linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109
 110#ifdef CONFIG_NET_RX_BUSY_POLL
 111unsigned int sysctl_net_busy_read __read_mostly;
 112unsigned int sysctl_net_busy_poll __read_mostly;
 113#endif
 114
 115static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
 116static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 117                         unsigned long nr_segs, loff_t pos);
 118static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 119                          unsigned long nr_segs, loff_t pos);
 120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 121
 122static int sock_close(struct inode *inode, struct file *file);
 123static unsigned int sock_poll(struct file *file,
 124                              struct poll_table_struct *wait);
 125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 126#ifdef CONFIG_COMPAT
 127static long compat_sock_ioctl(struct file *file,
 128                              unsigned int cmd, unsigned long arg);
 129#endif
 130static int sock_fasync(int fd, struct file *filp, int on);
 131static ssize_t sock_sendpage(struct file *file, struct page *page,
 132                             int offset, size_t size, loff_t *ppos, int more);
 133static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 134                                struct pipe_inode_info *pipe, size_t len,
 135                                unsigned int flags);
 136
 137/*
 138 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 139 *      in the operation structures but are done directly via the socketcall() multiplexor.
 140 */
 141
 142static const struct file_operations socket_file_ops = {
 143        .owner =        THIS_MODULE,
 144        .llseek =       no_llseek,
 145        .aio_read =     sock_aio_read,
 146        .aio_write =    sock_aio_write,
 147        .poll =         sock_poll,
 148        .unlocked_ioctl = sock_ioctl,
 149#ifdef CONFIG_COMPAT
 150        .compat_ioctl = compat_sock_ioctl,
 151#endif
 152        .mmap =         sock_mmap,
 153        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 154        .release =      sock_close,
 155        .fasync =       sock_fasync,
 156        .sendpage =     sock_sendpage,
 157        .splice_write = generic_splice_sendpage,
 158        .splice_read =  sock_splice_read,
 159};
 160
 161/*
 162 *      The protocol list. Each protocol is registered in here.
 163 */
 164
 165static DEFINE_SPINLOCK(net_family_lock);
 166static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 167
 168/*
 169 *      Statistics counters of the socket lists
 170 */
 171
 172static DEFINE_PER_CPU(int, sockets_in_use);
 173
 174/*
 175 * Support routines.
 176 * Move socket addresses back and forth across the kernel/user
 177 * divide and look after the messy bits.
 178 */
 179
 180/**
 181 *      move_addr_to_kernel     -       copy a socket address into kernel space
 182 *      @uaddr: Address in user space
 183 *      @kaddr: Address in kernel space
 184 *      @ulen: Length in user space
 185 *
 186 *      The address is copied into kernel space. If the provided address is
 187 *      too long an error code of -EINVAL is returned. If the copy gives
 188 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 189 */
 190
 191int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 192{
 193        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 194                return -EINVAL;
 195        if (ulen == 0)
 196                return 0;
 197        if (copy_from_user(kaddr, uaddr, ulen))
 198                return -EFAULT;
 199        return audit_sockaddr(ulen, kaddr);
 200}
 201
 202/**
 203 *      move_addr_to_user       -       copy an address to user space
 204 *      @kaddr: kernel space address
 205 *      @klen: length of address in kernel
 206 *      @uaddr: user space address
 207 *      @ulen: pointer to user length field
 208 *
 209 *      The value pointed to by ulen on entry is the buffer length available.
 210 *      This is overwritten with the buffer space used. -EINVAL is returned
 211 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 212 *      is returned if either the buffer or the length field are not
 213 *      accessible.
 214 *      After copying the data up to the limit the user specifies, the true
 215 *      length of the data is written over the length limit the user
 216 *      specified. Zero is returned for a success.
 217 */
 218
 219static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 220                             void __user *uaddr, int __user *ulen)
 221{
 222        int err;
 223        int len;
 224
 225        BUG_ON(klen > sizeof(struct sockaddr_storage));
 226        err = get_user(len, ulen);
 227        if (err)
 228                return err;
 229        if (len > klen)
 230                len = klen;
 231        if (len < 0)
 232                return -EINVAL;
 233        if (len) {
 234                if (audit_sockaddr(klen, kaddr))
 235                        return -ENOMEM;
 236                if (copy_to_user(uaddr, kaddr, len))
 237                        return -EFAULT;
 238        }
 239        /*
 240         *      "fromlen shall refer to the value before truncation.."
 241         *                      1003.1g
 242         */
 243        return __put_user(klen, ulen);
 244}
 245
 246static struct kmem_cache *sock_inode_cachep __read_mostly;
 247
 248static struct inode *sock_alloc_inode(struct super_block *sb)
 249{
 250        struct socket_alloc *ei;
 251        struct socket_wq *wq;
 252
 253        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 254        if (!ei)
 255                return NULL;
 256        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 257        if (!wq) {
 258                kmem_cache_free(sock_inode_cachep, ei);
 259                return NULL;
 260        }
 261        init_waitqueue_head(&wq->wait);
 262        wq->fasync_list = NULL;
 263        RCU_INIT_POINTER(ei->socket.wq, wq);
 264
 265        ei->socket.state = SS_UNCONNECTED;
 266        ei->socket.flags = 0;
 267        ei->socket.ops = NULL;
 268        ei->socket.sk = NULL;
 269        ei->socket.file = NULL;
 270
 271        return &ei->vfs_inode;
 272}
 273
 274static void sock_destroy_inode(struct inode *inode)
 275{
 276        struct socket_alloc *ei;
 277        struct socket_wq *wq;
 278
 279        ei = container_of(inode, struct socket_alloc, vfs_inode);
 280        wq = rcu_dereference_protected(ei->socket.wq, 1);
 281        kfree_rcu(wq, rcu);
 282        kmem_cache_free(sock_inode_cachep, ei);
 283}
 284
 285static void init_once(void *foo)
 286{
 287        struct socket_alloc *ei = (struct socket_alloc *)foo;
 288
 289        inode_init_once(&ei->vfs_inode);
 290}
 291
 292static int init_inodecache(void)
 293{
 294        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 295                                              sizeof(struct socket_alloc),
 296                                              0,
 297                                              (SLAB_HWCACHE_ALIGN |
 298                                               SLAB_RECLAIM_ACCOUNT |
 299                                               SLAB_MEM_SPREAD),
 300                                              init_once);
 301        if (sock_inode_cachep == NULL)
 302                return -ENOMEM;
 303        return 0;
 304}
 305
 306static const struct super_operations sockfs_ops = {
 307        .alloc_inode    = sock_alloc_inode,
 308        .destroy_inode  = sock_destroy_inode,
 309        .statfs         = simple_statfs,
 310};
 311
 312/*
 313 * sockfs_dname() is called from d_path().
 314 */
 315static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 316{
 317        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 318                                dentry->d_inode->i_ino);
 319}
 320
 321static const struct dentry_operations sockfs_dentry_operations = {
 322        .d_dname  = sockfs_dname,
 323};
 324
 325static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 326                         int flags, const char *dev_name, void *data)
 327{
 328        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 329                &sockfs_dentry_operations, SOCKFS_MAGIC);
 330}
 331
 332static struct vfsmount *sock_mnt __read_mostly;
 333
 334static struct file_system_type sock_fs_type = {
 335        .name =         "sockfs",
 336        .mount =        sockfs_mount,
 337        .kill_sb =      kill_anon_super,
 338};
 339
 340/*
 341 *      Obtains the first available file descriptor and sets it up for use.
 342 *
 343 *      These functions create file structures and maps them to fd space
 344 *      of the current process. On success it returns file descriptor
 345 *      and file struct implicitly stored in sock->file.
 346 *      Note that another thread may close file descriptor before we return
 347 *      from this function. We use the fact that now we do not refer
 348 *      to socket after mapping. If one day we will need it, this
 349 *      function will increment ref. count on file by 1.
 350 *
 351 *      In any case returned fd MAY BE not valid!
 352 *      This race condition is unavoidable
 353 *      with shared fd spaces, we cannot solve it inside kernel,
 354 *      but we take care of internal coherence yet.
 355 */
 356
 357struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 358{
 359        struct qstr name = { .name = "" };
 360        struct path path;
 361        struct file *file;
 362
 363        if (dname) {
 364                name.name = dname;
 365                name.len = strlen(name.name);
 366        } else if (sock->sk) {
 367                name.name = sock->sk->sk_prot_creator->name;
 368                name.len = strlen(name.name);
 369        }
 370        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 371        if (unlikely(!path.dentry))
 372                return ERR_PTR(-ENOMEM);
 373        path.mnt = mntget(sock_mnt);
 374
 375        d_instantiate(path.dentry, SOCK_INODE(sock));
 376        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 377
 378        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 379                  &socket_file_ops);
 380        if (unlikely(IS_ERR(file))) {
 381                /* drop dentry, keep inode */
 382                ihold(path.dentry->d_inode);
 383                path_put(&path);
 384                return file;
 385        }
 386
 387        sock->file = file;
 388        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 389        file->private_data = sock;
 390        return file;
 391}
 392EXPORT_SYMBOL(sock_alloc_file);
 393
 394static int sock_map_fd(struct socket *sock, int flags)
 395{
 396        struct file *newfile;
 397        int fd = get_unused_fd_flags(flags);
 398        if (unlikely(fd < 0))
 399                return fd;
 400
 401        newfile = sock_alloc_file(sock, flags, NULL);
 402        if (likely(!IS_ERR(newfile))) {
 403                fd_install(fd, newfile);
 404                return fd;
 405        }
 406
 407        put_unused_fd(fd);
 408        return PTR_ERR(newfile);
 409}
 410
 411struct socket *sock_from_file(struct file *file, int *err)
 412{
 413        if (file->f_op == &socket_file_ops)
 414                return file->private_data;      /* set in sock_map_fd */
 415
 416        *err = -ENOTSOCK;
 417        return NULL;
 418}
 419EXPORT_SYMBOL(sock_from_file);
 420
 421/**
 422 *      sockfd_lookup - Go from a file number to its socket slot
 423 *      @fd: file handle
 424 *      @err: pointer to an error code return
 425 *
 426 *      The file handle passed in is locked and the socket it is bound
 427 *      too is returned. If an error occurs the err pointer is overwritten
 428 *      with a negative errno code and NULL is returned. The function checks
 429 *      for both invalid handles and passing a handle which is not a socket.
 430 *
 431 *      On a success the socket object pointer is returned.
 432 */
 433
 434struct socket *sockfd_lookup(int fd, int *err)
 435{
 436        struct file *file;
 437        struct socket *sock;
 438
 439        file = fget(fd);
 440        if (!file) {
 441                *err = -EBADF;
 442                return NULL;
 443        }
 444
 445        sock = sock_from_file(file, err);
 446        if (!sock)
 447                fput(file);
 448        return sock;
 449}
 450EXPORT_SYMBOL(sockfd_lookup);
 451
 452static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 453{
 454        struct fd f = fdget(fd);
 455        struct socket *sock;
 456
 457        *err = -EBADF;
 458        if (f.file) {
 459                sock = sock_from_file(f.file, err);
 460                if (likely(sock)) {
 461                        *fput_needed = f.flags;
 462                        return sock;
 463                }
 464                fdput(f);
 465        }
 466        return NULL;
 467}
 468
 469#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 470#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 471#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 472static ssize_t sockfs_getxattr(struct dentry *dentry,
 473                               const char *name, void *value, size_t size)
 474{
 475        const char *proto_name;
 476        size_t proto_size;
 477        int error;
 478
 479        error = -ENODATA;
 480        if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 481                proto_name = dentry->d_name.name;
 482                proto_size = strlen(proto_name);
 483
 484                if (value) {
 485                        error = -ERANGE;
 486                        if (proto_size + 1 > size)
 487                                goto out;
 488
 489                        strncpy(value, proto_name, proto_size + 1);
 490                }
 491                error = proto_size + 1;
 492        }
 493
 494out:
 495        return error;
 496}
 497
 498static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 499                                size_t size)
 500{
 501        ssize_t len;
 502        ssize_t used = 0;
 503
 504        len = security_inode_listsecurity(dentry->d_inode, buffer, size);
 505        if (len < 0)
 506                return len;
 507        used += len;
 508        if (buffer) {
 509                if (size < used)
 510                        return -ERANGE;
 511                buffer += len;
 512        }
 513
 514        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 515        used += len;
 516        if (buffer) {
 517                if (size < used)
 518                        return -ERANGE;
 519                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 520                buffer += len;
 521        }
 522
 523        return used;
 524}
 525
 526static const struct inode_operations sockfs_inode_ops = {
 527        .getxattr = sockfs_getxattr,
 528        .listxattr = sockfs_listxattr,
 529};
 530
 531/**
 532 *      sock_alloc      -       allocate a socket
 533 *
 534 *      Allocate a new inode and socket object. The two are bound together
 535 *      and initialised. The socket is then returned. If we are out of inodes
 536 *      NULL is returned.
 537 */
 538
 539static struct socket *sock_alloc(void)
 540{
 541        struct inode *inode;
 542        struct socket *sock;
 543
 544        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 545        if (!inode)
 546                return NULL;
 547
 548        sock = SOCKET_I(inode);
 549
 550        kmemcheck_annotate_bitfield(sock, type);
 551        inode->i_ino = get_next_ino();
 552        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 553        inode->i_uid = current_fsuid();
 554        inode->i_gid = current_fsgid();
 555        inode->i_op = &sockfs_inode_ops;
 556
 557        this_cpu_add(sockets_in_use, 1);
 558        return sock;
 559}
 560
 561/*
 562 *      In theory you can't get an open on this inode, but /proc provides
 563 *      a back door. Remember to keep it shut otherwise you'll let the
 564 *      creepy crawlies in.
 565 */
 566
 567static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 568{
 569        return -ENXIO;
 570}
 571
 572const struct file_operations bad_sock_fops = {
 573        .owner = THIS_MODULE,
 574        .open = sock_no_open,
 575        .llseek = noop_llseek,
 576};
 577
 578/**
 579 *      sock_release    -       close a socket
 580 *      @sock: socket to close
 581 *
 582 *      The socket is released from the protocol stack if it has a release
 583 *      callback, and the inode is then released if the socket is bound to
 584 *      an inode not a file.
 585 */
 586
 587void sock_release(struct socket *sock)
 588{
 589        if (sock->ops) {
 590                struct module *owner = sock->ops->owner;
 591
 592                sock->ops->release(sock);
 593                sock->ops = NULL;
 594                module_put(owner);
 595        }
 596
 597        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 598                pr_err("%s: fasync list not empty!\n", __func__);
 599
 600        if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
 601                return;
 602
 603        this_cpu_sub(sockets_in_use, 1);
 604        if (!sock->file) {
 605                iput(SOCK_INODE(sock));
 606                return;
 607        }
 608        sock->file = NULL;
 609}
 610EXPORT_SYMBOL(sock_release);
 611
 612void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
 613{
 614        *tx_flags = 0;
 615        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
 616                *tx_flags |= SKBTX_HW_TSTAMP;
 617        if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
 618                *tx_flags |= SKBTX_SW_TSTAMP;
 619        if (sock_flag(sk, SOCK_WIFI_STATUS))
 620                *tx_flags |= SKBTX_WIFI_STATUS;
 621}
 622EXPORT_SYMBOL(sock_tx_timestamp);
 623
 624static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
 625                                       struct msghdr *msg, size_t size)
 626{
 627        struct sock_iocb *si = kiocb_to_siocb(iocb);
 628
 629        si->sock = sock;
 630        si->scm = NULL;
 631        si->msg = msg;
 632        si->size = size;
 633
 634        return sock->ops->sendmsg(iocb, sock, msg, size);
 635}
 636
 637static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 638                                 struct msghdr *msg, size_t size)
 639{
 640        int err = security_socket_sendmsg(sock, msg, size);
 641
 642        return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
 643}
 644
 645int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 646{
 647        struct kiocb iocb;
 648        struct sock_iocb siocb;
 649        int ret;
 650
 651        init_sync_kiocb(&iocb, NULL);
 652        iocb.private = &siocb;
 653        ret = __sock_sendmsg(&iocb, sock, msg, size);
 654        if (-EIOCBQUEUED == ret)
 655                ret = wait_on_sync_kiocb(&iocb);
 656        return ret;
 657}
 658EXPORT_SYMBOL(sock_sendmsg);
 659
 660static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
 661{
 662        struct kiocb iocb;
 663        struct sock_iocb siocb;
 664        int ret;
 665
 666        init_sync_kiocb(&iocb, NULL);
 667        iocb.private = &siocb;
 668        ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
 669        if (-EIOCBQUEUED == ret)
 670                ret = wait_on_sync_kiocb(&iocb);
 671        return ret;
 672}
 673
 674int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 675                   struct kvec *vec, size_t num, size_t size)
 676{
 677        mm_segment_t oldfs = get_fs();
 678        int result;
 679
 680        set_fs(KERNEL_DS);
 681        /*
 682         * the following is safe, since for compiler definitions of kvec and
 683         * iovec are identical, yielding the same in-core layout and alignment
 684         */
 685        msg->msg_iov = (struct iovec *)vec;
 686        msg->msg_iovlen = num;
 687        result = sock_sendmsg(sock, msg, size);
 688        set_fs(oldfs);
 689        return result;
 690}
 691EXPORT_SYMBOL(kernel_sendmsg);
 692
 693/*
 694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 695 */
 696void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 697        struct sk_buff *skb)
 698{
 699        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 700        struct timespec ts[3];
 701        int empty = 1;
 702        struct skb_shared_hwtstamps *shhwtstamps =
 703                skb_hwtstamps(skb);
 704
 705        /* Race occurred between timestamp enabling and packet
 706           receiving.  Fill in the current time for now. */
 707        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 708                __net_timestamp(skb);
 709
 710        if (need_software_tstamp) {
 711                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 712                        struct timeval tv;
 713                        skb_get_timestamp(skb, &tv);
 714                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 715                                 sizeof(tv), &tv);
 716                } else {
 717                        skb_get_timestampns(skb, &ts[0]);
 718                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 719                                 sizeof(ts[0]), &ts[0]);
 720                }
 721        }
 722
 723
 724        memset(ts, 0, sizeof(ts));
 725        if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
 726            ktime_to_timespec_cond(skb->tstamp, ts + 0))
 727                empty = 0;
 728        if (shhwtstamps) {
 729                if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
 730                    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
 731                        empty = 0;
 732                if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
 733                    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
 734                        empty = 0;
 735        }
 736        if (!empty)
 737                put_cmsg(msg, SOL_SOCKET,
 738                         SCM_TIMESTAMPING, sizeof(ts), &ts);
 739}
 740EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 741
 742void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 743        struct sk_buff *skb)
 744{
 745        int ack;
 746
 747        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 748                return;
 749        if (!skb->wifi_acked_valid)
 750                return;
 751
 752        ack = skb->wifi_acked;
 753
 754        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 755}
 756EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 757
 758static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 759                                   struct sk_buff *skb)
 760{
 761        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
 762                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 763                        sizeof(__u32), &skb->dropcount);
 764}
 765
 766void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 767        struct sk_buff *skb)
 768{
 769        sock_recv_timestamp(msg, sk, skb);
 770        sock_recv_drops(msg, sk, skb);
 771}
 772EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 773
 774static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
 775                                       struct msghdr *msg, size_t size, int flags)
 776{
 777        struct sock_iocb *si = kiocb_to_siocb(iocb);
 778
 779        si->sock = sock;
 780        si->scm = NULL;
 781        si->msg = msg;
 782        si->size = size;
 783        si->flags = flags;
 784
 785        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 786}
 787
 788static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 789                                 struct msghdr *msg, size_t size, int flags)
 790{
 791        int err = security_socket_recvmsg(sock, msg, size, flags);
 792
 793        return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
 794}
 795
 796int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 797                 size_t size, int flags)
 798{
 799        struct kiocb iocb;
 800        struct sock_iocb siocb;
 801        int ret;
 802
 803        init_sync_kiocb(&iocb, NULL);
 804        iocb.private = &siocb;
 805        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 806        if (-EIOCBQUEUED == ret)
 807                ret = wait_on_sync_kiocb(&iocb);
 808        return ret;
 809}
 810EXPORT_SYMBOL(sock_recvmsg);
 811
 812static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 813                              size_t size, int flags)
 814{
 815        struct kiocb iocb;
 816        struct sock_iocb siocb;
 817        int ret;
 818
 819        init_sync_kiocb(&iocb, NULL);
 820        iocb.private = &siocb;
 821        ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
 822        if (-EIOCBQUEUED == ret)
 823                ret = wait_on_sync_kiocb(&iocb);
 824        return ret;
 825}
 826
 827/**
 828 * kernel_recvmsg - Receive a message from a socket (kernel space)
 829 * @sock:       The socket to receive the message from
 830 * @msg:        Received message
 831 * @vec:        Input s/g array for message data
 832 * @num:        Size of input s/g array
 833 * @size:       Number of bytes to read
 834 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 835 *
 836 * On return the msg structure contains the scatter/gather array passed in the
 837 * vec argument. The array is modified so that it consists of the unfilled
 838 * portion of the original array.
 839 *
 840 * The returned value is the total number of bytes received, or an error.
 841 */
 842int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 843                   struct kvec *vec, size_t num, size_t size, int flags)
 844{
 845        mm_segment_t oldfs = get_fs();
 846        int result;
 847
 848        set_fs(KERNEL_DS);
 849        /*
 850         * the following is safe, since for compiler definitions of kvec and
 851         * iovec are identical, yielding the same in-core layout and alignment
 852         */
 853        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 854        result = sock_recvmsg(sock, msg, size, flags);
 855        set_fs(oldfs);
 856        return result;
 857}
 858EXPORT_SYMBOL(kernel_recvmsg);
 859
 860static ssize_t sock_sendpage(struct file *file, struct page *page,
 861                             int offset, size_t size, loff_t *ppos, int more)
 862{
 863        struct socket *sock;
 864        int flags;
 865
 866        sock = file->private_data;
 867
 868        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 869        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 870        flags |= more;
 871
 872        return kernel_sendpage(sock, page, offset, size, flags);
 873}
 874
 875static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 876                                struct pipe_inode_info *pipe, size_t len,
 877                                unsigned int flags)
 878{
 879        struct socket *sock = file->private_data;
 880
 881        if (unlikely(!sock->ops->splice_read))
 882                return -EINVAL;
 883
 884        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 885}
 886
 887static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 888                                         struct sock_iocb *siocb)
 889{
 890        if (!is_sync_kiocb(iocb))
 891                BUG();
 892
 893        siocb->kiocb = iocb;
 894        iocb->private = siocb;
 895        return siocb;
 896}
 897
 898static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 899                struct file *file, const struct iovec *iov,
 900                unsigned long nr_segs)
 901{
 902        struct socket *sock = file->private_data;
 903        size_t size = 0;
 904        int i;
 905
 906        for (i = 0; i < nr_segs; i++)
 907                size += iov[i].iov_len;
 908
 909        msg->msg_name = NULL;
 910        msg->msg_namelen = 0;
 911        msg->msg_control = NULL;
 912        msg->msg_controllen = 0;
 913        msg->msg_iov = (struct iovec *)iov;
 914        msg->msg_iovlen = nr_segs;
 915        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 916
 917        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 918}
 919
 920static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 921                                unsigned long nr_segs, loff_t pos)
 922{
 923        struct sock_iocb siocb, *x;
 924
 925        if (pos != 0)
 926                return -ESPIPE;
 927
 928        if (iocb->ki_nbytes == 0)       /* Match SYS5 behaviour */
 929                return 0;
 930
 931
 932        x = alloc_sock_iocb(iocb, &siocb);
 933        if (!x)
 934                return -ENOMEM;
 935        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 936}
 937
 938static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 939                        struct file *file, const struct iovec *iov,
 940                        unsigned long nr_segs)
 941{
 942        struct socket *sock = file->private_data;
 943        size_t size = 0;
 944        int i;
 945
 946        for (i = 0; i < nr_segs; i++)
 947                size += iov[i].iov_len;
 948
 949        msg->msg_name = NULL;
 950        msg->msg_namelen = 0;
 951        msg->msg_control = NULL;
 952        msg->msg_controllen = 0;
 953        msg->msg_iov = (struct iovec *)iov;
 954        msg->msg_iovlen = nr_segs;
 955        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 956        if (sock->type == SOCK_SEQPACKET)
 957                msg->msg_flags |= MSG_EOR;
 958
 959        return __sock_sendmsg(iocb, sock, msg, size);
 960}
 961
 962static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 963                          unsigned long nr_segs, loff_t pos)
 964{
 965        struct sock_iocb siocb, *x;
 966
 967        if (pos != 0)
 968                return -ESPIPE;
 969
 970        x = alloc_sock_iocb(iocb, &siocb);
 971        if (!x)
 972                return -ENOMEM;
 973
 974        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 975}
 976
 977/*
 978 * Atomic setting of ioctl hooks to avoid race
 979 * with module unload.
 980 */
 981
 982static DEFINE_MUTEX(br_ioctl_mutex);
 983static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 984
 985void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 986{
 987        mutex_lock(&br_ioctl_mutex);
 988        br_ioctl_hook = hook;
 989        mutex_unlock(&br_ioctl_mutex);
 990}
 991EXPORT_SYMBOL(brioctl_set);
 992
 993static DEFINE_MUTEX(vlan_ioctl_mutex);
 994static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 995
 996void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 997{
 998        mutex_lock(&vlan_ioctl_mutex);
 999        vlan_ioctl_hook = hook;
1000        mutex_unlock(&vlan_ioctl_mutex);
1001}
1002EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004static DEFINE_MUTEX(dlci_ioctl_mutex);
1005static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008{
1009        mutex_lock(&dlci_ioctl_mutex);
1010        dlci_ioctl_hook = hook;
1011        mutex_unlock(&dlci_ioctl_mutex);
1012}
1013EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015static long sock_do_ioctl(struct net *net, struct socket *sock,
1016                                 unsigned int cmd, unsigned long arg)
1017{
1018        int err;
1019        void __user *argp = (void __user *)arg;
1020
1021        err = sock->ops->ioctl(sock, cmd, arg);
1022
1023        /*
1024         * If this ioctl is unknown try to hand it down
1025         * to the NIC driver.
1026         */
1027        if (err == -ENOIOCTLCMD)
1028                err = dev_ioctl(net, cmd, argp);
1029
1030        return err;
1031}
1032
1033/*
1034 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1035 *      what to do with it - that's up to the protocol still.
1036 */
1037
1038static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039{
1040        struct socket *sock;
1041        struct sock *sk;
1042        void __user *argp = (void __user *)arg;
1043        int pid, err;
1044        struct net *net;
1045
1046        sock = file->private_data;
1047        sk = sock->sk;
1048        net = sock_net(sk);
1049        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050                err = dev_ioctl(net, cmd, argp);
1051        } else
1052#ifdef CONFIG_WEXT_CORE
1053        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054                err = dev_ioctl(net, cmd, argp);
1055        } else
1056#endif
1057                switch (cmd) {
1058                case FIOSETOWN:
1059                case SIOCSPGRP:
1060                        err = -EFAULT;
1061                        if (get_user(pid, (int __user *)argp))
1062                                break;
1063                        err = f_setown(sock->file, pid, 1);
1064                        break;
1065                case FIOGETOWN:
1066                case SIOCGPGRP:
1067                        err = put_user(f_getown(sock->file),
1068                                       (int __user *)argp);
1069                        break;
1070                case SIOCGIFBR:
1071                case SIOCSIFBR:
1072                case SIOCBRADDBR:
1073                case SIOCBRDELBR:
1074                        err = -ENOPKG;
1075                        if (!br_ioctl_hook)
1076                                request_module("bridge");
1077
1078                        mutex_lock(&br_ioctl_mutex);
1079                        if (br_ioctl_hook)
1080                                err = br_ioctl_hook(net, cmd, argp);
1081                        mutex_unlock(&br_ioctl_mutex);
1082                        break;
1083                case SIOCGIFVLAN:
1084                case SIOCSIFVLAN:
1085                        err = -ENOPKG;
1086                        if (!vlan_ioctl_hook)
1087                                request_module("8021q");
1088
1089                        mutex_lock(&vlan_ioctl_mutex);
1090                        if (vlan_ioctl_hook)
1091                                err = vlan_ioctl_hook(net, argp);
1092                        mutex_unlock(&vlan_ioctl_mutex);
1093                        break;
1094                case SIOCADDDLCI:
1095                case SIOCDELDLCI:
1096                        err = -ENOPKG;
1097                        if (!dlci_ioctl_hook)
1098                                request_module("dlci");
1099
1100                        mutex_lock(&dlci_ioctl_mutex);
1101                        if (dlci_ioctl_hook)
1102                                err = dlci_ioctl_hook(cmd, argp);
1103                        mutex_unlock(&dlci_ioctl_mutex);
1104                        break;
1105                default:
1106                        err = sock_do_ioctl(net, sock, cmd, arg);
1107                        break;
1108                }
1109        return err;
1110}
1111
1112int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113{
1114        int err;
1115        struct socket *sock = NULL;
1116
1117        err = security_socket_create(family, type, protocol, 1);
1118        if (err)
1119                goto out;
1120
1121        sock = sock_alloc();
1122        if (!sock) {
1123                err = -ENOMEM;
1124                goto out;
1125        }
1126
1127        sock->type = type;
1128        err = security_socket_post_create(sock, family, type, protocol, 1);
1129        if (err)
1130                goto out_release;
1131
1132out:
1133        *res = sock;
1134        return err;
1135out_release:
1136        sock_release(sock);
1137        sock = NULL;
1138        goto out;
1139}
1140EXPORT_SYMBOL(sock_create_lite);
1141
1142/* No kernel lock held - perfect */
1143static unsigned int sock_poll(struct file *file, poll_table *wait)
1144{
1145        unsigned int busy_flag = 0;
1146        struct socket *sock;
1147
1148        /*
1149         *      We can't return errors to poll, so it's either yes or no.
1150         */
1151        sock = file->private_data;
1152
1153        if (sk_can_busy_loop(sock->sk)) {
1154                /* this socket can poll_ll so tell the system call */
1155                busy_flag = POLL_BUSY_LOOP;
1156
1157                /* once, only if requested by syscall */
1158                if (wait && (wait->_key & POLL_BUSY_LOOP))
1159                        sk_busy_loop(sock->sk, 1);
1160        }
1161
1162        return busy_flag | sock->ops->poll(file, sock, wait);
1163}
1164
1165static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166{
1167        struct socket *sock = file->private_data;
1168
1169        return sock->ops->mmap(file, sock, vma);
1170}
1171
1172static int sock_close(struct inode *inode, struct file *filp)
1173{
1174        sock_release(SOCKET_I(inode));
1175        return 0;
1176}
1177
1178/*
1179 *      Update the socket async list
1180 *
1181 *      Fasync_list locking strategy.
1182 *
1183 *      1. fasync_list is modified only under process context socket lock
1184 *         i.e. under semaphore.
1185 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186 *         or under socket lock
1187 */
1188
1189static int sock_fasync(int fd, struct file *filp, int on)
1190{
1191        struct socket *sock = filp->private_data;
1192        struct sock *sk = sock->sk;
1193        struct socket_wq *wq;
1194
1195        if (sk == NULL)
1196                return -EINVAL;
1197
1198        lock_sock(sk);
1199        wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200        fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202        if (!wq->fasync_list)
1203                sock_reset_flag(sk, SOCK_FASYNC);
1204        else
1205                sock_set_flag(sk, SOCK_FASYNC);
1206
1207        release_sock(sk);
1208        return 0;
1209}
1210
1211/* This function may be called only under socket lock or callback_lock or rcu_lock */
1212
1213int sock_wake_async(struct socket *sock, int how, int band)
1214{
1215        struct socket_wq *wq;
1216
1217        if (!sock)
1218                return -1;
1219        rcu_read_lock();
1220        wq = rcu_dereference(sock->wq);
1221        if (!wq || !wq->fasync_list) {
1222                rcu_read_unlock();
1223                return -1;
1224        }
1225        switch (how) {
1226        case SOCK_WAKE_WAITD:
1227                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228                        break;
1229                goto call_kill;
1230        case SOCK_WAKE_SPACE:
1231                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232                        break;
1233                /* fall through */
1234        case SOCK_WAKE_IO:
1235call_kill:
1236                kill_fasync(&wq->fasync_list, SIGIO, band);
1237                break;
1238        case SOCK_WAKE_URG:
1239                kill_fasync(&wq->fasync_list, SIGURG, band);
1240        }
1241        rcu_read_unlock();
1242        return 0;
1243}
1244EXPORT_SYMBOL(sock_wake_async);
1245
1246int __sock_create(struct net *net, int family, int type, int protocol,
1247                         struct socket **res, int kern)
1248{
1249        int err;
1250        struct socket *sock;
1251        const struct net_proto_family *pf;
1252
1253        /*
1254         *      Check protocol is in range
1255         */
1256        if (family < 0 || family >= NPROTO)
1257                return -EAFNOSUPPORT;
1258        if (type < 0 || type >= SOCK_MAX)
1259                return -EINVAL;
1260
1261        /* Compatibility.
1262
1263           This uglymoron is moved from INET layer to here to avoid
1264           deadlock in module load.
1265         */
1266        if (family == PF_INET && type == SOCK_PACKET) {
1267                static int warned;
1268                if (!warned) {
1269                        warned = 1;
1270                        pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271                                current->comm);
1272                }
1273                family = PF_PACKET;
1274        }
1275
1276        err = security_socket_create(family, type, protocol, kern);
1277        if (err)
1278                return err;
1279
1280        /*
1281         *      Allocate the socket and allow the family to set things up. if
1282         *      the protocol is 0, the family is instructed to select an appropriate
1283         *      default.
1284         */
1285        sock = sock_alloc();
1286        if (!sock) {
1287                net_warn_ratelimited("socket: no more sockets\n");
1288                return -ENFILE; /* Not exactly a match, but its the
1289                                   closest posix thing */
1290        }
1291
1292        sock->type = type;
1293
1294#ifdef CONFIG_MODULES
1295        /* Attempt to load a protocol module if the find failed.
1296         *
1297         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298         * requested real, full-featured networking support upon configuration.
1299         * Otherwise module support will break!
1300         */
1301        if (rcu_access_pointer(net_families[family]) == NULL)
1302                request_module("net-pf-%d", family);
1303#endif
1304
1305        rcu_read_lock();
1306        pf = rcu_dereference(net_families[family]);
1307        err = -EAFNOSUPPORT;
1308        if (!pf)
1309                goto out_release;
1310
1311        /*
1312         * We will call the ->create function, that possibly is in a loadable
1313         * module, so we have to bump that loadable module refcnt first.
1314         */
1315        if (!try_module_get(pf->owner))
1316                goto out_release;
1317
1318        /* Now protected by module ref count */
1319        rcu_read_unlock();
1320
1321        err = pf->create(net, sock, protocol, kern);
1322        if (err < 0)
1323                goto out_module_put;
1324
1325        /*
1326         * Now to bump the refcnt of the [loadable] module that owns this
1327         * socket at sock_release time we decrement its refcnt.
1328         */
1329        if (!try_module_get(sock->ops->owner))
1330                goto out_module_busy;
1331
1332        /*
1333         * Now that we're done with the ->create function, the [loadable]
1334         * module can have its refcnt decremented
1335         */
1336        module_put(pf->owner);
1337        err = security_socket_post_create(sock, family, type, protocol, kern);
1338        if (err)
1339                goto out_sock_release;
1340        *res = sock;
1341
1342        return 0;
1343
1344out_module_busy:
1345        err = -EAFNOSUPPORT;
1346out_module_put:
1347        sock->ops = NULL;
1348        module_put(pf->owner);
1349out_sock_release:
1350        sock_release(sock);
1351        return err;
1352
1353out_release:
1354        rcu_read_unlock();
1355        goto out_sock_release;
1356}
1357EXPORT_SYMBOL(__sock_create);
1358
1359int sock_create(int family, int type, int protocol, struct socket **res)
1360{
1361        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362}
1363EXPORT_SYMBOL(sock_create);
1364
1365int sock_create_kern(int family, int type, int protocol, struct socket **res)
1366{
1367        return __sock_create(&init_net, family, type, protocol, res, 1);
1368}
1369EXPORT_SYMBOL(sock_create_kern);
1370
1371SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372{
1373        int retval;
1374        struct socket *sock;
1375        int flags;
1376
1377        /* Check the SOCK_* constants for consistency.  */
1378        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382
1383        flags = type & ~SOCK_TYPE_MASK;
1384        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385                return -EINVAL;
1386        type &= SOCK_TYPE_MASK;
1387
1388        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390
1391        retval = sock_create(family, type, protocol, &sock);
1392        if (retval < 0)
1393                goto out;
1394
1395        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396        if (retval < 0)
1397                goto out_release;
1398
1399out:
1400        /* It may be already another descriptor 8) Not kernel problem. */
1401        return retval;
1402
1403out_release:
1404        sock_release(sock);
1405        return retval;
1406}
1407
1408/*
1409 *      Create a pair of connected sockets.
1410 */
1411
1412SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413                int __user *, usockvec)
1414{
1415        struct socket *sock1, *sock2;
1416        int fd1, fd2, err;
1417        struct file *newfile1, *newfile2;
1418        int flags;
1419
1420        flags = type & ~SOCK_TYPE_MASK;
1421        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422                return -EINVAL;
1423        type &= SOCK_TYPE_MASK;
1424
1425        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427
1428        /*
1429         * Obtain the first socket and check if the underlying protocol
1430         * supports the socketpair call.
1431         */
1432
1433        err = sock_create(family, type, protocol, &sock1);
1434        if (err < 0)
1435                goto out;
1436
1437        err = sock_create(family, type, protocol, &sock2);
1438        if (err < 0)
1439                goto out_release_1;
1440
1441        err = sock1->ops->socketpair(sock1, sock2);
1442        if (err < 0)
1443                goto out_release_both;
1444
1445        fd1 = get_unused_fd_flags(flags);
1446        if (unlikely(fd1 < 0)) {
1447                err = fd1;
1448                goto out_release_both;
1449        }
1450
1451        fd2 = get_unused_fd_flags(flags);
1452        if (unlikely(fd2 < 0)) {
1453                err = fd2;
1454                goto out_put_unused_1;
1455        }
1456
1457        newfile1 = sock_alloc_file(sock1, flags, NULL);
1458        if (unlikely(IS_ERR(newfile1))) {
1459                err = PTR_ERR(newfile1);
1460                goto out_put_unused_both;
1461        }
1462
1463        newfile2 = sock_alloc_file(sock2, flags, NULL);
1464        if (IS_ERR(newfile2)) {
1465                err = PTR_ERR(newfile2);
1466                goto out_fput_1;
1467        }
1468
1469        err = put_user(fd1, &usockvec[0]);
1470        if (err)
1471                goto out_fput_both;
1472
1473        err = put_user(fd2, &usockvec[1]);
1474        if (err)
1475                goto out_fput_both;
1476
1477        audit_fd_pair(fd1, fd2);
1478
1479        fd_install(fd1, newfile1);
1480        fd_install(fd2, newfile2);
1481        /* fd1 and fd2 may be already another descriptors.
1482         * Not kernel problem.
1483         */
1484
1485        return 0;
1486
1487out_fput_both:
1488        fput(newfile2);
1489        fput(newfile1);
1490        put_unused_fd(fd2);
1491        put_unused_fd(fd1);
1492        goto out;
1493
1494out_fput_1:
1495        fput(newfile1);
1496        put_unused_fd(fd2);
1497        put_unused_fd(fd1);
1498        sock_release(sock2);
1499        goto out;
1500
1501out_put_unused_both:
1502        put_unused_fd(fd2);
1503out_put_unused_1:
1504        put_unused_fd(fd1);
1505out_release_both:
1506        sock_release(sock2);
1507out_release_1:
1508        sock_release(sock1);
1509out:
1510        return err;
1511}
1512
1513/*
1514 *      Bind a name to a socket. Nothing much to do here since it's
1515 *      the protocol's responsibility to handle the local address.
1516 *
1517 *      We move the socket address to kernel space before we call
1518 *      the protocol layer (having also checked the address is ok).
1519 */
1520
1521SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522{
1523        struct socket *sock;
1524        struct sockaddr_storage address;
1525        int err, fput_needed;
1526
1527        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528        if (sock) {
1529                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530                if (err >= 0) {
1531                        err = security_socket_bind(sock,
1532                                                   (struct sockaddr *)&address,
1533                                                   addrlen);
1534                        if (!err)
1535                                err = sock->ops->bind(sock,
1536                                                      (struct sockaddr *)
1537                                                      &address, addrlen);
1538                }
1539                fput_light(sock->file, fput_needed);
1540        }
1541        return err;
1542}
1543
1544/*
1545 *      Perform a listen. Basically, we allow the protocol to do anything
1546 *      necessary for a listen, and if that works, we mark the socket as
1547 *      ready for listening.
1548 */
1549
1550SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551{
1552        struct socket *sock;
1553        int err, fput_needed;
1554        int somaxconn;
1555
1556        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557        if (sock) {
1558                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559                if ((unsigned int)backlog > somaxconn)
1560                        backlog = somaxconn;
1561
1562                err = security_socket_listen(sock, backlog);
1563                if (!err)
1564                        err = sock->ops->listen(sock, backlog);
1565
1566                fput_light(sock->file, fput_needed);
1567        }
1568        return err;
1569}
1570
1571/*
1572 *      For accept, we attempt to create a new socket, set up the link
1573 *      with the client, wake up the client, then return the new
1574 *      connected fd. We collect the address of the connector in kernel
1575 *      space and move it to user at the very end. This is unclean because
1576 *      we open the socket then return an error.
1577 *
1578 *      1003.1g adds the ability to recvmsg() to query connection pending
1579 *      status to recvmsg. We need to add that support in a way thats
1580 *      clean when we restucture accept also.
1581 */
1582
1583SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584                int __user *, upeer_addrlen, int, flags)
1585{
1586        struct socket *sock, *newsock;
1587        struct file *newfile;
1588        int err, len, newfd, fput_needed;
1589        struct sockaddr_storage address;
1590
1591        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592                return -EINVAL;
1593
1594        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596
1597        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598        if (!sock)
1599                goto out;
1600
1601        err = -ENFILE;
1602        newsock = sock_alloc();
1603        if (!newsock)
1604                goto out_put;
1605
1606        newsock->type = sock->type;
1607        newsock->ops = sock->ops;
1608
1609        /*
1610         * We don't need try_module_get here, as the listening socket (sock)
1611         * has the protocol module (sock->ops->owner) held.
1612         */
1613        __module_get(newsock->ops->owner);
1614
1615        newfd = get_unused_fd_flags(flags);
1616        if (unlikely(newfd < 0)) {
1617                err = newfd;
1618                sock_release(newsock);
1619                goto out_put;
1620        }
1621        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622        if (unlikely(IS_ERR(newfile))) {
1623                err = PTR_ERR(newfile);
1624                put_unused_fd(newfd);
1625                sock_release(newsock);
1626                goto out_put;
1627        }
1628
1629        err = security_socket_accept(sock, newsock);
1630        if (err)
1631                goto out_fd;
1632
1633        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634        if (err < 0)
1635                goto out_fd;
1636
1637        if (upeer_sockaddr) {
1638                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639                                          &len, 2) < 0) {
1640                        err = -ECONNABORTED;
1641                        goto out_fd;
1642                }
1643                err = move_addr_to_user(&address,
1644                                        len, upeer_sockaddr, upeer_addrlen);
1645                if (err < 0)
1646                        goto out_fd;
1647        }
1648
1649        /* File flags are not inherited via accept() unlike another OSes. */
1650
1651        fd_install(newfd, newfile);
1652        err = newfd;
1653
1654out_put:
1655        fput_light(sock->file, fput_needed);
1656out:
1657        return err;
1658out_fd:
1659        fput(newfile);
1660        put_unused_fd(newfd);
1661        goto out_put;
1662}
1663
1664SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665                int __user *, upeer_addrlen)
1666{
1667        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668}
1669
1670/*
1671 *      Attempt to connect to a socket with the server address.  The address
1672 *      is in user space so we verify it is OK and move it to kernel space.
1673 *
1674 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675 *      break bindings
1676 *
1677 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678 *      other SEQPACKET protocols that take time to connect() as it doesn't
1679 *      include the -EINPROGRESS status for such sockets.
1680 */
1681
1682SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683                int, addrlen)
1684{
1685        struct socket *sock;
1686        struct sockaddr_storage address;
1687        int err, fput_needed;
1688
1689        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690        if (!sock)
1691                goto out;
1692        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693        if (err < 0)
1694                goto out_put;
1695
1696        err =
1697            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698        if (err)
1699                goto out_put;
1700
1701        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702                                 sock->file->f_flags);
1703out_put:
1704        fput_light(sock->file, fput_needed);
1705out:
1706        return err;
1707}
1708
1709/*
1710 *      Get the local address ('name') of a socket object. Move the obtained
1711 *      name to user space.
1712 */
1713
1714SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715                int __user *, usockaddr_len)
1716{
1717        struct socket *sock;
1718        struct sockaddr_storage address;
1719        int len, err, fput_needed;
1720
1721        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722        if (!sock)
1723                goto out;
1724
1725        err = security_socket_getsockname(sock);
1726        if (err)
1727                goto out_put;
1728
1729        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730        if (err)
1731                goto out_put;
1732        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733
1734out_put:
1735        fput_light(sock->file, fput_needed);
1736out:
1737        return err;
1738}
1739
1740/*
1741 *      Get the remote address ('name') of a socket object. Move the obtained
1742 *      name to user space.
1743 */
1744
1745SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746                int __user *, usockaddr_len)
1747{
1748        struct socket *sock;
1749        struct sockaddr_storage address;
1750        int len, err, fput_needed;
1751
1752        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753        if (sock != NULL) {
1754                err = security_socket_getpeername(sock);
1755                if (err) {
1756                        fput_light(sock->file, fput_needed);
1757                        return err;
1758                }
1759
1760                err =
1761                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762                                       1);
1763                if (!err)
1764                        err = move_addr_to_user(&address, len, usockaddr,
1765                                                usockaddr_len);
1766                fput_light(sock->file, fput_needed);
1767        }
1768        return err;
1769}
1770
1771/*
1772 *      Send a datagram to a given address. We move the address into kernel
1773 *      space and check the user space data area is readable before invoking
1774 *      the protocol.
1775 */
1776
1777SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778                unsigned int, flags, struct sockaddr __user *, addr,
1779                int, addr_len)
1780{
1781        struct socket *sock;
1782        struct sockaddr_storage address;
1783        int err;
1784        struct msghdr msg;
1785        struct iovec iov;
1786        int fput_needed;
1787
1788        if (len > INT_MAX)
1789                len = INT_MAX;
1790        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791        if (!sock)
1792                goto out;
1793
1794        iov.iov_base = buff;
1795        iov.iov_len = len;
1796        msg.msg_name = NULL;
1797        msg.msg_iov = &iov;
1798        msg.msg_iovlen = 1;
1799        msg.msg_control = NULL;
1800        msg.msg_controllen = 0;
1801        msg.msg_namelen = 0;
1802        if (addr) {
1803                err = move_addr_to_kernel(addr, addr_len, &address);
1804                if (err < 0)
1805                        goto out_put;
1806                msg.msg_name = (struct sockaddr *)&address;
1807                msg.msg_namelen = addr_len;
1808        }
1809        if (sock->file->f_flags & O_NONBLOCK)
1810                flags |= MSG_DONTWAIT;
1811        msg.msg_flags = flags;
1812        err = sock_sendmsg(sock, &msg, len);
1813
1814out_put:
1815        fput_light(sock->file, fput_needed);
1816out:
1817        return err;
1818}
1819
1820/*
1821 *      Send a datagram down a socket.
1822 */
1823
1824SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825                unsigned int, flags)
1826{
1827        return sys_sendto(fd, buff, len, flags, NULL, 0);
1828}
1829
1830/*
1831 *      Receive a frame from the socket and optionally record the address of the
1832 *      sender. We verify the buffers are writable and if needed move the
1833 *      sender address from kernel to user space.
1834 */
1835
1836SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837                unsigned int, flags, struct sockaddr __user *, addr,
1838                int __user *, addr_len)
1839{
1840        struct socket *sock;
1841        struct iovec iov;
1842        struct msghdr msg;
1843        struct sockaddr_storage address;
1844        int err, err2;
1845        int fput_needed;
1846
1847        if (size > INT_MAX)
1848                size = INT_MAX;
1849        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850        if (!sock)
1851                goto out;
1852
1853        msg.msg_control = NULL;
1854        msg.msg_controllen = 0;
1855        msg.msg_iovlen = 1;
1856        msg.msg_iov = &iov;
1857        iov.iov_len = size;
1858        iov.iov_base = ubuf;
1859        /* Save some cycles and don't copy the address if not needed */
1860        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861        /* We assume all kernel code knows the size of sockaddr_storage */
1862        msg.msg_namelen = 0;
1863        if (sock->file->f_flags & O_NONBLOCK)
1864                flags |= MSG_DONTWAIT;
1865        err = sock_recvmsg(sock, &msg, size, flags);
1866
1867        if (err >= 0 && addr != NULL) {
1868                err2 = move_addr_to_user(&address,
1869                                         msg.msg_namelen, addr, addr_len);
1870                if (err2 < 0)
1871                        err = err2;
1872        }
1873
1874        fput_light(sock->file, fput_needed);
1875out:
1876        return err;
1877}
1878
1879/*
1880 *      Receive a datagram from a socket.
1881 */
1882
1883SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1884                unsigned int, flags)
1885{
1886        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887}
1888
1889/*
1890 *      Set a socket option. Because we don't know the option lengths we have
1891 *      to pass the user mode parameter for the protocols to sort out.
1892 */
1893
1894SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895                char __user *, optval, int, optlen)
1896{
1897        int err, fput_needed;
1898        struct socket *sock;
1899
1900        if (optlen < 0)
1901                return -EINVAL;
1902
1903        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904        if (sock != NULL) {
1905                err = security_socket_setsockopt(sock, level, optname);
1906                if (err)
1907                        goto out_put;
1908
1909                if (level == SOL_SOCKET)
1910                        err =
1911                            sock_setsockopt(sock, level, optname, optval,
1912                                            optlen);
1913                else
1914                        err =
1915                            sock->ops->setsockopt(sock, level, optname, optval,
1916                                                  optlen);
1917out_put:
1918                fput_light(sock->file, fput_needed);
1919        }
1920        return err;
1921}
1922
1923/*
1924 *      Get a socket option. Because we don't know the option lengths we have
1925 *      to pass a user mode parameter for the protocols to sort out.
1926 */
1927
1928SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929                char __user *, optval, int __user *, optlen)
1930{
1931        int err, fput_needed;
1932        struct socket *sock;
1933
1934        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935        if (sock != NULL) {
1936                err = security_socket_getsockopt(sock, level, optname);
1937                if (err)
1938                        goto out_put;
1939
1940                if (level == SOL_SOCKET)
1941                        err =
1942                            sock_getsockopt(sock, level, optname, optval,
1943                                            optlen);
1944                else
1945                        err =
1946                            sock->ops->getsockopt(sock, level, optname, optval,
1947                                                  optlen);
1948out_put:
1949                fput_light(sock->file, fput_needed);
1950        }
1951        return err;
1952}
1953
1954/*
1955 *      Shutdown a socket.
1956 */
1957
1958SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959{
1960        int err, fput_needed;
1961        struct socket *sock;
1962
1963        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964        if (sock != NULL) {
1965                err = security_socket_shutdown(sock, how);
1966                if (!err)
1967                        err = sock->ops->shutdown(sock, how);
1968                fput_light(sock->file, fput_needed);
1969        }
1970        return err;
1971}
1972
1973/* A couple of helpful macros for getting the address of the 32/64 bit
1974 * fields which are the same type (int / unsigned) on our platforms.
1975 */
1976#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1978#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1979
1980struct used_address {
1981        struct sockaddr_storage name;
1982        unsigned int name_len;
1983};
1984
1985static int copy_msghdr_from_user(struct msghdr *kmsg,
1986                                 struct msghdr __user *umsg)
1987{
1988        if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1989                return -EFAULT;
1990
1991        if (kmsg->msg_namelen < 0)
1992                return -EINVAL;
1993
1994        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1996        return 0;
1997}
1998
1999static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000                         struct msghdr *msg_sys, unsigned int flags,
2001                         struct used_address *used_address)
2002{
2003        struct compat_msghdr __user *msg_compat =
2004            (struct compat_msghdr __user *)msg;
2005        struct sockaddr_storage address;
2006        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007        unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008            __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009        /* 20 is size of ipv6_pktinfo */
2010        unsigned char *ctl_buf = ctl;
2011        int err, ctl_len, total_len;
2012
2013        err = -EFAULT;
2014        if (MSG_CMSG_COMPAT & flags) {
2015                if (get_compat_msghdr(msg_sys, msg_compat))
2016                        return -EFAULT;
2017        } else {
2018                err = copy_msghdr_from_user(msg_sys, msg);
2019                if (err)
2020                        return err;
2021        }
2022
2023        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024                err = -EMSGSIZE;
2025                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026                        goto out;
2027                err = -ENOMEM;
2028                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029                              GFP_KERNEL);
2030                if (!iov)
2031                        goto out;
2032        }
2033
2034        /* This will also move the address data into kernel space */
2035        if (MSG_CMSG_COMPAT & flags) {
2036                err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037        } else
2038                err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039        if (err < 0)
2040                goto out_freeiov;
2041        total_len = err;
2042
2043        err = -ENOBUFS;
2044
2045        if (msg_sys->msg_controllen > INT_MAX)
2046                goto out_freeiov;
2047        ctl_len = msg_sys->msg_controllen;
2048        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049                err =
2050                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051                                                     sizeof(ctl));
2052                if (err)
2053                        goto out_freeiov;
2054                ctl_buf = msg_sys->msg_control;
2055                ctl_len = msg_sys->msg_controllen;
2056        } else if (ctl_len) {
2057                if (ctl_len > sizeof(ctl)) {
2058                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059                        if (ctl_buf == NULL)
2060                                goto out_freeiov;
2061                }
2062                err = -EFAULT;
2063                /*
2064                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066                 * checking falls down on this.
2067                 */
2068                if (copy_from_user(ctl_buf,
2069                                   (void __user __force *)msg_sys->msg_control,
2070                                   ctl_len))
2071                        goto out_freectl;
2072                msg_sys->msg_control = ctl_buf;
2073        }
2074        msg_sys->msg_flags = flags;
2075
2076        if (sock->file->f_flags & O_NONBLOCK)
2077                msg_sys->msg_flags |= MSG_DONTWAIT;
2078        /*
2079         * If this is sendmmsg() and current destination address is same as
2080         * previously succeeded address, omit asking LSM's decision.
2081         * used_address->name_len is initialized to UINT_MAX so that the first
2082         * destination address never matches.
2083         */
2084        if (used_address && msg_sys->msg_name &&
2085            used_address->name_len == msg_sys->msg_namelen &&
2086            !memcmp(&used_address->name, msg_sys->msg_name,
2087                    used_address->name_len)) {
2088                err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089                goto out_freectl;
2090        }
2091        err = sock_sendmsg(sock, msg_sys, total_len);
2092        /*
2093         * If this is sendmmsg() and sending to current destination address was
2094         * successful, remember it.
2095         */
2096        if (used_address && err >= 0) {
2097                used_address->name_len = msg_sys->msg_namelen;
2098                if (msg_sys->msg_name)
2099                        memcpy(&used_address->name, msg_sys->msg_name,
2100                               used_address->name_len);
2101        }
2102
2103out_freectl:
2104        if (ctl_buf != ctl)
2105                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106out_freeiov:
2107        if (iov != iovstack)
2108                kfree(iov);
2109out:
2110        return err;
2111}
2112
2113/*
2114 *      BSD sendmsg interface
2115 */
2116
2117long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2118{
2119        int fput_needed, err;
2120        struct msghdr msg_sys;
2121        struct socket *sock;
2122
2123        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124        if (!sock)
2125                goto out;
2126
2127        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2128
2129        fput_light(sock->file, fput_needed);
2130out:
2131        return err;
2132}
2133
2134SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135{
2136        if (flags & MSG_CMSG_COMPAT)
2137                return -EINVAL;
2138        return __sys_sendmsg(fd, msg, flags);
2139}
2140
2141/*
2142 *      Linux sendmmsg interface
2143 */
2144
2145int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146                   unsigned int flags)
2147{
2148        int fput_needed, err, datagrams;
2149        struct socket *sock;
2150        struct mmsghdr __user *entry;
2151        struct compat_mmsghdr __user *compat_entry;
2152        struct msghdr msg_sys;
2153        struct used_address used_address;
2154
2155        if (vlen > UIO_MAXIOV)
2156                vlen = UIO_MAXIOV;
2157
2158        datagrams = 0;
2159
2160        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161        if (!sock)
2162                return err;
2163
2164        used_address.name_len = UINT_MAX;
2165        entry = mmsg;
2166        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167        err = 0;
2168
2169        while (datagrams < vlen) {
2170                if (MSG_CMSG_COMPAT & flags) {
2171                        err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172                                             &msg_sys, flags, &used_address);
2173                        if (err < 0)
2174                                break;
2175                        err = __put_user(err, &compat_entry->msg_len);
2176                        ++compat_entry;
2177                } else {
2178                        err = ___sys_sendmsg(sock,
2179                                             (struct msghdr __user *)entry,
2180                                             &msg_sys, flags, &used_address);
2181                        if (err < 0)
2182                                break;
2183                        err = put_user(err, &entry->msg_len);
2184                        ++entry;
2185                }
2186
2187                if (err)
2188                        break;
2189                ++datagrams;
2190        }
2191
2192        fput_light(sock->file, fput_needed);
2193
2194        /* We only return an error if no datagrams were able to be sent */
2195        if (datagrams != 0)
2196                return datagrams;
2197
2198        return err;
2199}
2200
2201SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202                unsigned int, vlen, unsigned int, flags)
2203{
2204        if (flags & MSG_CMSG_COMPAT)
2205                return -EINVAL;
2206        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207}
2208
2209static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2211{
2212        struct compat_msghdr __user *msg_compat =
2213            (struct compat_msghdr __user *)msg;
2214        struct iovec iovstack[UIO_FASTIOV];
2215        struct iovec *iov = iovstack;
2216        unsigned long cmsg_ptr;
2217        int err, total_len, len;
2218
2219        /* kernel mode address */
2220        struct sockaddr_storage addr;
2221
2222        /* user mode address pointers */
2223        struct sockaddr __user *uaddr;
2224        int __user *uaddr_len;
2225
2226        if (MSG_CMSG_COMPAT & flags) {
2227                if (get_compat_msghdr(msg_sys, msg_compat))
2228                        return -EFAULT;
2229        } else {
2230                err = copy_msghdr_from_user(msg_sys, msg);
2231                if (err)
2232                        return err;
2233        }
2234
2235        if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236                err = -EMSGSIZE;
2237                if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238                        goto out;
2239                err = -ENOMEM;
2240                iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241                              GFP_KERNEL);
2242                if (!iov)
2243                        goto out;
2244        }
2245
2246        /* Save the user-mode address (verify_iovec will change the
2247         * kernel msghdr to use the kernel address space)
2248         */
2249        uaddr = (__force void __user *)msg_sys->msg_name;
2250        uaddr_len = COMPAT_NAMELEN(msg);
2251        if (MSG_CMSG_COMPAT & flags)
2252                err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253        else
2254                err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255        if (err < 0)
2256                goto out_freeiov;
2257        total_len = err;
2258
2259        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261
2262        /* We assume all kernel code knows the size of sockaddr_storage */
2263        msg_sys->msg_namelen = 0;
2264
2265        if (sock->file->f_flags & O_NONBLOCK)
2266                flags |= MSG_DONTWAIT;
2267        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268                                                          total_len, flags);
2269        if (err < 0)
2270                goto out_freeiov;
2271        len = err;
2272
2273        if (uaddr != NULL) {
2274                err = move_addr_to_user(&addr,
2275                                        msg_sys->msg_namelen, uaddr,
2276                                        uaddr_len);
2277                if (err < 0)
2278                        goto out_freeiov;
2279        }
2280        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281                         COMPAT_FLAGS(msg));
2282        if (err)
2283                goto out_freeiov;
2284        if (MSG_CMSG_COMPAT & flags)
2285                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286                                 &msg_compat->msg_controllen);
2287        else
2288                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289                                 &msg->msg_controllen);
2290        if (err)
2291                goto out_freeiov;
2292        err = len;
2293
2294out_freeiov:
2295        if (iov != iovstack)
2296                kfree(iov);
2297out:
2298        return err;
2299}
2300
2301/*
2302 *      BSD recvmsg interface
2303 */
2304
2305long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2306{
2307        int fput_needed, err;
2308        struct msghdr msg_sys;
2309        struct socket *sock;
2310
2311        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312        if (!sock)
2313                goto out;
2314
2315        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2316
2317        fput_light(sock->file, fput_needed);
2318out:
2319        return err;
2320}
2321
2322SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323                unsigned int, flags)
2324{
2325        if (flags & MSG_CMSG_COMPAT)
2326                return -EINVAL;
2327        return __sys_recvmsg(fd, msg, flags);
2328}
2329
2330/*
2331 *     Linux recvmmsg interface
2332 */
2333
2334int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335                   unsigned int flags, struct timespec *timeout)
2336{
2337        int fput_needed, err, datagrams;
2338        struct socket *sock;
2339        struct mmsghdr __user *entry;
2340        struct compat_mmsghdr __user *compat_entry;
2341        struct msghdr msg_sys;
2342        struct timespec end_time;
2343
2344        if (timeout &&
2345            poll_select_set_timeout(&end_time, timeout->tv_sec,
2346                                    timeout->tv_nsec))
2347                return -EINVAL;
2348
2349        datagrams = 0;
2350
2351        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352        if (!sock)
2353                return err;
2354
2355        err = sock_error(sock->sk);
2356        if (err)
2357                goto out_put;
2358
2359        entry = mmsg;
2360        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361
2362        while (datagrams < vlen) {
2363                /*
2364                 * No need to ask LSM for more than the first datagram.
2365                 */
2366                if (MSG_CMSG_COMPAT & flags) {
2367                        err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368                                             &msg_sys, flags & ~MSG_WAITFORONE,
2369                                             datagrams);
2370                        if (err < 0)
2371                                break;
2372                        err = __put_user(err, &compat_entry->msg_len);
2373                        ++compat_entry;
2374                } else {
2375                        err = ___sys_recvmsg(sock,
2376                                             (struct msghdr __user *)entry,
2377                                             &msg_sys, flags & ~MSG_WAITFORONE,
2378                                             datagrams);
2379                        if (err < 0)
2380                                break;
2381                        err = put_user(err, &entry->msg_len);
2382                        ++entry;
2383                }
2384
2385                if (err)
2386                        break;
2387                ++datagrams;
2388
2389                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390                if (flags & MSG_WAITFORONE)
2391                        flags |= MSG_DONTWAIT;
2392
2393                if (timeout) {
2394                        ktime_get_ts(timeout);
2395                        *timeout = timespec_sub(end_time, *timeout);
2396                        if (timeout->tv_sec < 0) {
2397                                timeout->tv_sec = timeout->tv_nsec = 0;
2398                                break;
2399                        }
2400
2401                        /* Timeout, return less than vlen datagrams */
2402                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403                                break;
2404                }
2405
2406                /* Out of band data, return right away */
2407                if (msg_sys.msg_flags & MSG_OOB)
2408                        break;
2409        }
2410
2411out_put:
2412        fput_light(sock->file, fput_needed);
2413
2414        if (err == 0)
2415                return datagrams;
2416
2417        if (datagrams != 0) {
2418                /*
2419                 * We may return less entries than requested (vlen) if the
2420                 * sock is non block and there aren't enough datagrams...
2421                 */
2422                if (err != -EAGAIN) {
2423                        /*
2424                         * ... or  if recvmsg returns an error after we
2425                         * received some datagrams, where we record the
2426                         * error to return on the next call or if the
2427                         * app asks about it using getsockopt(SO_ERROR).
2428                         */
2429                        sock->sk->sk_err = -err;
2430                }
2431
2432                return datagrams;
2433        }
2434
2435        return err;
2436}
2437
2438SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439                unsigned int, vlen, unsigned int, flags,
2440                struct timespec __user *, timeout)
2441{
2442        int datagrams;
2443        struct timespec timeout_sys;
2444
2445        if (flags & MSG_CMSG_COMPAT)
2446                return -EINVAL;
2447
2448        if (!timeout)
2449                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450
2451        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452                return -EFAULT;
2453
2454        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455
2456        if (datagrams > 0 &&
2457            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458                datagrams = -EFAULT;
2459
2460        return datagrams;
2461}
2462
2463#ifdef __ARCH_WANT_SYS_SOCKETCALL
2464/* Argument list sizes for sys_socketcall */
2465#define AL(x) ((x) * sizeof(unsigned long))
2466static const unsigned char nargs[21] = {
2467        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470        AL(4), AL(5), AL(4)
2471};
2472
2473#undef AL
2474
2475/*
2476 *      System call vectors.
2477 *
2478 *      Argument checking cleaned up. Saved 20% in size.
2479 *  This function doesn't need to set the kernel lock because
2480 *  it is set by the callees.
2481 */
2482
2483SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484{
2485        unsigned long a[AUDITSC_ARGS];
2486        unsigned long a0, a1;
2487        int err;
2488        unsigned int len;
2489
2490        if (call < 1 || call > SYS_SENDMMSG)
2491                return -EINVAL;
2492
2493        len = nargs[call];
2494        if (len > sizeof(a))
2495                return -EINVAL;
2496
2497        /* copy_from_user should be SMP safe. */
2498        if (copy_from_user(a, args, len))
2499                return -EFAULT;
2500
2501        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502        if (err)
2503                return err;
2504
2505        a0 = a[0];
2506        a1 = a[1];
2507
2508        switch (call) {
2509        case SYS_SOCKET:
2510                err = sys_socket(a0, a1, a[2]);
2511                break;
2512        case SYS_BIND:
2513                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514                break;
2515        case SYS_CONNECT:
2516                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517                break;
2518        case SYS_LISTEN:
2519                err = sys_listen(a0, a1);
2520                break;
2521        case SYS_ACCEPT:
2522                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523                                  (int __user *)a[2], 0);
2524                break;
2525        case SYS_GETSOCKNAME:
2526                err =
2527                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2528                                    (int __user *)a[2]);
2529                break;
2530        case SYS_GETPEERNAME:
2531                err =
2532                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2533                                    (int __user *)a[2]);
2534                break;
2535        case SYS_SOCKETPAIR:
2536                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537                break;
2538        case SYS_SEND:
2539                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540                break;
2541        case SYS_SENDTO:
2542                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543                                 (struct sockaddr __user *)a[4], a[5]);
2544                break;
2545        case SYS_RECV:
2546                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547                break;
2548        case SYS_RECVFROM:
2549                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550                                   (struct sockaddr __user *)a[4],
2551                                   (int __user *)a[5]);
2552                break;
2553        case SYS_SHUTDOWN:
2554                err = sys_shutdown(a0, a1);
2555                break;
2556        case SYS_SETSOCKOPT:
2557                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2558                break;
2559        case SYS_GETSOCKOPT:
2560                err =
2561                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562                                   (int __user *)a[4]);
2563                break;
2564        case SYS_SENDMSG:
2565                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2566                break;
2567        case SYS_SENDMMSG:
2568                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569                break;
2570        case SYS_RECVMSG:
2571                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2572                break;
2573        case SYS_RECVMMSG:
2574                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575                                   (struct timespec __user *)a[4]);
2576                break;
2577        case SYS_ACCEPT4:
2578                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579                                  (int __user *)a[2], a[3]);
2580                break;
2581        default:
2582                err = -EINVAL;
2583                break;
2584        }
2585        return err;
2586}
2587
2588#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2589
2590/**
2591 *      sock_register - add a socket protocol handler
2592 *      @ops: description of protocol
2593 *
2594 *      This function is called by a protocol handler that wants to
2595 *      advertise its address family, and have it linked into the
2596 *      socket interface. The value ops->family coresponds to the
2597 *      socket system call protocol family.
2598 */
2599int sock_register(const struct net_proto_family *ops)
2600{
2601        int err;
2602
2603        if (ops->family >= NPROTO) {
2604                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605                return -ENOBUFS;
2606        }
2607
2608        spin_lock(&net_family_lock);
2609        if (rcu_dereference_protected(net_families[ops->family],
2610                                      lockdep_is_held(&net_family_lock)))
2611                err = -EEXIST;
2612        else {
2613                rcu_assign_pointer(net_families[ops->family], ops);
2614                err = 0;
2615        }
2616        spin_unlock(&net_family_lock);
2617
2618        pr_info("NET: Registered protocol family %d\n", ops->family);
2619        return err;
2620}
2621EXPORT_SYMBOL(sock_register);
2622
2623/**
2624 *      sock_unregister - remove a protocol handler
2625 *      @family: protocol family to remove
2626 *
2627 *      This function is called by a protocol handler that wants to
2628 *      remove its address family, and have it unlinked from the
2629 *      new socket creation.
2630 *
2631 *      If protocol handler is a module, then it can use module reference
2632 *      counts to protect against new references. If protocol handler is not
2633 *      a module then it needs to provide its own protection in
2634 *      the ops->create routine.
2635 */
2636void sock_unregister(int family)
2637{
2638        BUG_ON(family < 0 || family >= NPROTO);
2639
2640        spin_lock(&net_family_lock);
2641        RCU_INIT_POINTER(net_families[family], NULL);
2642        spin_unlock(&net_family_lock);
2643
2644        synchronize_rcu();
2645
2646        pr_info("NET: Unregistered protocol family %d\n", family);
2647}
2648EXPORT_SYMBOL(sock_unregister);
2649
2650static int __init sock_init(void)
2651{
2652        int err;
2653        /*
2654         *      Initialize the network sysctl infrastructure.
2655         */
2656        err = net_sysctl_init();
2657        if (err)
2658                goto out;
2659
2660        /*
2661         *      Initialize skbuff SLAB cache
2662         */
2663        skb_init();
2664
2665        /*
2666         *      Initialize the protocols module.
2667         */
2668
2669        init_inodecache();
2670
2671        err = register_filesystem(&sock_fs_type);
2672        if (err)
2673                goto out_fs;
2674        sock_mnt = kern_mount(&sock_fs_type);
2675        if (IS_ERR(sock_mnt)) {
2676                err = PTR_ERR(sock_mnt);
2677                goto out_mount;
2678        }
2679
2680        /* The real protocol initialization is performed in later initcalls.
2681         */
2682
2683#ifdef CONFIG_NETFILTER
2684        err = netfilter_init();
2685        if (err)
2686                goto out;
2687#endif
2688
2689        ptp_classifier_init();
2690
2691out:
2692        return err;
2693
2694out_mount:
2695        unregister_filesystem(&sock_fs_type);
2696out_fs:
2697        goto out;
2698}
2699
2700core_initcall(sock_init);       /* early initcall */
2701
2702#ifdef CONFIG_PROC_FS
2703void socket_seq_show(struct seq_file *seq)
2704{
2705        int cpu;
2706        int counter = 0;
2707
2708        for_each_possible_cpu(cpu)
2709            counter += per_cpu(sockets_in_use, cpu);
2710
2711        /* It can be negative, by the way. 8) */
2712        if (counter < 0)
2713                counter = 0;
2714
2715        seq_printf(seq, "sockets: used %d\n", counter);
2716}
2717#endif                          /* CONFIG_PROC_FS */
2718
2719#ifdef CONFIG_COMPAT
2720static int do_siocgstamp(struct net *net, struct socket *sock,
2721                         unsigned int cmd, void __user *up)
2722{
2723        mm_segment_t old_fs = get_fs();
2724        struct timeval ktv;
2725        int err;
2726
2727        set_fs(KERNEL_DS);
2728        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729        set_fs(old_fs);
2730        if (!err)
2731                err = compat_put_timeval(&ktv, up);
2732
2733        return err;
2734}
2735
2736static int do_siocgstampns(struct net *net, struct socket *sock,
2737                           unsigned int cmd, void __user *up)
2738{
2739        mm_segment_t old_fs = get_fs();
2740        struct timespec kts;
2741        int err;
2742
2743        set_fs(KERNEL_DS);
2744        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745        set_fs(old_fs);
2746        if (!err)
2747                err = compat_put_timespec(&kts, up);
2748
2749        return err;
2750}
2751
2752static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753{
2754        struct ifreq __user *uifr;
2755        int err;
2756
2757        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759                return -EFAULT;
2760
2761        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762        if (err)
2763                return err;
2764
2765        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766                return -EFAULT;
2767
2768        return 0;
2769}
2770
2771static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772{
2773        struct compat_ifconf ifc32;
2774        struct ifconf ifc;
2775        struct ifconf __user *uifc;
2776        struct compat_ifreq __user *ifr32;
2777        struct ifreq __user *ifr;
2778        unsigned int i, j;
2779        int err;
2780
2781        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782                return -EFAULT;
2783
2784        memset(&ifc, 0, sizeof(ifc));
2785        if (ifc32.ifcbuf == 0) {
2786                ifc32.ifc_len = 0;
2787                ifc.ifc_len = 0;
2788                ifc.ifc_req = NULL;
2789                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790        } else {
2791                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792                        sizeof(struct ifreq);
2793                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794                ifc.ifc_len = len;
2795                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796                ifr32 = compat_ptr(ifc32.ifcbuf);
2797                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799                                return -EFAULT;
2800                        ifr++;
2801                        ifr32++;
2802                }
2803        }
2804        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805                return -EFAULT;
2806
2807        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808        if (err)
2809                return err;
2810
2811        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812                return -EFAULT;
2813
2814        ifr = ifc.ifc_req;
2815        ifr32 = compat_ptr(ifc32.ifcbuf);
2816        for (i = 0, j = 0;
2817             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820                        return -EFAULT;
2821                ifr32++;
2822                ifr++;
2823        }
2824
2825        if (ifc32.ifcbuf == 0) {
2826                /* Translate from 64-bit structure multiple to
2827                 * a 32-bit one.
2828                 */
2829                i = ifc.ifc_len;
2830                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831                ifc32.ifc_len = i;
2832        } else {
2833                ifc32.ifc_len = i;
2834        }
2835        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836                return -EFAULT;
2837
2838        return 0;
2839}
2840
2841static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842{
2843        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844        bool convert_in = false, convert_out = false;
2845        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846        struct ethtool_rxnfc __user *rxnfc;
2847        struct ifreq __user *ifr;
2848        u32 rule_cnt = 0, actual_rule_cnt;
2849        u32 ethcmd;
2850        u32 data;
2851        int ret;
2852
2853        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854                return -EFAULT;
2855
2856        compat_rxnfc = compat_ptr(data);
2857
2858        if (get_user(ethcmd, &compat_rxnfc->cmd))
2859                return -EFAULT;
2860
2861        /* Most ethtool structures are defined without padding.
2862         * Unfortunately struct ethtool_rxnfc is an exception.
2863         */
2864        switch (ethcmd) {
2865        default:
2866                break;
2867        case ETHTOOL_GRXCLSRLALL:
2868                /* Buffer size is variable */
2869                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870                        return -EFAULT;
2871                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872                        return -ENOMEM;
2873                buf_size += rule_cnt * sizeof(u32);
2874                /* fall through */
2875        case ETHTOOL_GRXRINGS:
2876        case ETHTOOL_GRXCLSRLCNT:
2877        case ETHTOOL_GRXCLSRULE:
2878        case ETHTOOL_SRXCLSRLINS:
2879                convert_out = true;
2880                /* fall through */
2881        case ETHTOOL_SRXCLSRLDEL:
2882                buf_size += sizeof(struct ethtool_rxnfc);
2883                convert_in = true;
2884                break;
2885        }
2886
2887        ifr = compat_alloc_user_space(buf_size);
2888        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889
2890        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891                return -EFAULT;
2892
2893        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894                     &ifr->ifr_ifru.ifru_data))
2895                return -EFAULT;
2896
2897        if (convert_in) {
2898                /* We expect there to be holes between fs.m_ext and
2899                 * fs.ring_cookie and at the end of fs, but nowhere else.
2900                 */
2901                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902                             sizeof(compat_rxnfc->fs.m_ext) !=
2903                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904                             sizeof(rxnfc->fs.m_ext));
2905                BUILD_BUG_ON(
2906                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908                        offsetof(struct ethtool_rxnfc, fs.location) -
2909                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910
2911                if (copy_in_user(rxnfc, compat_rxnfc,
2912                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2913                                 (void __user *)rxnfc) ||
2914                    copy_in_user(&rxnfc->fs.ring_cookie,
2915                                 &compat_rxnfc->fs.ring_cookie,
2916                                 (void __user *)(&rxnfc->fs.location + 1) -
2917                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2918                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919                                 sizeof(rxnfc->rule_cnt)))
2920                        return -EFAULT;
2921        }
2922
2923        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924        if (ret)
2925                return ret;
2926
2927        if (convert_out) {
2928                if (copy_in_user(compat_rxnfc, rxnfc,
2929                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930                                 (const void __user *)rxnfc) ||
2931                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932                                 &rxnfc->fs.ring_cookie,
2933                                 (const void __user *)(&rxnfc->fs.location + 1) -
2934                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2935                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936                                 sizeof(rxnfc->rule_cnt)))
2937                        return -EFAULT;
2938
2939                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940                        /* As an optimisation, we only copy the actual
2941                         * number of rules that the underlying
2942                         * function returned.  Since Mallory might
2943                         * change the rule count in user memory, we
2944                         * check that it is less than the rule count
2945                         * originally given (as the user buffer size),
2946                         * which has been range-checked.
2947                         */
2948                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949                                return -EFAULT;
2950                        if (actual_rule_cnt < rule_cnt)
2951                                rule_cnt = actual_rule_cnt;
2952                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953                                         &rxnfc->rule_locs[0],
2954                                         rule_cnt * sizeof(u32)))
2955                                return -EFAULT;
2956                }
2957        }
2958
2959        return 0;
2960}
2961
2962static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963{
2964        void __user *uptr;
2965        compat_uptr_t uptr32;
2966        struct ifreq __user *uifr;
2967
2968        uifr = compat_alloc_user_space(sizeof(*uifr));
2969        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970                return -EFAULT;
2971
2972        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973                return -EFAULT;
2974
2975        uptr = compat_ptr(uptr32);
2976
2977        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978                return -EFAULT;
2979
2980        return dev_ioctl(net, SIOCWANDEV, uifr);
2981}
2982
2983static int bond_ioctl(struct net *net, unsigned int cmd,
2984                         struct compat_ifreq __user *ifr32)
2985{
2986        struct ifreq kifr;
2987        mm_segment_t old_fs;
2988        int err;
2989
2990        switch (cmd) {
2991        case SIOCBONDENSLAVE:
2992        case SIOCBONDRELEASE:
2993        case SIOCBONDSETHWADDR:
2994        case SIOCBONDCHANGEACTIVE:
2995                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996                        return -EFAULT;
2997
2998                old_fs = get_fs();
2999                set_fs(KERNEL_DS);
3000                err = dev_ioctl(net, cmd,
3001                                (struct ifreq __user __force *) &kifr);
3002                set_fs(old_fs);
3003
3004                return err;
3005        default:
3006                return -ENOIOCTLCMD;
3007        }
3008}
3009
3010/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012                                 struct compat_ifreq __user *u_ifreq32)
3013{
3014        struct ifreq __user *u_ifreq64;
3015        char tmp_buf[IFNAMSIZ];
3016        void __user *data64;
3017        u32 data32;
3018
3019        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020                           IFNAMSIZ))
3021                return -EFAULT;
3022        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023                return -EFAULT;
3024        data64 = compat_ptr(data32);
3025
3026        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027
3028        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029                         IFNAMSIZ))
3030                return -EFAULT;
3031        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032                return -EFAULT;
3033
3034        return dev_ioctl(net, cmd, u_ifreq64);
3035}
3036
3037static int dev_ifsioc(struct net *net, struct socket *sock,
3038                         unsigned int cmd, struct compat_ifreq __user *uifr32)
3039{
3040        struct ifreq __user *uifr;
3041        int err;
3042
3043        uifr = compat_alloc_user_space(sizeof(*uifr));
3044        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045                return -EFAULT;
3046
3047        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048
3049        if (!err) {
3050                switch (cmd) {
3051                case SIOCGIFFLAGS:
3052                case SIOCGIFMETRIC:
3053                case SIOCGIFMTU:
3054                case SIOCGIFMEM:
3055                case SIOCGIFHWADDR:
3056                case SIOCGIFINDEX:
3057                case SIOCGIFADDR:
3058                case SIOCGIFBRDADDR:
3059                case SIOCGIFDSTADDR:
3060                case SIOCGIFNETMASK:
3061                case SIOCGIFPFLAGS:
3062                case SIOCGIFTXQLEN:
3063                case SIOCGMIIPHY:
3064                case SIOCGMIIREG:
3065                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066                                err = -EFAULT;
3067                        break;
3068                }
3069        }
3070        return err;
3071}
3072
3073static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074                        struct compat_ifreq __user *uifr32)
3075{
3076        struct ifreq ifr;
3077        struct compat_ifmap __user *uifmap32;
3078        mm_segment_t old_fs;
3079        int err;
3080
3081        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089        if (err)
3090                return -EFAULT;
3091
3092        old_fs = get_fs();
3093        set_fs(KERNEL_DS);
3094        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3095        set_fs(old_fs);
3096
3097        if (cmd == SIOCGIFMAP && !err) {
3098                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105                if (err)
3106                        err = -EFAULT;
3107        }
3108        return err;
3109}
3110
3111struct rtentry32 {
3112        u32             rt_pad1;
3113        struct sockaddr rt_dst;         /* target address               */
3114        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3115        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3116        unsigned short  rt_flags;
3117        short           rt_pad2;
3118        u32             rt_pad3;
3119        unsigned char   rt_tos;
3120        unsigned char   rt_class;
3121        short           rt_pad4;
3122        short           rt_metric;      /* +1 for binary compatibility! */
3123        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3124        u32             rt_mtu;         /* per route MTU/Window         */
3125        u32             rt_window;      /* Window clamping              */
3126        unsigned short  rt_irtt;        /* Initial RTT                  */
3127};
3128
3129struct in6_rtmsg32 {
3130        struct in6_addr         rtmsg_dst;
3131        struct in6_addr         rtmsg_src;
3132        struct in6_addr         rtmsg_gateway;
3133        u32                     rtmsg_type;
3134        u16                     rtmsg_dst_len;
3135        u16                     rtmsg_src_len;
3136        u32                     rtmsg_metric;
3137        u32                     rtmsg_info;
3138        u32                     rtmsg_flags;
3139        s32                     rtmsg_ifindex;
3140};
3141
3142static int routing_ioctl(struct net *net, struct socket *sock,
3143                         unsigned int cmd, void __user *argp)
3144{
3145        int ret;
3146        void *r = NULL;
3147        struct in6_rtmsg r6;
3148        struct rtentry r4;
3149        char devname[16];
3150        u32 rtdev;
3151        mm_segment_t old_fs = get_fs();
3152
3153        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154                struct in6_rtmsg32 __user *ur6 = argp;
3155                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156                        3 * sizeof(struct in6_addr));
3157                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164
3165                r = (void *) &r6;
3166        } else { /* ipv4 */
3167                struct rtentry32 __user *ur4 = argp;
3168                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169                                        3 * sizeof(struct sockaddr));
3170                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175                ret |= get_user(rtdev, &(ur4->rt_dev));
3176                if (rtdev) {
3177                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178                        r4.rt_dev = (char __user __force *)devname;
3179                        devname[15] = 0;
3180                } else
3181                        r4.rt_dev = NULL;
3182
3183                r = (void *) &r4;
3184        }
3185
3186        if (ret) {
3187                ret = -EFAULT;
3188                goto out;
3189        }
3190
3191        set_fs(KERNEL_DS);
3192        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193        set_fs(old_fs);
3194
3195out:
3196        return ret;
3197}
3198
3199/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200 * for some operations; this forces use of the newer bridge-utils that
3201 * use compatible ioctls
3202 */
3203static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204{
3205        compat_ulong_t tmp;
3206
3207        if (get_user(tmp, argp))
3208                return -EFAULT;
3209        if (tmp == BRCTL_GET_VERSION)
3210                return BRCTL_VERSION + 1;
3211        return -EINVAL;
3212}
3213
3214static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215                         unsigned int cmd, unsigned long arg)
3216{
3217        void __user *argp = compat_ptr(arg);
3218        struct sock *sk = sock->sk;
3219        struct net *net = sock_net(sk);
3220
3221        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222                return compat_ifr_data_ioctl(net, cmd, argp);
3223
3224        switch (cmd) {
3225        case SIOCSIFBR:
3226        case SIOCGIFBR:
3227                return old_bridge_ioctl(argp);
3228        case SIOCGIFNAME:
3229                return dev_ifname32(net, argp);
3230        case SIOCGIFCONF:
3231                return dev_ifconf(net, argp);
3232        case SIOCETHTOOL:
3233                return ethtool_ioctl(net, argp);
3234        case SIOCWANDEV:
3235                return compat_siocwandev(net, argp);
3236        case SIOCGIFMAP:
3237        case SIOCSIFMAP:
3238                return compat_sioc_ifmap(net, cmd, argp);
3239        case SIOCBONDENSLAVE:
3240        case SIOCBONDRELEASE:
3241        case SIOCBONDSETHWADDR:
3242        case SIOCBONDCHANGEACTIVE:
3243                return bond_ioctl(net, cmd, argp);
3244        case SIOCADDRT:
3245        case SIOCDELRT:
3246                return routing_ioctl(net, sock, cmd, argp);
3247        case SIOCGSTAMP:
3248                return do_siocgstamp(net, sock, cmd, argp);
3249        case SIOCGSTAMPNS:
3250                return do_siocgstampns(net, sock, cmd, argp);
3251        case SIOCBONDSLAVEINFOQUERY:
3252        case SIOCBONDINFOQUERY:
3253        case SIOCSHWTSTAMP:
3254        case SIOCGHWTSTAMP:
3255                return compat_ifr_data_ioctl(net, cmd, argp);
3256
3257        case FIOSETOWN:
3258        case SIOCSPGRP:
3259        case FIOGETOWN:
3260        case SIOCGPGRP:
3261        case SIOCBRADDBR:
3262        case SIOCBRDELBR:
3263        case SIOCGIFVLAN:
3264        case SIOCSIFVLAN:
3265        case SIOCADDDLCI:
3266        case SIOCDELDLCI:
3267                return sock_ioctl(file, cmd, arg);
3268
3269        case SIOCGIFFLAGS:
3270        case SIOCSIFFLAGS:
3271        case SIOCGIFMETRIC:
3272        case SIOCSIFMETRIC:
3273        case SIOCGIFMTU:
3274        case SIOCSIFMTU:
3275        case SIOCGIFMEM:
3276        case SIOCSIFMEM:
3277        case SIOCGIFHWADDR:
3278        case SIOCSIFHWADDR:
3279        case SIOCADDMULTI:
3280        case SIOCDELMULTI:
3281        case SIOCGIFINDEX:
3282        case SIOCGIFADDR:
3283        case SIOCSIFADDR:
3284        case SIOCSIFHWBROADCAST:
3285        case SIOCDIFADDR:
3286        case SIOCGIFBRDADDR:
3287        case SIOCSIFBRDADDR:
3288        case SIOCGIFDSTADDR:
3289        case SIOCSIFDSTADDR:
3290        case SIOCGIFNETMASK:
3291        case SIOCSIFNETMASK:
3292        case SIOCSIFPFLAGS:
3293        case SIOCGIFPFLAGS:
3294        case SIOCGIFTXQLEN:
3295        case SIOCSIFTXQLEN:
3296        case SIOCBRADDIF:
3297        case SIOCBRDELIF:
3298        case SIOCSIFNAME:
3299        case SIOCGMIIPHY:
3300        case SIOCGMIIREG:
3301        case SIOCSMIIREG:
3302                return dev_ifsioc(net, sock, cmd, argp);
3303
3304        case SIOCSARP:
3305        case SIOCGARP:
3306        case SIOCDARP:
3307        case SIOCATMARK:
3308                return sock_do_ioctl(net, sock, cmd, arg);
3309        }
3310
3311        return -ENOIOCTLCMD;
3312}
3313
3314static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315                              unsigned long arg)
3316{
3317        struct socket *sock = file->private_data;
3318        int ret = -ENOIOCTLCMD;
3319        struct sock *sk;
3320        struct net *net;
3321
3322        sk = sock->sk;
3323        net = sock_net(sk);
3324
3325        if (sock->ops->compat_ioctl)
3326                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328        if (ret == -ENOIOCTLCMD &&
3329            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330                ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332        if (ret == -ENOIOCTLCMD)
3333                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335        return ret;
3336}
3337#endif
3338
3339int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340{
3341        return sock->ops->bind(sock, addr, addrlen);
3342}
3343EXPORT_SYMBOL(kernel_bind);
3344
3345int kernel_listen(struct socket *sock, int backlog)
3346{
3347        return sock->ops->listen(sock, backlog);
3348}
3349EXPORT_SYMBOL(kernel_listen);
3350
3351int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352{
3353        struct sock *sk = sock->sk;
3354        int err;
3355
3356        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357                               newsock);
3358        if (err < 0)
3359                goto done;
3360
3361        err = sock->ops->accept(sock, *newsock, flags);
3362        if (err < 0) {
3363                sock_release(*newsock);
3364                *newsock = NULL;
3365                goto done;
3366        }
3367
3368        (*newsock)->ops = sock->ops;
3369        __module_get((*newsock)->ops->owner);
3370
3371done:
3372        return err;
3373}
3374EXPORT_SYMBOL(kernel_accept);
3375
3376int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377                   int flags)
3378{
3379        return sock->ops->connect(sock, addr, addrlen, flags);
3380}
3381EXPORT_SYMBOL(kernel_connect);
3382
3383int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384                         int *addrlen)
3385{
3386        return sock->ops->getname(sock, addr, addrlen, 0);
3387}
3388EXPORT_SYMBOL(kernel_getsockname);
3389
3390int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391                         int *addrlen)
3392{
3393        return sock->ops->getname(sock, addr, addrlen, 1);
3394}
3395EXPORT_SYMBOL(kernel_getpeername);
3396
3397int kernel_getsockopt(struct socket *sock, int level, int optname,
3398                        char *optval, int *optlen)
3399{
3400        mm_segment_t oldfs = get_fs();
3401        char __user *uoptval;
3402        int __user *uoptlen;
3403        int err;
3404
3405        uoptval = (char __user __force *) optval;
3406        uoptlen = (int __user __force *) optlen;
3407
3408        set_fs(KERNEL_DS);
3409        if (level == SOL_SOCKET)
3410                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411        else
3412                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413                                            uoptlen);
3414        set_fs(oldfs);
3415        return err;
3416}
3417EXPORT_SYMBOL(kernel_getsockopt);
3418
3419int kernel_setsockopt(struct socket *sock, int level, int optname,
3420                        char *optval, unsigned int optlen)
3421{
3422        mm_segment_t oldfs = get_fs();
3423        char __user *uoptval;
3424        int err;
3425
3426        uoptval = (char __user __force *) optval;
3427
3428        set_fs(KERNEL_DS);
3429        if (level == SOL_SOCKET)
3430                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431        else
3432                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433                                            optlen);
3434        set_fs(oldfs);
3435        return err;
3436}
3437EXPORT_SYMBOL(kernel_setsockopt);
3438
3439int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440                    size_t size, int flags)
3441{
3442        if (sock->ops->sendpage)
3443                return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445        return sock_no_sendpage(sock, page, offset, size, flags);
3446}
3447EXPORT_SYMBOL(kernel_sendpage);
3448
3449int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450{
3451        mm_segment_t oldfs = get_fs();
3452        int err;
3453
3454        set_fs(KERNEL_DS);
3455        err = sock->ops->ioctl(sock, cmd, arg);
3456        set_fs(oldfs);
3457
3458        return err;
3459}
3460EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463{
3464        return sock->ops->shutdown(sock, how);
3465}
3466EXPORT_SYMBOL(kernel_sock_shutdown);
3467