linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/aio.h>
  35
  36static struct vfsmount *shm_mnt;
  37
  38#ifdef CONFIG_SHMEM
  39/*
  40 * This virtual memory filesystem is heavily based on the ramfs. It
  41 * extends ramfs by the ability to use swap and honor resource limits
  42 * which makes it a completely usable filesystem.
  43 */
  44
  45#include <linux/xattr.h>
  46#include <linux/exportfs.h>
  47#include <linux/posix_acl.h>
  48#include <linux/posix_acl_xattr.h>
  49#include <linux/mman.h>
  50#include <linux/string.h>
  51#include <linux/slab.h>
  52#include <linux/backing-dev.h>
  53#include <linux/shmem_fs.h>
  54#include <linux/writeback.h>
  55#include <linux/blkdev.h>
  56#include <linux/pagevec.h>
  57#include <linux/percpu_counter.h>
  58#include <linux/falloc.h>
  59#include <linux/splice.h>
  60#include <linux/security.h>
  61#include <linux/swapops.h>
  62#include <linux/mempolicy.h>
  63#include <linux/namei.h>
  64#include <linux/ctype.h>
  65#include <linux/migrate.h>
  66#include <linux/highmem.h>
  67#include <linux/seq_file.h>
  68#include <linux/magic.h>
  69
  70#include <asm/uaccess.h>
  71#include <asm/pgtable.h>
  72
  73#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  74#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  75
  76/* Pretend that each entry is of this size in directory's i_size */
  77#define BOGO_DIRENT_SIZE 20
  78
  79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  80#define SHORT_SYMLINK_LEN 128
  81
  82/*
  83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
  84 * (with i_mutex making sure that it has only one user at a time):
  85 * we would prefer not to enlarge the shmem inode just for that.
  86 */
  87struct shmem_falloc {
  88        pgoff_t start;          /* start of range currently being fallocated */
  89        pgoff_t next;           /* the next page offset to be fallocated */
  90        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
  91        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
  92};
  93
  94/* Flag allocation requirements to shmem_getpage */
  95enum sgp_type {
  96        SGP_READ,       /* don't exceed i_size, don't allocate page */
  97        SGP_CACHE,      /* don't exceed i_size, may allocate page */
  98        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
  99        SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
 100        SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
 101};
 102
 103#ifdef CONFIG_TMPFS
 104static unsigned long shmem_default_max_blocks(void)
 105{
 106        return totalram_pages / 2;
 107}
 108
 109static unsigned long shmem_default_max_inodes(void)
 110{
 111        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 112}
 113#endif
 114
 115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 117                                struct shmem_inode_info *info, pgoff_t index);
 118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 119        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
 120
 121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 122        struct page **pagep, enum sgp_type sgp, int *fault_type)
 123{
 124        return shmem_getpage_gfp(inode, index, pagep, sgp,
 125                        mapping_gfp_mask(inode->i_mapping), fault_type);
 126}
 127
 128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 129{
 130        return sb->s_fs_info;
 131}
 132
 133/*
 134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 135 * for shared memory and for shared anonymous (/dev/zero) mappings
 136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 137 * consistent with the pre-accounting of private mappings ...
 138 */
 139static inline int shmem_acct_size(unsigned long flags, loff_t size)
 140{
 141        return (flags & VM_NORESERVE) ?
 142                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 143}
 144
 145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 146{
 147        if (!(flags & VM_NORESERVE))
 148                vm_unacct_memory(VM_ACCT(size));
 149}
 150
 151/*
 152 * ... whereas tmpfs objects are accounted incrementally as
 153 * pages are allocated, in order to allow huge sparse files.
 154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 156 */
 157static inline int shmem_acct_block(unsigned long flags)
 158{
 159        return (flags & VM_NORESERVE) ?
 160                security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 161}
 162
 163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 164{
 165        if (flags & VM_NORESERVE)
 166                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 167}
 168
 169static const struct super_operations shmem_ops;
 170static const struct address_space_operations shmem_aops;
 171static const struct file_operations shmem_file_operations;
 172static const struct inode_operations shmem_inode_operations;
 173static const struct inode_operations shmem_dir_inode_operations;
 174static const struct inode_operations shmem_special_inode_operations;
 175static const struct vm_operations_struct shmem_vm_ops;
 176
 177static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 178        .ra_pages       = 0,    /* No readahead */
 179        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 180};
 181
 182static LIST_HEAD(shmem_swaplist);
 183static DEFINE_MUTEX(shmem_swaplist_mutex);
 184
 185static int shmem_reserve_inode(struct super_block *sb)
 186{
 187        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 188        if (sbinfo->max_inodes) {
 189                spin_lock(&sbinfo->stat_lock);
 190                if (!sbinfo->free_inodes) {
 191                        spin_unlock(&sbinfo->stat_lock);
 192                        return -ENOSPC;
 193                }
 194                sbinfo->free_inodes--;
 195                spin_unlock(&sbinfo->stat_lock);
 196        }
 197        return 0;
 198}
 199
 200static void shmem_free_inode(struct super_block *sb)
 201{
 202        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 203        if (sbinfo->max_inodes) {
 204                spin_lock(&sbinfo->stat_lock);
 205                sbinfo->free_inodes++;
 206                spin_unlock(&sbinfo->stat_lock);
 207        }
 208}
 209
 210/**
 211 * shmem_recalc_inode - recalculate the block usage of an inode
 212 * @inode: inode to recalc
 213 *
 214 * We have to calculate the free blocks since the mm can drop
 215 * undirtied hole pages behind our back.
 216 *
 217 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 219 *
 220 * It has to be called with the spinlock held.
 221 */
 222static void shmem_recalc_inode(struct inode *inode)
 223{
 224        struct shmem_inode_info *info = SHMEM_I(inode);
 225        long freed;
 226
 227        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 228        if (freed > 0) {
 229                struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 230                if (sbinfo->max_blocks)
 231                        percpu_counter_add(&sbinfo->used_blocks, -freed);
 232                info->alloced -= freed;
 233                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 234                shmem_unacct_blocks(info->flags, freed);
 235        }
 236}
 237
 238/*
 239 * Replace item expected in radix tree by a new item, while holding tree lock.
 240 */
 241static int shmem_radix_tree_replace(struct address_space *mapping,
 242                        pgoff_t index, void *expected, void *replacement)
 243{
 244        void **pslot;
 245        void *item;
 246
 247        VM_BUG_ON(!expected);
 248        VM_BUG_ON(!replacement);
 249        pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 250        if (!pslot)
 251                return -ENOENT;
 252        item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 253        if (item != expected)
 254                return -ENOENT;
 255        radix_tree_replace_slot(pslot, replacement);
 256        return 0;
 257}
 258
 259/*
 260 * Sometimes, before we decide whether to proceed or to fail, we must check
 261 * that an entry was not already brought back from swap by a racing thread.
 262 *
 263 * Checking page is not enough: by the time a SwapCache page is locked, it
 264 * might be reused, and again be SwapCache, using the same swap as before.
 265 */
 266static bool shmem_confirm_swap(struct address_space *mapping,
 267                               pgoff_t index, swp_entry_t swap)
 268{
 269        void *item;
 270
 271        rcu_read_lock();
 272        item = radix_tree_lookup(&mapping->page_tree, index);
 273        rcu_read_unlock();
 274        return item == swp_to_radix_entry(swap);
 275}
 276
 277/*
 278 * Like add_to_page_cache_locked, but error if expected item has gone.
 279 */
 280static int shmem_add_to_page_cache(struct page *page,
 281                                   struct address_space *mapping,
 282                                   pgoff_t index, gfp_t gfp, void *expected)
 283{
 284        int error;
 285
 286        VM_BUG_ON_PAGE(!PageLocked(page), page);
 287        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 288
 289        page_cache_get(page);
 290        page->mapping = mapping;
 291        page->index = index;
 292
 293        spin_lock_irq(&mapping->tree_lock);
 294        if (!expected)
 295                error = radix_tree_insert(&mapping->page_tree, index, page);
 296        else
 297                error = shmem_radix_tree_replace(mapping, index, expected,
 298                                                                 page);
 299        if (!error) {
 300                mapping->nrpages++;
 301                __inc_zone_page_state(page, NR_FILE_PAGES);
 302                __inc_zone_page_state(page, NR_SHMEM);
 303                spin_unlock_irq(&mapping->tree_lock);
 304        } else {
 305                page->mapping = NULL;
 306                spin_unlock_irq(&mapping->tree_lock);
 307                page_cache_release(page);
 308        }
 309        return error;
 310}
 311
 312/*
 313 * Like delete_from_page_cache, but substitutes swap for page.
 314 */
 315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 316{
 317        struct address_space *mapping = page->mapping;
 318        int error;
 319
 320        spin_lock_irq(&mapping->tree_lock);
 321        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 322        page->mapping = NULL;
 323        mapping->nrpages--;
 324        __dec_zone_page_state(page, NR_FILE_PAGES);
 325        __dec_zone_page_state(page, NR_SHMEM);
 326        spin_unlock_irq(&mapping->tree_lock);
 327        page_cache_release(page);
 328        BUG_ON(error);
 329}
 330
 331/*
 332 * Remove swap entry from radix tree, free the swap and its page cache.
 333 */
 334static int shmem_free_swap(struct address_space *mapping,
 335                           pgoff_t index, void *radswap)
 336{
 337        void *old;
 338
 339        spin_lock_irq(&mapping->tree_lock);
 340        old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 341        spin_unlock_irq(&mapping->tree_lock);
 342        if (old != radswap)
 343                return -ENOENT;
 344        free_swap_and_cache(radix_to_swp_entry(radswap));
 345        return 0;
 346}
 347
 348/*
 349 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 350 */
 351void shmem_unlock_mapping(struct address_space *mapping)
 352{
 353        struct pagevec pvec;
 354        pgoff_t indices[PAGEVEC_SIZE];
 355        pgoff_t index = 0;
 356
 357        pagevec_init(&pvec, 0);
 358        /*
 359         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 360         */
 361        while (!mapping_unevictable(mapping)) {
 362                /*
 363                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 364                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 365                 */
 366                pvec.nr = find_get_entries(mapping, index,
 367                                           PAGEVEC_SIZE, pvec.pages, indices);
 368                if (!pvec.nr)
 369                        break;
 370                index = indices[pvec.nr - 1] + 1;
 371                pagevec_remove_exceptionals(&pvec);
 372                check_move_unevictable_pages(pvec.pages, pvec.nr);
 373                pagevec_release(&pvec);
 374                cond_resched();
 375        }
 376}
 377
 378/*
 379 * Remove range of pages and swap entries from radix tree, and free them.
 380 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 381 */
 382static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 383                                                                 bool unfalloc)
 384{
 385        struct address_space *mapping = inode->i_mapping;
 386        struct shmem_inode_info *info = SHMEM_I(inode);
 387        pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 388        pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
 389        unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 390        unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 391        struct pagevec pvec;
 392        pgoff_t indices[PAGEVEC_SIZE];
 393        long nr_swaps_freed = 0;
 394        pgoff_t index;
 395        int i;
 396
 397        if (lend == -1)
 398                end = -1;       /* unsigned, so actually very big */
 399
 400        pagevec_init(&pvec, 0);
 401        index = start;
 402        while (index < end) {
 403                pvec.nr = find_get_entries(mapping, index,
 404                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 405                        pvec.pages, indices);
 406                if (!pvec.nr)
 407                        break;
 408                mem_cgroup_uncharge_start();
 409                for (i = 0; i < pagevec_count(&pvec); i++) {
 410                        struct page *page = pvec.pages[i];
 411
 412                        index = indices[i];
 413                        if (index >= end)
 414                                break;
 415
 416                        if (radix_tree_exceptional_entry(page)) {
 417                                if (unfalloc)
 418                                        continue;
 419                                nr_swaps_freed += !shmem_free_swap(mapping,
 420                                                                index, page);
 421                                continue;
 422                        }
 423
 424                        if (!trylock_page(page))
 425                                continue;
 426                        if (!unfalloc || !PageUptodate(page)) {
 427                                if (page->mapping == mapping) {
 428                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 429                                        truncate_inode_page(mapping, page);
 430                                }
 431                        }
 432                        unlock_page(page);
 433                }
 434                pagevec_remove_exceptionals(&pvec);
 435                pagevec_release(&pvec);
 436                mem_cgroup_uncharge_end();
 437                cond_resched();
 438                index++;
 439        }
 440
 441        if (partial_start) {
 442                struct page *page = NULL;
 443                shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 444                if (page) {
 445                        unsigned int top = PAGE_CACHE_SIZE;
 446                        if (start > end) {
 447                                top = partial_end;
 448                                partial_end = 0;
 449                        }
 450                        zero_user_segment(page, partial_start, top);
 451                        set_page_dirty(page);
 452                        unlock_page(page);
 453                        page_cache_release(page);
 454                }
 455        }
 456        if (partial_end) {
 457                struct page *page = NULL;
 458                shmem_getpage(inode, end, &page, SGP_READ, NULL);
 459                if (page) {
 460                        zero_user_segment(page, 0, partial_end);
 461                        set_page_dirty(page);
 462                        unlock_page(page);
 463                        page_cache_release(page);
 464                }
 465        }
 466        if (start >= end)
 467                return;
 468
 469        index = start;
 470        for ( ; ; ) {
 471                cond_resched();
 472
 473                pvec.nr = find_get_entries(mapping, index,
 474                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 475                                pvec.pages, indices);
 476                if (!pvec.nr) {
 477                        if (index == start || unfalloc)
 478                                break;
 479                        index = start;
 480                        continue;
 481                }
 482                if ((index == start || unfalloc) && indices[0] >= end) {
 483                        pagevec_remove_exceptionals(&pvec);
 484                        pagevec_release(&pvec);
 485                        break;
 486                }
 487                mem_cgroup_uncharge_start();
 488                for (i = 0; i < pagevec_count(&pvec); i++) {
 489                        struct page *page = pvec.pages[i];
 490
 491                        index = indices[i];
 492                        if (index >= end)
 493                                break;
 494
 495                        if (radix_tree_exceptional_entry(page)) {
 496                                if (unfalloc)
 497                                        continue;
 498                                nr_swaps_freed += !shmem_free_swap(mapping,
 499                                                                index, page);
 500                                continue;
 501                        }
 502
 503                        lock_page(page);
 504                        if (!unfalloc || !PageUptodate(page)) {
 505                                if (page->mapping == mapping) {
 506                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 507                                        truncate_inode_page(mapping, page);
 508                                }
 509                        }
 510                        unlock_page(page);
 511                }
 512                pagevec_remove_exceptionals(&pvec);
 513                pagevec_release(&pvec);
 514                mem_cgroup_uncharge_end();
 515                index++;
 516        }
 517
 518        spin_lock(&info->lock);
 519        info->swapped -= nr_swaps_freed;
 520        shmem_recalc_inode(inode);
 521        spin_unlock(&info->lock);
 522}
 523
 524void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 525{
 526        shmem_undo_range(inode, lstart, lend, false);
 527        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 528}
 529EXPORT_SYMBOL_GPL(shmem_truncate_range);
 530
 531static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 532{
 533        struct inode *inode = dentry->d_inode;
 534        int error;
 535
 536        error = inode_change_ok(inode, attr);
 537        if (error)
 538                return error;
 539
 540        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 541                loff_t oldsize = inode->i_size;
 542                loff_t newsize = attr->ia_size;
 543
 544                if (newsize != oldsize) {
 545                        i_size_write(inode, newsize);
 546                        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 547                }
 548                if (newsize < oldsize) {
 549                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 550                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 551                        shmem_truncate_range(inode, newsize, (loff_t)-1);
 552                        /* unmap again to remove racily COWed private pages */
 553                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 554                }
 555        }
 556
 557        setattr_copy(inode, attr);
 558        if (attr->ia_valid & ATTR_MODE)
 559                error = posix_acl_chmod(inode, inode->i_mode);
 560        return error;
 561}
 562
 563static void shmem_evict_inode(struct inode *inode)
 564{
 565        struct shmem_inode_info *info = SHMEM_I(inode);
 566
 567        if (inode->i_mapping->a_ops == &shmem_aops) {
 568                shmem_unacct_size(info->flags, inode->i_size);
 569                inode->i_size = 0;
 570                shmem_truncate_range(inode, 0, (loff_t)-1);
 571                if (!list_empty(&info->swaplist)) {
 572                        mutex_lock(&shmem_swaplist_mutex);
 573                        list_del_init(&info->swaplist);
 574                        mutex_unlock(&shmem_swaplist_mutex);
 575                }
 576        } else
 577                kfree(info->symlink);
 578
 579        simple_xattrs_free(&info->xattrs);
 580        WARN_ON(inode->i_blocks);
 581        shmem_free_inode(inode->i_sb);
 582        clear_inode(inode);
 583}
 584
 585/*
 586 * If swap found in inode, free it and move page from swapcache to filecache.
 587 */
 588static int shmem_unuse_inode(struct shmem_inode_info *info,
 589                             swp_entry_t swap, struct page **pagep)
 590{
 591        struct address_space *mapping = info->vfs_inode.i_mapping;
 592        void *radswap;
 593        pgoff_t index;
 594        gfp_t gfp;
 595        int error = 0;
 596
 597        radswap = swp_to_radix_entry(swap);
 598        index = radix_tree_locate_item(&mapping->page_tree, radswap);
 599        if (index == -1)
 600                return 0;
 601
 602        /*
 603         * Move _head_ to start search for next from here.
 604         * But be careful: shmem_evict_inode checks list_empty without taking
 605         * mutex, and there's an instant in list_move_tail when info->swaplist
 606         * would appear empty, if it were the only one on shmem_swaplist.
 607         */
 608        if (shmem_swaplist.next != &info->swaplist)
 609                list_move_tail(&shmem_swaplist, &info->swaplist);
 610
 611        gfp = mapping_gfp_mask(mapping);
 612        if (shmem_should_replace_page(*pagep, gfp)) {
 613                mutex_unlock(&shmem_swaplist_mutex);
 614                error = shmem_replace_page(pagep, gfp, info, index);
 615                mutex_lock(&shmem_swaplist_mutex);
 616                /*
 617                 * We needed to drop mutex to make that restrictive page
 618                 * allocation, but the inode might have been freed while we
 619                 * dropped it: although a racing shmem_evict_inode() cannot
 620                 * complete without emptying the radix_tree, our page lock
 621                 * on this swapcache page is not enough to prevent that -
 622                 * free_swap_and_cache() of our swap entry will only
 623                 * trylock_page(), removing swap from radix_tree whatever.
 624                 *
 625                 * We must not proceed to shmem_add_to_page_cache() if the
 626                 * inode has been freed, but of course we cannot rely on
 627                 * inode or mapping or info to check that.  However, we can
 628                 * safely check if our swap entry is still in use (and here
 629                 * it can't have got reused for another page): if it's still
 630                 * in use, then the inode cannot have been freed yet, and we
 631                 * can safely proceed (if it's no longer in use, that tells
 632                 * nothing about the inode, but we don't need to unuse swap).
 633                 */
 634                if (!page_swapcount(*pagep))
 635                        error = -ENOENT;
 636        }
 637
 638        /*
 639         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 640         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 641         * beneath us (pagelock doesn't help until the page is in pagecache).
 642         */
 643        if (!error)
 644                error = shmem_add_to_page_cache(*pagep, mapping, index,
 645                                                GFP_NOWAIT, radswap);
 646        if (error != -ENOMEM) {
 647                /*
 648                 * Truncation and eviction use free_swap_and_cache(), which
 649                 * only does trylock page: if we raced, best clean up here.
 650                 */
 651                delete_from_swap_cache(*pagep);
 652                set_page_dirty(*pagep);
 653                if (!error) {
 654                        spin_lock(&info->lock);
 655                        info->swapped--;
 656                        spin_unlock(&info->lock);
 657                        swap_free(swap);
 658                }
 659                error = 1;      /* not an error, but entry was found */
 660        }
 661        return error;
 662}
 663
 664/*
 665 * Search through swapped inodes to find and replace swap by page.
 666 */
 667int shmem_unuse(swp_entry_t swap, struct page *page)
 668{
 669        struct list_head *this, *next;
 670        struct shmem_inode_info *info;
 671        int found = 0;
 672        int error = 0;
 673
 674        /*
 675         * There's a faint possibility that swap page was replaced before
 676         * caller locked it: caller will come back later with the right page.
 677         */
 678        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 679                goto out;
 680
 681        /*
 682         * Charge page using GFP_KERNEL while we can wait, before taking
 683         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 684         * Charged back to the user (not to caller) when swap account is used.
 685         */
 686        error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
 687        if (error)
 688                goto out;
 689        /* No radix_tree_preload: swap entry keeps a place for page in tree */
 690
 691        mutex_lock(&shmem_swaplist_mutex);
 692        list_for_each_safe(this, next, &shmem_swaplist) {
 693                info = list_entry(this, struct shmem_inode_info, swaplist);
 694                if (info->swapped)
 695                        found = shmem_unuse_inode(info, swap, &page);
 696                else
 697                        list_del_init(&info->swaplist);
 698                cond_resched();
 699                if (found)
 700                        break;
 701        }
 702        mutex_unlock(&shmem_swaplist_mutex);
 703
 704        if (found < 0)
 705                error = found;
 706out:
 707        unlock_page(page);
 708        page_cache_release(page);
 709        return error;
 710}
 711
 712/*
 713 * Move the page from the page cache to the swap cache.
 714 */
 715static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 716{
 717        struct shmem_inode_info *info;
 718        struct address_space *mapping;
 719        struct inode *inode;
 720        swp_entry_t swap;
 721        pgoff_t index;
 722
 723        BUG_ON(!PageLocked(page));
 724        mapping = page->mapping;
 725        index = page->index;
 726        inode = mapping->host;
 727        info = SHMEM_I(inode);
 728        if (info->flags & VM_LOCKED)
 729                goto redirty;
 730        if (!total_swap_pages)
 731                goto redirty;
 732
 733        /*
 734         * shmem_backing_dev_info's capabilities prevent regular writeback or
 735         * sync from ever calling shmem_writepage; but a stacking filesystem
 736         * might use ->writepage of its underlying filesystem, in which case
 737         * tmpfs should write out to swap only in response to memory pressure,
 738         * and not for the writeback threads or sync.
 739         */
 740        if (!wbc->for_reclaim) {
 741                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
 742                goto redirty;
 743        }
 744
 745        /*
 746         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 747         * value into swapfile.c, the only way we can correctly account for a
 748         * fallocated page arriving here is now to initialize it and write it.
 749         *
 750         * That's okay for a page already fallocated earlier, but if we have
 751         * not yet completed the fallocation, then (a) we want to keep track
 752         * of this page in case we have to undo it, and (b) it may not be a
 753         * good idea to continue anyway, once we're pushing into swap.  So
 754         * reactivate the page, and let shmem_fallocate() quit when too many.
 755         */
 756        if (!PageUptodate(page)) {
 757                if (inode->i_private) {
 758                        struct shmem_falloc *shmem_falloc;
 759                        spin_lock(&inode->i_lock);
 760                        shmem_falloc = inode->i_private;
 761                        if (shmem_falloc &&
 762                            index >= shmem_falloc->start &&
 763                            index < shmem_falloc->next)
 764                                shmem_falloc->nr_unswapped++;
 765                        else
 766                                shmem_falloc = NULL;
 767                        spin_unlock(&inode->i_lock);
 768                        if (shmem_falloc)
 769                                goto redirty;
 770                }
 771                clear_highpage(page);
 772                flush_dcache_page(page);
 773                SetPageUptodate(page);
 774        }
 775
 776        swap = get_swap_page();
 777        if (!swap.val)
 778                goto redirty;
 779
 780        /*
 781         * Add inode to shmem_unuse()'s list of swapped-out inodes,
 782         * if it's not already there.  Do it now before the page is
 783         * moved to swap cache, when its pagelock no longer protects
 784         * the inode from eviction.  But don't unlock the mutex until
 785         * we've incremented swapped, because shmem_unuse_inode() will
 786         * prune a !swapped inode from the swaplist under this mutex.
 787         */
 788        mutex_lock(&shmem_swaplist_mutex);
 789        if (list_empty(&info->swaplist))
 790                list_add_tail(&info->swaplist, &shmem_swaplist);
 791
 792        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 793                swap_shmem_alloc(swap);
 794                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 795
 796                spin_lock(&info->lock);
 797                info->swapped++;
 798                shmem_recalc_inode(inode);
 799                spin_unlock(&info->lock);
 800
 801                mutex_unlock(&shmem_swaplist_mutex);
 802                BUG_ON(page_mapped(page));
 803                swap_writepage(page, wbc);
 804                return 0;
 805        }
 806
 807        mutex_unlock(&shmem_swaplist_mutex);
 808        swapcache_free(swap, NULL);
 809redirty:
 810        set_page_dirty(page);
 811        if (wbc->for_reclaim)
 812                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
 813        unlock_page(page);
 814        return 0;
 815}
 816
 817#ifdef CONFIG_NUMA
 818#ifdef CONFIG_TMPFS
 819static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 820{
 821        char buffer[64];
 822
 823        if (!mpol || mpol->mode == MPOL_DEFAULT)
 824                return;         /* show nothing */
 825
 826        mpol_to_str(buffer, sizeof(buffer), mpol);
 827
 828        seq_printf(seq, ",mpol=%s", buffer);
 829}
 830
 831static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 832{
 833        struct mempolicy *mpol = NULL;
 834        if (sbinfo->mpol) {
 835                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
 836                mpol = sbinfo->mpol;
 837                mpol_get(mpol);
 838                spin_unlock(&sbinfo->stat_lock);
 839        }
 840        return mpol;
 841}
 842#endif /* CONFIG_TMPFS */
 843
 844static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 845                        struct shmem_inode_info *info, pgoff_t index)
 846{
 847        struct vm_area_struct pvma;
 848        struct page *page;
 849
 850        /* Create a pseudo vma that just contains the policy */
 851        pvma.vm_start = 0;
 852        /* Bias interleave by inode number to distribute better across nodes */
 853        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 854        pvma.vm_ops = NULL;
 855        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 856
 857        page = swapin_readahead(swap, gfp, &pvma, 0);
 858
 859        /* Drop reference taken by mpol_shared_policy_lookup() */
 860        mpol_cond_put(pvma.vm_policy);
 861
 862        return page;
 863}
 864
 865static struct page *shmem_alloc_page(gfp_t gfp,
 866                        struct shmem_inode_info *info, pgoff_t index)
 867{
 868        struct vm_area_struct pvma;
 869        struct page *page;
 870
 871        /* Create a pseudo vma that just contains the policy */
 872        pvma.vm_start = 0;
 873        /* Bias interleave by inode number to distribute better across nodes */
 874        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 875        pvma.vm_ops = NULL;
 876        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 877
 878        page = alloc_page_vma(gfp, &pvma, 0);
 879
 880        /* Drop reference taken by mpol_shared_policy_lookup() */
 881        mpol_cond_put(pvma.vm_policy);
 882
 883        return page;
 884}
 885#else /* !CONFIG_NUMA */
 886#ifdef CONFIG_TMPFS
 887static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 888{
 889}
 890#endif /* CONFIG_TMPFS */
 891
 892static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 893                        struct shmem_inode_info *info, pgoff_t index)
 894{
 895        return swapin_readahead(swap, gfp, NULL, 0);
 896}
 897
 898static inline struct page *shmem_alloc_page(gfp_t gfp,
 899                        struct shmem_inode_info *info, pgoff_t index)
 900{
 901        return alloc_page(gfp);
 902}
 903#endif /* CONFIG_NUMA */
 904
 905#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
 906static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 907{
 908        return NULL;
 909}
 910#endif
 911
 912/*
 913 * When a page is moved from swapcache to shmem filecache (either by the
 914 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
 915 * shmem_unuse_inode()), it may have been read in earlier from swap, in
 916 * ignorance of the mapping it belongs to.  If that mapping has special
 917 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
 918 * we may need to copy to a suitable page before moving to filecache.
 919 *
 920 * In a future release, this may well be extended to respect cpuset and
 921 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
 922 * but for now it is a simple matter of zone.
 923 */
 924static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
 925{
 926        return page_zonenum(page) > gfp_zone(gfp);
 927}
 928
 929static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 930                                struct shmem_inode_info *info, pgoff_t index)
 931{
 932        struct page *oldpage, *newpage;
 933        struct address_space *swap_mapping;
 934        pgoff_t swap_index;
 935        int error;
 936
 937        oldpage = *pagep;
 938        swap_index = page_private(oldpage);
 939        swap_mapping = page_mapping(oldpage);
 940
 941        /*
 942         * We have arrived here because our zones are constrained, so don't
 943         * limit chance of success by further cpuset and node constraints.
 944         */
 945        gfp &= ~GFP_CONSTRAINT_MASK;
 946        newpage = shmem_alloc_page(gfp, info, index);
 947        if (!newpage)
 948                return -ENOMEM;
 949
 950        page_cache_get(newpage);
 951        copy_highpage(newpage, oldpage);
 952        flush_dcache_page(newpage);
 953
 954        __set_page_locked(newpage);
 955        SetPageUptodate(newpage);
 956        SetPageSwapBacked(newpage);
 957        set_page_private(newpage, swap_index);
 958        SetPageSwapCache(newpage);
 959
 960        /*
 961         * Our caller will very soon move newpage out of swapcache, but it's
 962         * a nice clean interface for us to replace oldpage by newpage there.
 963         */
 964        spin_lock_irq(&swap_mapping->tree_lock);
 965        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
 966                                                                   newpage);
 967        if (!error) {
 968                __inc_zone_page_state(newpage, NR_FILE_PAGES);
 969                __dec_zone_page_state(oldpage, NR_FILE_PAGES);
 970        }
 971        spin_unlock_irq(&swap_mapping->tree_lock);
 972
 973        if (unlikely(error)) {
 974                /*
 975                 * Is this possible?  I think not, now that our callers check
 976                 * both PageSwapCache and page_private after getting page lock;
 977                 * but be defensive.  Reverse old to newpage for clear and free.
 978                 */
 979                oldpage = newpage;
 980        } else {
 981                mem_cgroup_replace_page_cache(oldpage, newpage);
 982                lru_cache_add_anon(newpage);
 983                *pagep = newpage;
 984        }
 985
 986        ClearPageSwapCache(oldpage);
 987        set_page_private(oldpage, 0);
 988
 989        unlock_page(oldpage);
 990        page_cache_release(oldpage);
 991        page_cache_release(oldpage);
 992        return error;
 993}
 994
 995/*
 996 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
 997 *
 998 * If we allocate a new one we do not mark it dirty. That's up to the
 999 * vm. If we swap it in we mark it dirty since we also free the swap
1000 * entry since a page cannot live in both the swap and page cache
1001 */
1002static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1003        struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1004{
1005        struct address_space *mapping = inode->i_mapping;
1006        struct shmem_inode_info *info;
1007        struct shmem_sb_info *sbinfo;
1008        struct page *page;
1009        swp_entry_t swap;
1010        int error;
1011        int once = 0;
1012        int alloced = 0;
1013
1014        if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1015                return -EFBIG;
1016repeat:
1017        swap.val = 0;
1018        page = find_lock_entry(mapping, index);
1019        if (radix_tree_exceptional_entry(page)) {
1020                swap = radix_to_swp_entry(page);
1021                page = NULL;
1022        }
1023
1024        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1025            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1026                error = -EINVAL;
1027                goto failed;
1028        }
1029
1030        /* fallocated page? */
1031        if (page && !PageUptodate(page)) {
1032                if (sgp != SGP_READ)
1033                        goto clear;
1034                unlock_page(page);
1035                page_cache_release(page);
1036                page = NULL;
1037        }
1038        if (page || (sgp == SGP_READ && !swap.val)) {
1039                *pagep = page;
1040                return 0;
1041        }
1042
1043        /*
1044         * Fast cache lookup did not find it:
1045         * bring it back from swap or allocate.
1046         */
1047        info = SHMEM_I(inode);
1048        sbinfo = SHMEM_SB(inode->i_sb);
1049
1050        if (swap.val) {
1051                /* Look it up and read it in.. */
1052                page = lookup_swap_cache(swap);
1053                if (!page) {
1054                        /* here we actually do the io */
1055                        if (fault_type)
1056                                *fault_type |= VM_FAULT_MAJOR;
1057                        page = shmem_swapin(swap, gfp, info, index);
1058                        if (!page) {
1059                                error = -ENOMEM;
1060                                goto failed;
1061                        }
1062                }
1063
1064                /* We have to do this with page locked to prevent races */
1065                lock_page(page);
1066                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1067                    !shmem_confirm_swap(mapping, index, swap)) {
1068                        error = -EEXIST;        /* try again */
1069                        goto unlock;
1070                }
1071                if (!PageUptodate(page)) {
1072                        error = -EIO;
1073                        goto failed;
1074                }
1075                wait_on_page_writeback(page);
1076
1077                if (shmem_should_replace_page(page, gfp)) {
1078                        error = shmem_replace_page(&page, gfp, info, index);
1079                        if (error)
1080                                goto failed;
1081                }
1082
1083                error = mem_cgroup_charge_file(page, current->mm,
1084                                                gfp & GFP_RECLAIM_MASK);
1085                if (!error) {
1086                        error = shmem_add_to_page_cache(page, mapping, index,
1087                                                gfp, swp_to_radix_entry(swap));
1088                        /*
1089                         * We already confirmed swap under page lock, and make
1090                         * no memory allocation here, so usually no possibility
1091                         * of error; but free_swap_and_cache() only trylocks a
1092                         * page, so it is just possible that the entry has been
1093                         * truncated or holepunched since swap was confirmed.
1094                         * shmem_undo_range() will have done some of the
1095                         * unaccounting, now delete_from_swap_cache() will do
1096                         * the rest (including mem_cgroup_uncharge_swapcache).
1097                         * Reset swap.val? No, leave it so "failed" goes back to
1098                         * "repeat": reading a hole and writing should succeed.
1099                         */
1100                        if (error)
1101                                delete_from_swap_cache(page);
1102                }
1103                if (error)
1104                        goto failed;
1105
1106                spin_lock(&info->lock);
1107                info->swapped--;
1108                shmem_recalc_inode(inode);
1109                spin_unlock(&info->lock);
1110
1111                delete_from_swap_cache(page);
1112                set_page_dirty(page);
1113                swap_free(swap);
1114
1115        } else {
1116                if (shmem_acct_block(info->flags)) {
1117                        error = -ENOSPC;
1118                        goto failed;
1119                }
1120                if (sbinfo->max_blocks) {
1121                        if (percpu_counter_compare(&sbinfo->used_blocks,
1122                                                sbinfo->max_blocks) >= 0) {
1123                                error = -ENOSPC;
1124                                goto unacct;
1125                        }
1126                        percpu_counter_inc(&sbinfo->used_blocks);
1127                }
1128
1129                page = shmem_alloc_page(gfp, info, index);
1130                if (!page) {
1131                        error = -ENOMEM;
1132                        goto decused;
1133                }
1134
1135                SetPageSwapBacked(page);
1136                __set_page_locked(page);
1137                error = mem_cgroup_charge_file(page, current->mm,
1138                                                gfp & GFP_RECLAIM_MASK);
1139                if (error)
1140                        goto decused;
1141                error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1142                if (!error) {
1143                        error = shmem_add_to_page_cache(page, mapping, index,
1144                                                        gfp, NULL);
1145                        radix_tree_preload_end();
1146                }
1147                if (error) {
1148                        mem_cgroup_uncharge_cache_page(page);
1149                        goto decused;
1150                }
1151                lru_cache_add_anon(page);
1152
1153                spin_lock(&info->lock);
1154                info->alloced++;
1155                inode->i_blocks += BLOCKS_PER_PAGE;
1156                shmem_recalc_inode(inode);
1157                spin_unlock(&info->lock);
1158                alloced = true;
1159
1160                /*
1161                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1162                 */
1163                if (sgp == SGP_FALLOC)
1164                        sgp = SGP_WRITE;
1165clear:
1166                /*
1167                 * Let SGP_WRITE caller clear ends if write does not fill page;
1168                 * but SGP_FALLOC on a page fallocated earlier must initialize
1169                 * it now, lest undo on failure cancel our earlier guarantee.
1170                 */
1171                if (sgp != SGP_WRITE) {
1172                        clear_highpage(page);
1173                        flush_dcache_page(page);
1174                        SetPageUptodate(page);
1175                }
1176                if (sgp == SGP_DIRTY)
1177                        set_page_dirty(page);
1178        }
1179
1180        /* Perhaps the file has been truncated since we checked */
1181        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1182            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1183                error = -EINVAL;
1184                if (alloced)
1185                        goto trunc;
1186                else
1187                        goto failed;
1188        }
1189        *pagep = page;
1190        return 0;
1191
1192        /*
1193         * Error recovery.
1194         */
1195trunc:
1196        info = SHMEM_I(inode);
1197        ClearPageDirty(page);
1198        delete_from_page_cache(page);
1199        spin_lock(&info->lock);
1200        info->alloced--;
1201        inode->i_blocks -= BLOCKS_PER_PAGE;
1202        spin_unlock(&info->lock);
1203decused:
1204        sbinfo = SHMEM_SB(inode->i_sb);
1205        if (sbinfo->max_blocks)
1206                percpu_counter_add(&sbinfo->used_blocks, -1);
1207unacct:
1208        shmem_unacct_blocks(info->flags, 1);
1209failed:
1210        if (swap.val && error != -EINVAL &&
1211            !shmem_confirm_swap(mapping, index, swap))
1212                error = -EEXIST;
1213unlock:
1214        if (page) {
1215                unlock_page(page);
1216                page_cache_release(page);
1217        }
1218        if (error == -ENOSPC && !once++) {
1219                info = SHMEM_I(inode);
1220                spin_lock(&info->lock);
1221                shmem_recalc_inode(inode);
1222                spin_unlock(&info->lock);
1223                goto repeat;
1224        }
1225        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1226                goto repeat;
1227        return error;
1228}
1229
1230static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1231{
1232        struct inode *inode = file_inode(vma->vm_file);
1233        int error;
1234        int ret = VM_FAULT_LOCKED;
1235
1236        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1237        if (error)
1238                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1239
1240        if (ret & VM_FAULT_MAJOR) {
1241                count_vm_event(PGMAJFAULT);
1242                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1243        }
1244        return ret;
1245}
1246
1247#ifdef CONFIG_NUMA
1248static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1249{
1250        struct inode *inode = file_inode(vma->vm_file);
1251        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1252}
1253
1254static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1255                                          unsigned long addr)
1256{
1257        struct inode *inode = file_inode(vma->vm_file);
1258        pgoff_t index;
1259
1260        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1261        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1262}
1263#endif
1264
1265int shmem_lock(struct file *file, int lock, struct user_struct *user)
1266{
1267        struct inode *inode = file_inode(file);
1268        struct shmem_inode_info *info = SHMEM_I(inode);
1269        int retval = -ENOMEM;
1270
1271        spin_lock(&info->lock);
1272        if (lock && !(info->flags & VM_LOCKED)) {
1273                if (!user_shm_lock(inode->i_size, user))
1274                        goto out_nomem;
1275                info->flags |= VM_LOCKED;
1276                mapping_set_unevictable(file->f_mapping);
1277        }
1278        if (!lock && (info->flags & VM_LOCKED) && user) {
1279                user_shm_unlock(inode->i_size, user);
1280                info->flags &= ~VM_LOCKED;
1281                mapping_clear_unevictable(file->f_mapping);
1282        }
1283        retval = 0;
1284
1285out_nomem:
1286        spin_unlock(&info->lock);
1287        return retval;
1288}
1289
1290static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1291{
1292        file_accessed(file);
1293        vma->vm_ops = &shmem_vm_ops;
1294        return 0;
1295}
1296
1297static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1298                                     umode_t mode, dev_t dev, unsigned long flags)
1299{
1300        struct inode *inode;
1301        struct shmem_inode_info *info;
1302        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1303
1304        if (shmem_reserve_inode(sb))
1305                return NULL;
1306
1307        inode = new_inode(sb);
1308        if (inode) {
1309                inode->i_ino = get_next_ino();
1310                inode_init_owner(inode, dir, mode);
1311                inode->i_blocks = 0;
1312                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1313                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1314                inode->i_generation = get_seconds();
1315                info = SHMEM_I(inode);
1316                memset(info, 0, (char *)inode - (char *)info);
1317                spin_lock_init(&info->lock);
1318                info->flags = flags & VM_NORESERVE;
1319                INIT_LIST_HEAD(&info->swaplist);
1320                simple_xattrs_init(&info->xattrs);
1321                cache_no_acl(inode);
1322
1323                switch (mode & S_IFMT) {
1324                default:
1325                        inode->i_op = &shmem_special_inode_operations;
1326                        init_special_inode(inode, mode, dev);
1327                        break;
1328                case S_IFREG:
1329                        inode->i_mapping->a_ops = &shmem_aops;
1330                        inode->i_op = &shmem_inode_operations;
1331                        inode->i_fop = &shmem_file_operations;
1332                        mpol_shared_policy_init(&info->policy,
1333                                                 shmem_get_sbmpol(sbinfo));
1334                        break;
1335                case S_IFDIR:
1336                        inc_nlink(inode);
1337                        /* Some things misbehave if size == 0 on a directory */
1338                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1339                        inode->i_op = &shmem_dir_inode_operations;
1340                        inode->i_fop = &simple_dir_operations;
1341                        break;
1342                case S_IFLNK:
1343                        /*
1344                         * Must not load anything in the rbtree,
1345                         * mpol_free_shared_policy will not be called.
1346                         */
1347                        mpol_shared_policy_init(&info->policy, NULL);
1348                        break;
1349                }
1350        } else
1351                shmem_free_inode(sb);
1352        return inode;
1353}
1354
1355bool shmem_mapping(struct address_space *mapping)
1356{
1357        return mapping->backing_dev_info == &shmem_backing_dev_info;
1358}
1359
1360#ifdef CONFIG_TMPFS
1361static const struct inode_operations shmem_symlink_inode_operations;
1362static const struct inode_operations shmem_short_symlink_operations;
1363
1364#ifdef CONFIG_TMPFS_XATTR
1365static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1366#else
1367#define shmem_initxattrs NULL
1368#endif
1369
1370static int
1371shmem_write_begin(struct file *file, struct address_space *mapping,
1372                        loff_t pos, unsigned len, unsigned flags,
1373                        struct page **pagep, void **fsdata)
1374{
1375        struct inode *inode = mapping->host;
1376        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1377        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1378}
1379
1380static int
1381shmem_write_end(struct file *file, struct address_space *mapping,
1382                        loff_t pos, unsigned len, unsigned copied,
1383                        struct page *page, void *fsdata)
1384{
1385        struct inode *inode = mapping->host;
1386
1387        if (pos + copied > inode->i_size)
1388                i_size_write(inode, pos + copied);
1389
1390        if (!PageUptodate(page)) {
1391                if (copied < PAGE_CACHE_SIZE) {
1392                        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1393                        zero_user_segments(page, 0, from,
1394                                        from + copied, PAGE_CACHE_SIZE);
1395                }
1396                SetPageUptodate(page);
1397        }
1398        set_page_dirty(page);
1399        unlock_page(page);
1400        page_cache_release(page);
1401
1402        return copied;
1403}
1404
1405static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1406                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1407{
1408        struct file *file = iocb->ki_filp;
1409        struct inode *inode = file_inode(file);
1410        struct address_space *mapping = inode->i_mapping;
1411        pgoff_t index;
1412        unsigned long offset;
1413        enum sgp_type sgp = SGP_READ;
1414        int error = 0;
1415        ssize_t retval;
1416        size_t count;
1417        loff_t *ppos = &iocb->ki_pos;
1418        struct iov_iter iter;
1419
1420        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421        if (retval)
1422                return retval;
1423        iov_iter_init(&iter, iov, nr_segs, count, 0);
1424
1425        /*
1426         * Might this read be for a stacking filesystem?  Then when reading
1427         * holes of a sparse file, we actually need to allocate those pages,
1428         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1429         */
1430        if (segment_eq(get_fs(), KERNEL_DS))
1431                sgp = SGP_DIRTY;
1432
1433        index = *ppos >> PAGE_CACHE_SHIFT;
1434        offset = *ppos & ~PAGE_CACHE_MASK;
1435
1436        for (;;) {
1437                struct page *page = NULL;
1438                pgoff_t end_index;
1439                unsigned long nr, ret;
1440                loff_t i_size = i_size_read(inode);
1441
1442                end_index = i_size >> PAGE_CACHE_SHIFT;
1443                if (index > end_index)
1444                        break;
1445                if (index == end_index) {
1446                        nr = i_size & ~PAGE_CACHE_MASK;
1447                        if (nr <= offset)
1448                                break;
1449                }
1450
1451                error = shmem_getpage(inode, index, &page, sgp, NULL);
1452                if (error) {
1453                        if (error == -EINVAL)
1454                                error = 0;
1455                        break;
1456                }
1457                if (page)
1458                        unlock_page(page);
1459
1460                /*
1461                 * We must evaluate after, since reads (unlike writes)
1462                 * are called without i_mutex protection against truncate
1463                 */
1464                nr = PAGE_CACHE_SIZE;
1465                i_size = i_size_read(inode);
1466                end_index = i_size >> PAGE_CACHE_SHIFT;
1467                if (index == end_index) {
1468                        nr = i_size & ~PAGE_CACHE_MASK;
1469                        if (nr <= offset) {
1470                                if (page)
1471                                        page_cache_release(page);
1472                                break;
1473                        }
1474                }
1475                nr -= offset;
1476
1477                if (page) {
1478                        /*
1479                         * If users can be writing to this page using arbitrary
1480                         * virtual addresses, take care about potential aliasing
1481                         * before reading the page on the kernel side.
1482                         */
1483                        if (mapping_writably_mapped(mapping))
1484                                flush_dcache_page(page);
1485                        /*
1486                         * Mark the page accessed if we read the beginning.
1487                         */
1488                        if (!offset)
1489                                mark_page_accessed(page);
1490                } else {
1491                        page = ZERO_PAGE(0);
1492                        page_cache_get(page);
1493                }
1494
1495                /*
1496                 * Ok, we have the page, and it's up-to-date, so
1497                 * now we can copy it to user space...
1498                 */
1499                ret = copy_page_to_iter(page, offset, nr, &iter);
1500                retval += ret;
1501                offset += ret;
1502                index += offset >> PAGE_CACHE_SHIFT;
1503                offset &= ~PAGE_CACHE_MASK;
1504
1505                page_cache_release(page);
1506                if (!iov_iter_count(&iter))
1507                        break;
1508                if (ret < nr) {
1509                        error = -EFAULT;
1510                        break;
1511                }
1512                cond_resched();
1513        }
1514
1515        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1516        file_accessed(file);
1517        return retval ? retval : error;
1518}
1519
1520static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1521                                struct pipe_inode_info *pipe, size_t len,
1522                                unsigned int flags)
1523{
1524        struct address_space *mapping = in->f_mapping;
1525        struct inode *inode = mapping->host;
1526        unsigned int loff, nr_pages, req_pages;
1527        struct page *pages[PIPE_DEF_BUFFERS];
1528        struct partial_page partial[PIPE_DEF_BUFFERS];
1529        struct page *page;
1530        pgoff_t index, end_index;
1531        loff_t isize, left;
1532        int error, page_nr;
1533        struct splice_pipe_desc spd = {
1534                .pages = pages,
1535                .partial = partial,
1536                .nr_pages_max = PIPE_DEF_BUFFERS,
1537                .flags = flags,
1538                .ops = &page_cache_pipe_buf_ops,
1539                .spd_release = spd_release_page,
1540        };
1541
1542        isize = i_size_read(inode);
1543        if (unlikely(*ppos >= isize))
1544                return 0;
1545
1546        left = isize - *ppos;
1547        if (unlikely(left < len))
1548                len = left;
1549
1550        if (splice_grow_spd(pipe, &spd))
1551                return -ENOMEM;
1552
1553        index = *ppos >> PAGE_CACHE_SHIFT;
1554        loff = *ppos & ~PAGE_CACHE_MASK;
1555        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1556        nr_pages = min(req_pages, spd.nr_pages_max);
1557
1558        spd.nr_pages = find_get_pages_contig(mapping, index,
1559                                                nr_pages, spd.pages);
1560        index += spd.nr_pages;
1561        error = 0;
1562
1563        while (spd.nr_pages < nr_pages) {
1564                error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1565                if (error)
1566                        break;
1567                unlock_page(page);
1568                spd.pages[spd.nr_pages++] = page;
1569                index++;
1570        }
1571
1572        index = *ppos >> PAGE_CACHE_SHIFT;
1573        nr_pages = spd.nr_pages;
1574        spd.nr_pages = 0;
1575
1576        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1577                unsigned int this_len;
1578
1579                if (!len)
1580                        break;
1581
1582                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1583                page = spd.pages[page_nr];
1584
1585                if (!PageUptodate(page) || page->mapping != mapping) {
1586                        error = shmem_getpage(inode, index, &page,
1587                                                        SGP_CACHE, NULL);
1588                        if (error)
1589                                break;
1590                        unlock_page(page);
1591                        page_cache_release(spd.pages[page_nr]);
1592                        spd.pages[page_nr] = page;
1593                }
1594
1595                isize = i_size_read(inode);
1596                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1597                if (unlikely(!isize || index > end_index))
1598                        break;
1599
1600                if (end_index == index) {
1601                        unsigned int plen;
1602
1603                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1604                        if (plen <= loff)
1605                                break;
1606
1607                        this_len = min(this_len, plen - loff);
1608                        len = this_len;
1609                }
1610
1611                spd.partial[page_nr].offset = loff;
1612                spd.partial[page_nr].len = this_len;
1613                len -= this_len;
1614                loff = 0;
1615                spd.nr_pages++;
1616                index++;
1617        }
1618
1619        while (page_nr < nr_pages)
1620                page_cache_release(spd.pages[page_nr++]);
1621
1622        if (spd.nr_pages)
1623                error = splice_to_pipe(pipe, &spd);
1624
1625        splice_shrink_spd(&spd);
1626
1627        if (error > 0) {
1628                *ppos += error;
1629                file_accessed(in);
1630        }
1631        return error;
1632}
1633
1634/*
1635 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1636 */
1637static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1638                                    pgoff_t index, pgoff_t end, int whence)
1639{
1640        struct page *page;
1641        struct pagevec pvec;
1642        pgoff_t indices[PAGEVEC_SIZE];
1643        bool done = false;
1644        int i;
1645
1646        pagevec_init(&pvec, 0);
1647        pvec.nr = 1;            /* start small: we may be there already */
1648        while (!done) {
1649                pvec.nr = find_get_entries(mapping, index,
1650                                        pvec.nr, pvec.pages, indices);
1651                if (!pvec.nr) {
1652                        if (whence == SEEK_DATA)
1653                                index = end;
1654                        break;
1655                }
1656                for (i = 0; i < pvec.nr; i++, index++) {
1657                        if (index < indices[i]) {
1658                                if (whence == SEEK_HOLE) {
1659                                        done = true;
1660                                        break;
1661                                }
1662                                index = indices[i];
1663                        }
1664                        page = pvec.pages[i];
1665                        if (page && !radix_tree_exceptional_entry(page)) {
1666                                if (!PageUptodate(page))
1667                                        page = NULL;
1668                        }
1669                        if (index >= end ||
1670                            (page && whence == SEEK_DATA) ||
1671                            (!page && whence == SEEK_HOLE)) {
1672                                done = true;
1673                                break;
1674                        }
1675                }
1676                pagevec_remove_exceptionals(&pvec);
1677                pagevec_release(&pvec);
1678                pvec.nr = PAGEVEC_SIZE;
1679                cond_resched();
1680        }
1681        return index;
1682}
1683
1684static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1685{
1686        struct address_space *mapping = file->f_mapping;
1687        struct inode *inode = mapping->host;
1688        pgoff_t start, end;
1689        loff_t new_offset;
1690
1691        if (whence != SEEK_DATA && whence != SEEK_HOLE)
1692                return generic_file_llseek_size(file, offset, whence,
1693                                        MAX_LFS_FILESIZE, i_size_read(inode));
1694        mutex_lock(&inode->i_mutex);
1695        /* We're holding i_mutex so we can access i_size directly */
1696
1697        if (offset < 0)
1698                offset = -EINVAL;
1699        else if (offset >= inode->i_size)
1700                offset = -ENXIO;
1701        else {
1702                start = offset >> PAGE_CACHE_SHIFT;
1703                end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1704                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1705                new_offset <<= PAGE_CACHE_SHIFT;
1706                if (new_offset > offset) {
1707                        if (new_offset < inode->i_size)
1708                                offset = new_offset;
1709                        else if (whence == SEEK_DATA)
1710                                offset = -ENXIO;
1711                        else
1712                                offset = inode->i_size;
1713                }
1714        }
1715
1716        if (offset >= 0)
1717                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1718        mutex_unlock(&inode->i_mutex);
1719        return offset;
1720}
1721
1722static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1723                                                         loff_t len)
1724{
1725        struct inode *inode = file_inode(file);
1726        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1727        struct shmem_falloc shmem_falloc;
1728        pgoff_t start, index, end;
1729        int error;
1730
1731        mutex_lock(&inode->i_mutex);
1732
1733        if (mode & FALLOC_FL_PUNCH_HOLE) {
1734                struct address_space *mapping = file->f_mapping;
1735                loff_t unmap_start = round_up(offset, PAGE_SIZE);
1736                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1737
1738                if ((u64)unmap_end > (u64)unmap_start)
1739                        unmap_mapping_range(mapping, unmap_start,
1740                                            1 + unmap_end - unmap_start, 0);
1741                shmem_truncate_range(inode, offset, offset + len - 1);
1742                /* No need to unmap again: hole-punching leaves COWed pages */
1743                error = 0;
1744                goto out;
1745        }
1746
1747        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1748        error = inode_newsize_ok(inode, offset + len);
1749        if (error)
1750                goto out;
1751
1752        start = offset >> PAGE_CACHE_SHIFT;
1753        end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1754        /* Try to avoid a swapstorm if len is impossible to satisfy */
1755        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1756                error = -ENOSPC;
1757                goto out;
1758        }
1759
1760        shmem_falloc.start = start;
1761        shmem_falloc.next  = start;
1762        shmem_falloc.nr_falloced = 0;
1763        shmem_falloc.nr_unswapped = 0;
1764        spin_lock(&inode->i_lock);
1765        inode->i_private = &shmem_falloc;
1766        spin_unlock(&inode->i_lock);
1767
1768        for (index = start; index < end; index++) {
1769                struct page *page;
1770
1771                /*
1772                 * Good, the fallocate(2) manpage permits EINTR: we may have
1773                 * been interrupted because we are using up too much memory.
1774                 */
1775                if (signal_pending(current))
1776                        error = -EINTR;
1777                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1778                        error = -ENOMEM;
1779                else
1780                        error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1781                                                                        NULL);
1782                if (error) {
1783                        /* Remove the !PageUptodate pages we added */
1784                        shmem_undo_range(inode,
1785                                (loff_t)start << PAGE_CACHE_SHIFT,
1786                                (loff_t)index << PAGE_CACHE_SHIFT, true);
1787                        goto undone;
1788                }
1789
1790                /*
1791                 * Inform shmem_writepage() how far we have reached.
1792                 * No need for lock or barrier: we have the page lock.
1793                 */
1794                shmem_falloc.next++;
1795                if (!PageUptodate(page))
1796                        shmem_falloc.nr_falloced++;
1797
1798                /*
1799                 * If !PageUptodate, leave it that way so that freeable pages
1800                 * can be recognized if we need to rollback on error later.
1801                 * But set_page_dirty so that memory pressure will swap rather
1802                 * than free the pages we are allocating (and SGP_CACHE pages
1803                 * might still be clean: we now need to mark those dirty too).
1804                 */
1805                set_page_dirty(page);
1806                unlock_page(page);
1807                page_cache_release(page);
1808                cond_resched();
1809        }
1810
1811        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1812                i_size_write(inode, offset + len);
1813        inode->i_ctime = CURRENT_TIME;
1814undone:
1815        spin_lock(&inode->i_lock);
1816        inode->i_private = NULL;
1817        spin_unlock(&inode->i_lock);
1818out:
1819        mutex_unlock(&inode->i_mutex);
1820        return error;
1821}
1822
1823static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1824{
1825        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1826
1827        buf->f_type = TMPFS_MAGIC;
1828        buf->f_bsize = PAGE_CACHE_SIZE;
1829        buf->f_namelen = NAME_MAX;
1830        if (sbinfo->max_blocks) {
1831                buf->f_blocks = sbinfo->max_blocks;
1832                buf->f_bavail =
1833                buf->f_bfree  = sbinfo->max_blocks -
1834                                percpu_counter_sum(&sbinfo->used_blocks);
1835        }
1836        if (sbinfo->max_inodes) {
1837                buf->f_files = sbinfo->max_inodes;
1838                buf->f_ffree = sbinfo->free_inodes;
1839        }
1840        /* else leave those fields 0 like simple_statfs */
1841        return 0;
1842}
1843
1844/*
1845 * File creation. Allocate an inode, and we're done..
1846 */
1847static int
1848shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1849{
1850        struct inode *inode;
1851        int error = -ENOSPC;
1852
1853        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1854        if (inode) {
1855                error = simple_acl_create(dir, inode);
1856                if (error)
1857                        goto out_iput;
1858                error = security_inode_init_security(inode, dir,
1859                                                     &dentry->d_name,
1860                                                     shmem_initxattrs, NULL);
1861                if (error && error != -EOPNOTSUPP)
1862                        goto out_iput;
1863
1864                error = 0;
1865                dir->i_size += BOGO_DIRENT_SIZE;
1866                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1867                d_instantiate(dentry, inode);
1868                dget(dentry); /* Extra count - pin the dentry in core */
1869        }
1870        return error;
1871out_iput:
1872        iput(inode);
1873        return error;
1874}
1875
1876static int
1877shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1878{
1879        struct inode *inode;
1880        int error = -ENOSPC;
1881
1882        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1883        if (inode) {
1884                error = security_inode_init_security(inode, dir,
1885                                                     NULL,
1886                                                     shmem_initxattrs, NULL);
1887                if (error && error != -EOPNOTSUPP)
1888                        goto out_iput;
1889                error = simple_acl_create(dir, inode);
1890                if (error)
1891                        goto out_iput;
1892                d_tmpfile(dentry, inode);
1893        }
1894        return error;
1895out_iput:
1896        iput(inode);
1897        return error;
1898}
1899
1900static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1901{
1902        int error;
1903
1904        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1905                return error;
1906        inc_nlink(dir);
1907        return 0;
1908}
1909
1910static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1911                bool excl)
1912{
1913        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1914}
1915
1916/*
1917 * Link a file..
1918 */
1919static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1920{
1921        struct inode *inode = old_dentry->d_inode;
1922        int ret;
1923
1924        /*
1925         * No ordinary (disk based) filesystem counts links as inodes;
1926         * but each new link needs a new dentry, pinning lowmem, and
1927         * tmpfs dentries cannot be pruned until they are unlinked.
1928         */
1929        ret = shmem_reserve_inode(inode->i_sb);
1930        if (ret)
1931                goto out;
1932
1933        dir->i_size += BOGO_DIRENT_SIZE;
1934        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1935        inc_nlink(inode);
1936        ihold(inode);   /* New dentry reference */
1937        dget(dentry);           /* Extra pinning count for the created dentry */
1938        d_instantiate(dentry, inode);
1939out:
1940        return ret;
1941}
1942
1943static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1944{
1945        struct inode *inode = dentry->d_inode;
1946
1947        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1948                shmem_free_inode(inode->i_sb);
1949
1950        dir->i_size -= BOGO_DIRENT_SIZE;
1951        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1952        drop_nlink(inode);
1953        dput(dentry);   /* Undo the count from "create" - this does all the work */
1954        return 0;
1955}
1956
1957static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1958{
1959        if (!simple_empty(dentry))
1960                return -ENOTEMPTY;
1961
1962        drop_nlink(dentry->d_inode);
1963        drop_nlink(dir);
1964        return shmem_unlink(dir, dentry);
1965}
1966
1967/*
1968 * The VFS layer already does all the dentry stuff for rename,
1969 * we just have to decrement the usage count for the target if
1970 * it exists so that the VFS layer correctly free's it when it
1971 * gets overwritten.
1972 */
1973static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1974{
1975        struct inode *inode = old_dentry->d_inode;
1976        int they_are_dirs = S_ISDIR(inode->i_mode);
1977
1978        if (!simple_empty(new_dentry))
1979                return -ENOTEMPTY;
1980
1981        if (new_dentry->d_inode) {
1982                (void) shmem_unlink(new_dir, new_dentry);
1983                if (they_are_dirs)
1984                        drop_nlink(old_dir);
1985        } else if (they_are_dirs) {
1986                drop_nlink(old_dir);
1987                inc_nlink(new_dir);
1988        }
1989
1990        old_dir->i_size -= BOGO_DIRENT_SIZE;
1991        new_dir->i_size += BOGO_DIRENT_SIZE;
1992        old_dir->i_ctime = old_dir->i_mtime =
1993        new_dir->i_ctime = new_dir->i_mtime =
1994        inode->i_ctime = CURRENT_TIME;
1995        return 0;
1996}
1997
1998static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1999{
2000        int error;
2001        int len;
2002        struct inode *inode;
2003        struct page *page;
2004        char *kaddr;
2005        struct shmem_inode_info *info;
2006
2007        len = strlen(symname) + 1;
2008        if (len > PAGE_CACHE_SIZE)
2009                return -ENAMETOOLONG;
2010
2011        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2012        if (!inode)
2013                return -ENOSPC;
2014
2015        error = security_inode_init_security(inode, dir, &dentry->d_name,
2016                                             shmem_initxattrs, NULL);
2017        if (error) {
2018                if (error != -EOPNOTSUPP) {
2019                        iput(inode);
2020                        return error;
2021                }
2022                error = 0;
2023        }
2024
2025        info = SHMEM_I(inode);
2026        inode->i_size = len-1;
2027        if (len <= SHORT_SYMLINK_LEN) {
2028                info->symlink = kmemdup(symname, len, GFP_KERNEL);
2029                if (!info->symlink) {
2030                        iput(inode);
2031                        return -ENOMEM;
2032                }
2033                inode->i_op = &shmem_short_symlink_operations;
2034        } else {
2035                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2036                if (error) {
2037                        iput(inode);
2038                        return error;
2039                }
2040                inode->i_mapping->a_ops = &shmem_aops;
2041                inode->i_op = &shmem_symlink_inode_operations;
2042                kaddr = kmap_atomic(page);
2043                memcpy(kaddr, symname, len);
2044                kunmap_atomic(kaddr);
2045                SetPageUptodate(page);
2046                set_page_dirty(page);
2047                unlock_page(page);
2048                page_cache_release(page);
2049        }
2050        dir->i_size += BOGO_DIRENT_SIZE;
2051        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2052        d_instantiate(dentry, inode);
2053        dget(dentry);
2054        return 0;
2055}
2056
2057static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2058{
2059        nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2060        return NULL;
2061}
2062
2063static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2064{
2065        struct page *page = NULL;
2066        int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2067        nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2068        if (page)
2069                unlock_page(page);
2070        return page;
2071}
2072
2073static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2074{
2075        if (!IS_ERR(nd_get_link(nd))) {
2076                struct page *page = cookie;
2077                kunmap(page);
2078                mark_page_accessed(page);
2079                page_cache_release(page);
2080        }
2081}
2082
2083#ifdef CONFIG_TMPFS_XATTR
2084/*
2085 * Superblocks without xattr inode operations may get some security.* xattr
2086 * support from the LSM "for free". As soon as we have any other xattrs
2087 * like ACLs, we also need to implement the security.* handlers at
2088 * filesystem level, though.
2089 */
2090
2091/*
2092 * Callback for security_inode_init_security() for acquiring xattrs.
2093 */
2094static int shmem_initxattrs(struct inode *inode,
2095                            const struct xattr *xattr_array,
2096                            void *fs_info)
2097{
2098        struct shmem_inode_info *info = SHMEM_I(inode);
2099        const struct xattr *xattr;
2100        struct simple_xattr *new_xattr;
2101        size_t len;
2102
2103        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2104                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2105                if (!new_xattr)
2106                        return -ENOMEM;
2107
2108                len = strlen(xattr->name) + 1;
2109                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2110                                          GFP_KERNEL);
2111                if (!new_xattr->name) {
2112                        kfree(new_xattr);
2113                        return -ENOMEM;
2114                }
2115
2116                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2117                       XATTR_SECURITY_PREFIX_LEN);
2118                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2119                       xattr->name, len);
2120
2121                simple_xattr_list_add(&info->xattrs, new_xattr);
2122        }
2123
2124        return 0;
2125}
2126
2127static const struct xattr_handler *shmem_xattr_handlers[] = {
2128#ifdef CONFIG_TMPFS_POSIX_ACL
2129        &posix_acl_access_xattr_handler,
2130        &posix_acl_default_xattr_handler,
2131#endif
2132        NULL
2133};
2134
2135static int shmem_xattr_validate(const char *name)
2136{
2137        struct { const char *prefix; size_t len; } arr[] = {
2138                { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2139                { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2140        };
2141        int i;
2142
2143        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2144                size_t preflen = arr[i].len;
2145                if (strncmp(name, arr[i].prefix, preflen) == 0) {
2146                        if (!name[preflen])
2147                                return -EINVAL;
2148                        return 0;
2149                }
2150        }
2151        return -EOPNOTSUPP;
2152}
2153
2154static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2155                              void *buffer, size_t size)
2156{
2157        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2158        int err;
2159
2160        /*
2161         * If this is a request for a synthetic attribute in the system.*
2162         * namespace use the generic infrastructure to resolve a handler
2163         * for it via sb->s_xattr.
2164         */
2165        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2166                return generic_getxattr(dentry, name, buffer, size);
2167
2168        err = shmem_xattr_validate(name);
2169        if (err)
2170                return err;
2171
2172        return simple_xattr_get(&info->xattrs, name, buffer, size);
2173}
2174
2175static int shmem_setxattr(struct dentry *dentry, const char *name,
2176                          const void *value, size_t size, int flags)
2177{
2178        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2179        int err;
2180
2181        /*
2182         * If this is a request for a synthetic attribute in the system.*
2183         * namespace use the generic infrastructure to resolve a handler
2184         * for it via sb->s_xattr.
2185         */
2186        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2187                return generic_setxattr(dentry, name, value, size, flags);
2188
2189        err = shmem_xattr_validate(name);
2190        if (err)
2191                return err;
2192
2193        return simple_xattr_set(&info->xattrs, name, value, size, flags);
2194}
2195
2196static int shmem_removexattr(struct dentry *dentry, const char *name)
2197{
2198        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2199        int err;
2200
2201        /*
2202         * If this is a request for a synthetic attribute in the system.*
2203         * namespace use the generic infrastructure to resolve a handler
2204         * for it via sb->s_xattr.
2205         */
2206        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2207                return generic_removexattr(dentry, name);
2208
2209        err = shmem_xattr_validate(name);
2210        if (err)
2211                return err;
2212
2213        return simple_xattr_remove(&info->xattrs, name);
2214}
2215
2216static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2217{
2218        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2219        return simple_xattr_list(&info->xattrs, buffer, size);
2220}
2221#endif /* CONFIG_TMPFS_XATTR */
2222
2223static const struct inode_operations shmem_short_symlink_operations = {
2224        .readlink       = generic_readlink,
2225        .follow_link    = shmem_follow_short_symlink,
2226#ifdef CONFIG_TMPFS_XATTR
2227        .setxattr       = shmem_setxattr,
2228        .getxattr       = shmem_getxattr,
2229        .listxattr      = shmem_listxattr,
2230        .removexattr    = shmem_removexattr,
2231#endif
2232};
2233
2234static const struct inode_operations shmem_symlink_inode_operations = {
2235        .readlink       = generic_readlink,
2236        .follow_link    = shmem_follow_link,
2237        .put_link       = shmem_put_link,
2238#ifdef CONFIG_TMPFS_XATTR
2239        .setxattr       = shmem_setxattr,
2240        .getxattr       = shmem_getxattr,
2241        .listxattr      = shmem_listxattr,
2242        .removexattr    = shmem_removexattr,
2243#endif
2244};
2245
2246static struct dentry *shmem_get_parent(struct dentry *child)
2247{
2248        return ERR_PTR(-ESTALE);
2249}
2250
2251static int shmem_match(struct inode *ino, void *vfh)
2252{
2253        __u32 *fh = vfh;
2254        __u64 inum = fh[2];
2255        inum = (inum << 32) | fh[1];
2256        return ino->i_ino == inum && fh[0] == ino->i_generation;
2257}
2258
2259static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2260                struct fid *fid, int fh_len, int fh_type)
2261{
2262        struct inode *inode;
2263        struct dentry *dentry = NULL;
2264        u64 inum;
2265
2266        if (fh_len < 3)
2267                return NULL;
2268
2269        inum = fid->raw[2];
2270        inum = (inum << 32) | fid->raw[1];
2271
2272        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2273                        shmem_match, fid->raw);
2274        if (inode) {
2275                dentry = d_find_alias(inode);
2276                iput(inode);
2277        }
2278
2279        return dentry;
2280}
2281
2282static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2283                                struct inode *parent)
2284{
2285        if (*len < 3) {
2286                *len = 3;
2287                return FILEID_INVALID;
2288        }
2289
2290        if (inode_unhashed(inode)) {
2291                /* Unfortunately insert_inode_hash is not idempotent,
2292                 * so as we hash inodes here rather than at creation
2293                 * time, we need a lock to ensure we only try
2294                 * to do it once
2295                 */
2296                static DEFINE_SPINLOCK(lock);
2297                spin_lock(&lock);
2298                if (inode_unhashed(inode))
2299                        __insert_inode_hash(inode,
2300                                            inode->i_ino + inode->i_generation);
2301                spin_unlock(&lock);
2302        }
2303
2304        fh[0] = inode->i_generation;
2305        fh[1] = inode->i_ino;
2306        fh[2] = ((__u64)inode->i_ino) >> 32;
2307
2308        *len = 3;
2309        return 1;
2310}
2311
2312static const struct export_operations shmem_export_ops = {
2313        .get_parent     = shmem_get_parent,
2314        .encode_fh      = shmem_encode_fh,
2315        .fh_to_dentry   = shmem_fh_to_dentry,
2316};
2317
2318static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2319                               bool remount)
2320{
2321        char *this_char, *value, *rest;
2322        struct mempolicy *mpol = NULL;
2323        uid_t uid;
2324        gid_t gid;
2325
2326        while (options != NULL) {
2327                this_char = options;
2328                for (;;) {
2329                        /*
2330                         * NUL-terminate this option: unfortunately,
2331                         * mount options form a comma-separated list,
2332                         * but mpol's nodelist may also contain commas.
2333                         */
2334                        options = strchr(options, ',');
2335                        if (options == NULL)
2336                                break;
2337                        options++;
2338                        if (!isdigit(*options)) {
2339                                options[-1] = '\0';
2340                                break;
2341                        }
2342                }
2343                if (!*this_char)
2344                        continue;
2345                if ((value = strchr(this_char,'=')) != NULL) {
2346                        *value++ = 0;
2347                } else {
2348                        printk(KERN_ERR
2349                            "tmpfs: No value for mount option '%s'\n",
2350                            this_char);
2351                        goto error;
2352                }
2353
2354                if (!strcmp(this_char,"size")) {
2355                        unsigned long long size;
2356                        size = memparse(value,&rest);
2357                        if (*rest == '%') {
2358                                size <<= PAGE_SHIFT;
2359                                size *= totalram_pages;
2360                                do_div(size, 100);
2361                                rest++;
2362                        }
2363                        if (*rest)
2364                                goto bad_val;
2365                        sbinfo->max_blocks =
2366                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2367                } else if (!strcmp(this_char,"nr_blocks")) {
2368                        sbinfo->max_blocks = memparse(value, &rest);
2369                        if (*rest)
2370                                goto bad_val;
2371                } else if (!strcmp(this_char,"nr_inodes")) {
2372                        sbinfo->max_inodes = memparse(value, &rest);
2373                        if (*rest)
2374                                goto bad_val;
2375                } else if (!strcmp(this_char,"mode")) {
2376                        if (remount)
2377                                continue;
2378                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2379                        if (*rest)
2380                                goto bad_val;
2381                } else if (!strcmp(this_char,"uid")) {
2382                        if (remount)
2383                                continue;
2384                        uid = simple_strtoul(value, &rest, 0);
2385                        if (*rest)
2386                                goto bad_val;
2387                        sbinfo->uid = make_kuid(current_user_ns(), uid);
2388                        if (!uid_valid(sbinfo->uid))
2389                                goto bad_val;
2390                } else if (!strcmp(this_char,"gid")) {
2391                        if (remount)
2392                                continue;
2393                        gid = simple_strtoul(value, &rest, 0);
2394                        if (*rest)
2395                                goto bad_val;
2396                        sbinfo->gid = make_kgid(current_user_ns(), gid);
2397                        if (!gid_valid(sbinfo->gid))
2398                                goto bad_val;
2399                } else if (!strcmp(this_char,"mpol")) {
2400                        mpol_put(mpol);
2401                        mpol = NULL;
2402                        if (mpol_parse_str(value, &mpol))
2403                                goto bad_val;
2404                } else {
2405                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2406                               this_char);
2407                        goto error;
2408                }
2409        }
2410        sbinfo->mpol = mpol;
2411        return 0;
2412
2413bad_val:
2414        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2415               value, this_char);
2416error:
2417        mpol_put(mpol);
2418        return 1;
2419
2420}
2421
2422static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2423{
2424        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2425        struct shmem_sb_info config = *sbinfo;
2426        unsigned long inodes;
2427        int error = -EINVAL;
2428
2429        config.mpol = NULL;
2430        if (shmem_parse_options(data, &config, true))
2431                return error;
2432
2433        spin_lock(&sbinfo->stat_lock);
2434        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2435        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2436                goto out;
2437        if (config.max_inodes < inodes)
2438                goto out;
2439        /*
2440         * Those tests disallow limited->unlimited while any are in use;
2441         * but we must separately disallow unlimited->limited, because
2442         * in that case we have no record of how much is already in use.
2443         */
2444        if (config.max_blocks && !sbinfo->max_blocks)
2445                goto out;
2446        if (config.max_inodes && !sbinfo->max_inodes)
2447                goto out;
2448
2449        error = 0;
2450        sbinfo->max_blocks  = config.max_blocks;
2451        sbinfo->max_inodes  = config.max_inodes;
2452        sbinfo->free_inodes = config.max_inodes - inodes;
2453
2454        /*
2455         * Preserve previous mempolicy unless mpol remount option was specified.
2456         */
2457        if (config.mpol) {
2458                mpol_put(sbinfo->mpol);
2459                sbinfo->mpol = config.mpol;     /* transfers initial ref */
2460        }
2461out:
2462        spin_unlock(&sbinfo->stat_lock);
2463        return error;
2464}
2465
2466static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2467{
2468        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2469
2470        if (sbinfo->max_blocks != shmem_default_max_blocks())
2471                seq_printf(seq, ",size=%luk",
2472                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2473        if (sbinfo->max_inodes != shmem_default_max_inodes())
2474                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2475        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2476                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2477        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2478                seq_printf(seq, ",uid=%u",
2479                                from_kuid_munged(&init_user_ns, sbinfo->uid));
2480        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2481                seq_printf(seq, ",gid=%u",
2482                                from_kgid_munged(&init_user_ns, sbinfo->gid));
2483        shmem_show_mpol(seq, sbinfo->mpol);
2484        return 0;
2485}
2486#endif /* CONFIG_TMPFS */
2487
2488static void shmem_put_super(struct super_block *sb)
2489{
2490        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2491
2492        percpu_counter_destroy(&sbinfo->used_blocks);
2493        mpol_put(sbinfo->mpol);
2494        kfree(sbinfo);
2495        sb->s_fs_info = NULL;
2496}
2497
2498int shmem_fill_super(struct super_block *sb, void *data, int silent)
2499{
2500        struct inode *inode;
2501        struct shmem_sb_info *sbinfo;
2502        int err = -ENOMEM;
2503
2504        /* Round up to L1_CACHE_BYTES to resist false sharing */
2505        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2506                                L1_CACHE_BYTES), GFP_KERNEL);
2507        if (!sbinfo)
2508                return -ENOMEM;
2509
2510        sbinfo->mode = S_IRWXUGO | S_ISVTX;
2511        sbinfo->uid = current_fsuid();
2512        sbinfo->gid = current_fsgid();
2513        sb->s_fs_info = sbinfo;
2514
2515#ifdef CONFIG_TMPFS
2516        /*
2517         * Per default we only allow half of the physical ram per
2518         * tmpfs instance, limiting inodes to one per page of lowmem;
2519         * but the internal instance is left unlimited.
2520         */
2521        if (!(sb->s_flags & MS_KERNMOUNT)) {
2522                sbinfo->max_blocks = shmem_default_max_blocks();
2523                sbinfo->max_inodes = shmem_default_max_inodes();
2524                if (shmem_parse_options(data, sbinfo, false)) {
2525                        err = -EINVAL;
2526                        goto failed;
2527                }
2528        } else {
2529                sb->s_flags |= MS_NOUSER;
2530        }
2531        sb->s_export_op = &shmem_export_ops;
2532        sb->s_flags |= MS_NOSEC;
2533#else
2534        sb->s_flags |= MS_NOUSER;
2535#endif
2536
2537        spin_lock_init(&sbinfo->stat_lock);
2538        if (percpu_counter_init(&sbinfo->used_blocks, 0))
2539                goto failed;
2540        sbinfo->free_inodes = sbinfo->max_inodes;
2541
2542        sb->s_maxbytes = MAX_LFS_FILESIZE;
2543        sb->s_blocksize = PAGE_CACHE_SIZE;
2544        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2545        sb->s_magic = TMPFS_MAGIC;
2546        sb->s_op = &shmem_ops;
2547        sb->s_time_gran = 1;
2548#ifdef CONFIG_TMPFS_XATTR
2549        sb->s_xattr = shmem_xattr_handlers;
2550#endif
2551#ifdef CONFIG_TMPFS_POSIX_ACL
2552        sb->s_flags |= MS_POSIXACL;
2553#endif
2554
2555        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2556        if (!inode)
2557                goto failed;
2558        inode->i_uid = sbinfo->uid;
2559        inode->i_gid = sbinfo->gid;
2560        sb->s_root = d_make_root(inode);
2561        if (!sb->s_root)
2562                goto failed;
2563        return 0;
2564
2565failed:
2566        shmem_put_super(sb);
2567        return err;
2568}
2569
2570static struct kmem_cache *shmem_inode_cachep;
2571
2572static struct inode *shmem_alloc_inode(struct super_block *sb)
2573{
2574        struct shmem_inode_info *info;
2575        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2576        if (!info)
2577                return NULL;
2578        return &info->vfs_inode;
2579}
2580
2581static void shmem_destroy_callback(struct rcu_head *head)
2582{
2583        struct inode *inode = container_of(head, struct inode, i_rcu);
2584        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2585}
2586
2587static void shmem_destroy_inode(struct inode *inode)
2588{
2589        if (S_ISREG(inode->i_mode))
2590                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2591        call_rcu(&inode->i_rcu, shmem_destroy_callback);
2592}
2593
2594static void shmem_init_inode(void *foo)
2595{
2596        struct shmem_inode_info *info = foo;
2597        inode_init_once(&info->vfs_inode);
2598}
2599
2600static int shmem_init_inodecache(void)
2601{
2602        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2603                                sizeof(struct shmem_inode_info),
2604                                0, SLAB_PANIC, shmem_init_inode);
2605        return 0;
2606}
2607
2608static void shmem_destroy_inodecache(void)
2609{
2610        kmem_cache_destroy(shmem_inode_cachep);
2611}
2612
2613static const struct address_space_operations shmem_aops = {
2614        .writepage      = shmem_writepage,
2615        .set_page_dirty = __set_page_dirty_no_writeback,
2616#ifdef CONFIG_TMPFS
2617        .write_begin    = shmem_write_begin,
2618        .write_end      = shmem_write_end,
2619#endif
2620        .migratepage    = migrate_page,
2621        .error_remove_page = generic_error_remove_page,
2622};
2623
2624static const struct file_operations shmem_file_operations = {
2625        .mmap           = shmem_mmap,
2626#ifdef CONFIG_TMPFS
2627        .llseek         = shmem_file_llseek,
2628        .read           = do_sync_read,
2629        .write          = do_sync_write,
2630        .aio_read       = shmem_file_aio_read,
2631        .aio_write      = generic_file_aio_write,
2632        .fsync          = noop_fsync,
2633        .splice_read    = shmem_file_splice_read,
2634        .splice_write   = generic_file_splice_write,
2635        .fallocate      = shmem_fallocate,
2636#endif
2637};
2638
2639static const struct inode_operations shmem_inode_operations = {
2640        .setattr        = shmem_setattr,
2641#ifdef CONFIG_TMPFS_XATTR
2642        .setxattr       = shmem_setxattr,
2643        .getxattr       = shmem_getxattr,
2644        .listxattr      = shmem_listxattr,
2645        .removexattr    = shmem_removexattr,
2646        .set_acl        = simple_set_acl,
2647#endif
2648};
2649
2650static const struct inode_operations shmem_dir_inode_operations = {
2651#ifdef CONFIG_TMPFS
2652        .create         = shmem_create,
2653        .lookup         = simple_lookup,
2654        .link           = shmem_link,
2655        .unlink         = shmem_unlink,
2656        .symlink        = shmem_symlink,
2657        .mkdir          = shmem_mkdir,
2658        .rmdir          = shmem_rmdir,
2659        .mknod          = shmem_mknod,
2660        .rename         = shmem_rename,
2661        .tmpfile        = shmem_tmpfile,
2662#endif
2663#ifdef CONFIG_TMPFS_XATTR
2664        .setxattr       = shmem_setxattr,
2665        .getxattr       = shmem_getxattr,
2666        .listxattr      = shmem_listxattr,
2667        .removexattr    = shmem_removexattr,
2668#endif
2669#ifdef CONFIG_TMPFS_POSIX_ACL
2670        .setattr        = shmem_setattr,
2671        .set_acl        = simple_set_acl,
2672#endif
2673};
2674
2675static const struct inode_operations shmem_special_inode_operations = {
2676#ifdef CONFIG_TMPFS_XATTR
2677        .setxattr       = shmem_setxattr,
2678        .getxattr       = shmem_getxattr,
2679        .listxattr      = shmem_listxattr,
2680        .removexattr    = shmem_removexattr,
2681#endif
2682#ifdef CONFIG_TMPFS_POSIX_ACL
2683        .setattr        = shmem_setattr,
2684        .set_acl        = simple_set_acl,
2685#endif
2686};
2687
2688static const struct super_operations shmem_ops = {
2689        .alloc_inode    = shmem_alloc_inode,
2690        .destroy_inode  = shmem_destroy_inode,
2691#ifdef CONFIG_TMPFS
2692        .statfs         = shmem_statfs,
2693        .remount_fs     = shmem_remount_fs,
2694        .show_options   = shmem_show_options,
2695#endif
2696        .evict_inode    = shmem_evict_inode,
2697        .drop_inode     = generic_delete_inode,
2698        .put_super      = shmem_put_super,
2699};
2700
2701static const struct vm_operations_struct shmem_vm_ops = {
2702        .fault          = shmem_fault,
2703        .map_pages      = filemap_map_pages,
2704#ifdef CONFIG_NUMA
2705        .set_policy     = shmem_set_policy,
2706        .get_policy     = shmem_get_policy,
2707#endif
2708        .remap_pages    = generic_file_remap_pages,
2709};
2710
2711static struct dentry *shmem_mount(struct file_system_type *fs_type,
2712        int flags, const char *dev_name, void *data)
2713{
2714        return mount_nodev(fs_type, flags, data, shmem_fill_super);
2715}
2716
2717static struct file_system_type shmem_fs_type = {
2718        .owner          = THIS_MODULE,
2719        .name           = "tmpfs",
2720        .mount          = shmem_mount,
2721        .kill_sb        = kill_litter_super,
2722        .fs_flags       = FS_USERNS_MOUNT,
2723};
2724
2725int __init shmem_init(void)
2726{
2727        int error;
2728
2729        /* If rootfs called this, don't re-init */
2730        if (shmem_inode_cachep)
2731                return 0;
2732
2733        error = bdi_init(&shmem_backing_dev_info);
2734        if (error)
2735                goto out4;
2736
2737        error = shmem_init_inodecache();
2738        if (error)
2739                goto out3;
2740
2741        error = register_filesystem(&shmem_fs_type);
2742        if (error) {
2743                printk(KERN_ERR "Could not register tmpfs\n");
2744                goto out2;
2745        }
2746
2747        shm_mnt = kern_mount(&shmem_fs_type);
2748        if (IS_ERR(shm_mnt)) {
2749                error = PTR_ERR(shm_mnt);
2750                printk(KERN_ERR "Could not kern_mount tmpfs\n");
2751                goto out1;
2752        }
2753        return 0;
2754
2755out1:
2756        unregister_filesystem(&shmem_fs_type);
2757out2:
2758        shmem_destroy_inodecache();
2759out3:
2760        bdi_destroy(&shmem_backing_dev_info);
2761out4:
2762        shm_mnt = ERR_PTR(error);
2763        return error;
2764}
2765
2766#else /* !CONFIG_SHMEM */
2767
2768/*
2769 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2770 *
2771 * This is intended for small system where the benefits of the full
2772 * shmem code (swap-backed and resource-limited) are outweighed by
2773 * their complexity. On systems without swap this code should be
2774 * effectively equivalent, but much lighter weight.
2775 */
2776
2777static struct file_system_type shmem_fs_type = {
2778        .name           = "tmpfs",
2779        .mount          = ramfs_mount,
2780        .kill_sb        = kill_litter_super,
2781        .fs_flags       = FS_USERNS_MOUNT,
2782};
2783
2784int __init shmem_init(void)
2785{
2786        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2787
2788        shm_mnt = kern_mount(&shmem_fs_type);
2789        BUG_ON(IS_ERR(shm_mnt));
2790
2791        return 0;
2792}
2793
2794int shmem_unuse(swp_entry_t swap, struct page *page)
2795{
2796        return 0;
2797}
2798
2799int shmem_lock(struct file *file, int lock, struct user_struct *user)
2800{
2801        return 0;
2802}
2803
2804void shmem_unlock_mapping(struct address_space *mapping)
2805{
2806}
2807
2808void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2809{
2810        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2811}
2812EXPORT_SYMBOL_GPL(shmem_truncate_range);
2813
2814#define shmem_vm_ops                            generic_file_vm_ops
2815#define shmem_file_operations                   ramfs_file_operations
2816#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2817#define shmem_acct_size(flags, size)            0
2818#define shmem_unacct_size(flags, size)          do {} while (0)
2819
2820#endif /* CONFIG_SHMEM */
2821
2822/* common code */
2823
2824static struct dentry_operations anon_ops = {
2825        .d_dname = simple_dname
2826};
2827
2828static struct file *__shmem_file_setup(const char *name, loff_t size,
2829                                       unsigned long flags, unsigned int i_flags)
2830{
2831        struct file *res;
2832        struct inode *inode;
2833        struct path path;
2834        struct super_block *sb;
2835        struct qstr this;
2836
2837        if (IS_ERR(shm_mnt))
2838                return ERR_CAST(shm_mnt);
2839
2840        if (size < 0 || size > MAX_LFS_FILESIZE)
2841                return ERR_PTR(-EINVAL);
2842
2843        if (shmem_acct_size(flags, size))
2844                return ERR_PTR(-ENOMEM);
2845
2846        res = ERR_PTR(-ENOMEM);
2847        this.name = name;
2848        this.len = strlen(name);
2849        this.hash = 0; /* will go */
2850        sb = shm_mnt->mnt_sb;
2851        path.dentry = d_alloc_pseudo(sb, &this);
2852        if (!path.dentry)
2853                goto put_memory;
2854        d_set_d_op(path.dentry, &anon_ops);
2855        path.mnt = mntget(shm_mnt);
2856
2857        res = ERR_PTR(-ENOSPC);
2858        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2859        if (!inode)
2860                goto put_dentry;
2861
2862        inode->i_flags |= i_flags;
2863        d_instantiate(path.dentry, inode);
2864        inode->i_size = size;
2865        clear_nlink(inode);     /* It is unlinked */
2866        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2867        if (IS_ERR(res))
2868                goto put_dentry;
2869
2870        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2871                  &shmem_file_operations);
2872        if (IS_ERR(res))
2873                goto put_dentry;
2874
2875        return res;
2876
2877put_dentry:
2878        path_put(&path);
2879put_memory:
2880        shmem_unacct_size(flags, size);
2881        return res;
2882}
2883
2884/**
2885 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2886 *      kernel internal.  There will be NO LSM permission checks against the
2887 *      underlying inode.  So users of this interface must do LSM checks at a
2888 *      higher layer.  The one user is the big_key implementation.  LSM checks
2889 *      are provided at the key level rather than the inode level.
2890 * @name: name for dentry (to be seen in /proc/<pid>/maps
2891 * @size: size to be set for the file
2892 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2893 */
2894struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2895{
2896        return __shmem_file_setup(name, size, flags, S_PRIVATE);
2897}
2898
2899/**
2900 * shmem_file_setup - get an unlinked file living in tmpfs
2901 * @name: name for dentry (to be seen in /proc/<pid>/maps
2902 * @size: size to be set for the file
2903 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2904 */
2905struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2906{
2907        return __shmem_file_setup(name, size, flags, 0);
2908}
2909EXPORT_SYMBOL_GPL(shmem_file_setup);
2910
2911/**
2912 * shmem_zero_setup - setup a shared anonymous mapping
2913 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2914 */
2915int shmem_zero_setup(struct vm_area_struct *vma)
2916{
2917        struct file *file;
2918        loff_t size = vma->vm_end - vma->vm_start;
2919
2920        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2921        if (IS_ERR(file))
2922                return PTR_ERR(file);
2923
2924        if (vma->vm_file)
2925                fput(vma->vm_file);
2926        vma->vm_file = file;
2927        vma->vm_ops = &shmem_vm_ops;
2928        return 0;
2929}
2930
2931/**
2932 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2933 * @mapping:    the page's address_space
2934 * @index:      the page index
2935 * @gfp:        the page allocator flags to use if allocating
2936 *
2937 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2938 * with any new page allocations done using the specified allocation flags.
2939 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2940 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2941 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2942 *
2943 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2944 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2945 */
2946struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2947                                         pgoff_t index, gfp_t gfp)
2948{
2949#ifdef CONFIG_SHMEM
2950        struct inode *inode = mapping->host;
2951        struct page *page;
2952        int error;
2953
2954        BUG_ON(mapping->a_ops != &shmem_aops);
2955        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2956        if (error)
2957                page = ERR_PTR(error);
2958        else
2959                unlock_page(page);
2960        return page;
2961#else
2962        /*
2963         * The tiny !SHMEM case uses ramfs without swap
2964         */
2965        return read_cache_page_gfp(mapping, index, gfp);
2966#endif
2967}
2968EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2969