linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <linux/compiler.h>
  31#include <linux/llist.h>
  32
  33#include <asm/uaccess.h>
  34#include <asm/tlbflush.h>
  35#include <asm/shmparam.h>
  36
  37struct vfree_deferred {
  38        struct llist_head list;
  39        struct work_struct wq;
  40};
  41static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  42
  43static void __vunmap(const void *, int);
  44
  45static void free_work(struct work_struct *w)
  46{
  47        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  48        struct llist_node *llnode = llist_del_all(&p->list);
  49        while (llnode) {
  50                void *p = llnode;
  51                llnode = llist_next(llnode);
  52                __vunmap(p, 1);
  53        }
  54}
  55
  56/*** Page table manipulation functions ***/
  57
  58static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  59{
  60        pte_t *pte;
  61
  62        pte = pte_offset_kernel(pmd, addr);
  63        do {
  64                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  65                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  66        } while (pte++, addr += PAGE_SIZE, addr != end);
  67}
  68
  69static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  70{
  71        pmd_t *pmd;
  72        unsigned long next;
  73
  74        pmd = pmd_offset(pud, addr);
  75        do {
  76                next = pmd_addr_end(addr, end);
  77                if (pmd_none_or_clear_bad(pmd))
  78                        continue;
  79                vunmap_pte_range(pmd, addr, next);
  80        } while (pmd++, addr = next, addr != end);
  81}
  82
  83static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  84{
  85        pud_t *pud;
  86        unsigned long next;
  87
  88        pud = pud_offset(pgd, addr);
  89        do {
  90                next = pud_addr_end(addr, end);
  91                if (pud_none_or_clear_bad(pud))
  92                        continue;
  93                vunmap_pmd_range(pud, addr, next);
  94        } while (pud++, addr = next, addr != end);
  95}
  96
  97static void vunmap_page_range(unsigned long addr, unsigned long end)
  98{
  99        pgd_t *pgd;
 100        unsigned long next;
 101
 102        BUG_ON(addr >= end);
 103        pgd = pgd_offset_k(addr);
 104        do {
 105                next = pgd_addr_end(addr, end);
 106                if (pgd_none_or_clear_bad(pgd))
 107                        continue;
 108                vunmap_pud_range(pgd, addr, next);
 109        } while (pgd++, addr = next, addr != end);
 110}
 111
 112static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 113                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 114{
 115        pte_t *pte;
 116
 117        /*
 118         * nr is a running index into the array which helps higher level
 119         * callers keep track of where we're up to.
 120         */
 121
 122        pte = pte_alloc_kernel(pmd, addr);
 123        if (!pte)
 124                return -ENOMEM;
 125        do {
 126                struct page *page = pages[*nr];
 127
 128                if (WARN_ON(!pte_none(*pte)))
 129                        return -EBUSY;
 130                if (WARN_ON(!page))
 131                        return -ENOMEM;
 132                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 133                (*nr)++;
 134        } while (pte++, addr += PAGE_SIZE, addr != end);
 135        return 0;
 136}
 137
 138static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 139                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 140{
 141        pmd_t *pmd;
 142        unsigned long next;
 143
 144        pmd = pmd_alloc(&init_mm, pud, addr);
 145        if (!pmd)
 146                return -ENOMEM;
 147        do {
 148                next = pmd_addr_end(addr, end);
 149                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 150                        return -ENOMEM;
 151        } while (pmd++, addr = next, addr != end);
 152        return 0;
 153}
 154
 155static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 156                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 157{
 158        pud_t *pud;
 159        unsigned long next;
 160
 161        pud = pud_alloc(&init_mm, pgd, addr);
 162        if (!pud)
 163                return -ENOMEM;
 164        do {
 165                next = pud_addr_end(addr, end);
 166                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 167                        return -ENOMEM;
 168        } while (pud++, addr = next, addr != end);
 169        return 0;
 170}
 171
 172/*
 173 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 174 * will have pfns corresponding to the "pages" array.
 175 *
 176 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 177 */
 178static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 179                                   pgprot_t prot, struct page **pages)
 180{
 181        pgd_t *pgd;
 182        unsigned long next;
 183        unsigned long addr = start;
 184        int err = 0;
 185        int nr = 0;
 186
 187        BUG_ON(addr >= end);
 188        pgd = pgd_offset_k(addr);
 189        do {
 190                next = pgd_addr_end(addr, end);
 191                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 192                if (err)
 193                        return err;
 194        } while (pgd++, addr = next, addr != end);
 195
 196        return nr;
 197}
 198
 199static int vmap_page_range(unsigned long start, unsigned long end,
 200                           pgprot_t prot, struct page **pages)
 201{
 202        int ret;
 203
 204        ret = vmap_page_range_noflush(start, end, prot, pages);
 205        flush_cache_vmap(start, end);
 206        return ret;
 207}
 208
 209int is_vmalloc_or_module_addr(const void *x)
 210{
 211        /*
 212         * ARM, x86-64 and sparc64 put modules in a special place,
 213         * and fall back on vmalloc() if that fails. Others
 214         * just put it in the vmalloc space.
 215         */
 216#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 217        unsigned long addr = (unsigned long)x;
 218        if (addr >= MODULES_VADDR && addr < MODULES_END)
 219                return 1;
 220#endif
 221        return is_vmalloc_addr(x);
 222}
 223
 224/*
 225 * Walk a vmap address to the struct page it maps.
 226 */
 227struct page *vmalloc_to_page(const void *vmalloc_addr)
 228{
 229        unsigned long addr = (unsigned long) vmalloc_addr;
 230        struct page *page = NULL;
 231        pgd_t *pgd = pgd_offset_k(addr);
 232
 233        /*
 234         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 235         * architectures that do not vmalloc module space
 236         */
 237        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 238
 239        if (!pgd_none(*pgd)) {
 240                pud_t *pud = pud_offset(pgd, addr);
 241                if (!pud_none(*pud)) {
 242                        pmd_t *pmd = pmd_offset(pud, addr);
 243                        if (!pmd_none(*pmd)) {
 244                                pte_t *ptep, pte;
 245
 246                                ptep = pte_offset_map(pmd, addr);
 247                                pte = *ptep;
 248                                if (pte_present(pte))
 249                                        page = pte_page(pte);
 250                                pte_unmap(ptep);
 251                        }
 252                }
 253        }
 254        return page;
 255}
 256EXPORT_SYMBOL(vmalloc_to_page);
 257
 258/*
 259 * Map a vmalloc()-space virtual address to the physical page frame number.
 260 */
 261unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 262{
 263        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 264}
 265EXPORT_SYMBOL(vmalloc_to_pfn);
 266
 267
 268/*** Global kva allocator ***/
 269
 270#define VM_LAZY_FREE    0x01
 271#define VM_LAZY_FREEING 0x02
 272#define VM_VM_AREA      0x04
 273
 274static DEFINE_SPINLOCK(vmap_area_lock);
 275/* Export for kexec only */
 276LIST_HEAD(vmap_area_list);
 277static struct rb_root vmap_area_root = RB_ROOT;
 278
 279/* The vmap cache globals are protected by vmap_area_lock */
 280static struct rb_node *free_vmap_cache;
 281static unsigned long cached_hole_size;
 282static unsigned long cached_vstart;
 283static unsigned long cached_align;
 284
 285static unsigned long vmap_area_pcpu_hole;
 286
 287static struct vmap_area *__find_vmap_area(unsigned long addr)
 288{
 289        struct rb_node *n = vmap_area_root.rb_node;
 290
 291        while (n) {
 292                struct vmap_area *va;
 293
 294                va = rb_entry(n, struct vmap_area, rb_node);
 295                if (addr < va->va_start)
 296                        n = n->rb_left;
 297                else if (addr >= va->va_end)
 298                        n = n->rb_right;
 299                else
 300                        return va;
 301        }
 302
 303        return NULL;
 304}
 305
 306static void __insert_vmap_area(struct vmap_area *va)
 307{
 308        struct rb_node **p = &vmap_area_root.rb_node;
 309        struct rb_node *parent = NULL;
 310        struct rb_node *tmp;
 311
 312        while (*p) {
 313                struct vmap_area *tmp_va;
 314
 315                parent = *p;
 316                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 317                if (va->va_start < tmp_va->va_end)
 318                        p = &(*p)->rb_left;
 319                else if (va->va_end > tmp_va->va_start)
 320                        p = &(*p)->rb_right;
 321                else
 322                        BUG();
 323        }
 324
 325        rb_link_node(&va->rb_node, parent, p);
 326        rb_insert_color(&va->rb_node, &vmap_area_root);
 327
 328        /* address-sort this list */
 329        tmp = rb_prev(&va->rb_node);
 330        if (tmp) {
 331                struct vmap_area *prev;
 332                prev = rb_entry(tmp, struct vmap_area, rb_node);
 333                list_add_rcu(&va->list, &prev->list);
 334        } else
 335                list_add_rcu(&va->list, &vmap_area_list);
 336}
 337
 338static void purge_vmap_area_lazy(void);
 339
 340/*
 341 * Allocate a region of KVA of the specified size and alignment, within the
 342 * vstart and vend.
 343 */
 344static struct vmap_area *alloc_vmap_area(unsigned long size,
 345                                unsigned long align,
 346                                unsigned long vstart, unsigned long vend,
 347                                int node, gfp_t gfp_mask)
 348{
 349        struct vmap_area *va;
 350        struct rb_node *n;
 351        unsigned long addr;
 352        int purged = 0;
 353        struct vmap_area *first;
 354
 355        BUG_ON(!size);
 356        BUG_ON(size & ~PAGE_MASK);
 357        BUG_ON(!is_power_of_2(align));
 358
 359        va = kmalloc_node(sizeof(struct vmap_area),
 360                        gfp_mask & GFP_RECLAIM_MASK, node);
 361        if (unlikely(!va))
 362                return ERR_PTR(-ENOMEM);
 363
 364        /*
 365         * Only scan the relevant parts containing pointers to other objects
 366         * to avoid false negatives.
 367         */
 368        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 369
 370retry:
 371        spin_lock(&vmap_area_lock);
 372        /*
 373         * Invalidate cache if we have more permissive parameters.
 374         * cached_hole_size notes the largest hole noticed _below_
 375         * the vmap_area cached in free_vmap_cache: if size fits
 376         * into that hole, we want to scan from vstart to reuse
 377         * the hole instead of allocating above free_vmap_cache.
 378         * Note that __free_vmap_area may update free_vmap_cache
 379         * without updating cached_hole_size or cached_align.
 380         */
 381        if (!free_vmap_cache ||
 382                        size < cached_hole_size ||
 383                        vstart < cached_vstart ||
 384                        align < cached_align) {
 385nocache:
 386                cached_hole_size = 0;
 387                free_vmap_cache = NULL;
 388        }
 389        /* record if we encounter less permissive parameters */
 390        cached_vstart = vstart;
 391        cached_align = align;
 392
 393        /* find starting point for our search */
 394        if (free_vmap_cache) {
 395                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 396                addr = ALIGN(first->va_end, align);
 397                if (addr < vstart)
 398                        goto nocache;
 399                if (addr + size < addr)
 400                        goto overflow;
 401
 402        } else {
 403                addr = ALIGN(vstart, align);
 404                if (addr + size < addr)
 405                        goto overflow;
 406
 407                n = vmap_area_root.rb_node;
 408                first = NULL;
 409
 410                while (n) {
 411                        struct vmap_area *tmp;
 412                        tmp = rb_entry(n, struct vmap_area, rb_node);
 413                        if (tmp->va_end >= addr) {
 414                                first = tmp;
 415                                if (tmp->va_start <= addr)
 416                                        break;
 417                                n = n->rb_left;
 418                        } else
 419                                n = n->rb_right;
 420                }
 421
 422                if (!first)
 423                        goto found;
 424        }
 425
 426        /* from the starting point, walk areas until a suitable hole is found */
 427        while (addr + size > first->va_start && addr + size <= vend) {
 428                if (addr + cached_hole_size < first->va_start)
 429                        cached_hole_size = first->va_start - addr;
 430                addr = ALIGN(first->va_end, align);
 431                if (addr + size < addr)
 432                        goto overflow;
 433
 434                if (list_is_last(&first->list, &vmap_area_list))
 435                        goto found;
 436
 437                first = list_entry(first->list.next,
 438                                struct vmap_area, list);
 439        }
 440
 441found:
 442        if (addr + size > vend)
 443                goto overflow;
 444
 445        va->va_start = addr;
 446        va->va_end = addr + size;
 447        va->flags = 0;
 448        __insert_vmap_area(va);
 449        free_vmap_cache = &va->rb_node;
 450        spin_unlock(&vmap_area_lock);
 451
 452        BUG_ON(va->va_start & (align-1));
 453        BUG_ON(va->va_start < vstart);
 454        BUG_ON(va->va_end > vend);
 455
 456        return va;
 457
 458overflow:
 459        spin_unlock(&vmap_area_lock);
 460        if (!purged) {
 461                purge_vmap_area_lazy();
 462                purged = 1;
 463                goto retry;
 464        }
 465        if (printk_ratelimit())
 466                printk(KERN_WARNING
 467                        "vmap allocation for size %lu failed: "
 468                        "use vmalloc=<size> to increase size.\n", size);
 469        kfree(va);
 470        return ERR_PTR(-EBUSY);
 471}
 472
 473static void __free_vmap_area(struct vmap_area *va)
 474{
 475        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 476
 477        if (free_vmap_cache) {
 478                if (va->va_end < cached_vstart) {
 479                        free_vmap_cache = NULL;
 480                } else {
 481                        struct vmap_area *cache;
 482                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 483                        if (va->va_start <= cache->va_start) {
 484                                free_vmap_cache = rb_prev(&va->rb_node);
 485                                /*
 486                                 * We don't try to update cached_hole_size or
 487                                 * cached_align, but it won't go very wrong.
 488                                 */
 489                        }
 490                }
 491        }
 492        rb_erase(&va->rb_node, &vmap_area_root);
 493        RB_CLEAR_NODE(&va->rb_node);
 494        list_del_rcu(&va->list);
 495
 496        /*
 497         * Track the highest possible candidate for pcpu area
 498         * allocation.  Areas outside of vmalloc area can be returned
 499         * here too, consider only end addresses which fall inside
 500         * vmalloc area proper.
 501         */
 502        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 503                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 504
 505        kfree_rcu(va, rcu_head);
 506}
 507
 508/*
 509 * Free a region of KVA allocated by alloc_vmap_area
 510 */
 511static void free_vmap_area(struct vmap_area *va)
 512{
 513        spin_lock(&vmap_area_lock);
 514        __free_vmap_area(va);
 515        spin_unlock(&vmap_area_lock);
 516}
 517
 518/*
 519 * Clear the pagetable entries of a given vmap_area
 520 */
 521static void unmap_vmap_area(struct vmap_area *va)
 522{
 523        vunmap_page_range(va->va_start, va->va_end);
 524}
 525
 526static void vmap_debug_free_range(unsigned long start, unsigned long end)
 527{
 528        /*
 529         * Unmap page tables and force a TLB flush immediately if
 530         * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
 531         * bugs similarly to those in linear kernel virtual address
 532         * space after a page has been freed.
 533         *
 534         * All the lazy freeing logic is still retained, in order to
 535         * minimise intrusiveness of this debugging feature.
 536         *
 537         * This is going to be *slow* (linear kernel virtual address
 538         * debugging doesn't do a broadcast TLB flush so it is a lot
 539         * faster).
 540         */
 541#ifdef CONFIG_DEBUG_PAGEALLOC
 542        vunmap_page_range(start, end);
 543        flush_tlb_kernel_range(start, end);
 544#endif
 545}
 546
 547/*
 548 * lazy_max_pages is the maximum amount of virtual address space we gather up
 549 * before attempting to purge with a TLB flush.
 550 *
 551 * There is a tradeoff here: a larger number will cover more kernel page tables
 552 * and take slightly longer to purge, but it will linearly reduce the number of
 553 * global TLB flushes that must be performed. It would seem natural to scale
 554 * this number up linearly with the number of CPUs (because vmapping activity
 555 * could also scale linearly with the number of CPUs), however it is likely
 556 * that in practice, workloads might be constrained in other ways that mean
 557 * vmap activity will not scale linearly with CPUs. Also, I want to be
 558 * conservative and not introduce a big latency on huge systems, so go with
 559 * a less aggressive log scale. It will still be an improvement over the old
 560 * code, and it will be simple to change the scale factor if we find that it
 561 * becomes a problem on bigger systems.
 562 */
 563static unsigned long lazy_max_pages(void)
 564{
 565        unsigned int log;
 566
 567        log = fls(num_online_cpus());
 568
 569        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 570}
 571
 572static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 573
 574/* for per-CPU blocks */
 575static void purge_fragmented_blocks_allcpus(void);
 576
 577/*
 578 * called before a call to iounmap() if the caller wants vm_area_struct's
 579 * immediately freed.
 580 */
 581void set_iounmap_nonlazy(void)
 582{
 583        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 584}
 585
 586/*
 587 * Purges all lazily-freed vmap areas.
 588 *
 589 * If sync is 0 then don't purge if there is already a purge in progress.
 590 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 591 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 592 * their own TLB flushing).
 593 * Returns with *start = min(*start, lowest purged address)
 594 *              *end = max(*end, highest purged address)
 595 */
 596static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 597                                        int sync, int force_flush)
 598{
 599        static DEFINE_SPINLOCK(purge_lock);
 600        LIST_HEAD(valist);
 601        struct vmap_area *va;
 602        struct vmap_area *n_va;
 603        int nr = 0;
 604
 605        /*
 606         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 607         * should not expect such behaviour. This just simplifies locking for
 608         * the case that isn't actually used at the moment anyway.
 609         */
 610        if (!sync && !force_flush) {
 611                if (!spin_trylock(&purge_lock))
 612                        return;
 613        } else
 614                spin_lock(&purge_lock);
 615
 616        if (sync)
 617                purge_fragmented_blocks_allcpus();
 618
 619        rcu_read_lock();
 620        list_for_each_entry_rcu(va, &vmap_area_list, list) {
 621                if (va->flags & VM_LAZY_FREE) {
 622                        if (va->va_start < *start)
 623                                *start = va->va_start;
 624                        if (va->va_end > *end)
 625                                *end = va->va_end;
 626                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 627                        list_add_tail(&va->purge_list, &valist);
 628                        va->flags |= VM_LAZY_FREEING;
 629                        va->flags &= ~VM_LAZY_FREE;
 630                }
 631        }
 632        rcu_read_unlock();
 633
 634        if (nr)
 635                atomic_sub(nr, &vmap_lazy_nr);
 636
 637        if (nr || force_flush)
 638                flush_tlb_kernel_range(*start, *end);
 639
 640        if (nr) {
 641                spin_lock(&vmap_area_lock);
 642                list_for_each_entry_safe(va, n_va, &valist, purge_list)
 643                        __free_vmap_area(va);
 644                spin_unlock(&vmap_area_lock);
 645        }
 646        spin_unlock(&purge_lock);
 647}
 648
 649/*
 650 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 651 * is already purging.
 652 */
 653static void try_purge_vmap_area_lazy(void)
 654{
 655        unsigned long start = ULONG_MAX, end = 0;
 656
 657        __purge_vmap_area_lazy(&start, &end, 0, 0);
 658}
 659
 660/*
 661 * Kick off a purge of the outstanding lazy areas.
 662 */
 663static void purge_vmap_area_lazy(void)
 664{
 665        unsigned long start = ULONG_MAX, end = 0;
 666
 667        __purge_vmap_area_lazy(&start, &end, 1, 0);
 668}
 669
 670/*
 671 * Free a vmap area, caller ensuring that the area has been unmapped
 672 * and flush_cache_vunmap had been called for the correct range
 673 * previously.
 674 */
 675static void free_vmap_area_noflush(struct vmap_area *va)
 676{
 677        va->flags |= VM_LAZY_FREE;
 678        atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 679        if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 680                try_purge_vmap_area_lazy();
 681}
 682
 683/*
 684 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 685 * called for the correct range previously.
 686 */
 687static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 688{
 689        unmap_vmap_area(va);
 690        free_vmap_area_noflush(va);
 691}
 692
 693/*
 694 * Free and unmap a vmap area
 695 */
 696static void free_unmap_vmap_area(struct vmap_area *va)
 697{
 698        flush_cache_vunmap(va->va_start, va->va_end);
 699        free_unmap_vmap_area_noflush(va);
 700}
 701
 702static struct vmap_area *find_vmap_area(unsigned long addr)
 703{
 704        struct vmap_area *va;
 705
 706        spin_lock(&vmap_area_lock);
 707        va = __find_vmap_area(addr);
 708        spin_unlock(&vmap_area_lock);
 709
 710        return va;
 711}
 712
 713static void free_unmap_vmap_area_addr(unsigned long addr)
 714{
 715        struct vmap_area *va;
 716
 717        va = find_vmap_area(addr);
 718        BUG_ON(!va);
 719        free_unmap_vmap_area(va);
 720}
 721
 722
 723/*** Per cpu kva allocator ***/
 724
 725/*
 726 * vmap space is limited especially on 32 bit architectures. Ensure there is
 727 * room for at least 16 percpu vmap blocks per CPU.
 728 */
 729/*
 730 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 731 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 732 * instead (we just need a rough idea)
 733 */
 734#if BITS_PER_LONG == 32
 735#define VMALLOC_SPACE           (128UL*1024*1024)
 736#else
 737#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 738#endif
 739
 740#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 741#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 742#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 743#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 744#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 745#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 746#define VMAP_BBMAP_BITS         \
 747                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 748                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 749                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 750
 751#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 752
 753static bool vmap_initialized __read_mostly = false;
 754
 755struct vmap_block_queue {
 756        spinlock_t lock;
 757        struct list_head free;
 758};
 759
 760struct vmap_block {
 761        spinlock_t lock;
 762        struct vmap_area *va;
 763        unsigned long free, dirty;
 764        DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 765        struct list_head free_list;
 766        struct rcu_head rcu_head;
 767        struct list_head purge;
 768};
 769
 770/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 771static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 772
 773/*
 774 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 775 * in the free path. Could get rid of this if we change the API to return a
 776 * "cookie" from alloc, to be passed to free. But no big deal yet.
 777 */
 778static DEFINE_SPINLOCK(vmap_block_tree_lock);
 779static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 780
 781/*
 782 * We should probably have a fallback mechanism to allocate virtual memory
 783 * out of partially filled vmap blocks. However vmap block sizing should be
 784 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 785 * big problem.
 786 */
 787
 788static unsigned long addr_to_vb_idx(unsigned long addr)
 789{
 790        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 791        addr /= VMAP_BLOCK_SIZE;
 792        return addr;
 793}
 794
 795static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 796{
 797        struct vmap_block_queue *vbq;
 798        struct vmap_block *vb;
 799        struct vmap_area *va;
 800        unsigned long vb_idx;
 801        int node, err;
 802
 803        node = numa_node_id();
 804
 805        vb = kmalloc_node(sizeof(struct vmap_block),
 806                        gfp_mask & GFP_RECLAIM_MASK, node);
 807        if (unlikely(!vb))
 808                return ERR_PTR(-ENOMEM);
 809
 810        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 811                                        VMALLOC_START, VMALLOC_END,
 812                                        node, gfp_mask);
 813        if (IS_ERR(va)) {
 814                kfree(vb);
 815                return ERR_CAST(va);
 816        }
 817
 818        err = radix_tree_preload(gfp_mask);
 819        if (unlikely(err)) {
 820                kfree(vb);
 821                free_vmap_area(va);
 822                return ERR_PTR(err);
 823        }
 824
 825        spin_lock_init(&vb->lock);
 826        vb->va = va;
 827        vb->free = VMAP_BBMAP_BITS;
 828        vb->dirty = 0;
 829        bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 830        INIT_LIST_HEAD(&vb->free_list);
 831
 832        vb_idx = addr_to_vb_idx(va->va_start);
 833        spin_lock(&vmap_block_tree_lock);
 834        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 835        spin_unlock(&vmap_block_tree_lock);
 836        BUG_ON(err);
 837        radix_tree_preload_end();
 838
 839        vbq = &get_cpu_var(vmap_block_queue);
 840        spin_lock(&vbq->lock);
 841        list_add_rcu(&vb->free_list, &vbq->free);
 842        spin_unlock(&vbq->lock);
 843        put_cpu_var(vmap_block_queue);
 844
 845        return vb;
 846}
 847
 848static void free_vmap_block(struct vmap_block *vb)
 849{
 850        struct vmap_block *tmp;
 851        unsigned long vb_idx;
 852
 853        vb_idx = addr_to_vb_idx(vb->va->va_start);
 854        spin_lock(&vmap_block_tree_lock);
 855        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 856        spin_unlock(&vmap_block_tree_lock);
 857        BUG_ON(tmp != vb);
 858
 859        free_vmap_area_noflush(vb->va);
 860        kfree_rcu(vb, rcu_head);
 861}
 862
 863static void purge_fragmented_blocks(int cpu)
 864{
 865        LIST_HEAD(purge);
 866        struct vmap_block *vb;
 867        struct vmap_block *n_vb;
 868        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 869
 870        rcu_read_lock();
 871        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 872
 873                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 874                        continue;
 875
 876                spin_lock(&vb->lock);
 877                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 878                        vb->free = 0; /* prevent further allocs after releasing lock */
 879                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 880                        bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 881                        spin_lock(&vbq->lock);
 882                        list_del_rcu(&vb->free_list);
 883                        spin_unlock(&vbq->lock);
 884                        spin_unlock(&vb->lock);
 885                        list_add_tail(&vb->purge, &purge);
 886                } else
 887                        spin_unlock(&vb->lock);
 888        }
 889        rcu_read_unlock();
 890
 891        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 892                list_del(&vb->purge);
 893                free_vmap_block(vb);
 894        }
 895}
 896
 897static void purge_fragmented_blocks_allcpus(void)
 898{
 899        int cpu;
 900
 901        for_each_possible_cpu(cpu)
 902                purge_fragmented_blocks(cpu);
 903}
 904
 905static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 906{
 907        struct vmap_block_queue *vbq;
 908        struct vmap_block *vb;
 909        unsigned long addr = 0;
 910        unsigned int order;
 911
 912        BUG_ON(size & ~PAGE_MASK);
 913        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 914        if (WARN_ON(size == 0)) {
 915                /*
 916                 * Allocating 0 bytes isn't what caller wants since
 917                 * get_order(0) returns funny result. Just warn and terminate
 918                 * early.
 919                 */
 920                return NULL;
 921        }
 922        order = get_order(size);
 923
 924again:
 925        rcu_read_lock();
 926        vbq = &get_cpu_var(vmap_block_queue);
 927        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 928                int i;
 929
 930                spin_lock(&vb->lock);
 931                if (vb->free < 1UL << order)
 932                        goto next;
 933
 934                i = VMAP_BBMAP_BITS - vb->free;
 935                addr = vb->va->va_start + (i << PAGE_SHIFT);
 936                BUG_ON(addr_to_vb_idx(addr) !=
 937                                addr_to_vb_idx(vb->va->va_start));
 938                vb->free -= 1UL << order;
 939                if (vb->free == 0) {
 940                        spin_lock(&vbq->lock);
 941                        list_del_rcu(&vb->free_list);
 942                        spin_unlock(&vbq->lock);
 943                }
 944                spin_unlock(&vb->lock);
 945                break;
 946next:
 947                spin_unlock(&vb->lock);
 948        }
 949
 950        put_cpu_var(vmap_block_queue);
 951        rcu_read_unlock();
 952
 953        if (!addr) {
 954                vb = new_vmap_block(gfp_mask);
 955                if (IS_ERR(vb))
 956                        return vb;
 957                goto again;
 958        }
 959
 960        return (void *)addr;
 961}
 962
 963static void vb_free(const void *addr, unsigned long size)
 964{
 965        unsigned long offset;
 966        unsigned long vb_idx;
 967        unsigned int order;
 968        struct vmap_block *vb;
 969
 970        BUG_ON(size & ~PAGE_MASK);
 971        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 972
 973        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 974
 975        order = get_order(size);
 976
 977        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 978
 979        vb_idx = addr_to_vb_idx((unsigned long)addr);
 980        rcu_read_lock();
 981        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
 982        rcu_read_unlock();
 983        BUG_ON(!vb);
 984
 985        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
 986
 987        spin_lock(&vb->lock);
 988        BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
 989
 990        vb->dirty += 1UL << order;
 991        if (vb->dirty == VMAP_BBMAP_BITS) {
 992                BUG_ON(vb->free);
 993                spin_unlock(&vb->lock);
 994                free_vmap_block(vb);
 995        } else
 996                spin_unlock(&vb->lock);
 997}
 998
 999/**
1000 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1001 *
1002 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1003 * to amortize TLB flushing overheads. What this means is that any page you
1004 * have now, may, in a former life, have been mapped into kernel virtual
1005 * address by the vmap layer and so there might be some CPUs with TLB entries
1006 * still referencing that page (additional to the regular 1:1 kernel mapping).
1007 *
1008 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1009 * be sure that none of the pages we have control over will have any aliases
1010 * from the vmap layer.
1011 */
1012void vm_unmap_aliases(void)
1013{
1014        unsigned long start = ULONG_MAX, end = 0;
1015        int cpu;
1016        int flush = 0;
1017
1018        if (unlikely(!vmap_initialized))
1019                return;
1020
1021        for_each_possible_cpu(cpu) {
1022                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1023                struct vmap_block *vb;
1024
1025                rcu_read_lock();
1026                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1027                        int i, j;
1028
1029                        spin_lock(&vb->lock);
1030                        i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1031                        if (i < VMAP_BBMAP_BITS) {
1032                                unsigned long s, e;
1033
1034                                j = find_last_bit(vb->dirty_map,
1035                                                        VMAP_BBMAP_BITS);
1036                                j = j + 1; /* need exclusive index */
1037
1038                                s = vb->va->va_start + (i << PAGE_SHIFT);
1039                                e = vb->va->va_start + (j << PAGE_SHIFT);
1040                                flush = 1;
1041
1042                                if (s < start)
1043                                        start = s;
1044                                if (e > end)
1045                                        end = e;
1046                        }
1047                        spin_unlock(&vb->lock);
1048                }
1049                rcu_read_unlock();
1050        }
1051
1052        __purge_vmap_area_lazy(&start, &end, 1, flush);
1053}
1054EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1055
1056/**
1057 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1058 * @mem: the pointer returned by vm_map_ram
1059 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1060 */
1061void vm_unmap_ram(const void *mem, unsigned int count)
1062{
1063        unsigned long size = count << PAGE_SHIFT;
1064        unsigned long addr = (unsigned long)mem;
1065
1066        BUG_ON(!addr);
1067        BUG_ON(addr < VMALLOC_START);
1068        BUG_ON(addr > VMALLOC_END);
1069        BUG_ON(addr & (PAGE_SIZE-1));
1070
1071        debug_check_no_locks_freed(mem, size);
1072        vmap_debug_free_range(addr, addr+size);
1073
1074        if (likely(count <= VMAP_MAX_ALLOC))
1075                vb_free(mem, size);
1076        else
1077                free_unmap_vmap_area_addr(addr);
1078}
1079EXPORT_SYMBOL(vm_unmap_ram);
1080
1081/**
1082 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1083 * @pages: an array of pointers to the pages to be mapped
1084 * @count: number of pages
1085 * @node: prefer to allocate data structures on this node
1086 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1087 *
1088 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1089 * faster than vmap so it's good.  But if you mix long-life and short-life
1090 * objects with vm_map_ram(), it could consume lots of address space through
1091 * fragmentation (especially on a 32bit machine).  You could see failures in
1092 * the end.  Please use this function for short-lived objects.
1093 *
1094 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1095 */
1096void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1097{
1098        unsigned long size = count << PAGE_SHIFT;
1099        unsigned long addr;
1100        void *mem;
1101
1102        if (likely(count <= VMAP_MAX_ALLOC)) {
1103                mem = vb_alloc(size, GFP_KERNEL);
1104                if (IS_ERR(mem))
1105                        return NULL;
1106                addr = (unsigned long)mem;
1107        } else {
1108                struct vmap_area *va;
1109                va = alloc_vmap_area(size, PAGE_SIZE,
1110                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1111                if (IS_ERR(va))
1112                        return NULL;
1113
1114                addr = va->va_start;
1115                mem = (void *)addr;
1116        }
1117        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1118                vm_unmap_ram(mem, count);
1119                return NULL;
1120        }
1121        return mem;
1122}
1123EXPORT_SYMBOL(vm_map_ram);
1124
1125static struct vm_struct *vmlist __initdata;
1126/**
1127 * vm_area_add_early - add vmap area early during boot
1128 * @vm: vm_struct to add
1129 *
1130 * This function is used to add fixed kernel vm area to vmlist before
1131 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1132 * should contain proper values and the other fields should be zero.
1133 *
1134 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1135 */
1136void __init vm_area_add_early(struct vm_struct *vm)
1137{
1138        struct vm_struct *tmp, **p;
1139
1140        BUG_ON(vmap_initialized);
1141        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1142                if (tmp->addr >= vm->addr) {
1143                        BUG_ON(tmp->addr < vm->addr + vm->size);
1144                        break;
1145                } else
1146                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1147        }
1148        vm->next = *p;
1149        *p = vm;
1150}
1151
1152/**
1153 * vm_area_register_early - register vmap area early during boot
1154 * @vm: vm_struct to register
1155 * @align: requested alignment
1156 *
1157 * This function is used to register kernel vm area before
1158 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1159 * proper values on entry and other fields should be zero.  On return,
1160 * vm->addr contains the allocated address.
1161 *
1162 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1163 */
1164void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1165{
1166        static size_t vm_init_off __initdata;
1167        unsigned long addr;
1168
1169        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1170        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1171
1172        vm->addr = (void *)addr;
1173
1174        vm_area_add_early(vm);
1175}
1176
1177void __init vmalloc_init(void)
1178{
1179        struct vmap_area *va;
1180        struct vm_struct *tmp;
1181        int i;
1182
1183        for_each_possible_cpu(i) {
1184                struct vmap_block_queue *vbq;
1185                struct vfree_deferred *p;
1186
1187                vbq = &per_cpu(vmap_block_queue, i);
1188                spin_lock_init(&vbq->lock);
1189                INIT_LIST_HEAD(&vbq->free);
1190                p = &per_cpu(vfree_deferred, i);
1191                init_llist_head(&p->list);
1192                INIT_WORK(&p->wq, free_work);
1193        }
1194
1195        /* Import existing vmlist entries. */
1196        for (tmp = vmlist; tmp; tmp = tmp->next) {
1197                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1198                va->flags = VM_VM_AREA;
1199                va->va_start = (unsigned long)tmp->addr;
1200                va->va_end = va->va_start + tmp->size;
1201                va->vm = tmp;
1202                __insert_vmap_area(va);
1203        }
1204
1205        vmap_area_pcpu_hole = VMALLOC_END;
1206
1207        vmap_initialized = true;
1208}
1209
1210/**
1211 * map_kernel_range_noflush - map kernel VM area with the specified pages
1212 * @addr: start of the VM area to map
1213 * @size: size of the VM area to map
1214 * @prot: page protection flags to use
1215 * @pages: pages to map
1216 *
1217 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1218 * specify should have been allocated using get_vm_area() and its
1219 * friends.
1220 *
1221 * NOTE:
1222 * This function does NOT do any cache flushing.  The caller is
1223 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1224 * before calling this function.
1225 *
1226 * RETURNS:
1227 * The number of pages mapped on success, -errno on failure.
1228 */
1229int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1230                             pgprot_t prot, struct page **pages)
1231{
1232        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1233}
1234
1235/**
1236 * unmap_kernel_range_noflush - unmap kernel VM area
1237 * @addr: start of the VM area to unmap
1238 * @size: size of the VM area to unmap
1239 *
1240 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1241 * specify should have been allocated using get_vm_area() and its
1242 * friends.
1243 *
1244 * NOTE:
1245 * This function does NOT do any cache flushing.  The caller is
1246 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1247 * before calling this function and flush_tlb_kernel_range() after.
1248 */
1249void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1250{
1251        vunmap_page_range(addr, addr + size);
1252}
1253EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1254
1255/**
1256 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1257 * @addr: start of the VM area to unmap
1258 * @size: size of the VM area to unmap
1259 *
1260 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1261 * the unmapping and tlb after.
1262 */
1263void unmap_kernel_range(unsigned long addr, unsigned long size)
1264{
1265        unsigned long end = addr + size;
1266
1267        flush_cache_vunmap(addr, end);
1268        vunmap_page_range(addr, end);
1269        flush_tlb_kernel_range(addr, end);
1270}
1271
1272int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1273{
1274        unsigned long addr = (unsigned long)area->addr;
1275        unsigned long end = addr + get_vm_area_size(area);
1276        int err;
1277
1278        err = vmap_page_range(addr, end, prot, *pages);
1279        if (err > 0) {
1280                *pages += err;
1281                err = 0;
1282        }
1283
1284        return err;
1285}
1286EXPORT_SYMBOL_GPL(map_vm_area);
1287
1288static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1289                              unsigned long flags, const void *caller)
1290{
1291        spin_lock(&vmap_area_lock);
1292        vm->flags = flags;
1293        vm->addr = (void *)va->va_start;
1294        vm->size = va->va_end - va->va_start;
1295        vm->caller = caller;
1296        va->vm = vm;
1297        va->flags |= VM_VM_AREA;
1298        spin_unlock(&vmap_area_lock);
1299}
1300
1301static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1302{
1303        /*
1304         * Before removing VM_UNINITIALIZED,
1305         * we should make sure that vm has proper values.
1306         * Pair with smp_rmb() in show_numa_info().
1307         */
1308        smp_wmb();
1309        vm->flags &= ~VM_UNINITIALIZED;
1310}
1311
1312static struct vm_struct *__get_vm_area_node(unsigned long size,
1313                unsigned long align, unsigned long flags, unsigned long start,
1314                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1315{
1316        struct vmap_area *va;
1317        struct vm_struct *area;
1318
1319        BUG_ON(in_interrupt());
1320        if (flags & VM_IOREMAP)
1321                align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1322
1323        size = PAGE_ALIGN(size);
1324        if (unlikely(!size))
1325                return NULL;
1326
1327        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1328        if (unlikely(!area))
1329                return NULL;
1330
1331        /*
1332         * We always allocate a guard page.
1333         */
1334        size += PAGE_SIZE;
1335
1336        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1337        if (IS_ERR(va)) {
1338                kfree(area);
1339                return NULL;
1340        }
1341
1342        setup_vmalloc_vm(area, va, flags, caller);
1343
1344        return area;
1345}
1346
1347struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1348                                unsigned long start, unsigned long end)
1349{
1350        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1351                                  GFP_KERNEL, __builtin_return_address(0));
1352}
1353EXPORT_SYMBOL_GPL(__get_vm_area);
1354
1355struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1356                                       unsigned long start, unsigned long end,
1357                                       const void *caller)
1358{
1359        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1360                                  GFP_KERNEL, caller);
1361}
1362
1363/**
1364 *      get_vm_area  -  reserve a contiguous kernel virtual area
1365 *      @size:          size of the area
1366 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1367 *
1368 *      Search an area of @size in the kernel virtual mapping area,
1369 *      and reserved it for out purposes.  Returns the area descriptor
1370 *      on success or %NULL on failure.
1371 */
1372struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1373{
1374        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1375                                  NUMA_NO_NODE, GFP_KERNEL,
1376                                  __builtin_return_address(0));
1377}
1378
1379struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1380                                const void *caller)
1381{
1382        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1383                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1384}
1385
1386/**
1387 *      find_vm_area  -  find a continuous kernel virtual area
1388 *      @addr:          base address
1389 *
1390 *      Search for the kernel VM area starting at @addr, and return it.
1391 *      It is up to the caller to do all required locking to keep the returned
1392 *      pointer valid.
1393 */
1394struct vm_struct *find_vm_area(const void *addr)
1395{
1396        struct vmap_area *va;
1397
1398        va = find_vmap_area((unsigned long)addr);
1399        if (va && va->flags & VM_VM_AREA)
1400                return va->vm;
1401
1402        return NULL;
1403}
1404
1405/**
1406 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1407 *      @addr:          base address
1408 *
1409 *      Search for the kernel VM area starting at @addr, and remove it.
1410 *      This function returns the found VM area, but using it is NOT safe
1411 *      on SMP machines, except for its size or flags.
1412 */
1413struct vm_struct *remove_vm_area(const void *addr)
1414{
1415        struct vmap_area *va;
1416
1417        va = find_vmap_area((unsigned long)addr);
1418        if (va && va->flags & VM_VM_AREA) {
1419                struct vm_struct *vm = va->vm;
1420
1421                spin_lock(&vmap_area_lock);
1422                va->vm = NULL;
1423                va->flags &= ~VM_VM_AREA;
1424                spin_unlock(&vmap_area_lock);
1425
1426                vmap_debug_free_range(va->va_start, va->va_end);
1427                free_unmap_vmap_area(va);
1428                vm->size -= PAGE_SIZE;
1429
1430                return vm;
1431        }
1432        return NULL;
1433}
1434
1435static void __vunmap(const void *addr, int deallocate_pages)
1436{
1437        struct vm_struct *area;
1438
1439        if (!addr)
1440                return;
1441
1442        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1443                        addr))
1444                return;
1445
1446        area = remove_vm_area(addr);
1447        if (unlikely(!area)) {
1448                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1449                                addr);
1450                return;
1451        }
1452
1453        debug_check_no_locks_freed(addr, area->size);
1454        debug_check_no_obj_freed(addr, area->size);
1455
1456        if (deallocate_pages) {
1457                int i;
1458
1459                for (i = 0; i < area->nr_pages; i++) {
1460                        struct page *page = area->pages[i];
1461
1462                        BUG_ON(!page);
1463                        __free_page(page);
1464                }
1465
1466                if (area->flags & VM_VPAGES)
1467                        vfree(area->pages);
1468                else
1469                        kfree(area->pages);
1470        }
1471
1472        kfree(area);
1473        return;
1474}
1475 
1476/**
1477 *      vfree  -  release memory allocated by vmalloc()
1478 *      @addr:          memory base address
1479 *
1480 *      Free the virtually continuous memory area starting at @addr, as
1481 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1482 *      NULL, no operation is performed.
1483 *
1484 *      Must not be called in NMI context (strictly speaking, only if we don't
1485 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1486 *      conventions for vfree() arch-depenedent would be a really bad idea)
1487 *
1488 *      NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1489 */
1490void vfree(const void *addr)
1491{
1492        BUG_ON(in_nmi());
1493
1494        kmemleak_free(addr);
1495
1496        if (!addr)
1497                return;
1498        if (unlikely(in_interrupt())) {
1499                struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1500                if (llist_add((struct llist_node *)addr, &p->list))
1501                        schedule_work(&p->wq);
1502        } else
1503                __vunmap(addr, 1);
1504}
1505EXPORT_SYMBOL(vfree);
1506
1507/**
1508 *      vunmap  -  release virtual mapping obtained by vmap()
1509 *      @addr:          memory base address
1510 *
1511 *      Free the virtually contiguous memory area starting at @addr,
1512 *      which was created from the page array passed to vmap().
1513 *
1514 *      Must not be called in interrupt context.
1515 */
1516void vunmap(const void *addr)
1517{
1518        BUG_ON(in_interrupt());
1519        might_sleep();
1520        if (addr)
1521                __vunmap(addr, 0);
1522}
1523EXPORT_SYMBOL(vunmap);
1524
1525/**
1526 *      vmap  -  map an array of pages into virtually contiguous space
1527 *      @pages:         array of page pointers
1528 *      @count:         number of pages to map
1529 *      @flags:         vm_area->flags
1530 *      @prot:          page protection for the mapping
1531 *
1532 *      Maps @count pages from @pages into contiguous kernel virtual
1533 *      space.
1534 */
1535void *vmap(struct page **pages, unsigned int count,
1536                unsigned long flags, pgprot_t prot)
1537{
1538        struct vm_struct *area;
1539
1540        might_sleep();
1541
1542        if (count > totalram_pages)
1543                return NULL;
1544
1545        area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1546                                        __builtin_return_address(0));
1547        if (!area)
1548                return NULL;
1549
1550        if (map_vm_area(area, prot, &pages)) {
1551                vunmap(area->addr);
1552                return NULL;
1553        }
1554
1555        return area->addr;
1556}
1557EXPORT_SYMBOL(vmap);
1558
1559static void *__vmalloc_node(unsigned long size, unsigned long align,
1560                            gfp_t gfp_mask, pgprot_t prot,
1561                            int node, const void *caller);
1562static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1563                                 pgprot_t prot, int node)
1564{
1565        const int order = 0;
1566        struct page **pages;
1567        unsigned int nr_pages, array_size, i;
1568        gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1569
1570        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1571        array_size = (nr_pages * sizeof(struct page *));
1572
1573        area->nr_pages = nr_pages;
1574        /* Please note that the recursion is strictly bounded. */
1575        if (array_size > PAGE_SIZE) {
1576                pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1577                                PAGE_KERNEL, node, area->caller);
1578                area->flags |= VM_VPAGES;
1579        } else {
1580                pages = kmalloc_node(array_size, nested_gfp, node);
1581        }
1582        area->pages = pages;
1583        if (!area->pages) {
1584                remove_vm_area(area->addr);
1585                kfree(area);
1586                return NULL;
1587        }
1588
1589        for (i = 0; i < area->nr_pages; i++) {
1590                struct page *page;
1591                gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1592
1593                if (node == NUMA_NO_NODE)
1594                        page = alloc_page(tmp_mask);
1595                else
1596                        page = alloc_pages_node(node, tmp_mask, order);
1597
1598                if (unlikely(!page)) {
1599                        /* Successfully allocated i pages, free them in __vunmap() */
1600                        area->nr_pages = i;
1601                        goto fail;
1602                }
1603                area->pages[i] = page;
1604        }
1605
1606        if (map_vm_area(area, prot, &pages))
1607                goto fail;
1608        return area->addr;
1609
1610fail:
1611        warn_alloc_failed(gfp_mask, order,
1612                          "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1613                          (area->nr_pages*PAGE_SIZE), area->size);
1614        vfree(area->addr);
1615        return NULL;
1616}
1617
1618/**
1619 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1620 *      @size:          allocation size
1621 *      @align:         desired alignment
1622 *      @start:         vm area range start
1623 *      @end:           vm area range end
1624 *      @gfp_mask:      flags for the page level allocator
1625 *      @prot:          protection mask for the allocated pages
1626 *      @node:          node to use for allocation or NUMA_NO_NODE
1627 *      @caller:        caller's return address
1628 *
1629 *      Allocate enough pages to cover @size from the page level
1630 *      allocator with @gfp_mask flags.  Map them into contiguous
1631 *      kernel virtual space, using a pagetable protection of @prot.
1632 */
1633void *__vmalloc_node_range(unsigned long size, unsigned long align,
1634                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1635                        pgprot_t prot, int node, const void *caller)
1636{
1637        struct vm_struct *area;
1638        void *addr;
1639        unsigned long real_size = size;
1640
1641        size = PAGE_ALIGN(size);
1642        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1643                goto fail;
1644
1645        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1646                                  start, end, node, gfp_mask, caller);
1647        if (!area)
1648                goto fail;
1649
1650        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1651        if (!addr)
1652                return NULL;
1653
1654        /*
1655         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1656         * flag. It means that vm_struct is not fully initialized.
1657         * Now, it is fully initialized, so remove this flag here.
1658         */
1659        clear_vm_uninitialized_flag(area);
1660
1661        /*
1662         * A ref_count = 2 is needed because vm_struct allocated in
1663         * __get_vm_area_node() contains a reference to the virtual address of
1664         * the vmalloc'ed block.
1665         */
1666        kmemleak_alloc(addr, real_size, 2, gfp_mask);
1667
1668        return addr;
1669
1670fail:
1671        warn_alloc_failed(gfp_mask, 0,
1672                          "vmalloc: allocation failure: %lu bytes\n",
1673                          real_size);
1674        return NULL;
1675}
1676
1677/**
1678 *      __vmalloc_node  -  allocate virtually contiguous memory
1679 *      @size:          allocation size
1680 *      @align:         desired alignment
1681 *      @gfp_mask:      flags for the page level allocator
1682 *      @prot:          protection mask for the allocated pages
1683 *      @node:          node to use for allocation or NUMA_NO_NODE
1684 *      @caller:        caller's return address
1685 *
1686 *      Allocate enough pages to cover @size from the page level
1687 *      allocator with @gfp_mask flags.  Map them into contiguous
1688 *      kernel virtual space, using a pagetable protection of @prot.
1689 */
1690static void *__vmalloc_node(unsigned long size, unsigned long align,
1691                            gfp_t gfp_mask, pgprot_t prot,
1692                            int node, const void *caller)
1693{
1694        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1695                                gfp_mask, prot, node, caller);
1696}
1697
1698void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1699{
1700        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1701                                __builtin_return_address(0));
1702}
1703EXPORT_SYMBOL(__vmalloc);
1704
1705static inline void *__vmalloc_node_flags(unsigned long size,
1706                                        int node, gfp_t flags)
1707{
1708        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1709                                        node, __builtin_return_address(0));
1710}
1711
1712/**
1713 *      vmalloc  -  allocate virtually contiguous memory
1714 *      @size:          allocation size
1715 *      Allocate enough pages to cover @size from the page level
1716 *      allocator and map them into contiguous kernel virtual space.
1717 *
1718 *      For tight control over page level allocator and protection flags
1719 *      use __vmalloc() instead.
1720 */
1721void *vmalloc(unsigned long size)
1722{
1723        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1724                                    GFP_KERNEL | __GFP_HIGHMEM);
1725}
1726EXPORT_SYMBOL(vmalloc);
1727
1728/**
1729 *      vzalloc - allocate virtually contiguous memory with zero fill
1730 *      @size:  allocation size
1731 *      Allocate enough pages to cover @size from the page level
1732 *      allocator and map them into contiguous kernel virtual space.
1733 *      The memory allocated is set to zero.
1734 *
1735 *      For tight control over page level allocator and protection flags
1736 *      use __vmalloc() instead.
1737 */
1738void *vzalloc(unsigned long size)
1739{
1740        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1741                                GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1742}
1743EXPORT_SYMBOL(vzalloc);
1744
1745/**
1746 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1747 * @size: allocation size
1748 *
1749 * The resulting memory area is zeroed so it can be mapped to userspace
1750 * without leaking data.
1751 */
1752void *vmalloc_user(unsigned long size)
1753{
1754        struct vm_struct *area;
1755        void *ret;
1756
1757        ret = __vmalloc_node(size, SHMLBA,
1758                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1759                             PAGE_KERNEL, NUMA_NO_NODE,
1760                             __builtin_return_address(0));
1761        if (ret) {
1762                area = find_vm_area(ret);
1763                area->flags |= VM_USERMAP;
1764        }
1765        return ret;
1766}
1767EXPORT_SYMBOL(vmalloc_user);
1768
1769/**
1770 *      vmalloc_node  -  allocate memory on a specific node
1771 *      @size:          allocation size
1772 *      @node:          numa node
1773 *
1774 *      Allocate enough pages to cover @size from the page level
1775 *      allocator and map them into contiguous kernel virtual space.
1776 *
1777 *      For tight control over page level allocator and protection flags
1778 *      use __vmalloc() instead.
1779 */
1780void *vmalloc_node(unsigned long size, int node)
1781{
1782        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1783                                        node, __builtin_return_address(0));
1784}
1785EXPORT_SYMBOL(vmalloc_node);
1786
1787/**
1788 * vzalloc_node - allocate memory on a specific node with zero fill
1789 * @size:       allocation size
1790 * @node:       numa node
1791 *
1792 * Allocate enough pages to cover @size from the page level
1793 * allocator and map them into contiguous kernel virtual space.
1794 * The memory allocated is set to zero.
1795 *
1796 * For tight control over page level allocator and protection flags
1797 * use __vmalloc_node() instead.
1798 */
1799void *vzalloc_node(unsigned long size, int node)
1800{
1801        return __vmalloc_node_flags(size, node,
1802                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1803}
1804EXPORT_SYMBOL(vzalloc_node);
1805
1806#ifndef PAGE_KERNEL_EXEC
1807# define PAGE_KERNEL_EXEC PAGE_KERNEL
1808#endif
1809
1810/**
1811 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1812 *      @size:          allocation size
1813 *
1814 *      Kernel-internal function to allocate enough pages to cover @size
1815 *      the page level allocator and map them into contiguous and
1816 *      executable kernel virtual space.
1817 *
1818 *      For tight control over page level allocator and protection flags
1819 *      use __vmalloc() instead.
1820 */
1821
1822void *vmalloc_exec(unsigned long size)
1823{
1824        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1825                              NUMA_NO_NODE, __builtin_return_address(0));
1826}
1827
1828#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1829#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1830#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1831#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1832#else
1833#define GFP_VMALLOC32 GFP_KERNEL
1834#endif
1835
1836/**
1837 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1838 *      @size:          allocation size
1839 *
1840 *      Allocate enough 32bit PA addressable pages to cover @size from the
1841 *      page level allocator and map them into contiguous kernel virtual space.
1842 */
1843void *vmalloc_32(unsigned long size)
1844{
1845        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1846                              NUMA_NO_NODE, __builtin_return_address(0));
1847}
1848EXPORT_SYMBOL(vmalloc_32);
1849
1850/**
1851 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1852 *      @size:          allocation size
1853 *
1854 * The resulting memory area is 32bit addressable and zeroed so it can be
1855 * mapped to userspace without leaking data.
1856 */
1857void *vmalloc_32_user(unsigned long size)
1858{
1859        struct vm_struct *area;
1860        void *ret;
1861
1862        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1863                             NUMA_NO_NODE, __builtin_return_address(0));
1864        if (ret) {
1865                area = find_vm_area(ret);
1866                area->flags |= VM_USERMAP;
1867        }
1868        return ret;
1869}
1870EXPORT_SYMBOL(vmalloc_32_user);
1871
1872/*
1873 * small helper routine , copy contents to buf from addr.
1874 * If the page is not present, fill zero.
1875 */
1876
1877static int aligned_vread(char *buf, char *addr, unsigned long count)
1878{
1879        struct page *p;
1880        int copied = 0;
1881
1882        while (count) {
1883                unsigned long offset, length;
1884
1885                offset = (unsigned long)addr & ~PAGE_MASK;
1886                length = PAGE_SIZE - offset;
1887                if (length > count)
1888                        length = count;
1889                p = vmalloc_to_page(addr);
1890                /*
1891                 * To do safe access to this _mapped_ area, we need
1892                 * lock. But adding lock here means that we need to add
1893                 * overhead of vmalloc()/vfree() calles for this _debug_
1894                 * interface, rarely used. Instead of that, we'll use
1895                 * kmap() and get small overhead in this access function.
1896                 */
1897                if (p) {
1898                        /*
1899                         * we can expect USER0 is not used (see vread/vwrite's
1900                         * function description)
1901                         */
1902                        void *map = kmap_atomic(p);
1903                        memcpy(buf, map + offset, length);
1904                        kunmap_atomic(map);
1905                } else
1906                        memset(buf, 0, length);
1907
1908                addr += length;
1909                buf += length;
1910                copied += length;
1911                count -= length;
1912        }
1913        return copied;
1914}
1915
1916static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1917{
1918        struct page *p;
1919        int copied = 0;
1920
1921        while (count) {
1922                unsigned long offset, length;
1923
1924                offset = (unsigned long)addr & ~PAGE_MASK;
1925                length = PAGE_SIZE - offset;
1926                if (length > count)
1927                        length = count;
1928                p = vmalloc_to_page(addr);
1929                /*
1930                 * To do safe access to this _mapped_ area, we need
1931                 * lock. But adding lock here means that we need to add
1932                 * overhead of vmalloc()/vfree() calles for this _debug_
1933                 * interface, rarely used. Instead of that, we'll use
1934                 * kmap() and get small overhead in this access function.
1935                 */
1936                if (p) {
1937                        /*
1938                         * we can expect USER0 is not used (see vread/vwrite's
1939                         * function description)
1940                         */
1941                        void *map = kmap_atomic(p);
1942                        memcpy(map + offset, buf, length);
1943                        kunmap_atomic(map);
1944                }
1945                addr += length;
1946                buf += length;
1947                copied += length;
1948                count -= length;
1949        }
1950        return copied;
1951}
1952
1953/**
1954 *      vread() -  read vmalloc area in a safe way.
1955 *      @buf:           buffer for reading data
1956 *      @addr:          vm address.
1957 *      @count:         number of bytes to be read.
1958 *
1959 *      Returns # of bytes which addr and buf should be increased.
1960 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
1961 *      includes any intersect with alive vmalloc area.
1962 *
1963 *      This function checks that addr is a valid vmalloc'ed area, and
1964 *      copy data from that area to a given buffer. If the given memory range
1965 *      of [addr...addr+count) includes some valid address, data is copied to
1966 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
1967 *      IOREMAP area is treated as memory hole and no copy is done.
1968 *
1969 *      If [addr...addr+count) doesn't includes any intersects with alive
1970 *      vm_struct area, returns 0. @buf should be kernel's buffer.
1971 *
1972 *      Note: In usual ops, vread() is never necessary because the caller
1973 *      should know vmalloc() area is valid and can use memcpy().
1974 *      This is for routines which have to access vmalloc area without
1975 *      any informaion, as /dev/kmem.
1976 *
1977 */
1978
1979long vread(char *buf, char *addr, unsigned long count)
1980{
1981        struct vmap_area *va;
1982        struct vm_struct *vm;
1983        char *vaddr, *buf_start = buf;
1984        unsigned long buflen = count;
1985        unsigned long n;
1986
1987        /* Don't allow overflow */
1988        if ((unsigned long) addr + count < count)
1989                count = -(unsigned long) addr;
1990
1991        spin_lock(&vmap_area_lock);
1992        list_for_each_entry(va, &vmap_area_list, list) {
1993                if (!count)
1994                        break;
1995
1996                if (!(va->flags & VM_VM_AREA))
1997                        continue;
1998
1999                vm = va->vm;
2000                vaddr = (char *) vm->addr;
2001                if (addr >= vaddr + get_vm_area_size(vm))
2002                        continue;
2003                while (addr < vaddr) {
2004                        if (count == 0)
2005                                goto finished;
2006                        *buf = '\0';
2007                        buf++;
2008                        addr++;
2009                        count--;
2010                }
2011                n = vaddr + get_vm_area_size(vm) - addr;
2012                if (n > count)
2013                        n = count;
2014                if (!(vm->flags & VM_IOREMAP))
2015                        aligned_vread(buf, addr, n);
2016                else /* IOREMAP area is treated as memory hole */
2017                        memset(buf, 0, n);
2018                buf += n;
2019                addr += n;
2020                count -= n;
2021        }
2022finished:
2023        spin_unlock(&vmap_area_lock);
2024
2025        if (buf == buf_start)
2026                return 0;
2027        /* zero-fill memory holes */
2028        if (buf != buf_start + buflen)
2029                memset(buf, 0, buflen - (buf - buf_start));
2030
2031        return buflen;
2032}
2033
2034/**
2035 *      vwrite() -  write vmalloc area in a safe way.
2036 *      @buf:           buffer for source data
2037 *      @addr:          vm address.
2038 *      @count:         number of bytes to be read.
2039 *
2040 *      Returns # of bytes which addr and buf should be incresed.
2041 *      (same number to @count).
2042 *      If [addr...addr+count) doesn't includes any intersect with valid
2043 *      vmalloc area, returns 0.
2044 *
2045 *      This function checks that addr is a valid vmalloc'ed area, and
2046 *      copy data from a buffer to the given addr. If specified range of
2047 *      [addr...addr+count) includes some valid address, data is copied from
2048 *      proper area of @buf. If there are memory holes, no copy to hole.
2049 *      IOREMAP area is treated as memory hole and no copy is done.
2050 *
2051 *      If [addr...addr+count) doesn't includes any intersects with alive
2052 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2053 *
2054 *      Note: In usual ops, vwrite() is never necessary because the caller
2055 *      should know vmalloc() area is valid and can use memcpy().
2056 *      This is for routines which have to access vmalloc area without
2057 *      any informaion, as /dev/kmem.
2058 */
2059
2060long vwrite(char *buf, char *addr, unsigned long count)
2061{
2062        struct vmap_area *va;
2063        struct vm_struct *vm;
2064        char *vaddr;
2065        unsigned long n, buflen;
2066        int copied = 0;
2067
2068        /* Don't allow overflow */
2069        if ((unsigned long) addr + count < count)
2070                count = -(unsigned long) addr;
2071        buflen = count;
2072
2073        spin_lock(&vmap_area_lock);
2074        list_for_each_entry(va, &vmap_area_list, list) {
2075                if (!count)
2076                        break;
2077
2078                if (!(va->flags & VM_VM_AREA))
2079                        continue;
2080
2081                vm = va->vm;
2082                vaddr = (char *) vm->addr;
2083                if (addr >= vaddr + get_vm_area_size(vm))
2084                        continue;
2085                while (addr < vaddr) {
2086                        if (count == 0)
2087                                goto finished;
2088                        buf++;
2089                        addr++;
2090                        count--;
2091                }
2092                n = vaddr + get_vm_area_size(vm) - addr;
2093                if (n > count)
2094                        n = count;
2095                if (!(vm->flags & VM_IOREMAP)) {
2096                        aligned_vwrite(buf, addr, n);
2097                        copied++;
2098                }
2099                buf += n;
2100                addr += n;
2101                count -= n;
2102        }
2103finished:
2104        spin_unlock(&vmap_area_lock);
2105        if (!copied)
2106                return 0;
2107        return buflen;
2108}
2109
2110/**
2111 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2112 *      @vma:           vma to cover
2113 *      @uaddr:         target user address to start at
2114 *      @kaddr:         virtual address of vmalloc kernel memory
2115 *      @size:          size of map area
2116 *
2117 *      Returns:        0 for success, -Exxx on failure
2118 *
2119 *      This function checks that @kaddr is a valid vmalloc'ed area,
2120 *      and that it is big enough to cover the range starting at
2121 *      @uaddr in @vma. Will return failure if that criteria isn't
2122 *      met.
2123 *
2124 *      Similar to remap_pfn_range() (see mm/memory.c)
2125 */
2126int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2127                                void *kaddr, unsigned long size)
2128{
2129        struct vm_struct *area;
2130
2131        size = PAGE_ALIGN(size);
2132
2133        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2134                return -EINVAL;
2135
2136        area = find_vm_area(kaddr);
2137        if (!area)
2138                return -EINVAL;
2139
2140        if (!(area->flags & VM_USERMAP))
2141                return -EINVAL;
2142
2143        if (kaddr + size > area->addr + area->size)
2144                return -EINVAL;
2145
2146        do {
2147                struct page *page = vmalloc_to_page(kaddr);
2148                int ret;
2149
2150                ret = vm_insert_page(vma, uaddr, page);
2151                if (ret)
2152                        return ret;
2153
2154                uaddr += PAGE_SIZE;
2155                kaddr += PAGE_SIZE;
2156                size -= PAGE_SIZE;
2157        } while (size > 0);
2158
2159        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2160
2161        return 0;
2162}
2163EXPORT_SYMBOL(remap_vmalloc_range_partial);
2164
2165/**
2166 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2167 *      @vma:           vma to cover (map full range of vma)
2168 *      @addr:          vmalloc memory
2169 *      @pgoff:         number of pages into addr before first page to map
2170 *
2171 *      Returns:        0 for success, -Exxx on failure
2172 *
2173 *      This function checks that addr is a valid vmalloc'ed area, and
2174 *      that it is big enough to cover the vma. Will return failure if
2175 *      that criteria isn't met.
2176 *
2177 *      Similar to remap_pfn_range() (see mm/memory.c)
2178 */
2179int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2180                                                unsigned long pgoff)
2181{
2182        return remap_vmalloc_range_partial(vma, vma->vm_start,
2183                                           addr + (pgoff << PAGE_SHIFT),
2184                                           vma->vm_end - vma->vm_start);
2185}
2186EXPORT_SYMBOL(remap_vmalloc_range);
2187
2188/*
2189 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2190 * have one.
2191 */
2192void __weak vmalloc_sync_all(void)
2193{
2194}
2195
2196
2197static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2198{
2199        pte_t ***p = data;
2200
2201        if (p) {
2202                *(*p) = pte;
2203                (*p)++;
2204        }
2205        return 0;
2206}
2207
2208/**
2209 *      alloc_vm_area - allocate a range of kernel address space
2210 *      @size:          size of the area
2211 *      @ptes:          returns the PTEs for the address space
2212 *
2213 *      Returns:        NULL on failure, vm_struct on success
2214 *
2215 *      This function reserves a range of kernel address space, and
2216 *      allocates pagetables to map that range.  No actual mappings
2217 *      are created.
2218 *
2219 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2220 *      allocated for the VM area are returned.
2221 */
2222struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2223{
2224        struct vm_struct *area;
2225
2226        area = get_vm_area_caller(size, VM_IOREMAP,
2227                                __builtin_return_address(0));
2228        if (area == NULL)
2229                return NULL;
2230
2231        /*
2232         * This ensures that page tables are constructed for this region
2233         * of kernel virtual address space and mapped into init_mm.
2234         */
2235        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2236                                size, f, ptes ? &ptes : NULL)) {
2237                free_vm_area(area);
2238                return NULL;
2239        }
2240
2241        return area;
2242}
2243EXPORT_SYMBOL_GPL(alloc_vm_area);
2244
2245void free_vm_area(struct vm_struct *area)
2246{
2247        struct vm_struct *ret;
2248        ret = remove_vm_area(area->addr);
2249        BUG_ON(ret != area);
2250        kfree(area);
2251}
2252EXPORT_SYMBOL_GPL(free_vm_area);
2253
2254#ifdef CONFIG_SMP
2255static struct vmap_area *node_to_va(struct rb_node *n)
2256{
2257        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2258}
2259
2260/**
2261 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2262 * @end: target address
2263 * @pnext: out arg for the next vmap_area
2264 * @pprev: out arg for the previous vmap_area
2265 *
2266 * Returns: %true if either or both of next and prev are found,
2267 *          %false if no vmap_area exists
2268 *
2269 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2270 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2271 */
2272static bool pvm_find_next_prev(unsigned long end,
2273                               struct vmap_area **pnext,
2274                               struct vmap_area **pprev)
2275{
2276        struct rb_node *n = vmap_area_root.rb_node;
2277        struct vmap_area *va = NULL;
2278
2279        while (n) {
2280                va = rb_entry(n, struct vmap_area, rb_node);
2281                if (end < va->va_end)
2282                        n = n->rb_left;
2283                else if (end > va->va_end)
2284                        n = n->rb_right;
2285                else
2286                        break;
2287        }
2288
2289        if (!va)
2290                return false;
2291
2292        if (va->va_end > end) {
2293                *pnext = va;
2294                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2295        } else {
2296                *pprev = va;
2297                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2298        }
2299        return true;
2300}
2301
2302/**
2303 * pvm_determine_end - find the highest aligned address between two vmap_areas
2304 * @pnext: in/out arg for the next vmap_area
2305 * @pprev: in/out arg for the previous vmap_area
2306 * @align: alignment
2307 *
2308 * Returns: determined end address
2309 *
2310 * Find the highest aligned address between *@pnext and *@pprev below
2311 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2312 * down address is between the end addresses of the two vmap_areas.
2313 *
2314 * Please note that the address returned by this function may fall
2315 * inside *@pnext vmap_area.  The caller is responsible for checking
2316 * that.
2317 */
2318static unsigned long pvm_determine_end(struct vmap_area **pnext,
2319                                       struct vmap_area **pprev,
2320                                       unsigned long align)
2321{
2322        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2323        unsigned long addr;
2324
2325        if (*pnext)
2326                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2327        else
2328                addr = vmalloc_end;
2329
2330        while (*pprev && (*pprev)->va_end > addr) {
2331                *pnext = *pprev;
2332                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2333        }
2334
2335        return addr;
2336}
2337
2338/**
2339 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2340 * @offsets: array containing offset of each area
2341 * @sizes: array containing size of each area
2342 * @nr_vms: the number of areas to allocate
2343 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2344 *
2345 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2346 *          vm_structs on success, %NULL on failure
2347 *
2348 * Percpu allocator wants to use congruent vm areas so that it can
2349 * maintain the offsets among percpu areas.  This function allocates
2350 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2351 * be scattered pretty far, distance between two areas easily going up
2352 * to gigabytes.  To avoid interacting with regular vmallocs, these
2353 * areas are allocated from top.
2354 *
2355 * Despite its complicated look, this allocator is rather simple.  It
2356 * does everything top-down and scans areas from the end looking for
2357 * matching slot.  While scanning, if any of the areas overlaps with
2358 * existing vmap_area, the base address is pulled down to fit the
2359 * area.  Scanning is repeated till all the areas fit and then all
2360 * necessary data structres are inserted and the result is returned.
2361 */
2362struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2363                                     const size_t *sizes, int nr_vms,
2364                                     size_t align)
2365{
2366        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2367        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2368        struct vmap_area **vas, *prev, *next;
2369        struct vm_struct **vms;
2370        int area, area2, last_area, term_area;
2371        unsigned long base, start, end, last_end;
2372        bool purged = false;
2373
2374        /* verify parameters and allocate data structures */
2375        BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2376        for (last_area = 0, area = 0; area < nr_vms; area++) {
2377                start = offsets[area];
2378                end = start + sizes[area];
2379
2380                /* is everything aligned properly? */
2381                BUG_ON(!IS_ALIGNED(offsets[area], align));
2382                BUG_ON(!IS_ALIGNED(sizes[area], align));
2383
2384                /* detect the area with the highest address */
2385                if (start > offsets[last_area])
2386                        last_area = area;
2387
2388                for (area2 = 0; area2 < nr_vms; area2++) {
2389                        unsigned long start2 = offsets[area2];
2390                        unsigned long end2 = start2 + sizes[area2];
2391
2392                        if (area2 == area)
2393                                continue;
2394
2395                        BUG_ON(start2 >= start && start2 < end);
2396                        BUG_ON(end2 <= end && end2 > start);
2397                }
2398        }
2399        last_end = offsets[last_area] + sizes[last_area];
2400
2401        if (vmalloc_end - vmalloc_start < last_end) {
2402                WARN_ON(true);
2403                return NULL;
2404        }
2405
2406        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2407        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2408        if (!vas || !vms)
2409                goto err_free2;
2410
2411        for (area = 0; area < nr_vms; area++) {
2412                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2413                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2414                if (!vas[area] || !vms[area])
2415                        goto err_free;
2416        }
2417retry:
2418        spin_lock(&vmap_area_lock);
2419
2420        /* start scanning - we scan from the top, begin with the last area */
2421        area = term_area = last_area;
2422        start = offsets[area];
2423        end = start + sizes[area];
2424
2425        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2426                base = vmalloc_end - last_end;
2427                goto found;
2428        }
2429        base = pvm_determine_end(&next, &prev, align) - end;
2430
2431        while (true) {
2432                BUG_ON(next && next->va_end <= base + end);
2433                BUG_ON(prev && prev->va_end > base + end);
2434
2435                /*
2436                 * base might have underflowed, add last_end before
2437                 * comparing.
2438                 */
2439                if (base + last_end < vmalloc_start + last_end) {
2440                        spin_unlock(&vmap_area_lock);
2441                        if (!purged) {
2442                                purge_vmap_area_lazy();
2443                                purged = true;
2444                                goto retry;
2445                        }
2446                        goto err_free;
2447                }
2448
2449                /*
2450                 * If next overlaps, move base downwards so that it's
2451                 * right below next and then recheck.
2452                 */
2453                if (next && next->va_start < base + end) {
2454                        base = pvm_determine_end(&next, &prev, align) - end;
2455                        term_area = area;
2456                        continue;
2457                }
2458
2459                /*
2460                 * If prev overlaps, shift down next and prev and move
2461                 * base so that it's right below new next and then
2462                 * recheck.
2463                 */
2464                if (prev && prev->va_end > base + start)  {
2465                        next = prev;
2466                        prev = node_to_va(rb_prev(&next->rb_node));
2467                        base = pvm_determine_end(&next, &prev, align) - end;
2468                        term_area = area;
2469                        continue;
2470                }
2471
2472                /*
2473                 * This area fits, move on to the previous one.  If
2474                 * the previous one is the terminal one, we're done.
2475                 */
2476                area = (area + nr_vms - 1) % nr_vms;
2477                if (area == term_area)
2478                        break;
2479                start = offsets[area];
2480                end = start + sizes[area];
2481                pvm_find_next_prev(base + end, &next, &prev);
2482        }
2483found:
2484        /* we've found a fitting base, insert all va's */
2485        for (area = 0; area < nr_vms; area++) {
2486                struct vmap_area *va = vas[area];
2487
2488                va->va_start = base + offsets[area];
2489                va->va_end = va->va_start + sizes[area];
2490                __insert_vmap_area(va);
2491        }
2492
2493        vmap_area_pcpu_hole = base + offsets[last_area];
2494
2495        spin_unlock(&vmap_area_lock);
2496
2497        /* insert all vm's */
2498        for (area = 0; area < nr_vms; area++)
2499                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2500                                 pcpu_get_vm_areas);
2501
2502        kfree(vas);
2503        return vms;
2504
2505err_free:
2506        for (area = 0; area < nr_vms; area++) {
2507                kfree(vas[area]);
2508                kfree(vms[area]);
2509        }
2510err_free2:
2511        kfree(vas);
2512        kfree(vms);
2513        return NULL;
2514}
2515
2516/**
2517 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2518 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2519 * @nr_vms: the number of allocated areas
2520 *
2521 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2522 */
2523void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2524{
2525        int i;
2526
2527        for (i = 0; i < nr_vms; i++)
2528                free_vm_area(vms[i]);
2529        kfree(vms);
2530}
2531#endif  /* CONFIG_SMP */
2532
2533#ifdef CONFIG_PROC_FS
2534static void *s_start(struct seq_file *m, loff_t *pos)
2535        __acquires(&vmap_area_lock)
2536{
2537        loff_t n = *pos;
2538        struct vmap_area *va;
2539
2540        spin_lock(&vmap_area_lock);
2541        va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2542        while (n > 0 && &va->list != &vmap_area_list) {
2543                n--;
2544                va = list_entry(va->list.next, typeof(*va), list);
2545        }
2546        if (!n && &va->list != &vmap_area_list)
2547                return va;
2548
2549        return NULL;
2550
2551}
2552
2553static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2554{
2555        struct vmap_area *va = p, *next;
2556
2557        ++*pos;
2558        next = list_entry(va->list.next, typeof(*va), list);
2559        if (&next->list != &vmap_area_list)
2560                return next;
2561
2562        return NULL;
2563}
2564
2565static void s_stop(struct seq_file *m, void *p)
2566        __releases(&vmap_area_lock)
2567{
2568        spin_unlock(&vmap_area_lock);
2569}
2570
2571static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2572{
2573        if (IS_ENABLED(CONFIG_NUMA)) {
2574                unsigned int nr, *counters = m->private;
2575
2576                if (!counters)
2577                        return;
2578
2579                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2580                smp_rmb();
2581                if (v->flags & VM_UNINITIALIZED)
2582                        return;
2583
2584                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2585
2586                for (nr = 0; nr < v->nr_pages; nr++)
2587                        counters[page_to_nid(v->pages[nr])]++;
2588
2589                for_each_node_state(nr, N_HIGH_MEMORY)
2590                        if (counters[nr])
2591                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2592        }
2593}
2594
2595static int s_show(struct seq_file *m, void *p)
2596{
2597        struct vmap_area *va = p;
2598        struct vm_struct *v;
2599
2600        /*
2601         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2602         * behalf of vmap area is being tear down or vm_map_ram allocation.
2603         */
2604        if (!(va->flags & VM_VM_AREA))
2605                return 0;
2606
2607        v = va->vm;
2608
2609        seq_printf(m, "0x%pK-0x%pK %7ld",
2610                v->addr, v->addr + v->size, v->size);
2611
2612        if (v->caller)
2613                seq_printf(m, " %pS", v->caller);
2614
2615        if (v->nr_pages)
2616                seq_printf(m, " pages=%d", v->nr_pages);
2617
2618        if (v->phys_addr)
2619                seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2620
2621        if (v->flags & VM_IOREMAP)
2622                seq_printf(m, " ioremap");
2623
2624        if (v->flags & VM_ALLOC)
2625                seq_printf(m, " vmalloc");
2626
2627        if (v->flags & VM_MAP)
2628                seq_printf(m, " vmap");
2629
2630        if (v->flags & VM_USERMAP)
2631                seq_printf(m, " user");
2632
2633        if (v->flags & VM_VPAGES)
2634                seq_printf(m, " vpages");
2635
2636        show_numa_info(m, v);
2637        seq_putc(m, '\n');
2638        return 0;
2639}
2640
2641static const struct seq_operations vmalloc_op = {
2642        .start = s_start,
2643        .next = s_next,
2644        .stop = s_stop,
2645        .show = s_show,
2646};
2647
2648static int vmalloc_open(struct inode *inode, struct file *file)
2649{
2650        unsigned int *ptr = NULL;
2651        int ret;
2652
2653        if (IS_ENABLED(CONFIG_NUMA)) {
2654                ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2655                if (ptr == NULL)
2656                        return -ENOMEM;
2657        }
2658        ret = seq_open(file, &vmalloc_op);
2659        if (!ret) {
2660                struct seq_file *m = file->private_data;
2661                m->private = ptr;
2662        } else
2663                kfree(ptr);
2664        return ret;
2665}
2666
2667static const struct file_operations proc_vmalloc_operations = {
2668        .open           = vmalloc_open,
2669        .read           = seq_read,
2670        .llseek         = seq_lseek,
2671        .release        = seq_release_private,
2672};
2673
2674static int __init proc_vmalloc_init(void)
2675{
2676        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2677        return 0;
2678}
2679module_init(proc_vmalloc_init);
2680
2681void get_vmalloc_info(struct vmalloc_info *vmi)
2682{
2683        struct vmap_area *va;
2684        unsigned long free_area_size;
2685        unsigned long prev_end;
2686
2687        vmi->used = 0;
2688        vmi->largest_chunk = 0;
2689
2690        prev_end = VMALLOC_START;
2691
2692        spin_lock(&vmap_area_lock);
2693
2694        if (list_empty(&vmap_area_list)) {
2695                vmi->largest_chunk = VMALLOC_TOTAL;
2696                goto out;
2697        }
2698
2699        list_for_each_entry(va, &vmap_area_list, list) {
2700                unsigned long addr = va->va_start;
2701
2702                /*
2703                 * Some archs keep another range for modules in vmalloc space
2704                 */
2705                if (addr < VMALLOC_START)
2706                        continue;
2707                if (addr >= VMALLOC_END)
2708                        break;
2709
2710                if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2711                        continue;
2712
2713                vmi->used += (va->va_end - va->va_start);
2714
2715                free_area_size = addr - prev_end;
2716                if (vmi->largest_chunk < free_area_size)
2717                        vmi->largest_chunk = free_area_size;
2718
2719                prev_end = va->va_end;
2720        }
2721
2722        if (VMALLOC_END - prev_end > vmi->largest_chunk)
2723                vmi->largest_chunk = VMALLOC_END - prev_end;
2724
2725out:
2726        spin_unlock(&vmap_area_lock);
2727}
2728#endif
2729
2730