linux/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/nommu.c
   3 *
   4 *  Replacement code for mm functions to support CPU's that don't
   5 *  have any form of memory management unit (thus no virtual memory).
   6 *
   7 *  See Documentation/nommu-mmap.txt
   8 *
   9 *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
  10 *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
  11 *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
  12 *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
  13 *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
  14 */
  15
  16#include <linux/export.h>
  17#include <linux/mm.h>
  18#include <linux/vmacache.h>
  19#include <linux/mman.h>
  20#include <linux/swap.h>
  21#include <linux/file.h>
  22#include <linux/highmem.h>
  23#include <linux/pagemap.h>
  24#include <linux/slab.h>
  25#include <linux/vmalloc.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/compiler.h>
  29#include <linux/mount.h>
  30#include <linux/personality.h>
  31#include <linux/security.h>
  32#include <linux/syscalls.h>
  33#include <linux/audit.h>
  34#include <linux/sched/sysctl.h>
  35
  36#include <asm/uaccess.h>
  37#include <asm/tlb.h>
  38#include <asm/tlbflush.h>
  39#include <asm/mmu_context.h>
  40#include "internal.h"
  41
  42#if 0
  43#define kenter(FMT, ...) \
  44        printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  45#define kleave(FMT, ...) \
  46        printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  47#define kdebug(FMT, ...) \
  48        printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
  49#else
  50#define kenter(FMT, ...) \
  51        no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
  52#define kleave(FMT, ...) \
  53        no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
  54#define kdebug(FMT, ...) \
  55        no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
  56#endif
  57
  58void *high_memory;
  59struct page *mem_map;
  60unsigned long max_mapnr;
  61unsigned long highest_memmap_pfn;
  62struct percpu_counter vm_committed_as;
  63int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
  64int sysctl_overcommit_ratio = 50; /* default is 50% */
  65unsigned long sysctl_overcommit_kbytes __read_mostly;
  66int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
  67int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
  68unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  69unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  70int heap_stack_gap = 0;
  71
  72atomic_long_t mmap_pages_allocated;
  73
  74/*
  75 * The global memory commitment made in the system can be a metric
  76 * that can be used to drive ballooning decisions when Linux is hosted
  77 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
  78 * balancing memory across competing virtual machines that are hosted.
  79 * Several metrics drive this policy engine including the guest reported
  80 * memory commitment.
  81 */
  82unsigned long vm_memory_committed(void)
  83{
  84        return percpu_counter_read_positive(&vm_committed_as);
  85}
  86
  87EXPORT_SYMBOL_GPL(vm_memory_committed);
  88
  89EXPORT_SYMBOL(mem_map);
  90
  91/* list of mapped, potentially shareable regions */
  92static struct kmem_cache *vm_region_jar;
  93struct rb_root nommu_region_tree = RB_ROOT;
  94DECLARE_RWSEM(nommu_region_sem);
  95
  96const struct vm_operations_struct generic_file_vm_ops = {
  97};
  98
  99/*
 100 * Return the total memory allocated for this pointer, not
 101 * just what the caller asked for.
 102 *
 103 * Doesn't have to be accurate, i.e. may have races.
 104 */
 105unsigned int kobjsize(const void *objp)
 106{
 107        struct page *page;
 108
 109        /*
 110         * If the object we have should not have ksize performed on it,
 111         * return size of 0
 112         */
 113        if (!objp || !virt_addr_valid(objp))
 114                return 0;
 115
 116        page = virt_to_head_page(objp);
 117
 118        /*
 119         * If the allocator sets PageSlab, we know the pointer came from
 120         * kmalloc().
 121         */
 122        if (PageSlab(page))
 123                return ksize(objp);
 124
 125        /*
 126         * If it's not a compound page, see if we have a matching VMA
 127         * region. This test is intentionally done in reverse order,
 128         * so if there's no VMA, we still fall through and hand back
 129         * PAGE_SIZE for 0-order pages.
 130         */
 131        if (!PageCompound(page)) {
 132                struct vm_area_struct *vma;
 133
 134                vma = find_vma(current->mm, (unsigned long)objp);
 135                if (vma)
 136                        return vma->vm_end - vma->vm_start;
 137        }
 138
 139        /*
 140         * The ksize() function is only guaranteed to work for pointers
 141         * returned by kmalloc(). So handle arbitrary pointers here.
 142         */
 143        return PAGE_SIZE << compound_order(page);
 144}
 145
 146long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 147                      unsigned long start, unsigned long nr_pages,
 148                      unsigned int foll_flags, struct page **pages,
 149                      struct vm_area_struct **vmas, int *nonblocking)
 150{
 151        struct vm_area_struct *vma;
 152        unsigned long vm_flags;
 153        int i;
 154
 155        /* calculate required read or write permissions.
 156         * If FOLL_FORCE is set, we only require the "MAY" flags.
 157         */
 158        vm_flags  = (foll_flags & FOLL_WRITE) ?
 159                        (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 160        vm_flags &= (foll_flags & FOLL_FORCE) ?
 161                        (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 162
 163        for (i = 0; i < nr_pages; i++) {
 164                vma = find_vma(mm, start);
 165                if (!vma)
 166                        goto finish_or_fault;
 167
 168                /* protect what we can, including chardevs */
 169                if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
 170                    !(vm_flags & vma->vm_flags))
 171                        goto finish_or_fault;
 172
 173                if (pages) {
 174                        pages[i] = virt_to_page(start);
 175                        if (pages[i])
 176                                page_cache_get(pages[i]);
 177                }
 178                if (vmas)
 179                        vmas[i] = vma;
 180                start = (start + PAGE_SIZE) & PAGE_MASK;
 181        }
 182
 183        return i;
 184
 185finish_or_fault:
 186        return i ? : -EFAULT;
 187}
 188
 189/*
 190 * get a list of pages in an address range belonging to the specified process
 191 * and indicate the VMA that covers each page
 192 * - this is potentially dodgy as we may end incrementing the page count of a
 193 *   slab page or a secondary page from a compound page
 194 * - don't permit access to VMAs that don't support it, such as I/O mappings
 195 */
 196long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 197                    unsigned long start, unsigned long nr_pages,
 198                    int write, int force, struct page **pages,
 199                    struct vm_area_struct **vmas)
 200{
 201        int flags = 0;
 202
 203        if (write)
 204                flags |= FOLL_WRITE;
 205        if (force)
 206                flags |= FOLL_FORCE;
 207
 208        return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
 209                                NULL);
 210}
 211EXPORT_SYMBOL(get_user_pages);
 212
 213/**
 214 * follow_pfn - look up PFN at a user virtual address
 215 * @vma: memory mapping
 216 * @address: user virtual address
 217 * @pfn: location to store found PFN
 218 *
 219 * Only IO mappings and raw PFN mappings are allowed.
 220 *
 221 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 222 */
 223int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 224        unsigned long *pfn)
 225{
 226        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
 227                return -EINVAL;
 228
 229        *pfn = address >> PAGE_SHIFT;
 230        return 0;
 231}
 232EXPORT_SYMBOL(follow_pfn);
 233
 234LIST_HEAD(vmap_area_list);
 235
 236void vfree(const void *addr)
 237{
 238        kfree(addr);
 239}
 240EXPORT_SYMBOL(vfree);
 241
 242void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
 243{
 244        /*
 245         *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
 246         * returns only a logical address.
 247         */
 248        return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
 249}
 250EXPORT_SYMBOL(__vmalloc);
 251
 252void *vmalloc_user(unsigned long size)
 253{
 254        void *ret;
 255
 256        ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 257                        PAGE_KERNEL);
 258        if (ret) {
 259                struct vm_area_struct *vma;
 260
 261                down_write(&current->mm->mmap_sem);
 262                vma = find_vma(current->mm, (unsigned long)ret);
 263                if (vma)
 264                        vma->vm_flags |= VM_USERMAP;
 265                up_write(&current->mm->mmap_sem);
 266        }
 267
 268        return ret;
 269}
 270EXPORT_SYMBOL(vmalloc_user);
 271
 272struct page *vmalloc_to_page(const void *addr)
 273{
 274        return virt_to_page(addr);
 275}
 276EXPORT_SYMBOL(vmalloc_to_page);
 277
 278unsigned long vmalloc_to_pfn(const void *addr)
 279{
 280        return page_to_pfn(virt_to_page(addr));
 281}
 282EXPORT_SYMBOL(vmalloc_to_pfn);
 283
 284long vread(char *buf, char *addr, unsigned long count)
 285{
 286        /* Don't allow overflow */
 287        if ((unsigned long) buf + count < count)
 288                count = -(unsigned long) buf;
 289
 290        memcpy(buf, addr, count);
 291        return count;
 292}
 293
 294long vwrite(char *buf, char *addr, unsigned long count)
 295{
 296        /* Don't allow overflow */
 297        if ((unsigned long) addr + count < count)
 298                count = -(unsigned long) addr;
 299
 300        memcpy(addr, buf, count);
 301        return count;
 302}
 303
 304/*
 305 *      vmalloc  -  allocate virtually continguos memory
 306 *
 307 *      @size:          allocation size
 308 *
 309 *      Allocate enough pages to cover @size from the page level
 310 *      allocator and map them into continguos kernel virtual space.
 311 *
 312 *      For tight control over page level allocator and protection flags
 313 *      use __vmalloc() instead.
 314 */
 315void *vmalloc(unsigned long size)
 316{
 317       return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
 318}
 319EXPORT_SYMBOL(vmalloc);
 320
 321/*
 322 *      vzalloc - allocate virtually continguos memory with zero fill
 323 *
 324 *      @size:          allocation size
 325 *
 326 *      Allocate enough pages to cover @size from the page level
 327 *      allocator and map them into continguos kernel virtual space.
 328 *      The memory allocated is set to zero.
 329 *
 330 *      For tight control over page level allocator and protection flags
 331 *      use __vmalloc() instead.
 332 */
 333void *vzalloc(unsigned long size)
 334{
 335        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
 336                        PAGE_KERNEL);
 337}
 338EXPORT_SYMBOL(vzalloc);
 339
 340/**
 341 * vmalloc_node - allocate memory on a specific node
 342 * @size:       allocation size
 343 * @node:       numa node
 344 *
 345 * Allocate enough pages to cover @size from the page level
 346 * allocator and map them into contiguous kernel virtual space.
 347 *
 348 * For tight control over page level allocator and protection flags
 349 * use __vmalloc() instead.
 350 */
 351void *vmalloc_node(unsigned long size, int node)
 352{
 353        return vmalloc(size);
 354}
 355EXPORT_SYMBOL(vmalloc_node);
 356
 357/**
 358 * vzalloc_node - allocate memory on a specific node with zero fill
 359 * @size:       allocation size
 360 * @node:       numa node
 361 *
 362 * Allocate enough pages to cover @size from the page level
 363 * allocator and map them into contiguous kernel virtual space.
 364 * The memory allocated is set to zero.
 365 *
 366 * For tight control over page level allocator and protection flags
 367 * use __vmalloc() instead.
 368 */
 369void *vzalloc_node(unsigned long size, int node)
 370{
 371        return vzalloc(size);
 372}
 373EXPORT_SYMBOL(vzalloc_node);
 374
 375#ifndef PAGE_KERNEL_EXEC
 376# define PAGE_KERNEL_EXEC PAGE_KERNEL
 377#endif
 378
 379/**
 380 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
 381 *      @size:          allocation size
 382 *
 383 *      Kernel-internal function to allocate enough pages to cover @size
 384 *      the page level allocator and map them into contiguous and
 385 *      executable kernel virtual space.
 386 *
 387 *      For tight control over page level allocator and protection flags
 388 *      use __vmalloc() instead.
 389 */
 390
 391void *vmalloc_exec(unsigned long size)
 392{
 393        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
 394}
 395
 396/**
 397 * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 398 *      @size:          allocation size
 399 *
 400 *      Allocate enough 32bit PA addressable pages to cover @size from the
 401 *      page level allocator and map them into continguos kernel virtual space.
 402 */
 403void *vmalloc_32(unsigned long size)
 404{
 405        return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
 406}
 407EXPORT_SYMBOL(vmalloc_32);
 408
 409/**
 410 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 411 *      @size:          allocation size
 412 *
 413 * The resulting memory area is 32bit addressable and zeroed so it can be
 414 * mapped to userspace without leaking data.
 415 *
 416 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
 417 * remap_vmalloc_range() are permissible.
 418 */
 419void *vmalloc_32_user(unsigned long size)
 420{
 421        /*
 422         * We'll have to sort out the ZONE_DMA bits for 64-bit,
 423         * but for now this can simply use vmalloc_user() directly.
 424         */
 425        return vmalloc_user(size);
 426}
 427EXPORT_SYMBOL(vmalloc_32_user);
 428
 429void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
 430{
 431        BUG();
 432        return NULL;
 433}
 434EXPORT_SYMBOL(vmap);
 435
 436void vunmap(const void *addr)
 437{
 438        BUG();
 439}
 440EXPORT_SYMBOL(vunmap);
 441
 442void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
 443{
 444        BUG();
 445        return NULL;
 446}
 447EXPORT_SYMBOL(vm_map_ram);
 448
 449void vm_unmap_ram(const void *mem, unsigned int count)
 450{
 451        BUG();
 452}
 453EXPORT_SYMBOL(vm_unmap_ram);
 454
 455void vm_unmap_aliases(void)
 456{
 457}
 458EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 459
 460/*
 461 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 462 * have one.
 463 */
 464void __weak vmalloc_sync_all(void)
 465{
 466}
 467
 468/**
 469 *      alloc_vm_area - allocate a range of kernel address space
 470 *      @size:          size of the area
 471 *
 472 *      Returns:        NULL on failure, vm_struct on success
 473 *
 474 *      This function reserves a range of kernel address space, and
 475 *      allocates pagetables to map that range.  No actual mappings
 476 *      are created.  If the kernel address space is not shared
 477 *      between processes, it syncs the pagetable across all
 478 *      processes.
 479 */
 480struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
 481{
 482        BUG();
 483        return NULL;
 484}
 485EXPORT_SYMBOL_GPL(alloc_vm_area);
 486
 487void free_vm_area(struct vm_struct *area)
 488{
 489        BUG();
 490}
 491EXPORT_SYMBOL_GPL(free_vm_area);
 492
 493int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
 494                   struct page *page)
 495{
 496        return -EINVAL;
 497}
 498EXPORT_SYMBOL(vm_insert_page);
 499
 500/*
 501 *  sys_brk() for the most part doesn't need the global kernel
 502 *  lock, except when an application is doing something nasty
 503 *  like trying to un-brk an area that has already been mapped
 504 *  to a regular file.  in this case, the unmapping will need
 505 *  to invoke file system routines that need the global lock.
 506 */
 507SYSCALL_DEFINE1(brk, unsigned long, brk)
 508{
 509        struct mm_struct *mm = current->mm;
 510
 511        if (brk < mm->start_brk || brk > mm->context.end_brk)
 512                return mm->brk;
 513
 514        if (mm->brk == brk)
 515                return mm->brk;
 516
 517        /*
 518         * Always allow shrinking brk
 519         */
 520        if (brk <= mm->brk) {
 521                mm->brk = brk;
 522                return brk;
 523        }
 524
 525        /*
 526         * Ok, looks good - let it rip.
 527         */
 528        flush_icache_range(mm->brk, brk);
 529        return mm->brk = brk;
 530}
 531
 532/*
 533 * initialise the VMA and region record slabs
 534 */
 535void __init mmap_init(void)
 536{
 537        int ret;
 538
 539        ret = percpu_counter_init(&vm_committed_as, 0);
 540        VM_BUG_ON(ret);
 541        vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
 542}
 543
 544/*
 545 * validate the region tree
 546 * - the caller must hold the region lock
 547 */
 548#ifdef CONFIG_DEBUG_NOMMU_REGIONS
 549static noinline void validate_nommu_regions(void)
 550{
 551        struct vm_region *region, *last;
 552        struct rb_node *p, *lastp;
 553
 554        lastp = rb_first(&nommu_region_tree);
 555        if (!lastp)
 556                return;
 557
 558        last = rb_entry(lastp, struct vm_region, vm_rb);
 559        BUG_ON(unlikely(last->vm_end <= last->vm_start));
 560        BUG_ON(unlikely(last->vm_top < last->vm_end));
 561
 562        while ((p = rb_next(lastp))) {
 563                region = rb_entry(p, struct vm_region, vm_rb);
 564                last = rb_entry(lastp, struct vm_region, vm_rb);
 565
 566                BUG_ON(unlikely(region->vm_end <= region->vm_start));
 567                BUG_ON(unlikely(region->vm_top < region->vm_end));
 568                BUG_ON(unlikely(region->vm_start < last->vm_top));
 569
 570                lastp = p;
 571        }
 572}
 573#else
 574static void validate_nommu_regions(void)
 575{
 576}
 577#endif
 578
 579/*
 580 * add a region into the global tree
 581 */
 582static void add_nommu_region(struct vm_region *region)
 583{
 584        struct vm_region *pregion;
 585        struct rb_node **p, *parent;
 586
 587        validate_nommu_regions();
 588
 589        parent = NULL;
 590        p = &nommu_region_tree.rb_node;
 591        while (*p) {
 592                parent = *p;
 593                pregion = rb_entry(parent, struct vm_region, vm_rb);
 594                if (region->vm_start < pregion->vm_start)
 595                        p = &(*p)->rb_left;
 596                else if (region->vm_start > pregion->vm_start)
 597                        p = &(*p)->rb_right;
 598                else if (pregion == region)
 599                        return;
 600                else
 601                        BUG();
 602        }
 603
 604        rb_link_node(&region->vm_rb, parent, p);
 605        rb_insert_color(&region->vm_rb, &nommu_region_tree);
 606
 607        validate_nommu_regions();
 608}
 609
 610/*
 611 * delete a region from the global tree
 612 */
 613static void delete_nommu_region(struct vm_region *region)
 614{
 615        BUG_ON(!nommu_region_tree.rb_node);
 616
 617        validate_nommu_regions();
 618        rb_erase(&region->vm_rb, &nommu_region_tree);
 619        validate_nommu_regions();
 620}
 621
 622/*
 623 * free a contiguous series of pages
 624 */
 625static void free_page_series(unsigned long from, unsigned long to)
 626{
 627        for (; from < to; from += PAGE_SIZE) {
 628                struct page *page = virt_to_page(from);
 629
 630                kdebug("- free %lx", from);
 631                atomic_long_dec(&mmap_pages_allocated);
 632                if (page_count(page) != 1)
 633                        kdebug("free page %p: refcount not one: %d",
 634                               page, page_count(page));
 635                put_page(page);
 636        }
 637}
 638
 639/*
 640 * release a reference to a region
 641 * - the caller must hold the region semaphore for writing, which this releases
 642 * - the region may not have been added to the tree yet, in which case vm_top
 643 *   will equal vm_start
 644 */
 645static void __put_nommu_region(struct vm_region *region)
 646        __releases(nommu_region_sem)
 647{
 648        kenter("%p{%d}", region, region->vm_usage);
 649
 650        BUG_ON(!nommu_region_tree.rb_node);
 651
 652        if (--region->vm_usage == 0) {
 653                if (region->vm_top > region->vm_start)
 654                        delete_nommu_region(region);
 655                up_write(&nommu_region_sem);
 656
 657                if (region->vm_file)
 658                        fput(region->vm_file);
 659
 660                /* IO memory and memory shared directly out of the pagecache
 661                 * from ramfs/tmpfs mustn't be released here */
 662                if (region->vm_flags & VM_MAPPED_COPY) {
 663                        kdebug("free series");
 664                        free_page_series(region->vm_start, region->vm_top);
 665                }
 666                kmem_cache_free(vm_region_jar, region);
 667        } else {
 668                up_write(&nommu_region_sem);
 669        }
 670}
 671
 672/*
 673 * release a reference to a region
 674 */
 675static void put_nommu_region(struct vm_region *region)
 676{
 677        down_write(&nommu_region_sem);
 678        __put_nommu_region(region);
 679}
 680
 681/*
 682 * update protection on a vma
 683 */
 684static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
 685{
 686#ifdef CONFIG_MPU
 687        struct mm_struct *mm = vma->vm_mm;
 688        long start = vma->vm_start & PAGE_MASK;
 689        while (start < vma->vm_end) {
 690                protect_page(mm, start, flags);
 691                start += PAGE_SIZE;
 692        }
 693        update_protections(mm);
 694#endif
 695}
 696
 697/*
 698 * add a VMA into a process's mm_struct in the appropriate place in the list
 699 * and tree and add to the address space's page tree also if not an anonymous
 700 * page
 701 * - should be called with mm->mmap_sem held writelocked
 702 */
 703static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
 704{
 705        struct vm_area_struct *pvma, *prev;
 706        struct address_space *mapping;
 707        struct rb_node **p, *parent, *rb_prev;
 708
 709        kenter(",%p", vma);
 710
 711        BUG_ON(!vma->vm_region);
 712
 713        mm->map_count++;
 714        vma->vm_mm = mm;
 715
 716        protect_vma(vma, vma->vm_flags);
 717
 718        /* add the VMA to the mapping */
 719        if (vma->vm_file) {
 720                mapping = vma->vm_file->f_mapping;
 721
 722                mutex_lock(&mapping->i_mmap_mutex);
 723                flush_dcache_mmap_lock(mapping);
 724                vma_interval_tree_insert(vma, &mapping->i_mmap);
 725                flush_dcache_mmap_unlock(mapping);
 726                mutex_unlock(&mapping->i_mmap_mutex);
 727        }
 728
 729        /* add the VMA to the tree */
 730        parent = rb_prev = NULL;
 731        p = &mm->mm_rb.rb_node;
 732        while (*p) {
 733                parent = *p;
 734                pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
 735
 736                /* sort by: start addr, end addr, VMA struct addr in that order
 737                 * (the latter is necessary as we may get identical VMAs) */
 738                if (vma->vm_start < pvma->vm_start)
 739                        p = &(*p)->rb_left;
 740                else if (vma->vm_start > pvma->vm_start) {
 741                        rb_prev = parent;
 742                        p = &(*p)->rb_right;
 743                } else if (vma->vm_end < pvma->vm_end)
 744                        p = &(*p)->rb_left;
 745                else if (vma->vm_end > pvma->vm_end) {
 746                        rb_prev = parent;
 747                        p = &(*p)->rb_right;
 748                } else if (vma < pvma)
 749                        p = &(*p)->rb_left;
 750                else if (vma > pvma) {
 751                        rb_prev = parent;
 752                        p = &(*p)->rb_right;
 753                } else
 754                        BUG();
 755        }
 756
 757        rb_link_node(&vma->vm_rb, parent, p);
 758        rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 759
 760        /* add VMA to the VMA list also */
 761        prev = NULL;
 762        if (rb_prev)
 763                prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 764
 765        __vma_link_list(mm, vma, prev, parent);
 766}
 767
 768/*
 769 * delete a VMA from its owning mm_struct and address space
 770 */
 771static void delete_vma_from_mm(struct vm_area_struct *vma)
 772{
 773        int i;
 774        struct address_space *mapping;
 775        struct mm_struct *mm = vma->vm_mm;
 776        struct task_struct *curr = current;
 777
 778        kenter("%p", vma);
 779
 780        protect_vma(vma, 0);
 781
 782        mm->map_count--;
 783        for (i = 0; i < VMACACHE_SIZE; i++) {
 784                /* if the vma is cached, invalidate the entire cache */
 785                if (curr->vmacache[i] == vma) {
 786                        vmacache_invalidate(curr->mm);
 787                        break;
 788                }
 789        }
 790
 791        /* remove the VMA from the mapping */
 792        if (vma->vm_file) {
 793                mapping = vma->vm_file->f_mapping;
 794
 795                mutex_lock(&mapping->i_mmap_mutex);
 796                flush_dcache_mmap_lock(mapping);
 797                vma_interval_tree_remove(vma, &mapping->i_mmap);
 798                flush_dcache_mmap_unlock(mapping);
 799                mutex_unlock(&mapping->i_mmap_mutex);
 800        }
 801
 802        /* remove from the MM's tree and list */
 803        rb_erase(&vma->vm_rb, &mm->mm_rb);
 804
 805        if (vma->vm_prev)
 806                vma->vm_prev->vm_next = vma->vm_next;
 807        else
 808                mm->mmap = vma->vm_next;
 809
 810        if (vma->vm_next)
 811                vma->vm_next->vm_prev = vma->vm_prev;
 812}
 813
 814/*
 815 * destroy a VMA record
 816 */
 817static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
 818{
 819        kenter("%p", vma);
 820        if (vma->vm_ops && vma->vm_ops->close)
 821                vma->vm_ops->close(vma);
 822        if (vma->vm_file)
 823                fput(vma->vm_file);
 824        put_nommu_region(vma->vm_region);
 825        kmem_cache_free(vm_area_cachep, vma);
 826}
 827
 828/*
 829 * look up the first VMA in which addr resides, NULL if none
 830 * - should be called with mm->mmap_sem at least held readlocked
 831 */
 832struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 833{
 834        struct vm_area_struct *vma;
 835
 836        /* check the cache first */
 837        vma = vmacache_find(mm, addr);
 838        if (likely(vma))
 839                return vma;
 840
 841        /* trawl the list (there may be multiple mappings in which addr
 842         * resides) */
 843        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 844                if (vma->vm_start > addr)
 845                        return NULL;
 846                if (vma->vm_end > addr) {
 847                        vmacache_update(addr, vma);
 848                        return vma;
 849                }
 850        }
 851
 852        return NULL;
 853}
 854EXPORT_SYMBOL(find_vma);
 855
 856/*
 857 * find a VMA
 858 * - we don't extend stack VMAs under NOMMU conditions
 859 */
 860struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
 861{
 862        return find_vma(mm, addr);
 863}
 864
 865/*
 866 * expand a stack to a given address
 867 * - not supported under NOMMU conditions
 868 */
 869int expand_stack(struct vm_area_struct *vma, unsigned long address)
 870{
 871        return -ENOMEM;
 872}
 873
 874/*
 875 * look up the first VMA exactly that exactly matches addr
 876 * - should be called with mm->mmap_sem at least held readlocked
 877 */
 878static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
 879                                             unsigned long addr,
 880                                             unsigned long len)
 881{
 882        struct vm_area_struct *vma;
 883        unsigned long end = addr + len;
 884
 885        /* check the cache first */
 886        vma = vmacache_find_exact(mm, addr, end);
 887        if (vma)
 888                return vma;
 889
 890        /* trawl the list (there may be multiple mappings in which addr
 891         * resides) */
 892        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 893                if (vma->vm_start < addr)
 894                        continue;
 895                if (vma->vm_start > addr)
 896                        return NULL;
 897                if (vma->vm_end == end) {
 898                        vmacache_update(addr, vma);
 899                        return vma;
 900                }
 901        }
 902
 903        return NULL;
 904}
 905
 906/*
 907 * determine whether a mapping should be permitted and, if so, what sort of
 908 * mapping we're capable of supporting
 909 */
 910static int validate_mmap_request(struct file *file,
 911                                 unsigned long addr,
 912                                 unsigned long len,
 913                                 unsigned long prot,
 914                                 unsigned long flags,
 915                                 unsigned long pgoff,
 916                                 unsigned long *_capabilities)
 917{
 918        unsigned long capabilities, rlen;
 919        int ret;
 920
 921        /* do the simple checks first */
 922        if (flags & MAP_FIXED) {
 923                printk(KERN_DEBUG
 924                       "%d: Can't do fixed-address/overlay mmap of RAM\n",
 925                       current->pid);
 926                return -EINVAL;
 927        }
 928
 929        if ((flags & MAP_TYPE) != MAP_PRIVATE &&
 930            (flags & MAP_TYPE) != MAP_SHARED)
 931                return -EINVAL;
 932
 933        if (!len)
 934                return -EINVAL;
 935
 936        /* Careful about overflows.. */
 937        rlen = PAGE_ALIGN(len);
 938        if (!rlen || rlen > TASK_SIZE)
 939                return -ENOMEM;
 940
 941        /* offset overflow? */
 942        if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
 943                return -EOVERFLOW;
 944
 945        if (file) {
 946                /* validate file mapping requests */
 947                struct address_space *mapping;
 948
 949                /* files must support mmap */
 950                if (!file->f_op->mmap)
 951                        return -ENODEV;
 952
 953                /* work out if what we've got could possibly be shared
 954                 * - we support chardevs that provide their own "memory"
 955                 * - we support files/blockdevs that are memory backed
 956                 */
 957                mapping = file->f_mapping;
 958                if (!mapping)
 959                        mapping = file_inode(file)->i_mapping;
 960
 961                capabilities = 0;
 962                if (mapping && mapping->backing_dev_info)
 963                        capabilities = mapping->backing_dev_info->capabilities;
 964
 965                if (!capabilities) {
 966                        /* no explicit capabilities set, so assume some
 967                         * defaults */
 968                        switch (file_inode(file)->i_mode & S_IFMT) {
 969                        case S_IFREG:
 970                        case S_IFBLK:
 971                                capabilities = BDI_CAP_MAP_COPY;
 972                                break;
 973
 974                        case S_IFCHR:
 975                                capabilities =
 976                                        BDI_CAP_MAP_DIRECT |
 977                                        BDI_CAP_READ_MAP |
 978                                        BDI_CAP_WRITE_MAP;
 979                                break;
 980
 981                        default:
 982                                return -EINVAL;
 983                        }
 984                }
 985
 986                /* eliminate any capabilities that we can't support on this
 987                 * device */
 988                if (!file->f_op->get_unmapped_area)
 989                        capabilities &= ~BDI_CAP_MAP_DIRECT;
 990                if (!file->f_op->read)
 991                        capabilities &= ~BDI_CAP_MAP_COPY;
 992
 993                /* The file shall have been opened with read permission. */
 994                if (!(file->f_mode & FMODE_READ))
 995                        return -EACCES;
 996
 997                if (flags & MAP_SHARED) {
 998                        /* do checks for writing, appending and locking */
 999                        if ((prot & PROT_WRITE) &&
1000                            !(file->f_mode & FMODE_WRITE))
1001                                return -EACCES;
1002
1003                        if (IS_APPEND(file_inode(file)) &&
1004                            (file->f_mode & FMODE_WRITE))
1005                                return -EACCES;
1006
1007                        if (locks_verify_locked(file))
1008                                return -EAGAIN;
1009
1010                        if (!(capabilities & BDI_CAP_MAP_DIRECT))
1011                                return -ENODEV;
1012
1013                        /* we mustn't privatise shared mappings */
1014                        capabilities &= ~BDI_CAP_MAP_COPY;
1015                } else {
1016                        /* we're going to read the file into private memory we
1017                         * allocate */
1018                        if (!(capabilities & BDI_CAP_MAP_COPY))
1019                                return -ENODEV;
1020
1021                        /* we don't permit a private writable mapping to be
1022                         * shared with the backing device */
1023                        if (prot & PROT_WRITE)
1024                                capabilities &= ~BDI_CAP_MAP_DIRECT;
1025                }
1026
1027                if (capabilities & BDI_CAP_MAP_DIRECT) {
1028                        if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1029                            ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1030                            ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1031                            ) {
1032                                capabilities &= ~BDI_CAP_MAP_DIRECT;
1033                                if (flags & MAP_SHARED) {
1034                                        printk(KERN_WARNING
1035                                               "MAP_SHARED not completely supported on !MMU\n");
1036                                        return -EINVAL;
1037                                }
1038                        }
1039                }
1040
1041                /* handle executable mappings and implied executable
1042                 * mappings */
1043                if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1044                        if (prot & PROT_EXEC)
1045                                return -EPERM;
1046                } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1047                        /* handle implication of PROT_EXEC by PROT_READ */
1048                        if (current->personality & READ_IMPLIES_EXEC) {
1049                                if (capabilities & BDI_CAP_EXEC_MAP)
1050                                        prot |= PROT_EXEC;
1051                        }
1052                } else if ((prot & PROT_READ) &&
1053                         (prot & PROT_EXEC) &&
1054                         !(capabilities & BDI_CAP_EXEC_MAP)
1055                         ) {
1056                        /* backing file is not executable, try to copy */
1057                        capabilities &= ~BDI_CAP_MAP_DIRECT;
1058                }
1059        } else {
1060                /* anonymous mappings are always memory backed and can be
1061                 * privately mapped
1062                 */
1063                capabilities = BDI_CAP_MAP_COPY;
1064
1065                /* handle PROT_EXEC implication by PROT_READ */
1066                if ((prot & PROT_READ) &&
1067                    (current->personality & READ_IMPLIES_EXEC))
1068                        prot |= PROT_EXEC;
1069        }
1070
1071        /* allow the security API to have its say */
1072        ret = security_mmap_addr(addr);
1073        if (ret < 0)
1074                return ret;
1075
1076        /* looks okay */
1077        *_capabilities = capabilities;
1078        return 0;
1079}
1080
1081/*
1082 * we've determined that we can make the mapping, now translate what we
1083 * now know into VMA flags
1084 */
1085static unsigned long determine_vm_flags(struct file *file,
1086                                        unsigned long prot,
1087                                        unsigned long flags,
1088                                        unsigned long capabilities)
1089{
1090        unsigned long vm_flags;
1091
1092        vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1093        /* vm_flags |= mm->def_flags; */
1094
1095        if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1096                /* attempt to share read-only copies of mapped file chunks */
1097                vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1098                if (file && !(prot & PROT_WRITE))
1099                        vm_flags |= VM_MAYSHARE;
1100        } else {
1101                /* overlay a shareable mapping on the backing device or inode
1102                 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1103                 * romfs/cramfs */
1104                vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1105                if (flags & MAP_SHARED)
1106                        vm_flags |= VM_SHARED;
1107        }
1108
1109        /* refuse to let anyone share private mappings with this process if
1110         * it's being traced - otherwise breakpoints set in it may interfere
1111         * with another untraced process
1112         */
1113        if ((flags & MAP_PRIVATE) && current->ptrace)
1114                vm_flags &= ~VM_MAYSHARE;
1115
1116        return vm_flags;
1117}
1118
1119/*
1120 * set up a shared mapping on a file (the driver or filesystem provides and
1121 * pins the storage)
1122 */
1123static int do_mmap_shared_file(struct vm_area_struct *vma)
1124{
1125        int ret;
1126
1127        ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1128        if (ret == 0) {
1129                vma->vm_region->vm_top = vma->vm_region->vm_end;
1130                return 0;
1131        }
1132        if (ret != -ENOSYS)
1133                return ret;
1134
1135        /* getting -ENOSYS indicates that direct mmap isn't possible (as
1136         * opposed to tried but failed) so we can only give a suitable error as
1137         * it's not possible to make a private copy if MAP_SHARED was given */
1138        return -ENODEV;
1139}
1140
1141/*
1142 * set up a private mapping or an anonymous shared mapping
1143 */
1144static int do_mmap_private(struct vm_area_struct *vma,
1145                           struct vm_region *region,
1146                           unsigned long len,
1147                           unsigned long capabilities)
1148{
1149        struct page *pages;
1150        unsigned long total, point, n;
1151        void *base;
1152        int ret, order;
1153
1154        /* invoke the file's mapping function so that it can keep track of
1155         * shared mappings on devices or memory
1156         * - VM_MAYSHARE will be set if it may attempt to share
1157         */
1158        if (capabilities & BDI_CAP_MAP_DIRECT) {
1159                ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1160                if (ret == 0) {
1161                        /* shouldn't return success if we're not sharing */
1162                        BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1163                        vma->vm_region->vm_top = vma->vm_region->vm_end;
1164                        return 0;
1165                }
1166                if (ret != -ENOSYS)
1167                        return ret;
1168
1169                /* getting an ENOSYS error indicates that direct mmap isn't
1170                 * possible (as opposed to tried but failed) so we'll try to
1171                 * make a private copy of the data and map that instead */
1172        }
1173
1174
1175        /* allocate some memory to hold the mapping
1176         * - note that this may not return a page-aligned address if the object
1177         *   we're allocating is smaller than a page
1178         */
1179        order = get_order(len);
1180        kdebug("alloc order %d for %lx", order, len);
1181
1182        pages = alloc_pages(GFP_KERNEL, order);
1183        if (!pages)
1184                goto enomem;
1185
1186        total = 1 << order;
1187        atomic_long_add(total, &mmap_pages_allocated);
1188
1189        point = len >> PAGE_SHIFT;
1190
1191        /* we allocated a power-of-2 sized page set, so we may want to trim off
1192         * the excess */
1193        if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1194                while (total > point) {
1195                        order = ilog2(total - point);
1196                        n = 1 << order;
1197                        kdebug("shave %lu/%lu @%lu", n, total - point, total);
1198                        atomic_long_sub(n, &mmap_pages_allocated);
1199                        total -= n;
1200                        set_page_refcounted(pages + total);
1201                        __free_pages(pages + total, order);
1202                }
1203        }
1204
1205        for (point = 1; point < total; point++)
1206                set_page_refcounted(&pages[point]);
1207
1208        base = page_address(pages);
1209        region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1210        region->vm_start = (unsigned long) base;
1211        region->vm_end   = region->vm_start + len;
1212        region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1213
1214        vma->vm_start = region->vm_start;
1215        vma->vm_end   = region->vm_start + len;
1216
1217        if (vma->vm_file) {
1218                /* read the contents of a file into the copy */
1219                mm_segment_t old_fs;
1220                loff_t fpos;
1221
1222                fpos = vma->vm_pgoff;
1223                fpos <<= PAGE_SHIFT;
1224
1225                old_fs = get_fs();
1226                set_fs(KERNEL_DS);
1227                ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1228                set_fs(old_fs);
1229
1230                if (ret < 0)
1231                        goto error_free;
1232
1233                /* clear the last little bit */
1234                if (ret < len)
1235                        memset(base + ret, 0, len - ret);
1236
1237        }
1238
1239        return 0;
1240
1241error_free:
1242        free_page_series(region->vm_start, region->vm_top);
1243        region->vm_start = vma->vm_start = 0;
1244        region->vm_end   = vma->vm_end = 0;
1245        region->vm_top   = 0;
1246        return ret;
1247
1248enomem:
1249        printk("Allocation of length %lu from process %d (%s) failed\n",
1250               len, current->pid, current->comm);
1251        show_free_areas(0);
1252        return -ENOMEM;
1253}
1254
1255/*
1256 * handle mapping creation for uClinux
1257 */
1258unsigned long do_mmap_pgoff(struct file *file,
1259                            unsigned long addr,
1260                            unsigned long len,
1261                            unsigned long prot,
1262                            unsigned long flags,
1263                            unsigned long pgoff,
1264                            unsigned long *populate)
1265{
1266        struct vm_area_struct *vma;
1267        struct vm_region *region;
1268        struct rb_node *rb;
1269        unsigned long capabilities, vm_flags, result;
1270        int ret;
1271
1272        kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1273
1274        *populate = 0;
1275
1276        /* decide whether we should attempt the mapping, and if so what sort of
1277         * mapping */
1278        ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1279                                    &capabilities);
1280        if (ret < 0) {
1281                kleave(" = %d [val]", ret);
1282                return ret;
1283        }
1284
1285        /* we ignore the address hint */
1286        addr = 0;
1287        len = PAGE_ALIGN(len);
1288
1289        /* we've determined that we can make the mapping, now translate what we
1290         * now know into VMA flags */
1291        vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1292
1293        /* we're going to need to record the mapping */
1294        region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1295        if (!region)
1296                goto error_getting_region;
1297
1298        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1299        if (!vma)
1300                goto error_getting_vma;
1301
1302        region->vm_usage = 1;
1303        region->vm_flags = vm_flags;
1304        region->vm_pgoff = pgoff;
1305
1306        INIT_LIST_HEAD(&vma->anon_vma_chain);
1307        vma->vm_flags = vm_flags;
1308        vma->vm_pgoff = pgoff;
1309
1310        if (file) {
1311                region->vm_file = get_file(file);
1312                vma->vm_file = get_file(file);
1313        }
1314
1315        down_write(&nommu_region_sem);
1316
1317        /* if we want to share, we need to check for regions created by other
1318         * mmap() calls that overlap with our proposed mapping
1319         * - we can only share with a superset match on most regular files
1320         * - shared mappings on character devices and memory backed files are
1321         *   permitted to overlap inexactly as far as we are concerned for in
1322         *   these cases, sharing is handled in the driver or filesystem rather
1323         *   than here
1324         */
1325        if (vm_flags & VM_MAYSHARE) {
1326                struct vm_region *pregion;
1327                unsigned long pglen, rpglen, pgend, rpgend, start;
1328
1329                pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330                pgend = pgoff + pglen;
1331
1332                for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1333                        pregion = rb_entry(rb, struct vm_region, vm_rb);
1334
1335                        if (!(pregion->vm_flags & VM_MAYSHARE))
1336                                continue;
1337
1338                        /* search for overlapping mappings on the same file */
1339                        if (file_inode(pregion->vm_file) !=
1340                            file_inode(file))
1341                                continue;
1342
1343                        if (pregion->vm_pgoff >= pgend)
1344                                continue;
1345
1346                        rpglen = pregion->vm_end - pregion->vm_start;
1347                        rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1348                        rpgend = pregion->vm_pgoff + rpglen;
1349                        if (pgoff >= rpgend)
1350                                continue;
1351
1352                        /* handle inexactly overlapping matches between
1353                         * mappings */
1354                        if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1355                            !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1356                                /* new mapping is not a subset of the region */
1357                                if (!(capabilities & BDI_CAP_MAP_DIRECT))
1358                                        goto sharing_violation;
1359                                continue;
1360                        }
1361
1362                        /* we've found a region we can share */
1363                        pregion->vm_usage++;
1364                        vma->vm_region = pregion;
1365                        start = pregion->vm_start;
1366                        start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1367                        vma->vm_start = start;
1368                        vma->vm_end = start + len;
1369
1370                        if (pregion->vm_flags & VM_MAPPED_COPY) {
1371                                kdebug("share copy");
1372                                vma->vm_flags |= VM_MAPPED_COPY;
1373                        } else {
1374                                kdebug("share mmap");
1375                                ret = do_mmap_shared_file(vma);
1376                                if (ret < 0) {
1377                                        vma->vm_region = NULL;
1378                                        vma->vm_start = 0;
1379                                        vma->vm_end = 0;
1380                                        pregion->vm_usage--;
1381                                        pregion = NULL;
1382                                        goto error_just_free;
1383                                }
1384                        }
1385                        fput(region->vm_file);
1386                        kmem_cache_free(vm_region_jar, region);
1387                        region = pregion;
1388                        result = start;
1389                        goto share;
1390                }
1391
1392                /* obtain the address at which to make a shared mapping
1393                 * - this is the hook for quasi-memory character devices to
1394                 *   tell us the location of a shared mapping
1395                 */
1396                if (capabilities & BDI_CAP_MAP_DIRECT) {
1397                        addr = file->f_op->get_unmapped_area(file, addr, len,
1398                                                             pgoff, flags);
1399                        if (IS_ERR_VALUE(addr)) {
1400                                ret = addr;
1401                                if (ret != -ENOSYS)
1402                                        goto error_just_free;
1403
1404                                /* the driver refused to tell us where to site
1405                                 * the mapping so we'll have to attempt to copy
1406                                 * it */
1407                                ret = -ENODEV;
1408                                if (!(capabilities & BDI_CAP_MAP_COPY))
1409                                        goto error_just_free;
1410
1411                                capabilities &= ~BDI_CAP_MAP_DIRECT;
1412                        } else {
1413                                vma->vm_start = region->vm_start = addr;
1414                                vma->vm_end = region->vm_end = addr + len;
1415                        }
1416                }
1417        }
1418
1419        vma->vm_region = region;
1420
1421        /* set up the mapping
1422         * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1423         */
1424        if (file && vma->vm_flags & VM_SHARED)
1425                ret = do_mmap_shared_file(vma);
1426        else
1427                ret = do_mmap_private(vma, region, len, capabilities);
1428        if (ret < 0)
1429                goto error_just_free;
1430        add_nommu_region(region);
1431
1432        /* clear anonymous mappings that don't ask for uninitialized data */
1433        if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1434                memset((void *)region->vm_start, 0,
1435                       region->vm_end - region->vm_start);
1436
1437        /* okay... we have a mapping; now we have to register it */
1438        result = vma->vm_start;
1439
1440        current->mm->total_vm += len >> PAGE_SHIFT;
1441
1442share:
1443        add_vma_to_mm(current->mm, vma);
1444
1445        /* we flush the region from the icache only when the first executable
1446         * mapping of it is made  */
1447        if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1448                flush_icache_range(region->vm_start, region->vm_end);
1449                region->vm_icache_flushed = true;
1450        }
1451
1452        up_write(&nommu_region_sem);
1453
1454        kleave(" = %lx", result);
1455        return result;
1456
1457error_just_free:
1458        up_write(&nommu_region_sem);
1459error:
1460        if (region->vm_file)
1461                fput(region->vm_file);
1462        kmem_cache_free(vm_region_jar, region);
1463        if (vma->vm_file)
1464                fput(vma->vm_file);
1465        kmem_cache_free(vm_area_cachep, vma);
1466        kleave(" = %d", ret);
1467        return ret;
1468
1469sharing_violation:
1470        up_write(&nommu_region_sem);
1471        printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1472        ret = -EINVAL;
1473        goto error;
1474
1475error_getting_vma:
1476        kmem_cache_free(vm_region_jar, region);
1477        printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1478               " from process %d failed\n",
1479               len, current->pid);
1480        show_free_areas(0);
1481        return -ENOMEM;
1482
1483error_getting_region:
1484        printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1485               " from process %d failed\n",
1486               len, current->pid);
1487        show_free_areas(0);
1488        return -ENOMEM;
1489}
1490
1491SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492                unsigned long, prot, unsigned long, flags,
1493                unsigned long, fd, unsigned long, pgoff)
1494{
1495        struct file *file = NULL;
1496        unsigned long retval = -EBADF;
1497
1498        audit_mmap_fd(fd, flags);
1499        if (!(flags & MAP_ANONYMOUS)) {
1500                file = fget(fd);
1501                if (!file)
1502                        goto out;
1503        }
1504
1505        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1506
1507        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1508
1509        if (file)
1510                fput(file);
1511out:
1512        return retval;
1513}
1514
1515#ifdef __ARCH_WANT_SYS_OLD_MMAP
1516struct mmap_arg_struct {
1517        unsigned long addr;
1518        unsigned long len;
1519        unsigned long prot;
1520        unsigned long flags;
1521        unsigned long fd;
1522        unsigned long offset;
1523};
1524
1525SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1526{
1527        struct mmap_arg_struct a;
1528
1529        if (copy_from_user(&a, arg, sizeof(a)))
1530                return -EFAULT;
1531        if (a.offset & ~PAGE_MASK)
1532                return -EINVAL;
1533
1534        return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1535                              a.offset >> PAGE_SHIFT);
1536}
1537#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1538
1539/*
1540 * split a vma into two pieces at address 'addr', a new vma is allocated either
1541 * for the first part or the tail.
1542 */
1543int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1544              unsigned long addr, int new_below)
1545{
1546        struct vm_area_struct *new;
1547        struct vm_region *region;
1548        unsigned long npages;
1549
1550        kenter("");
1551
1552        /* we're only permitted to split anonymous regions (these should have
1553         * only a single usage on the region) */
1554        if (vma->vm_file)
1555                return -ENOMEM;
1556
1557        if (mm->map_count >= sysctl_max_map_count)
1558                return -ENOMEM;
1559
1560        region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1561        if (!region)
1562                return -ENOMEM;
1563
1564        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1565        if (!new) {
1566                kmem_cache_free(vm_region_jar, region);
1567                return -ENOMEM;
1568        }
1569
1570        /* most fields are the same, copy all, and then fixup */
1571        *new = *vma;
1572        *region = *vma->vm_region;
1573        new->vm_region = region;
1574
1575        npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1576
1577        if (new_below) {
1578                region->vm_top = region->vm_end = new->vm_end = addr;
1579        } else {
1580                region->vm_start = new->vm_start = addr;
1581                region->vm_pgoff = new->vm_pgoff += npages;
1582        }
1583
1584        if (new->vm_ops && new->vm_ops->open)
1585                new->vm_ops->open(new);
1586
1587        delete_vma_from_mm(vma);
1588        down_write(&nommu_region_sem);
1589        delete_nommu_region(vma->vm_region);
1590        if (new_below) {
1591                vma->vm_region->vm_start = vma->vm_start = addr;
1592                vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1593        } else {
1594                vma->vm_region->vm_end = vma->vm_end = addr;
1595                vma->vm_region->vm_top = addr;
1596        }
1597        add_nommu_region(vma->vm_region);
1598        add_nommu_region(new->vm_region);
1599        up_write(&nommu_region_sem);
1600        add_vma_to_mm(mm, vma);
1601        add_vma_to_mm(mm, new);
1602        return 0;
1603}
1604
1605/*
1606 * shrink a VMA by removing the specified chunk from either the beginning or
1607 * the end
1608 */
1609static int shrink_vma(struct mm_struct *mm,
1610                      struct vm_area_struct *vma,
1611                      unsigned long from, unsigned long to)
1612{
1613        struct vm_region *region;
1614
1615        kenter("");
1616
1617        /* adjust the VMA's pointers, which may reposition it in the MM's tree
1618         * and list */
1619        delete_vma_from_mm(vma);
1620        if (from > vma->vm_start)
1621                vma->vm_end = from;
1622        else
1623                vma->vm_start = to;
1624        add_vma_to_mm(mm, vma);
1625
1626        /* cut the backing region down to size */
1627        region = vma->vm_region;
1628        BUG_ON(region->vm_usage != 1);
1629
1630        down_write(&nommu_region_sem);
1631        delete_nommu_region(region);
1632        if (from > region->vm_start) {
1633                to = region->vm_top;
1634                region->vm_top = region->vm_end = from;
1635        } else {
1636                region->vm_start = to;
1637        }
1638        add_nommu_region(region);
1639        up_write(&nommu_region_sem);
1640
1641        free_page_series(from, to);
1642        return 0;
1643}
1644
1645/*
1646 * release a mapping
1647 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1648 *   VMA, though it need not cover the whole VMA
1649 */
1650int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1651{
1652        struct vm_area_struct *vma;
1653        unsigned long end;
1654        int ret;
1655
1656        kenter(",%lx,%zx", start, len);
1657
1658        len = PAGE_ALIGN(len);
1659        if (len == 0)
1660                return -EINVAL;
1661
1662        end = start + len;
1663
1664        /* find the first potentially overlapping VMA */
1665        vma = find_vma(mm, start);
1666        if (!vma) {
1667                static int limit;
1668                if (limit < 5) {
1669                        printk(KERN_WARNING
1670                               "munmap of memory not mmapped by process %d"
1671                               " (%s): 0x%lx-0x%lx\n",
1672                               current->pid, current->comm,
1673                               start, start + len - 1);
1674                        limit++;
1675                }
1676                return -EINVAL;
1677        }
1678
1679        /* we're allowed to split an anonymous VMA but not a file-backed one */
1680        if (vma->vm_file) {
1681                do {
1682                        if (start > vma->vm_start) {
1683                                kleave(" = -EINVAL [miss]");
1684                                return -EINVAL;
1685                        }
1686                        if (end == vma->vm_end)
1687                                goto erase_whole_vma;
1688                        vma = vma->vm_next;
1689                } while (vma);
1690                kleave(" = -EINVAL [split file]");
1691                return -EINVAL;
1692        } else {
1693                /* the chunk must be a subset of the VMA found */
1694                if (start == vma->vm_start && end == vma->vm_end)
1695                        goto erase_whole_vma;
1696                if (start < vma->vm_start || end > vma->vm_end) {
1697                        kleave(" = -EINVAL [superset]");
1698                        return -EINVAL;
1699                }
1700                if (start & ~PAGE_MASK) {
1701                        kleave(" = -EINVAL [unaligned start]");
1702                        return -EINVAL;
1703                }
1704                if (end != vma->vm_end && end & ~PAGE_MASK) {
1705                        kleave(" = -EINVAL [unaligned split]");
1706                        return -EINVAL;
1707                }
1708                if (start != vma->vm_start && end != vma->vm_end) {
1709                        ret = split_vma(mm, vma, start, 1);
1710                        if (ret < 0) {
1711                                kleave(" = %d [split]", ret);
1712                                return ret;
1713                        }
1714                }
1715                return shrink_vma(mm, vma, start, end);
1716        }
1717
1718erase_whole_vma:
1719        delete_vma_from_mm(vma);
1720        delete_vma(mm, vma);
1721        kleave(" = 0");
1722        return 0;
1723}
1724EXPORT_SYMBOL(do_munmap);
1725
1726int vm_munmap(unsigned long addr, size_t len)
1727{
1728        struct mm_struct *mm = current->mm;
1729        int ret;
1730
1731        down_write(&mm->mmap_sem);
1732        ret = do_munmap(mm, addr, len);
1733        up_write(&mm->mmap_sem);
1734        return ret;
1735}
1736EXPORT_SYMBOL(vm_munmap);
1737
1738SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1739{
1740        return vm_munmap(addr, len);
1741}
1742
1743/*
1744 * release all the mappings made in a process's VM space
1745 */
1746void exit_mmap(struct mm_struct *mm)
1747{
1748        struct vm_area_struct *vma;
1749
1750        if (!mm)
1751                return;
1752
1753        kenter("");
1754
1755        mm->total_vm = 0;
1756
1757        while ((vma = mm->mmap)) {
1758                mm->mmap = vma->vm_next;
1759                delete_vma_from_mm(vma);
1760                delete_vma(mm, vma);
1761                cond_resched();
1762        }
1763
1764        kleave("");
1765}
1766
1767unsigned long vm_brk(unsigned long addr, unsigned long len)
1768{
1769        return -ENOMEM;
1770}
1771
1772/*
1773 * expand (or shrink) an existing mapping, potentially moving it at the same
1774 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1775 *
1776 * under NOMMU conditions, we only permit changing a mapping's size, and only
1777 * as long as it stays within the region allocated by do_mmap_private() and the
1778 * block is not shareable
1779 *
1780 * MREMAP_FIXED is not supported under NOMMU conditions
1781 */
1782static unsigned long do_mremap(unsigned long addr,
1783                        unsigned long old_len, unsigned long new_len,
1784                        unsigned long flags, unsigned long new_addr)
1785{
1786        struct vm_area_struct *vma;
1787
1788        /* insanity checks first */
1789        old_len = PAGE_ALIGN(old_len);
1790        new_len = PAGE_ALIGN(new_len);
1791        if (old_len == 0 || new_len == 0)
1792                return (unsigned long) -EINVAL;
1793
1794        if (addr & ~PAGE_MASK)
1795                return -EINVAL;
1796
1797        if (flags & MREMAP_FIXED && new_addr != addr)
1798                return (unsigned long) -EINVAL;
1799
1800        vma = find_vma_exact(current->mm, addr, old_len);
1801        if (!vma)
1802                return (unsigned long) -EINVAL;
1803
1804        if (vma->vm_end != vma->vm_start + old_len)
1805                return (unsigned long) -EFAULT;
1806
1807        if (vma->vm_flags & VM_MAYSHARE)
1808                return (unsigned long) -EPERM;
1809
1810        if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1811                return (unsigned long) -ENOMEM;
1812
1813        /* all checks complete - do it */
1814        vma->vm_end = vma->vm_start + new_len;
1815        return vma->vm_start;
1816}
1817
1818SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1819                unsigned long, new_len, unsigned long, flags,
1820                unsigned long, new_addr)
1821{
1822        unsigned long ret;
1823
1824        down_write(&current->mm->mmap_sem);
1825        ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1826        up_write(&current->mm->mmap_sem);
1827        return ret;
1828}
1829
1830struct page *follow_page_mask(struct vm_area_struct *vma,
1831                              unsigned long address, unsigned int flags,
1832                              unsigned int *page_mask)
1833{
1834        *page_mask = 0;
1835        return NULL;
1836}
1837
1838int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1839                unsigned long pfn, unsigned long size, pgprot_t prot)
1840{
1841        if (addr != (pfn << PAGE_SHIFT))
1842                return -EINVAL;
1843
1844        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1845        return 0;
1846}
1847EXPORT_SYMBOL(remap_pfn_range);
1848
1849int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1850{
1851        unsigned long pfn = start >> PAGE_SHIFT;
1852        unsigned long vm_len = vma->vm_end - vma->vm_start;
1853
1854        pfn += vma->vm_pgoff;
1855        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1856}
1857EXPORT_SYMBOL(vm_iomap_memory);
1858
1859int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1860                        unsigned long pgoff)
1861{
1862        unsigned int size = vma->vm_end - vma->vm_start;
1863
1864        if (!(vma->vm_flags & VM_USERMAP))
1865                return -EINVAL;
1866
1867        vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1868        vma->vm_end = vma->vm_start + size;
1869
1870        return 0;
1871}
1872EXPORT_SYMBOL(remap_vmalloc_range);
1873
1874unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1875        unsigned long len, unsigned long pgoff, unsigned long flags)
1876{
1877        return -ENOMEM;
1878}
1879
1880void unmap_mapping_range(struct address_space *mapping,
1881                         loff_t const holebegin, loff_t const holelen,
1882                         int even_cows)
1883{
1884}
1885EXPORT_SYMBOL(unmap_mapping_range);
1886
1887/*
1888 * Check that a process has enough memory to allocate a new virtual
1889 * mapping. 0 means there is enough memory for the allocation to
1890 * succeed and -ENOMEM implies there is not.
1891 *
1892 * We currently support three overcommit policies, which are set via the
1893 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1894 *
1895 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1896 * Additional code 2002 Jul 20 by Robert Love.
1897 *
1898 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1899 *
1900 * Note this is a helper function intended to be used by LSMs which
1901 * wish to use this logic.
1902 */
1903int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1904{
1905        unsigned long free, allowed, reserve;
1906
1907        vm_acct_memory(pages);
1908
1909        /*
1910         * Sometimes we want to use more memory than we have
1911         */
1912        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1913                return 0;
1914
1915        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1916                free = global_page_state(NR_FREE_PAGES);
1917                free += global_page_state(NR_FILE_PAGES);
1918
1919                /*
1920                 * shmem pages shouldn't be counted as free in this
1921                 * case, they can't be purged, only swapped out, and
1922                 * that won't affect the overall amount of available
1923                 * memory in the system.
1924                 */
1925                free -= global_page_state(NR_SHMEM);
1926
1927                free += get_nr_swap_pages();
1928
1929                /*
1930                 * Any slabs which are created with the
1931                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1932                 * which are reclaimable, under pressure.  The dentry
1933                 * cache and most inode caches should fall into this
1934                 */
1935                free += global_page_state(NR_SLAB_RECLAIMABLE);
1936
1937                /*
1938                 * Leave reserved pages. The pages are not for anonymous pages.
1939                 */
1940                if (free <= totalreserve_pages)
1941                        goto error;
1942                else
1943                        free -= totalreserve_pages;
1944
1945                /*
1946                 * Reserve some for root
1947                 */
1948                if (!cap_sys_admin)
1949                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1950
1951                if (free > pages)
1952                        return 0;
1953
1954                goto error;
1955        }
1956
1957        allowed = vm_commit_limit();
1958        /*
1959         * Reserve some 3% for root
1960         */
1961        if (!cap_sys_admin)
1962                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1963
1964        /*
1965         * Don't let a single process grow so big a user can't recover
1966         */
1967        if (mm) {
1968                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1969                allowed -= min(mm->total_vm / 32, reserve);
1970        }
1971
1972        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1973                return 0;
1974
1975error:
1976        vm_unacct_memory(pages);
1977
1978        return -ENOMEM;
1979}
1980
1981int in_gate_area_no_mm(unsigned long addr)
1982{
1983        return 0;
1984}
1985
1986int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1987{
1988        BUG();
1989        return 0;
1990}
1991EXPORT_SYMBOL(filemap_fault);
1992
1993void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1994{
1995        BUG();
1996}
1997EXPORT_SYMBOL(filemap_map_pages);
1998
1999int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
2000                             unsigned long size, pgoff_t pgoff)
2001{
2002        BUG();
2003        return 0;
2004}
2005EXPORT_SYMBOL(generic_file_remap_pages);
2006
2007static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2008                unsigned long addr, void *buf, int len, int write)
2009{
2010        struct vm_area_struct *vma;
2011
2012        down_read(&mm->mmap_sem);
2013
2014        /* the access must start within one of the target process's mappings */
2015        vma = find_vma(mm, addr);
2016        if (vma) {
2017                /* don't overrun this mapping */
2018                if (addr + len >= vma->vm_end)
2019                        len = vma->vm_end - addr;
2020
2021                /* only read or write mappings where it is permitted */
2022                if (write && vma->vm_flags & VM_MAYWRITE)
2023                        copy_to_user_page(vma, NULL, addr,
2024                                         (void *) addr, buf, len);
2025                else if (!write && vma->vm_flags & VM_MAYREAD)
2026                        copy_from_user_page(vma, NULL, addr,
2027                                            buf, (void *) addr, len);
2028                else
2029                        len = 0;
2030        } else {
2031                len = 0;
2032        }
2033
2034        up_read(&mm->mmap_sem);
2035
2036        return len;
2037}
2038
2039/**
2040 * @access_remote_vm - access another process' address space
2041 * @mm:         the mm_struct of the target address space
2042 * @addr:       start address to access
2043 * @buf:        source or destination buffer
2044 * @len:        number of bytes to transfer
2045 * @write:      whether the access is a write
2046 *
2047 * The caller must hold a reference on @mm.
2048 */
2049int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2050                void *buf, int len, int write)
2051{
2052        return __access_remote_vm(NULL, mm, addr, buf, len, write);
2053}
2054
2055/*
2056 * Access another process' address space.
2057 * - source/target buffer must be kernel space
2058 */
2059int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2060{
2061        struct mm_struct *mm;
2062
2063        if (addr + len < addr)
2064                return 0;
2065
2066        mm = get_task_mm(tsk);
2067        if (!mm)
2068                return 0;
2069
2070        len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2071
2072        mmput(mm);
2073        return len;
2074}
2075
2076/**
2077 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2078 * @inode: The inode to check
2079 * @size: The current filesize of the inode
2080 * @newsize: The proposed filesize of the inode
2081 *
2082 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2083 * make sure that that any outstanding VMAs aren't broken and then shrink the
2084 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2085 * automatically grant mappings that are too large.
2086 */
2087int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2088                                size_t newsize)
2089{
2090        struct vm_area_struct *vma;
2091        struct vm_region *region;
2092        pgoff_t low, high;
2093        size_t r_size, r_top;
2094
2095        low = newsize >> PAGE_SHIFT;
2096        high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2097
2098        down_write(&nommu_region_sem);
2099        mutex_lock(&inode->i_mapping->i_mmap_mutex);
2100
2101        /* search for VMAs that fall within the dead zone */
2102        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2103                /* found one - only interested if it's shared out of the page
2104                 * cache */
2105                if (vma->vm_flags & VM_SHARED) {
2106                        mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2107                        up_write(&nommu_region_sem);
2108                        return -ETXTBSY; /* not quite true, but near enough */
2109                }
2110        }
2111
2112        /* reduce any regions that overlap the dead zone - if in existence,
2113         * these will be pointed to by VMAs that don't overlap the dead zone
2114         *
2115         * we don't check for any regions that start beyond the EOF as there
2116         * shouldn't be any
2117         */
2118        vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2119                                  0, ULONG_MAX) {
2120                if (!(vma->vm_flags & VM_SHARED))
2121                        continue;
2122
2123                region = vma->vm_region;
2124                r_size = region->vm_top - region->vm_start;
2125                r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2126
2127                if (r_top > newsize) {
2128                        region->vm_top -= r_top - newsize;
2129                        if (region->vm_end > region->vm_top)
2130                                region->vm_end = region->vm_top;
2131                }
2132        }
2133
2134        mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2135        up_write(&nommu_region_sem);
2136        return 0;
2137}
2138
2139/*
2140 * Initialise sysctl_user_reserve_kbytes.
2141 *
2142 * This is intended to prevent a user from starting a single memory hogging
2143 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2144 * mode.
2145 *
2146 * The default value is min(3% of free memory, 128MB)
2147 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2148 */
2149static int __meminit init_user_reserve(void)
2150{
2151        unsigned long free_kbytes;
2152
2153        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2154
2155        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2156        return 0;
2157}
2158module_init(init_user_reserve)
2159
2160/*
2161 * Initialise sysctl_admin_reserve_kbytes.
2162 *
2163 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2164 * to log in and kill a memory hogging process.
2165 *
2166 * Systems with more than 256MB will reserve 8MB, enough to recover
2167 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2168 * only reserve 3% of free pages by default.
2169 */
2170static int __meminit init_admin_reserve(void)
2171{
2172        unsigned long free_kbytes;
2173
2174        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2175
2176        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2177        return 0;
2178}
2179module_init(init_admin_reserve)
2180