linux/arch/cris/arch-v32/kernel/smp.c
<<
>>
Prefs
   1#include <linux/types.h>
   2#include <asm/delay.h>
   3#include <irq.h>
   4#include <hwregs/intr_vect.h>
   5#include <hwregs/intr_vect_defs.h>
   6#include <asm/tlbflush.h>
   7#include <asm/mmu_context.h>
   8#include <hwregs/asm/mmu_defs_asm.h>
   9#include <hwregs/supp_reg.h>
  10#include <linux/atomic.h>
  11
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/timex.h>
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/cpumask.h>
  18#include <linux/interrupt.h>
  19#include <linux/module.h>
  20
  21#define IPI_SCHEDULE 1
  22#define IPI_CALL 2
  23#define IPI_FLUSH_TLB 4
  24#define IPI_BOOT 8
  25
  26#define FLUSH_ALL (void*)0xffffffff
  27
  28/* Vector of locks used for various atomic operations */
  29spinlock_t cris_atomic_locks[] = {
  30        [0 ... LOCK_COUNT - 1] = __SPIN_LOCK_UNLOCKED(cris_atomic_locks)
  31};
  32
  33/* CPU masks */
  34cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  35EXPORT_SYMBOL(phys_cpu_present_map);
  36
  37/* Variables used during SMP boot */
  38volatile int cpu_now_booting = 0;
  39volatile struct thread_info *smp_init_current_idle_thread;
  40
  41/* Variables used during IPI */
  42static DEFINE_SPINLOCK(call_lock);
  43static DEFINE_SPINLOCK(tlbstate_lock);
  44
  45struct call_data_struct {
  46        void (*func) (void *info);
  47        void *info;
  48        int wait;
  49};
  50
  51static struct call_data_struct * call_data;
  52
  53static struct mm_struct* flush_mm;
  54static struct vm_area_struct* flush_vma;
  55static unsigned long flush_addr;
  56
  57/* Mode registers */
  58static unsigned long irq_regs[NR_CPUS] = {
  59  regi_irq,
  60  regi_irq2
  61};
  62
  63static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
  64static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
  65static struct irqaction irq_ipi  = {
  66        .handler = crisv32_ipi_interrupt,
  67        .flags = 0,
  68        .name = "ipi",
  69};
  70
  71extern void cris_mmu_init(void);
  72extern void cris_timer_init(void);
  73
  74/* SMP initialization */
  75void __init smp_prepare_cpus(unsigned int max_cpus)
  76{
  77        int i;
  78
  79        /* From now on we can expect IPIs so set them up */
  80        setup_irq(IPI_INTR_VECT, &irq_ipi);
  81
  82        /* Mark all possible CPUs as present */
  83        for (i = 0; i < max_cpus; i++)
  84                cpumask_set_cpu(i, &phys_cpu_present_map);
  85}
  86
  87void smp_prepare_boot_cpu(void)
  88{
  89        /* PGD pointer has moved after per_cpu initialization so
  90         * update the MMU.
  91         */
  92        pgd_t **pgd;
  93        pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
  94
  95        SUPP_BANK_SEL(1);
  96        SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  97        SUPP_BANK_SEL(2);
  98        SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  99
 100        set_cpu_online(0, true);
 101        cpumask_set_cpu(0, &phys_cpu_present_map);
 102        set_cpu_possible(0, true);
 103}
 104
 105void __init smp_cpus_done(unsigned int max_cpus)
 106{
 107}
 108
 109/* Bring one cpu online.*/
 110static int __init
 111smp_boot_one_cpu(int cpuid, struct task_struct idle)
 112{
 113        unsigned timeout;
 114        cpumask_t cpu_mask;
 115
 116        cpumask_clear(&cpu_mask);
 117        task_thread_info(idle)->cpu = cpuid;
 118
 119        /* Information to the CPU that is about to boot */
 120        smp_init_current_idle_thread = task_thread_info(idle);
 121        cpu_now_booting = cpuid;
 122
 123        /* Kick it */
 124        set_cpu_online(cpuid, true);
 125        cpumask_set_cpu(cpuid, &cpu_mask);
 126        send_ipi(IPI_BOOT, 0, cpu_mask);
 127        set_cpu_online(cpuid, false);
 128
 129        /* Wait for CPU to come online */
 130        for (timeout = 0; timeout < 10000; timeout++) {
 131                if(cpu_online(cpuid)) {
 132                        cpu_now_booting = 0;
 133                        smp_init_current_idle_thread = NULL;
 134                        return 0; /* CPU online */
 135                }
 136                udelay(100);
 137                barrier();
 138        }
 139
 140        printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
 141        return -1;
 142}
 143
 144/* Secondary CPUs starts using C here. Here we need to setup CPU
 145 * specific stuff such as the local timer and the MMU. */
 146void __init smp_callin(void)
 147{
 148        int cpu = cpu_now_booting;
 149        reg_intr_vect_rw_mask vect_mask = {0};
 150
 151        /* Initialise the idle task for this CPU */
 152        atomic_inc(&init_mm.mm_count);
 153        current->active_mm = &init_mm;
 154
 155        /* Set up MMU */
 156        cris_mmu_init();
 157        __flush_tlb_all();
 158
 159        /* Setup local timer. */
 160        cris_timer_init();
 161
 162        /* Enable IRQ and idle */
 163        REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
 164        crisv32_unmask_irq(IPI_INTR_VECT);
 165        crisv32_unmask_irq(TIMER0_INTR_VECT);
 166        preempt_disable();
 167        notify_cpu_starting(cpu);
 168        local_irq_enable();
 169
 170        set_cpu_online(cpu, true);
 171        cpu_startup_entry(CPUHP_ONLINE);
 172}
 173
 174/* Stop execution on this CPU.*/
 175void stop_this_cpu(void* dummy)
 176{
 177        local_irq_disable();
 178        asm volatile("halt");
 179}
 180
 181/* Other calls */
 182void smp_send_stop(void)
 183{
 184        smp_call_function(stop_this_cpu, NULL, 0);
 185}
 186
 187int setup_profiling_timer(unsigned int multiplier)
 188{
 189        return -EINVAL;
 190}
 191
 192
 193/* cache_decay_ticks is used by the scheduler to decide if a process
 194 * is "hot" on one CPU. A higher value means a higher penalty to move
 195 * a process to another CPU. Our cache is rather small so we report
 196 * 1 tick.
 197 */
 198unsigned long cache_decay_ticks = 1;
 199
 200int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 201{
 202        smp_boot_one_cpu(cpu, tidle);
 203        return cpu_online(cpu) ? 0 : -ENOSYS;
 204}
 205
 206void smp_send_reschedule(int cpu)
 207{
 208        cpumask_t cpu_mask;
 209        cpumask_clear(&cpu_mask);
 210        cpumask_set_cpu(cpu, &cpu_mask);
 211        send_ipi(IPI_SCHEDULE, 0, cpu_mask);
 212}
 213
 214/* TLB flushing
 215 *
 216 * Flush needs to be done on the local CPU and on any other CPU that
 217 * may have the same mapping. The mm->cpu_vm_mask is used to keep track
 218 * of which CPUs that a specific process has been executed on.
 219 */
 220void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
 221{
 222        unsigned long flags;
 223        cpumask_t cpu_mask;
 224
 225        spin_lock_irqsave(&tlbstate_lock, flags);
 226        cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
 227        cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 228        flush_mm = mm;
 229        flush_vma = vma;
 230        flush_addr = addr;
 231        send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
 232        spin_unlock_irqrestore(&tlbstate_lock, flags);
 233}
 234
 235void flush_tlb_all(void)
 236{
 237        __flush_tlb_all();
 238        flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
 239}
 240
 241void flush_tlb_mm(struct mm_struct *mm)
 242{
 243        __flush_tlb_mm(mm);
 244        flush_tlb_common(mm, FLUSH_ALL, 0);
 245        /* No more mappings in other CPUs */
 246        cpumask_clear(mm_cpumask(mm));
 247        cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
 248}
 249
 250void flush_tlb_page(struct vm_area_struct *vma,
 251                           unsigned long addr)
 252{
 253        __flush_tlb_page(vma, addr);
 254        flush_tlb_common(vma->vm_mm, vma, addr);
 255}
 256
 257/* Inter processor interrupts
 258 *
 259 * The IPIs are used for:
 260 *   * Force a schedule on a CPU
 261 *   * FLush TLB on other CPUs
 262 *   * Call a function on other CPUs
 263 */
 264
 265int send_ipi(int vector, int wait, cpumask_t cpu_mask)
 266{
 267        int i = 0;
 268        reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
 269        int ret = 0;
 270
 271        /* Calculate CPUs to send to. */
 272        cpumask_and(&cpu_mask, &cpu_mask, cpu_online_mask);
 273
 274        /* Send the IPI. */
 275        for_each_cpu(i, &cpu_mask)
 276        {
 277                ipi.vector |= vector;
 278                REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
 279        }
 280
 281        /* Wait for IPI to finish on other CPUS */
 282        if (wait) {
 283                for_each_cpu(i, &cpu_mask) {
 284                        int j;
 285                        for (j = 0 ; j < 1000; j++) {
 286                                ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
 287                                if (!ipi.vector)
 288                                        break;
 289                                udelay(100);
 290                        }
 291
 292                        /* Timeout? */
 293                        if (ipi.vector) {
 294                                printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
 295                                ret = -ETIMEDOUT;
 296                                dump_stack();
 297                        }
 298                }
 299        }
 300        return ret;
 301}
 302
 303/*
 304 * You must not call this function with disabled interrupts or from a
 305 * hardware interrupt handler or from a bottom half handler.
 306 */
 307int smp_call_function(void (*func)(void *info), void *info, int wait)
 308{
 309        cpumask_t cpu_mask;
 310        struct call_data_struct data;
 311        int ret;
 312
 313        cpumask_setall(&cpu_mask);
 314        cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
 315
 316        WARN_ON(irqs_disabled());
 317
 318        data.func = func;
 319        data.info = info;
 320        data.wait = wait;
 321
 322        spin_lock(&call_lock);
 323        call_data = &data;
 324        ret = send_ipi(IPI_CALL, wait, cpu_mask);
 325        spin_unlock(&call_lock);
 326
 327        return ret;
 328}
 329
 330irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
 331{
 332        void (*func) (void *info) = call_data->func;
 333        void *info = call_data->info;
 334        reg_intr_vect_rw_ipi ipi;
 335
 336        ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
 337
 338        if (ipi.vector & IPI_SCHEDULE) {
 339                scheduler_ipi();
 340        }
 341        if (ipi.vector & IPI_CALL) {
 342                func(info);
 343        }
 344        if (ipi.vector & IPI_FLUSH_TLB) {
 345                if (flush_mm == FLUSH_ALL)
 346                        __flush_tlb_all();
 347                else if (flush_vma == FLUSH_ALL)
 348                        __flush_tlb_mm(flush_mm);
 349                else
 350                        __flush_tlb_page(flush_vma, flush_addr);
 351        }
 352
 353        ipi.vector = 0;
 354        REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
 355
 356        return IRQ_HANDLED;
 357}
 358
 359