr, numa_node_id(), 0);
1084        else
1085                new_page = NULL;
1086
1087        if (unlikely(!new_page)) {
1088                if (!page) {
1089                        split_huge_page_pmd(vma, address, pmd);
1090                        ret |= VM_FAULT_FALLBACK;
1091                } else {
1092                        ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093                                        pmd, orig_pmd, page, haddr);
1094                        if (ret & VM_FAULT_OOM) {
1095                                split_huge_page(page);
1096                                ret |= VM_FAULT_FALLBACK;
1097                        }
1098                        put_page(page);
1099                }
1100                count_vm_event(THP_FAULT_FALLBACK);
1101                goto out;
1102        }
1103
1104        if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105                put_page(new_page);
1106                if (page) {
1107                        split_huge_page(page);
1108                        put_page(page);
1109                } else
1110                        split_huge_page_pmd(vma, address, pmd);
1111                ret |= VM_FAULT_FALLBACK;
1112                count_vm_event(THP_FAULT_FALLBACK);
1113                goto out;
1114        }
1115
1116        count_vm_event(THP_FAULT_ALLOC);
1117
1118        if (!page)
1119                clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120        else
1121                copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122        __SetPageUptodate(new_page);
1123
1124        mmun_start = haddr;
1125        mmun_end   = haddr + HPAGE_PMD_SIZE;
1126        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
1128        spin_lock(ptl);
1129        if (page)
1130                put_page(page);
1131        if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132                spin_unlock(ptl);
1133                mem_cgroup_uncharge_page(new_page);
1134                put_page(new_page);
1135                goto out_mn;
1136        } else {
1137                pmd_t entry;
1138                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140                pmdp_clear_flush(vma, haddr, pmd);
1141                page_add_new_anon_rmap(new_page, vma, haddr);
1142                set_pmd_at(mm, haddr, pmd, entry);
1143                update_mmu_cache_pmd(vma, address, pmd);
1144                if (!page) {
1145                        add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146                        put_huge_zero_page();
1147                } else {
1148                        VM_BUG_ON_PAGE(!PageHead(page), page);
1149                        page_remove_rmap(page);
1150                        put_page(page);
1151                }
1152                ret |= VM_FAULT_WRITE;
1153        }
1154        spin_unlock(ptl);
1155out_mn:
1156        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157out:
1158        return ret;
1159out_unlock:
1160        spin_unlock(ptl);
1161        return ret;
1162}
1163
1164struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165                                   unsigned long addr,
1166                                   pmd_t *pmd,
1167                                   unsigned int flags)
1168{
1169        struct mm_struct *mm = vma->vm_mm;
1170        struct page *page = NULL;
1171
1172        assert_spin_locked(pmd_lockptr(mm, pmd));
1173
1174        if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175                goto out;
1176
1177        /* Avoid dumping huge zero page */
1178        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179                return ERR_PTR(-EFAULT);
1180
1181        /* Full NUMA hinting faults to serialise migration in fault paths */
1182        if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183                goto out;
1184
1185        page = pmd_page(*pmd);
1186        VM_BUG_ON_PAGE(!PageHead(page), page);
1187        if (flags & FOLL_TOUCH) {
1188                pmd_t _pmd;
1189                /*
1190                 * We should set the dirty bit only for FOLL_WRITE but
1191                 * for now the dirty bit in the pmd is meaningless.
1192                 * And if the dirty bit will become meaningful and
1193                 * we'll only set it with FOLL_WRITE, an atomic
1194                 * set_bit will be required on the pmd to set the
1195                 * young bit, instead of the current set_pmd_at.
1196                 */
1197                _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198                if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199                                          pmd, _pmd,  1))
1200                        update_mmu_cache_pmd(vma, addr, pmd);
1201        }
1202        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203                if (page->mapping && trylock_page(page)) {
1204                        lru_add_drain();
1205                        if (page->mapping)
1206                                mlock_vma_page(page);
1207                        unlock_page(page);
1208                }
1209        }
1210        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211        VM_BUG_ON_PAGE(!PageCompound(page), page);
1212        if (flags & FOLL_GET)
1213                get_page_foll(page);
1214
1215out:
1216        return page;
1217}
1218
1219/* NUMA hinting page fault entry point for trans huge pmds */
1220int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221                                unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222{
1223        spinlock_t *ptl;
1224        struct anon_vma *anon_vma = NULL;
1225        struct page *page;
1226        unsigned long haddr = addr & HPAGE_PMD_MASK;
1227        int page_nid = -1, this_nid = numa_node_id();
1228        int target_nid, last_cpupid = -1;
1229        bool page_locked;
1230        bool migrated = false;
1231        int flags = 0;
1232
1233        ptl = pmd_lock(mm, pmdp);
1234        if (unlikely(!pmd_same(pmd, *pmdp)))
1235                goto out_unlock;
1236
1237        /*
1238         * If there are potential migrations, wait for completion and retry
1239         * without disrupting NUMA hinting information. Do not relock and
1240         * check_same as the page may no longer be mapped.
1241         */
1242        if (unlikely(pmd_trans_migrating(*pmdp))) {
1243                spin_unlock(ptl);
1244                wait_migrate_huge_page(vma->anon_vma, pmdp);
1245                goto out;
1246        }
1247
1248        page = pmd_page(pmd);
1249        BUG_ON(is_huge_zero_page(page));
1250        page_nid = page_to_nid(page);
1251        last_cpupid = page_cpupid_last(page);
1252        count_vm_numa_event(NUMA_HINT_FAULTS);
1253        if (page_nid == this_nid) {
1254                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255                flags |= TNF_FAULT_LOCAL;
1256        }
1257
1258        /*
1259         * Avoid grouping on DSO/COW pages in specific and RO pages
1260         * in general, RO pages shouldn't hurt as much anyway since
1261         * they can be in shared cache state.
1262         */
1263        if (!pmd_write(pmd))
1264                flags |= TNF_NO_GROUP;
1265
1266        /*
1267         * Acquire the page lock to serialise THP migrations but avoid dropping
1268         * page_table_lock if at all possible
1269         */
1270        page_locked = trylock_page(page);
1271        target_nid = mpol_misplaced(page, vma, haddr);
1272        if (target_nid == -1) {
1273                /* If the page was locked, there are no parallel migrations */
1274                if (page_locked)
1275                        goto clear_pmdnuma;
1276        }
1277
1278        /* Migration could have started since the pmd_trans_migrating check */
1279        if (!page_locked) {
1280                spin_unlock(ptl);
1281                wait_on_page_locked(page);
1282                page_nid = -1;
1283                goto out;
1284        }
1285
1286        /*
1287         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288         * to serialises splits
1289         */
1290        get_page(page);
1291        spin_unlock(ptl);
1292        anon_vma = page_lock_anon_vma_read(page);
1293
1294        /* Confirm the PMD did not change while page_table_lock was released */
1295        spin_lock(ptl);
1296        if (unlikely(!pmd_same(pmd, *pmdp))) {
1297                unlock_page(page);
1298                put_page(page);
1299                page_nid = -1;
1300                goto out_unlock;
1301        }
1302
1303        /* Bail if we fail to protect against THP splits for any reason */
1304        if (unlikely(!anon_vma)) {
1305                put_page(page);
1306                page_nid = -1;
1307                goto clear_pmdnuma;
1308        }
1309
1310        /*
1311         * Migrate the THP to the requested node, returns with page unlocked
1312         * and pmd_numa cleared.
1313         */
1314        spin_unlock(ptl);
1315        migrated = migrate_misplaced_transhuge_page(mm, vma,
1316                                pmdp, pmd, addr, page, target_nid);
1317        if (migrated) {
1318                flags |= TNF_MIGRATED;
1319                page_nid = target_nid;
1320        }
1321
1322        goto out;
1323clear_pmdnuma:
1324        BUG_ON(!PageLocked(page));
1325        pmd = pmd_mknonnuma(pmd);
1326        set_pmd_at(mm, haddr, pmdp, pmd);
1327        VM_BUG_ON(pmd_numa(*pmdp));
1328        update_mmu_cache_pmd(vma, addr, pmdp);
1329        unlock_page(page);
1330out_unlock:
1331        spin_unlock(ptl);
1332
1333out:
1334        if (anon_vma)
1335                page_unlock_anon_vma_read(anon_vma);
1336
1337        if (page_nid != -1)
1338                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339
1340        return 0;
1341}
1342
1343int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344                 pmd_t *pmd, unsigned long addr)
1345{
1346        spinlock_t *ptl;
1347        int ret = 0;
1348
1349        if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350                struct page *page;
1351                pgtable_t pgtable;
1352                pmd_t orig_pmd;
1353                /*
1354                 * For architectures like ppc64 we look at deposited pgtable
1355                 * when calling pmdp_get_and_clear. So do the
1356                 * pgtable_trans_huge_withdraw after finishing pmdp related
1357                 * operations.
1358                 */
1359                orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361                pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362                if (is_huge_zero_pmd(orig_pmd)) {
1363                        atomic_long_dec(&tlb->mm->nr_ptes);
1364                        spin_unlock(ptl);
1365                        put_huge_zero_page();
1366                } else {
1367                        page = pmd_page(orig_pmd);
1368                        page_remove_rmap(page);
1369                        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371                        VM_BUG_ON_PAGE(!PageHead(page), page);
1372                        atomic_long_dec(&tlb->mm->nr_ptes);
1373                        spin_unlock(ptl);
1374                        tlb_remove_page(tlb, page);
1375                }
1376                pte_free(tlb->mm, pgtable);
1377                ret = 1;
1378        }
1379        return ret;
1380}
1381
1382int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383                unsigned long addr, unsigned long end,
1384                unsigned char *vec)
1385{
1386        spinlock_t *ptl;
1387        int ret = 0;
1388
1389        if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390                /*
1391                 * All logical pages in the range are present
1392                 * if backed by a huge page.
1393                 */
1394                spin_unlock(ptl);
1395                memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396                ret = 1;
1397        }
1398
1399        return ret;
1400}
1401
1402int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403                  unsigned long old_addr,
1404                  unsigned long new_addr, unsigned long old_end,
1405                  pmd_t *old_pmd, pmd_t *new_pmd)
1406{
1407        spinlock_t *old_ptl, *new_ptl;
1408        int ret = 0;
1409        pmd_t pmd;
1410
1411        struct mm_struct *mm = vma->vm_mm;
1412
1413        if ((old_addr & ~HPAGE_PMD_MASK) ||
1414            (new_addr & ~HPAGE_PMD_MASK) ||
1415            old_end - old_addr < HPAGE_PMD_SIZE ||
1416            (new_vma->vm_flags & VM_NOHUGEPAGE))
1417                goto out;
1418
1419        /*
1420         * The destination pmd shouldn't be established, free_pgtables()
1421         * should have release it.
1422         */
1423        if (WARN_ON(!pmd_none(*new_pmd))) {
1424                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425                goto out;
1426        }
1427
1428        /*
1429         * We don't have to worry about the ordering of src and dst
1430         * ptlocks because exclusive mmap_sem prevents deadlock.
1431         */
1432        ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433        if (ret == 1) {
1434                new_ptl = pmd_lockptr(mm, new_pmd);
1435                if (new_ptl != old_ptl)
1436                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437                pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438                VM_BUG_ON(!pmd_none(*new_pmd));
1439
1440                if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441                        pgtable_t pgtable;
1442                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444                }
1445                set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446                if (new_ptl != old_ptl)
1447                        spin_unlock(new_ptl);
1448                spin_unlock(old_ptl);
1449        }
1450out:
1451        return ret;
1452}
1453
1454/*
1455 * Returns
1456 *  - 0 if PMD could not be locked
1457 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459 */
1460int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461                unsigned long addr, pgprot_t newprot, int prot_numa)
1462{
1463        struct mm_struct *mm = vma->vm_mm;
1464        spinlock_t *ptl;
1465        int ret = 0;
1466
1467        if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468                pmd_t entry;
1469                ret = 1;
1470                if (!prot_numa) {
1471                        entry = pmdp_get_and_clear(mm, addr, pmd);
1472                        if (pmd_numa(entry))
1473                                entry = pmd_mknonnuma(entry);
1474                        entry = pmd_modify(entry, newprot);
1475                        ret = HPAGE_PMD_NR;
1476                        set_pmd_at(mm, addr, pmd, entry);
1477                        BUG_ON(pmd_write(entry));
1478                } else {
1479                        struct page *page = pmd_page(*pmd);
1480
1481                        /*
1482                         * Do not trap faults against the zero page. The
1483                         * read-only data is likely to be read-cached on the
1484                         * local CPU cache and it is less useful to know about
1485                         * local vs remote hits on the zero page.
1486                         */
1487                        if (!is_huge_zero_page(page) &&
1488                            !pmd_numa(*pmd)) {
1489                                pmdp_set_numa(mm, addr, pmd);
1490                                ret = HPAGE_PMD_NR;
1491                        }
1492                }
1493                spin_unlock(ptl);
1494        }
1495
1496        return ret;
1497}
1498
1499/*
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502 *
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1505 */
1506int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507                spinlock_t **ptl)
1508{
1509        *ptl = pmd_lock(vma->vm_mm, pmd);
1510        if (likely(pmd_trans_huge(*pmd))) {
1511                if (unlikely(pmd_trans_splitting(*pmd))) {
1512                        spin_unlock(*ptl);
1513                        wait_split_huge_page(vma->anon_vma, pmd);
1514                        return -1;
1515                } else {
1516                        /* Thp mapped by 'pmd' is stable, so we can
1517                         * handle it as it is. */
1518                        return 1;
1519                }
1520        }
1521        spin_unlock(*ptl);
1522        return 0;
1523}
1524
1525/*
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1528 *
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1532 */
1533pmd_t *page_check_address_pmd(struct page *page,
1534                              struct mm_struct *mm,
1535                              unsigned long address,
1536                              enum page_check_address_pmd_flag flag,
1537                              spinlock_t **ptl)
1538{
1539        pgd_t *pgd;
1540        pud_t *pud;
1541        pmd_t *pmd;
1542
1543        if (address & ~HPAGE_PMD_MASK)
1544                return NULL;
1545
1546        pgd = pgd_offset(mm, address);
1547        if (!pgd_present(*pgd))
1548                return NULL;
1549        pud = pud_offset(pgd, address);
1550        if (!pud_present(*pud))
1551                return NULL;
1552        pmd = pmd_offset(pud, address);
1553
1554        *ptl = pmd_lock(mm, pmd);
1555        if (!pmd_present(*pmd))
1556                goto unlock;
1557        if (pmd_page(*pmd) != page)
1558                goto unlock;
1559        /*
1560         * split_vma() may create temporary aliased mappings. There is
1561         * no risk as long as all huge pmd are found and have their
1562         * splitting bit set before __split_huge_page_refcount
1563         * runs. Finding the same huge pmd more than once during the
1564         * same rmap walk is not a problem.
1565         */
1566        if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567            pmd_trans_splitting(*pmd))
1568                goto unlock;
1569        if (pmd_trans_huge(*pmd)) {
1570                VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571                          !pmd_trans_splitting(*pmd));
1572                return pmd;
1573        }
1574unlock:
1575        spin_unlock(*ptl);
1576        return NULL;
1577}
1578
1579static int __split_huge_page_splitting(struct page *page,
1580                                       struct vm_area_struct *vma,
1581                                       unsigned long address)
1582{
1583        struct mm_struct *mm = vma->vm_mm;
1584        spinlock_t *ptl;
1585        pmd_t *pmd;
1586        int ret = 0;
1587        /* For mmu_notifiers */
1588        const unsigned long mmun_start = address;
1589        const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1590
1591        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592        pmd = page_check_address_pmd(page, mm, address,
1593                        PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594        if (pmd) {
1595                /*
1596                 * We can't temporarily set the pmd to null in order
1597                 * to split it, the pmd must remain marked huge at all
1598                 * times or the VM won't take the pmd_trans_huge paths
1599                 * and it won't wait on the anon_vma->root->rwsem to
1600                 * serialize against split_huge_page*.
1601                 */
1602                pmdp_splitting_flush(vma, address, pmd);
1603                ret = 1;
1604                spin_unlock(ptl);
1605        }
1606        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607
1608        return ret;
1609}
1610
1611static void __split_huge_page_refcount(struct page *page,
1612                                       struct list_head *list)
1613{
1614        int i;
1615        struct zone *zone = page_zone(page);
1616        struct lruvec *lruvec;
1617        int tail_count = 0;
1618
1619        /* prevent PageLRU to go away from under us, and freeze lru stats */
1620        spin_lock_irq(&zone->lru_lock);
1621        lruvec = mem_cgroup_page_lruvec(page, zone);
1622
1623        compound_lock(page);
1624        /* complete memcg works before add pages to LRU */
1625        mem_cgroup_split_huge_fixup(page);
1626
1627        for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628                struct page *page_tail = page + i;
1629
1630                /* tail_page->_mapcount cannot change */
1631                BUG_ON(page_mapcount(page_tail) < 0);
1632                tail_count += page_mapcount(page_tail);
1633                /* check for overflow */
1634                BUG_ON(tail_count < 0);
1635                BUG_ON(atomic_read(&page_tail->_count) != 0);
1636                /*
1637                 * tail_page->_count is zero and not changing from
1638                 * under us. But get_page_unless_zero() may be running
1639                 * from under us on the tail_page. If we used
1640                 * atomic_set() below instead of atomic_add(), we
1641                 * would then run atomic_set() concurrently with
1642                 * get_page_unless_zero(), and atomic_set() is
1643                 * implemented in C not using locked ops. spin_unlock
1644                 * on x86 sometime uses locked ops because of PPro
1645                 * errata 66, 92, so unless somebody can guarantee
1646                 * atomic_set() here would be safe on all archs (and
1647                 * not only on x86), it's safer to use atomic_add().
1648                 */
1649                atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650                           &page_tail->_count);
1651
1652                /* after clearing PageTail the gup refcount can be released */
1653                smp_mb();
1654
1655                /*
1656                 * retain hwpoison flag of the poisoned tail page:
1657                 *   fix for the unsuitable process killed on Guest Machine(KVM)
1658                 *   by the memory-failure.
1659                 */
1660                page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661                page_tail->flags |= (page->flags &
1662                                     ((1L << PG_referenced) |
1663                                      (1L << PG_swapbacked) |
1664                                      (1L << PG_mlocked) |
1665                                      (1L << PG_uptodate) |
1666                                      (1L << PG_active) |
1667                                      (1L << PG_unevictable)));
1668                page_tail->flags |= (1L << PG_dirty);
1669
1670                /* clear PageTail before overwriting first_page */
1671                smp_wmb();
1672
1673                /*
1674                 * __split_huge_page_splitting() already set the
1675                 * splitting bit in all pmd that could map this
1676                 * hugepage, that will ensure no CPU can alter the
1677                 * mapcount on the head page. The mapcount is only
1678                 * accounted in the head page and it has to be
1679                 * transferred to all tail pages in the below code. So
1680                 * for this code to be safe, the split the mapcount
1681                 * can't change. But that doesn't mean userland can't
1682                 * keep changing and reading the page contents while
1683                 * we transfer the mapcount, so the pmd splitting
1684                 * status is achieved setting a reserved bit in the
1685                 * pmd, not by clearing the present bit.
1686                */
1687                page_tail->_mapcount = page->_mapcount;
1688
1689                BUG_ON(page_tail->mapping);
1690                page_tail->mapping = page->mapping;
1691
1692                page_tail->index = page->index + i;
1693                page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694
1695                BUG_ON(!PageAnon(page_tail));
1696                BUG_ON(!PageUptodate(page_tail));
1697                BUG_ON(!PageDirty(page_tail));
1698                BUG_ON(!PageSwapBacked(page_tail));
1699
1700                lru_add_page_tail(page, page_tail, lruvec, list);
1701        }
1702        atomic_sub(tail_count, &page->_count);
1703        BUG_ON(atomic_read(&page->_count) <= 0);
1704
1705        __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1706
1707        ClearPageCompound(page);
1708        compound_unlock(page);
1709        spin_unlock_irq(&zone->lru_lock);
1710
1711        for (i = 1; i < HPAGE_PMD_NR; i++) {
1712                struct page *page_tail = page + i;
1713                BUG_ON(page_count(page_tail) <= 0);
1714                /*
1715                 * Tail pages may be freed if there wasn't any mapping
1716                 * like if add_to_swap() is running on a lru page that
1717                 * had its mapping zapped. And freeing these pages
1718                 * requires taking the lru_lock so we do the put_page
1719                 * of the tail pages after the split is complete.
1720                 */
1721                put_page(page_tail);
1722        }
1723
1724        /*
1725         * Only the head page (now become a regular page) is required
1726         * to be pinned by the caller.
1727         */
1728        BUG_ON(page_count(page) <= 0);
1729}
1730
1731static int __split_huge_page_map(struct page *page,
1732                                 struct vm_area_struct *vma,
1733                                 unsigned long address)
1734{
1735        struct mm_struct *mm = vma->vm_mm;
1736        spinlock_t *ptl;
1737        pmd_t *pmd, _pmd;
1738        int ret = 0, i;
1739        pgtable_t pgtable;
1740        unsigned long haddr;
1741
1742        pmd = page_check_address_pmd(page, mm, address,
1743                        PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744        if (pmd) {
1745                pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746                pmd_populate(mm, &_pmd, pgtable);
1747
1748                haddr = address;
1749                for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750                        pte_t *pte, entry;
1751                        BUG_ON(PageCompound(page+i));
1752                        entry = mk_pte(page + i, vma->vm_page_prot);
1753                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754                        if (!pmd_write(*pmd))
1755                                entry = pte_wrprotect(entry);
1756                        else
1757                                BUG_ON(page_mapcount(page) != 1);
1758                        if (!pmd_young(*pmd))
1759                                entry = pte_mkold(entry);
1760                        if (pmd_numa(*pmd))
1761                                entry = pte_mknuma(entry);
1762                        pte = pte_offset_map(&_pmd, haddr);
1763                        BUG_ON(!pte_none(*pte));
1764                        set_pte_at(mm, haddr, pte, entry);
1765                        pte_unmap(pte);
1766                }
1767
1768                smp_wmb(); /* make pte visible before pmd */
1769                /*
1770                 * Up to this point the pmd is present and huge and
1771                 * userland has the whole access to the hugepage
1772                 * during the split (which happens in place). If we
1773                 * overwrite the pmd with the not-huge version
1774                 * pointing to the pte here (which of course we could
1775                 * if all CPUs were bug free), userland could trigger
1776                 * a small page size TLB miss on the small sized TLB
1777                 * while the hugepage TLB entry is still established
1778                 * in the huge TLB. Some CPU doesn't like that. See
1779                 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780                 * Erratum 383 on page 93. Intel should be safe but is
1781                 * also warns that it's only safe if the permission
1782                 * and cache attributes of the two entries loaded in
1783                 * the two TLB is identical (which should be the case
1784                 * here). But it is generally safer to never allow
1785                 * small and huge TLB entries for the same virtual
1786                 * address to be loaded simultaneously. So instead of
1787                 * doing "pmd_populate(); flush_tlb_range();" we first
1788                 * mark the current pmd notpresent (atomically because
1789                 * here the pmd_trans_huge and pmd_trans_splitting
1790                 * must remain set at all times on the pmd until the
1791                 * split is complete for this pmd), then we flush the
1792                 * SMP TLB and finally we write the non-huge version
1793                 * of the pmd entry with pmd_populate.
1794                 */
1795                pmdp_invalidate(vma, address, pmd);
1796                pmd_populate(mm, pmd, pgtable);
1797                ret = 1;
1798                spin_unlock(ptl);
1799        }
1800
1801        return ret;
1802}
1803
1804/* must be called with anon_vma->root->rwsem held */
1805static void __split_huge_page(struct page *page,
1806                              struct anon_vma *anon_vma,
1807                              struct list_head *list)
1808{
1809        int mapcount, mapcount2;
1810        pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811        struct anon_vma_chain *avc;
1812
1813        BUG_ON(!PageHead(page));
1814        BUG_ON(PageTail(page));
1815
1816        mapcount = 0;
1817        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818                struct vm_area_struct *vma = avc->vma;
1819                unsigned long addr = vma_address(page, vma);
1820                BUG_ON(is_vma_temporary_stack(vma));
1821                mapcount += __split_huge_page_splitting(page, vma, addr);
1822        }
1823        /*
1824         * It is critical that new vmas are added to the tail of the
1825         * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826         * and establishes a child pmd before
1827         * __split_huge_page_splitting() freezes the parent pmd (so if
1828         * we fail to prevent copy_huge_pmd() from running until the
1829         * whole __split_huge_page() is complete), we will still see
1830         * the newly established pmd of the child later during the
1831         * walk, to be able to set it as pmd_trans_splitting too.
1832         */
1833        if (mapcount != page_mapcount(page))
1834                printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1835                       mapcount, page_mapcount(page));
1836        BUG_ON(mapcount != page_mapcount(page));
1837
1838        __split_huge_page_refcount(page, list);
1839
1840        mapcount2 = 0;
1841        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1842                struct vm_area_struct *vma = avc->vma;
1843                unsigned long addr = vma_address(page, vma);
1844                BUG_ON(is_vma_temporary_stack(vma));
1845                mapcount2 += __split_huge_page_map(page, vma, addr);
1846        }
1847        if (mapcount != mapcount2)
1848                printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1849                       mapcount, mapcount2, page_mapcount(page));
1850        BUG_ON(mapcount != mapcount2);
1851}
1852
1853/*
1854 * Split a hugepage into normal pages. This doesn't change the position of head
1855 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1856 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1857 * from the hugepage.
1858 * Return 0 if the hugepage is split successfully otherwise return 1.
1859 */
1860int split_huge_page_to_list(struct page *page, struct list_head *list)
1861{
1862        struct anon_vma *anon_vma;
1863        int ret = 1;
1864
1865        BUG_ON(is_huge_zero_page(page));
1866        BUG_ON(!PageAnon(page));
1867
1868        /*
1869         * The caller does not necessarily hold an mmap_sem that would prevent
1870         * the anon_vma disappearing so we first we take a reference to it
1871         * and then lock the anon_vma for write. This is similar to
1872         * page_lock_anon_vma_read except the write lock is taken to serialise
1873         * against parallel split or collapse operations.
1874         */
1875        anon_vma = page_get_anon_vma(page);
1876        if (!anon_vma)
1877                goto out;
1878        anon_vma_lock_write(anon_vma);
1879
1880        ret = 0;
1881        if (!PageCompound(page))
1882                goto out_unlock;
1883
1884        BUG_ON(!PageSwapBacked(page));
1885        __split_huge_page(page, anon_vma, list);
1886        count_vm_event(THP_SPLIT);
1887
1888        BUG_ON(PageCompound(page));
1889out_unlock:
1890        anon_vma_unlock_write(anon_vma);
1891        put_anon_vma(anon_vma);
1892out:
1893        return ret;
1894}
1895
1896#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1897
1898int hugepage_madvise(struct vm_area_struct *vma,
1899                     unsigned long *vm_flags, int advice)
1900{
1901        switch (advice) {
1902        case MADV_HUGEPAGE:
1903#ifdef CONFIG_S390
1904                /*
1905                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1906                 * can't handle this properly after s390_enable_sie, so we simply
1907                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1908                 */
1909                if (mm_has_pgste(vma->vm_mm))
1910                        return 0;
1911#endif
1912                /*
1913                 * Be somewhat over-protective like KSM for now!
1914                 */
1915                if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1916                        return -EINVAL;
1917                *vm_flags &= ~VM_NOHUGEPAGE;
1918                *vm_flags |= VM_HUGEPAGE;
1919                /*
1920                 * If the vma become good for khugepaged to scan,
1921                 * register it here without waiting a page fault that
1922                 * may not happen any time soon.
1923                 */
1924                if (unlikely(khugepaged_enter_vma_merge(vma)))
1925                        return -ENOMEM;
1926                break;
1927        case MADV_NOHUGEPAGE:
1928                /*
1929                 * Be somewhat over-protective like KSM for now!
1930                 */
1931                if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932                        return -EINVAL;
1933                *vm_flags &= ~VM_HUGEPAGE;
1934                *vm_flags |= VM_NOHUGEPAGE;
1935                /*
1936                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937                 * this vma even if we leave the mm registered in khugepaged if
1938                 * it got registered before VM_NOHUGEPAGE was set.
1939                 */
1940                break;
1941        }
1942
1943        return 0;
1944}
1945
1946static int __init khugepaged_slab_init(void)
1947{
1948        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949                                          sizeof(struct mm_slot),
1950                                          __alignof__(struct mm_slot), 0, NULL);
1951        if (!mm_slot_cache)
1952                return -ENOMEM;
1953
1954        return 0;
1955}
1956
1957static inline struct mm_slot *alloc_mm_slot(void)
1958{
1959        if (!mm_slot_cache)     /* initialization failed */
1960                return NULL;
1961        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1962}
1963
1964static inline void free_mm_slot(struct mm_slot *mm_slot)
1965{
1966        kmem_cache_free(mm_slot_cache, mm_slot);
1967}
1968
1969static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970{
1971        struct mm_slot *mm_slot;
1972
1973        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1974                if (mm == mm_slot->mm)
1975                        return mm_slot;
1976
1977        return NULL;
1978}
1979
1980static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981                                    struct mm_slot *mm_slot)
1982{
1983        mm_slot->mm = mm;
1984        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1985}
1986
1987static inline int khugepaged_test_exit(struct mm_struct *mm)
1988{
1989        return atomic_read(&mm->mm_users) == 0;
1990}
1991
1992int __khugepaged_enter(struct mm_struct *mm)
1993{
1994        struct mm_slot *mm_slot;
1995        int wakeup;
1996
1997        mm_slot = alloc_mm_slot();
1998        if (!mm_slot)
1999                return -ENOMEM;
2000
2001        /* __khugepaged_exit() must not run from under us */
2002        VM_BUG_ON(khugepaged_test_exit(mm));
2003        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004                free_mm_slot(mm_slot);
2005                return 0;
2006        }
2007
2008        spin_lock(&khugepaged_mm_lock);
2009        insert_to_mm_slots_hash(mm, mm_slot);
2010        /*
2011         * Insert just behind the scanning cursor, to let the area settle
2012         * down a little.
2013         */
2014        wakeup = list_empty(&khugepaged_scan.mm_head);
2015        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016        spin_unlock(&khugepaged_mm_lock);
2017
2018        atomic_inc(&mm->mm_count);
2019        if (wakeup)
2020                wake_up_interruptible(&khugepaged_wait);
2021
2022        return 0;
2023}
2024
2025int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2026{
2027        unsigned long hstart, hend;
2028        if (!vma->anon_vma)
2029                /*
2030                 * Not yet faulted in so we will register later in the
2031                 * page fault if needed.
2032                 */
2033                return 0;
2034        if (vma->vm_ops)
2035                /* khugepaged not yet working on file or special mappings */
2036                return 0;
2037        VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2038        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039        hend = vma->vm_end & HPAGE_PMD_MASK;
2040        if (hstart < hend)
2041                return khugepaged_enter(vma);
2042        return 0;
2043}
2044
2045void __khugepaged_exit(struct mm_struct *mm)
2046{
2047        struct mm_slot *mm_slot;
2048        int free = 0;
2049
2050        spin_lock(&khugepaged_mm_lock);
2051        mm_slot = get_mm_slot(mm);
2052        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053                hash_del(&mm_slot->hash);
2054                list_del(&mm_slot->mm_node);
2055                free = 1;
2056        }
2057        spin_unlock(&khugepaged_mm_lock);
2058
2059        if (free) {
2060                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061                free_mm_slot(mm_slot);
2062                mmdrop(mm);
2063        } else if (mm_slot) {
2064                /*
2065                 * This is required to serialize against
2066                 * khugepaged_test_exit() (which is guaranteed to run
2067                 * under mmap sem read mode). Stop here (after we
2068                 * return all pagetables will be destroyed) until
2069                 * khugepaged has finished working on the pagetables
2070                 * under the mmap_sem.
2071                 */
2072                down_write(&mm->mmap_sem);
2073                up_write(&mm->mmap_sem);
2074        }
2075}
2076
2077static void release_pte_page(struct page *page)
2078{
2079        /* 0 stands for page_is_file_cache(page) == false */
2080        dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081        unlock_page(page);
2082        putback_lru_page(page);
2083}
2084
2085static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086{
2087        while (--_pte >= pte) {
2088                pte_t pteval = *_pte;
2089                if (!pte_none(pteval))
2090                        release_pte_page(pte_page(pteval));
2091        }
2092}
2093
2094static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095                                        unsigned long address,
2096                                        pte_t *pte)
2097{
2098        struct page *page;
2099        pte_t *_pte;
2100        int referenced = 0, none = 0;
2101        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102             _pte++, address += PAGE_SIZE) {
2103                pte_t pteval = *_pte;
2104                if (pte_none(pteval)) {
2105                        if (++none <= khugepaged_max_ptes_none)
2106                                continue;
2107                        else
2108                                goto out;
2109                }
2110                if (!pte_present(pteval) || !pte_write(pteval))
2111                        goto out;
2112                page = vm_normal_page(vma, address, pteval);
2113                if (unlikely(!page))
2114                        goto out;
2115
2116                VM_BUG_ON_PAGE(PageCompound(page), page);
2117                VM_BUG_ON_PAGE(!PageAnon(page), page);
2118                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119
2120                /* cannot use mapcount: can't collapse if there's a gup pin */
2121                if (page_count(page) != 1)
2122                        goto out;
2123                /*
2124                 * We can do it before isolate_lru_page because the
2125                 * page can't be freed from under us. NOTE: PG_lock
2126                 * is needed to serialize against split_huge_page
2127                 * when invoked from the VM.
2128                 */
2129                if (!trylock_page(page))
2130                        goto out;
2131                /*
2132                 * Isolate the page to avoid collapsing an hugepage
2133                 * currently in use by the VM.
2134                 */
2135                if (isolate_lru_page(page)) {
2136                        unlock_page(page);
2137                        goto out;
2138                }
2139                /* 0 stands for page_is_file_cache(page) == false */
2140                inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141                VM_BUG_ON_PAGE(!PageLocked(page), page);
2142                VM_BUG_ON_PAGE(PageLRU(page), page);
2143
2144                /* If there is no mapped pte young don't collapse the page */
2145                if (pte_young(pteval) || PageReferenced(page) ||
2146                    mmu_notifier_test_young(vma->vm_mm, address))
2147                        referenced = 1;
2148        }
2149        if (likely(referenced))
2150                return 1;
2151out:
2152        release_pte_pages(pte, _pte);
2153        return 0;
2154}
2155
2156static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157                                      struct vm_area_struct *vma,
2158                                      unsigned long address,
2159                                      spinlock_t *ptl)
2160{
2161        pte_t *_pte;
2162        for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163                pte_t pteval = *_pte;
2164                struct page *src_page;
2165
2166                if (pte_none(pteval)) {
2167                        clear_user_highpage(page, address);
2168                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2169                } else {
2170                        src_page = pte_page(pteval);
2171                        copy_user_highpage(page, src_page, address, vma);
2172                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2173                        release_pte_page(src_page);
2174                        /*
2175                         * ptl mostly unnecessary, but preempt has to
2176                         * be disabled to update the per-cpu stats
2177                         * inside page_remove_rmap().
2178                         */
2179                        spin_lock(ptl);
2180                        /*
2181                         * paravirt calls inside pte_clear here are
2182                         * superfluous.
2183                         */
2184                        pte_clear(vma->vm_mm, address, _pte);
2185                        page_remove_rmap(src_page);
2186                        spin_unlock(ptl);
2187                        free_page_and_swap_cache(src_page);
2188                }
2189
2190                address += PAGE_SIZE;
2191                page++;
2192        }
2193}
2194
2195static void khugepaged_alloc_sleep(void)
2196{
2197        wait_event_freezable_timeout(khugepaged_wait, false,
2198                        msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2199}
2200
2201static int khugepaged_node_load[MAX_NUMNODES];
2202
2203#ifdef CONFIG_NUMA
2204static int khugepaged_find_target_node(void)
2205{
2206        static int last_khugepaged_target_node = NUMA_NO_NODE;
2207        int nid, target_node = 0, max_value = 0;
2208
2209        /* find first node with max normal pages hit */
2210        for (nid = 0; nid < MAX_NUMNODES; nid++)
2211                if (khugepaged_node_load[nid] > max_value) {
2212                        max_value = khugepaged_node_load[nid];
2213                        target_node = nid;
2214                }
2215
2216        /* do some balance if several nodes have the same hit record */
2217        if (target_node <= last_khugepaged_target_node)
2218                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2219                                nid++)
2220                        if (max_value == khugepaged_node_load[nid]) {
2221                                target_node = nid;
2222                                break;
2223                        }
2224
2225        last_khugepaged_target_node = target_node;
2226        return target_node;
2227}
2228
2229static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2230{
2231        if (IS_ERR(*hpage)) {
2232                if (!*wait)
2233                        return false;
2234
2235                *wait = false;
2236                *hpage = NULL;
2237                khugepaged_alloc_sleep();
2238        } else if (*hpage) {
2239                put_page(*hpage);
2240                *hpage = NULL;
2241        }
2242
2243        return true;
2244}
2245
2246static struct page
2247*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2248                       struct vm_area_struct *vma, unsigned long address,
2249                       int node)
2250{
2251        VM_BUG_ON_PAGE(*hpage, *hpage);
2252        /*
2253         * Allocate the page while the vma is still valid and under
2254         * the mmap_sem read mode so there is no memory allocation
2255         * later when we take the mmap_sem in write mode. This is more
2256         * friendly behavior (OTOH it may actually hide bugs) to
2257         * filesystems in userland with daemons allocating memory in
2258         * the userland I/O paths.  Allocating memory with the
2259         * mmap_sem in read mode is good idea also to allow greater
2260         * scalability.
2261         */
2262        *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2263                khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2264        /*
2265         * After allocating the hugepage, release the mmap_sem read lock in
2266         * preparation for taking it in write mode.
2267         */
2268        up_read(&mm->mmap_sem);
2269        if (unlikely(!*hpage)) {
2270                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271                *hpage = ERR_PTR(-ENOMEM);
2272                return NULL;
2273        }
2274
2275        count_vm_event(THP_COLLAPSE_ALLOC);
2276        return *hpage;
2277}
2278#else
2279static int khugepaged_find_target_node(void)
2280{
2281        return 0;
2282}
2283
2284static inline struct page *alloc_hugepage(int defrag)
2285{
2286        return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2287                           HPAGE_PMD_ORDER);
2288}
2289
2290static struct page *khugepaged_alloc_hugepage(bool *wait)
2291{
2292        struct page *hpage;
2293
2294        do {
2295                hpage = alloc_hugepage(khugepaged_defrag());
2296                if (!hpage) {
2297                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2298                        if (!*wait)
2299                                return NULL;
2300
2301                        *wait = false;
2302                        khugepaged_alloc_sleep();
2303                } else
2304                        count_vm_event(THP_COLLAPSE_ALLOC);
2305        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2306
2307        return hpage;
2308}
2309
2310static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2311{
2312        if (!*hpage)
2313                *hpage = khugepaged_alloc_hugepage(wait);
2314
2315        if (unlikely(!*hpage))
2316                return false;
2317
2318        return true;
2319}
2320
2321static struct page
2322*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323                       struct vm_area_struct *vma, unsigned long address,
2324                       int node)
2325{
2326        up_read(&mm->mmap_sem);
2327        VM_BUG_ON(!*hpage);
2328        return  *hpage;
2329}
2330#endif
2331
2332static bool hugepage_vma_check(struct vm_area_struct *vma)
2333{
2334        if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2335            (vma->vm_flags & VM_NOHUGEPAGE))
2336                return false;
2337
2338        if (!vma->anon_vma || vma->vm_ops)
2339                return false;
2340        if (is_vma_temporary_stack(vma))
2341                return false;
2342        VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2343        return true;
2344}
2345
2346static void collapse_huge_page(struct mm_struct *mm,
2347                                   unsigned long address,
2348                                   struct page **hpage,
2349                                   struct vm_area_struct *vma,
2350                                   int node)
2351{
2352        pmd_t *pmd, _pmd;
2353        pte_t *pte;
2354        pgtable_t pgtable;
2355        struct page *new_page;
2356        spinlock_t *pmd_ptl, *pte_ptl;
2357        int isolated;
2358        unsigned long hstart, hend;
2359        unsigned long mmun_start;       /* For mmu_notifiers */
2360        unsigned long mmun_end;         /* For mmu_notifiers */
2361
2362        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2363
2364        /* release the mmap_sem read lock. */
2365        new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2366        if (!new_page)
2367                return;
2368
2369        if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2370                return;
2371
2372        /*
2373         * Prevent all access to pagetables with the exception of
2374         * gup_fast later hanlded by the ptep_clear_flush and the VM
2375         * handled by the anon_vma lock + PG_lock.
2376         */
2377        down_write(&mm->mmap_sem);
2378        if (unlikely(khugepaged_test_exit(mm)))
2379                goto out;
2380
2381        vma = find_vma(mm, address);
2382        if (!vma)
2383                goto out;
2384        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2385        hend = vma->vm_end & HPAGE_PMD_MASK;
2386        if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2387                goto out;
2388        if (!hugepage_vma_check(vma))
2389                goto out;
2390        pmd = mm_find_pmd(mm, address);
2391        if (!pmd)
2392                goto out;
2393        if (pmd_trans_huge(*pmd))
2394                goto out;
2395
2396        anon_vma_lock_write(vma->anon_vma);
2397
2398        pte = pte_offset_map(pmd, address);
2399        pte_ptl = pte_lockptr(mm, pmd);
2400
2401        mmun_start = address;
2402        mmun_end   = address + HPAGE_PMD_SIZE;
2403        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405        /*
2406         * After this gup_fast can't run anymore. This also removes
2407         * any huge TLB entry from the CPU so we won't allow
2408         * huge and small TLB entries for the same virtual address
2409         * to avoid the risk of CPU bugs in that area.
2410         */
2411        _pmd = pmdp_clear_flush(vma, address, pmd);
2412        spin_unlock(pmd_ptl);
2413        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414
2415        spin_lock(pte_ptl);
2416        isolated = __collapse_huge_page_isolate(vma, address, pte);
2417        spin_unlock(pte_ptl);
2418
2419        if (unlikely(!isolated)) {
2420                pte_unmap(pte);
2421                spin_lock(pmd_ptl);
2422                BUG_ON(!pmd_none(*pmd));
2423                /*
2424                 * We can only use set_pmd_at when establishing
2425                 * hugepmds and never for establishing regular pmds that
2426                 * points to regular pagetables. Use pmd_populate for that
2427                 */
2428                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429                spin_unlock(pmd_ptl);
2430                anon_vma_unlock_write(vma->anon_vma);
2431                goto out;
2432        }
2433
2434        /*
2435         * All pages are isolated and locked so anon_vma rmap
2436         * can't run anymore.
2437         */
2438        anon_vma_unlock_write(vma->anon_vma);
2439
2440        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441        pte_unmap(pte);
2442        __SetPageUptodate(new_page);
2443        pgtable = pmd_pgtable(_pmd);
2444
2445        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2447
2448        /*
2449         * spin_lock() below is not the equivalent of smp_wmb(), so
2450         * this is needed to avoid the copy_huge_page writes to become
2451         * visible after the set_pmd_at() write.
2452         */
2453        smp_wmb();
2454
2455        spin_lock(pmd_ptl);
2456        BUG_ON(!pmd_none(*pmd));
2457        page_add_new_anon_rmap(new_page, vma, address);
2458        pgtable_trans_huge_deposit(mm, pmd, pgtable);
2459        set_pmd_at(mm, address, pmd, _pmd);
2460        update_mmu_cache_pmd(vma, address, pmd);
2461        spin_unlock(pmd_ptl);
2462
2463        *hpage = NULL;
2464
2465        khugepaged_pages_collapsed++;
2466out_up_write:
2467        up_write(&mm->mmap_sem);
2468        return;
2469
2470out:
2471        mem_cgroup_uncharge_page(new_page);
2472        goto out_up_write;
2473}
2474
2475static int khugepaged_scan_pmd(struct mm_struct *mm,
2476                               struct vm_area_struct *vma,
2477                               unsigned long address,
2478                               struct page **hpage)
2479{
2480        pmd_t *pmd;
2481        pte_t *pte, *_pte;
2482        int ret = 0, referenced = 0, none = 0;
2483        struct page *page;
2484        unsigned long _address;
2485        spinlock_t *ptl;
2486        int node = NUMA_NO_NODE;
2487
2488        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2489
2490        pmd = mm_find_pmd(mm, address);
2491        if (!pmd)
2492                goto out;
2493        if (pmd_trans_huge(*pmd))
2494                goto out;
2495
2496        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2497        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2498        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2499             _pte++, _address += PAGE_SIZE) {
2500                pte_t pteval = *_pte;
2501                if (pte_none(pteval)) {
2502                        if (++none <= khugepaged_max_ptes_none)
2503                                continue;
2504                        else
2505                                goto out_unmap;
2506                }
2507                if (!pte_present(pteval) || !pte_write(pteval))
2508                        goto out_unmap;
2509                page = vm_normal_page(vma, _address, pteval);
2510                if (unlikely(!page))
2511                        goto out_unmap;
2512                /*
2513                 * Record which node the original page is from and save this
2514                 * information to khugepaged_node_load[].
2515                 * Khupaged will allocate hugepage from the node has the max
2516                 * hit record.
2517                 */
2518                node = page_to_nid(page);
2519                khugepaged_node_load[node]++;
2520                VM_BUG_ON_PAGE(PageCompound(page), page);
2521                if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2522                        goto out_unmap;
2523                /* cannot use mapcount: can't collapse if there's a gup pin */
2524                if (page_count(page) != 1)
2525                        goto out_unmap;
2526                if (pte_young(pteval) || PageReferenced(page) ||
2527                    mmu_notifier_test_young(vma->vm_mm, address))
2528                        referenced = 1;
2529        }
2530        if (referenced)
2531                ret = 1;
2532out_unmap:
2533        pte_unmap_unlock(pte, ptl);
2534        if (ret) {
2535                node = khugepaged_find_target_node();
2536                /* collapse_huge_page will return with the mmap_sem released */
2537                collapse_huge_page(mm, address, hpage, vma, node);
2538        }
2539out:
2540        return ret;
2541}
2542
2543static void collect_mm_slot(struct mm_slot *mm_slot)
2544{
2545        struct mm_struct *mm = mm_slot->mm;
2546
2547        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2548
2549        if (khugepaged_test_exit(mm)) {
2550                /* free mm_slot */
2551                hash_del(&mm_slot->hash);
2552                list_del(&mm_slot->mm_node);
2553
2554                /*
2555                 * Not strictly needed because the mm exited already.
2556                 *
2557                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2558                 */
2559
2560                /* khugepaged_mm_lock actually not necessary for the below */
2561                free_mm_slot(mm_slot);
2562                mmdrop(mm);
2563        }
2564}
2565
2566static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2567                                            struct page **hpage)
2568        __releases(&khugepaged_mm_lock)
2569        __acquires(&khugepaged_mm_lock)
2570{
2571        struct mm_slot *mm_slot;
2572        struct mm_struct *mm;
2573        struct vm_area_struct *vma;
2574        int progress = 0;
2575
2576        VM_BUG_ON(!pages);
2577        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578
2579        if (khugepaged_scan.mm_slot)
2580                mm_slot = khugepaged_scan.mm_slot;
2581        else {
2582                mm_slot = list_entry(khugepaged_scan.mm_head.next,
2583                                     struct mm_slot, mm_node);
2584                khugepaged_scan.address = 0;
2585                khugepaged_scan.mm_slot = mm_slot;
2586        }
2587        spin_unlock(&khugepaged_mm_lock);
2588
2589        mm = mm_slot->mm;
2590        down_read(&mm->mmap_sem);
2591        if (unlikely(khugepaged_test_exit(mm)))
2592                vma = NULL;
2593        else
2594                vma = find_vma(mm, khugepaged_scan.address);
2595
2596        progress++;
2597        for (; vma; vma = vma->vm_next) {
2598                unsigned long hstart, hend;
2599
2600                cond_resched();
2601                if (unlikely(khugepaged_test_exit(mm))) {
2602                        progress++;
2603                        break;
2604                }
2605                if (!hugepage_vma_check(vma)) {
2606skip:
2607                        progress++;
2608                        continue;
2609                }
2610                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2611                hend = vma->vm_end & HPAGE_PMD_MASK;
2612                if (hstart >= hend)
2613                        goto skip;
2614                if (khugepaged_scan.address > hend)
2615                        goto skip;
2616                if (khugepaged_scan.address < hstart)
2617                        khugepaged_scan.address = hstart;
2618                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2619
2620                while (khugepaged_scan.address < hend) {
2621                        int ret;
2622                        cond_resched();
2623                        if (unlikely(khugepaged_test_exit(mm)))
2624                                goto breakouterloop;
2625
2626                        VM_BUG_ON(khugepaged_scan.address < hstart ||
2627                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
2628                                  hend);
2629                        ret = khugepaged_scan_pmd(mm, vma,
2630                                                  khugepaged_scan.address,
2631                                                  hpage);
2632                        /* move to next address */
2633                        khugepaged_scan.address += HPAGE_PMD_SIZE;
2634                        progress += HPAGE_PMD_NR;
2635                        if (ret)
2636                                /* we released mmap_sem so break loop */
2637                                goto breakouterloop_mmap_sem;
2638                        if (progress >= pages)
2639                                goto breakouterloop;
2640                }
2641        }
2642breakouterloop:
2643        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2644breakouterloop_mmap_sem:
2645
2646        spin_lock(&khugepaged_mm_lock);
2647        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2648        /*
2649         * Release the current mm_slot if this mm is about to die, or
2650         * if we scanned all vmas of this mm.
2651         */
2652        if (khugepaged_test_exit(mm) || !vma) {
2653                /*
2654                 * Make sure that if mm_users is reaching zero while
2655                 * khugepaged runs here, khugepaged_exit will find
2656                 * mm_slot not pointing to the exiting mm.
2657                 */
2658                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2659                        khugepaged_scan.mm_slot = list_entry(
2660                                mm_slot->mm_node.next,
2661                                struct mm_slot, mm_node);
2662                        khugepaged_scan.address = 0;
2663                } else {
2664                        khugepaged_scan.mm_slot = NULL;
2665                        khugepaged_full_scans++;
2666                }
2667
2668                collect_mm_slot(mm_slot);
2669        }
2670
2671        return progress;
2672}
2673
2674static int khugepaged_has_work(void)
2675{
2676        return !list_empty(&khugepaged_scan.mm_head) &&
2677                khugepaged_enabled();
2678}
2679
2680static int khugepaged_wait_event(void)
2681{
2682        return !list_empty(&khugepaged_scan.mm_head) ||
2683                kthread_should_stop();
2684}
2685
2686static void khugepaged_do_scan(void)
2687{
2688        struct page *hpage = NULL;
2689        unsigned int progress = 0, pass_through_head = 0;
2690        unsigned int pages = khugepaged_pages_to_scan;
2691        bool wait = true;
2692
2693        barrier(); /* write khugepaged_pages_to_scan to local stack */
2694
2695        while (progress < pages) {
2696                if (!khugepaged_prealloc_page(&hpage, &wait))
2697                        break;
2698
2699                cond_resched();
2700
2701                if (unlikely(kthread_should_stop() || freezing(current)))
2702                        break;
2703
2704                spin_lock(&khugepaged_mm_lock);
2705                if (!khugepaged_scan.mm_slot)
2706                        pass_through_head++;
2707                if (khugepaged_has_work() &&
2708                    pass_through_head < 2)
2709                        progress += khugepaged_scan_mm_slot(pages - progress,
2710                                                            &hpage);
2711                else
2712                        progress = pages;
2713                spin_unlock(&khugepaged_mm_lock);
2714        }
2715
2716        if (!IS_ERR_OR_NULL(hpage))
2717                put_page(hpage);
2718}
2719
2720static void khugepaged_wait_work(void)
2721{
2722        try_to_freeze();
2723
2724        if (khugepaged_has_work()) {
2725                if (!khugepaged_scan_sleep_millisecs)
2726                        return;
2727
2728                wait_event_freezable_timeout(khugepaged_wait,
2729                                             kthread_should_stop(),
2730                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2731                return;
2732        }
2733
2734        if (khugepaged_enabled())
2735                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2736}
2737
2738static int khugepaged(void *none)
2739{
2740        struct mm_slot *mm_slot;
2741
2742        set_freezable();
2743        set_user_nice(current, 19);
2744
2745        while (!kthread_should_stop()) {
2746                khugepaged_do_scan();
2747                khugepaged_wait_work();
2748        }
2749
2750        spin_lock(&khugepaged_mm_lock);
2751        mm_slot = khugepaged_scan.mm_slot;
2752        khugepaged_scan.mm_slot = NULL;
2753        if (mm_slot)
2754                collect_mm_slot(mm_slot);
2755        spin_unlock(&khugepaged_mm_lock);
2756        return 0;
2757}
2758
2759static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2760                unsigned long haddr, pmd_t *pmd)
2761{
2762        struct mm_struct *mm = vma->vm_mm;
2763        pgtable_t pgtable;
2764        pmd_t _pmd;
2765        int i;
2766
2767        pmdp_clear_flush(vma, haddr, pmd);
2768        /* leave pmd empty until pte is filled */
2769
2770        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2771        pmd_populate(mm, &_pmd, pgtable);
2772
2773        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2774                pte_t *pte, entry;
2775                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2776                entry = pte_mkspecial(entry);
2777                pte = pte_offset_map(&_pmd, haddr);
2778                VM_BUG_ON(!pte_none(*pte));
2779                set_pte_at(mm, haddr, pte, entry);
2780                pte_unmap(pte);
2781        }
2782        smp_wmb(); /* make pte visible before pmd */
2783        pmd_populate(mm, pmd, pgtable);
2784        put_huge_zero_page();
2785}
2786
2787void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2788                pmd_t *pmd)
2789{
2790        spinlock_t *ptl;
2791        struct page *page;
2792        struct mm_struct *mm = vma->vm_mm;
2793        unsigned long haddr = address & HPAGE_PMD_MASK;
2794        unsigned long mmun_start;       /* For mmu_notifiers */
2795        unsigned long mmun_end;         /* For mmu_notifiers */
2796
2797        BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2798
2799        mmun_start = haddr;
2800        mmun_end   = haddr + HPAGE_PMD_SIZE;
2801again:
2802        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803        ptl = pmd_lock(mm, pmd);
2804        if (unlikely(!pmd_trans_huge(*pmd))) {
2805                spin_unlock(ptl);
2806                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2807                return;
2808        }
2809        if (is_huge_zero_pmd(*pmd)) {
2810                __split_huge_zero_page_pmd(vma, haddr, pmd);
2811                spin_unlock(ptl);
2812                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813                return;
2814        }
2815        page = pmd_page(*pmd);
2816        VM_BUG_ON_PAGE(!page_count(page), page);
2817        get_page(page);
2818        spin_unlock(ptl);
2819        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2820
2821        split_huge_page(page);
2822
2823        put_page(page);
2824
2825        /*
2826         * We don't always have down_write of mmap_sem here: a racing
2827         * do_huge_pmd_wp_page() might have copied-on-write to another
2828         * huge page before our split_huge_page() got the anon_vma lock.
2829         */
2830        if (unlikely(pmd_trans_huge(*pmd)))
2831                goto again;
2832}
2833
2834void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2835                pmd_t *pmd)
2836{
2837        struct vm_area_struct *vma;
2838
2839        vma = find_vma(mm, address);
2840        BUG_ON(vma == NULL);
2841        split_huge_page_pmd(vma, address, pmd);
2842}
2843
2844static void split_huge_page_address(struct mm_struct *mm,
2845                                    unsigned long address)
2846{
2847        pmd_t *pmd;
2848
2849        VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2850
2851        pmd = mm_find_pmd(mm, address);
2852        if (!pmd)
2853                return;
2854        /*
2855         * Caller holds the mmap_sem write mode, so a huge pmd cannot
2856         * materialize from under us.
2857         */
2858        split_huge_page_pmd_mm(mm, address, pmd);
2859}
2860
2861void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2862                             unsigned long start,
2863                             unsigned long end,
2864                             long adjust_next)
2865{
2866        /*
2867         * If the new start address isn't hpage aligned and it could
2868         * previously contain an hugepage: check if we need to split
2869         * an huge pmd.
2870         */
2871        if (start & ~HPAGE_PMD_MASK &&
2872            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2873            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2874                split_huge_page_address(vma->vm_mm, start);
2875
2876        /*
2877         * If the new end address isn't hpage aligned and it could
2878         * previously contain an hugepage: check if we need to split
2879         * an huge pmd.
2880         */
2881        if (end & ~HPAGE_PMD_MASK &&
2882            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2883            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2884                split_huge_page_address(vma->vm_mm, end);
2885
2886        /*
2887         * If we're also updating the vma->vm_next->vm_start, if the new
2888         * vm_next->vm_start isn't page aligned and it could previously
2889         * contain an hugepage: check if we need to split an huge pmd.
2890         */
2891        if (adjust_next > 0) {
2892                struct vm_area_struct *next = vma->vm_next;
2893                unsigned long nstart = next->vm_start;
2894                nstart += adjust_next << PAGE_SHIFT;
2895                if (nstart & ~HPAGE_PMD_MASK &&
2896                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2897                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2898                        split_huge_page_address(next->vm_mm, nstart);
2899        }
2900}
2901