linux/sound/pci/ctxfi/ctvmem.c
<<
>>
Prefs
   1/**
   2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
   3 *
   4 * This source file is released under GPL v2 license (no other versions).
   5 * See the COPYING file included in the main directory of this source
   6 * distribution for the license terms and conditions.
   7 *
   8 * @File    ctvmem.c
   9 *
  10 * @Brief
  11 * This file contains the implementation of virtual memory management object
  12 * for card device.
  13 *
  14 * @Author Liu Chun
  15 * @Date Apr 1 2008
  16 */
  17
  18#include "ctvmem.h"
  19#include <linux/slab.h>
  20#include <linux/mm.h>
  21#include <linux/io.h>
  22#include <sound/pcm.h>
  23
  24#define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
  25#define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
  26
  27/* *
  28 * Find or create vm block based on requested @size.
  29 * @size must be page aligned.
  30 * */
  31static struct ct_vm_block *
  32get_vm_block(struct ct_vm *vm, unsigned int size)
  33{
  34        struct ct_vm_block *block = NULL, *entry;
  35        struct list_head *pos;
  36
  37        size = CT_PAGE_ALIGN(size);
  38        if (size > vm->size) {
  39                printk(KERN_ERR "ctxfi: Fail! No sufficient device virtual "
  40                                  "memory space available!\n");
  41                return NULL;
  42        }
  43
  44        mutex_lock(&vm->lock);
  45        list_for_each(pos, &vm->unused) {
  46                entry = list_entry(pos, struct ct_vm_block, list);
  47                if (entry->size >= size)
  48                        break; /* found a block that is big enough */
  49        }
  50        if (pos == &vm->unused)
  51                goto out;
  52
  53        if (entry->size == size) {
  54                /* Move the vm node from unused list to used list directly */
  55                list_move(&entry->list, &vm->used);
  56                vm->size -= size;
  57                block = entry;
  58                goto out;
  59        }
  60
  61        block = kzalloc(sizeof(*block), GFP_KERNEL);
  62        if (!block)
  63                goto out;
  64
  65        block->addr = entry->addr;
  66        block->size = size;
  67        list_add(&block->list, &vm->used);
  68        entry->addr += size;
  69        entry->size -= size;
  70        vm->size -= size;
  71
  72 out:
  73        mutex_unlock(&vm->lock);
  74        return block;
  75}
  76
  77static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
  78{
  79        struct ct_vm_block *entry, *pre_ent;
  80        struct list_head *pos, *pre;
  81
  82        block->size = CT_PAGE_ALIGN(block->size);
  83
  84        mutex_lock(&vm->lock);
  85        list_del(&block->list);
  86        vm->size += block->size;
  87
  88        list_for_each(pos, &vm->unused) {
  89                entry = list_entry(pos, struct ct_vm_block, list);
  90                if (entry->addr >= (block->addr + block->size))
  91                        break; /* found a position */
  92        }
  93        if (pos == &vm->unused) {
  94                list_add_tail(&block->list, &vm->unused);
  95                entry = block;
  96        } else {
  97                if ((block->addr + block->size) == entry->addr) {
  98                        entry->addr = block->addr;
  99                        entry->size += block->size;
 100                        kfree(block);
 101                } else {
 102                        __list_add(&block->list, pos->prev, pos);
 103                        entry = block;
 104                }
 105        }
 106
 107        pos = &entry->list;
 108        pre = pos->prev;
 109        while (pre != &vm->unused) {
 110                entry = list_entry(pos, struct ct_vm_block, list);
 111                pre_ent = list_entry(pre, struct ct_vm_block, list);
 112                if ((pre_ent->addr + pre_ent->size) > entry->addr)
 113                        break;
 114
 115                pre_ent->size += entry->size;
 116                list_del(pos);
 117                kfree(entry);
 118                pos = pre;
 119                pre = pos->prev;
 120        }
 121        mutex_unlock(&vm->lock);
 122}
 123
 124/* Map host addr (kmalloced/vmalloced) to device logical addr. */
 125static struct ct_vm_block *
 126ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
 127{
 128        struct ct_vm_block *block;
 129        unsigned int pte_start;
 130        unsigned i, pages;
 131        unsigned long *ptp;
 132
 133        block = get_vm_block(vm, size);
 134        if (block == NULL) {
 135                printk(KERN_ERR "ctxfi: No virtual memory block that is big "
 136                                  "enough to allocate!\n");
 137                return NULL;
 138        }
 139
 140        ptp = (unsigned long *)vm->ptp[0].area;
 141        pte_start = (block->addr >> CT_PAGE_SHIFT);
 142        pages = block->size >> CT_PAGE_SHIFT;
 143        for (i = 0; i < pages; i++) {
 144                unsigned long addr;
 145                addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
 146                ptp[pte_start + i] = addr;
 147        }
 148
 149        block->size = size;
 150        return block;
 151}
 152
 153static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
 154{
 155        /* do unmapping */
 156        put_vm_block(vm, block);
 157}
 158
 159/* *
 160 * return the host physical addr of the @index-th device
 161 * page table page on success, or ~0UL on failure.
 162 * The first returned ~0UL indicates the termination.
 163 * */
 164static dma_addr_t
 165ct_get_ptp_phys(struct ct_vm *vm, int index)
 166{
 167        dma_addr_t addr;
 168
 169        addr = (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
 170
 171        return addr;
 172}
 173
 174int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
 175{
 176        struct ct_vm *vm;
 177        struct ct_vm_block *block;
 178        int i, err = 0;
 179
 180        *rvm = NULL;
 181
 182        vm = kzalloc(sizeof(*vm), GFP_KERNEL);
 183        if (!vm)
 184                return -ENOMEM;
 185
 186        mutex_init(&vm->lock);
 187
 188        /* Allocate page table pages */
 189        for (i = 0; i < CT_PTP_NUM; i++) {
 190                err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
 191                                          snd_dma_pci_data(pci),
 192                                          PAGE_SIZE, &vm->ptp[i]);
 193                if (err < 0)
 194                        break;
 195        }
 196        if (err < 0) {
 197                /* no page table pages are allocated */
 198                ct_vm_destroy(vm);
 199                return -ENOMEM;
 200        }
 201        vm->size = CT_ADDRS_PER_PAGE * i;
 202        vm->map = ct_vm_map;
 203        vm->unmap = ct_vm_unmap;
 204        vm->get_ptp_phys = ct_get_ptp_phys;
 205        INIT_LIST_HEAD(&vm->unused);
 206        INIT_LIST_HEAD(&vm->used);
 207        block = kzalloc(sizeof(*block), GFP_KERNEL);
 208        if (NULL != block) {
 209                block->addr = 0;
 210                block->size = vm->size;
 211                list_add(&block->list, &vm->unused);
 212        }
 213
 214        *rvm = vm;
 215        return 0;
 216}
 217
 218/* The caller must ensure no mapping pages are being used
 219 * by hardware before calling this function */
 220void ct_vm_destroy(struct ct_vm *vm)
 221{
 222        int i;
 223        struct list_head *pos;
 224        struct ct_vm_block *entry;
 225
 226        /* free used and unused list nodes */
 227        while (!list_empty(&vm->used)) {
 228                pos = vm->used.next;
 229                list_del(pos);
 230                entry = list_entry(pos, struct ct_vm_block, list);
 231                kfree(entry);
 232        }
 233        while (!list_empty(&vm->unused)) {
 234                pos = vm->unused.next;
 235                list_del(pos);
 236                entry = list_entry(pos, struct ct_vm_block, list);
 237                kfree(entry);
 238        }
 239
 240        /* free allocated page table pages */
 241        for (i = 0; i < CT_PTP_NUM; i++)
 242                snd_dma_free_pages(&vm->ptp[i]);
 243
 244        vm->size = 0;
 245
 246        kfree(vm);
 247}
 248