linux/arch/ia64/kernel/efi.c
<<
>>
Prefs
   1/*
   2 * Extensible Firmware Interface
   3 *
   4 * Based on Extensible Firmware Interface Specification version 0.9
   5 * April 30, 1999
   6 *
   7 * Copyright (C) 1999 VA Linux Systems
   8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10 *      David Mosberger-Tang <davidm@hpl.hp.com>
  11 *      Stephane Eranian <eranian@hpl.hp.com>
  12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  14 *
  15 * All EFI Runtime Services are not implemented yet as EFI only
  16 * supports physical mode addressing on SoftSDV. This is to be fixed
  17 * in a future version.  --drummond 1999-07-20
  18 *
  19 * Implemented EFI runtime services and virtual mode calls.  --davidm
  20 *
  21 * Goutham Rao: <goutham.rao@intel.com>
  22 *      Skip non-WB memory and ignore empty memory ranges.
  23 */
  24#include <linux/module.h>
  25#include <linux/bootmem.h>
  26#include <linux/crash_dump.h>
  27#include <linux/kernel.h>
  28#include <linux/init.h>
  29#include <linux/types.h>
  30#include <linux/slab.h>
  31#include <linux/time.h>
  32#include <linux/efi.h>
  33#include <linux/kexec.h>
  34#include <linux/mm.h>
  35
  36#include <asm/io.h>
  37#include <asm/kregs.h>
  38#include <asm/meminit.h>
  39#include <asm/pgtable.h>
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG       0
  46
  47static __initdata unsigned long palo_phys;
  48
  49static __initdata efi_config_table_type_t arch_tables[] = {
  50        {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
  51        {NULL_GUID, NULL, 0},
  52};
  53
  54extern efi_status_t efi_call_phys (void *, ...);
  55
  56static efi_runtime_services_t *runtime;
  57static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  58
  59#define efi_call_virt(f, args...)       (*(f))(args)
  60
  61#define STUB_GET_TIME(prefix, adjust_arg)                                      \
  62static efi_status_t                                                            \
  63prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
  64{                                                                              \
  65        struct ia64_fpreg fr[6];                                               \
  66        efi_time_cap_t *atc = NULL;                                            \
  67        efi_status_t ret;                                                      \
  68                                                                               \
  69        if (tc)                                                                \
  70                atc = adjust_arg(tc);                                          \
  71        ia64_save_scratch_fpregs(fr);                                          \
  72        ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  73                                adjust_arg(tm), atc);                          \
  74        ia64_load_scratch_fpregs(fr);                                          \
  75        return ret;                                                            \
  76}
  77
  78#define STUB_SET_TIME(prefix, adjust_arg)                                      \
  79static efi_status_t                                                            \
  80prefix##_set_time (efi_time_t *tm)                                             \
  81{                                                                              \
  82        struct ia64_fpreg fr[6];                                               \
  83        efi_status_t ret;                                                      \
  84                                                                               \
  85        ia64_save_scratch_fpregs(fr);                                          \
  86        ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
  87                                adjust_arg(tm));                               \
  88        ia64_load_scratch_fpregs(fr);                                          \
  89        return ret;                                                            \
  90}
  91
  92#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
  93static efi_status_t                                                            \
  94prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
  95                          efi_time_t *tm)                                      \
  96{                                                                              \
  97        struct ia64_fpreg fr[6];                                               \
  98        efi_status_t ret;                                                      \
  99                                                                               \
 100        ia64_save_scratch_fpregs(fr);                                          \
 101        ret = efi_call_##prefix(                                               \
 102                (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 103                adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 104        ia64_load_scratch_fpregs(fr);                                          \
 105        return ret;                                                            \
 106}
 107
 108#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
 109static efi_status_t                                                            \
 110prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
 111{                                                                              \
 112        struct ia64_fpreg fr[6];                                               \
 113        efi_time_t *atm = NULL;                                                \
 114        efi_status_t ret;                                                      \
 115                                                                               \
 116        if (tm)                                                                \
 117                atm = adjust_arg(tm);                                          \
 118        ia64_save_scratch_fpregs(fr);                                          \
 119        ret = efi_call_##prefix(                                               \
 120                (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 121                enabled, atm);                                                 \
 122        ia64_load_scratch_fpregs(fr);                                          \
 123        return ret;                                                            \
 124}
 125
 126#define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
 127static efi_status_t                                                            \
 128prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 129                       unsigned long *data_size, void *data)                   \
 130{                                                                              \
 131        struct ia64_fpreg fr[6];                                               \
 132        u32 *aattr = NULL;                                                     \
 133        efi_status_t ret;                                                      \
 134                                                                               \
 135        if (attr)                                                              \
 136                aattr = adjust_arg(attr);                                      \
 137        ia64_save_scratch_fpregs(fr);                                          \
 138        ret = efi_call_##prefix(                                               \
 139                (efi_get_variable_t *) __va(runtime->get_variable),            \
 140                adjust_arg(name), adjust_arg(vendor), aattr,                   \
 141                adjust_arg(data_size), adjust_arg(data));                      \
 142        ia64_load_scratch_fpregs(fr);                                          \
 143        return ret;                                                            \
 144}
 145
 146#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
 147static efi_status_t                                                            \
 148prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 149                            efi_guid_t *vendor)                                \
 150{                                                                              \
 151        struct ia64_fpreg fr[6];                                               \
 152        efi_status_t ret;                                                      \
 153                                                                               \
 154        ia64_save_scratch_fpregs(fr);                                          \
 155        ret = efi_call_##prefix(                                               \
 156                (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 157                adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 158        ia64_load_scratch_fpregs(fr);                                          \
 159        return ret;                                                            \
 160}
 161
 162#define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
 163static efi_status_t                                                            \
 164prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
 165                       u32 attr, unsigned long data_size,                      \
 166                       void *data)                                             \
 167{                                                                              \
 168        struct ia64_fpreg fr[6];                                               \
 169        efi_status_t ret;                                                      \
 170                                                                               \
 171        ia64_save_scratch_fpregs(fr);                                          \
 172        ret = efi_call_##prefix(                                               \
 173                (efi_set_variable_t *) __va(runtime->set_variable),            \
 174                adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
 175                adjust_arg(data));                                             \
 176        ia64_load_scratch_fpregs(fr);                                          \
 177        return ret;                                                            \
 178}
 179
 180#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
 181static efi_status_t                                                            \
 182prefix##_get_next_high_mono_count (u32 *count)                                 \
 183{                                                                              \
 184        struct ia64_fpreg fr[6];                                               \
 185        efi_status_t ret;                                                      \
 186                                                                               \
 187        ia64_save_scratch_fpregs(fr);                                          \
 188        ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
 189                                __va(runtime->get_next_high_mono_count),       \
 190                                adjust_arg(count));                            \
 191        ia64_load_scratch_fpregs(fr);                                          \
 192        return ret;                                                            \
 193}
 194
 195#define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
 196static void                                                                    \
 197prefix##_reset_system (int reset_type, efi_status_t status,                    \
 198                       unsigned long data_size, efi_char16_t *data)            \
 199{                                                                              \
 200        struct ia64_fpreg fr[6];                                               \
 201        efi_char16_t *adata = NULL;                                            \
 202                                                                               \
 203        if (data)                                                              \
 204                adata = adjust_arg(data);                                      \
 205                                                                               \
 206        ia64_save_scratch_fpregs(fr);                                          \
 207        efi_call_##prefix(                                                     \
 208                (efi_reset_system_t *) __va(runtime->reset_system),            \
 209                reset_type, status, data_size, adata);                         \
 210        /* should not return, but just in case... */                           \
 211        ia64_load_scratch_fpregs(fr);                                          \
 212}
 213
 214#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 215
 216STUB_GET_TIME(phys, phys_ptr)
 217STUB_SET_TIME(phys, phys_ptr)
 218STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 219STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 220STUB_GET_VARIABLE(phys, phys_ptr)
 221STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 222STUB_SET_VARIABLE(phys, phys_ptr)
 223STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 224STUB_RESET_SYSTEM(phys, phys_ptr)
 225
 226#define id(arg) arg
 227
 228STUB_GET_TIME(virt, id)
 229STUB_SET_TIME(virt, id)
 230STUB_GET_WAKEUP_TIME(virt, id)
 231STUB_SET_WAKEUP_TIME(virt, id)
 232STUB_GET_VARIABLE(virt, id)
 233STUB_GET_NEXT_VARIABLE(virt, id)
 234STUB_SET_VARIABLE(virt, id)
 235STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 236STUB_RESET_SYSTEM(virt, id)
 237
 238void
 239efi_gettimeofday (struct timespec *ts)
 240{
 241        efi_time_t tm;
 242
 243        if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 244                memset(ts, 0, sizeof(*ts));
 245                return;
 246        }
 247
 248        ts->tv_sec = mktime(tm.year, tm.month, tm.day,
 249                            tm.hour, tm.minute, tm.second);
 250        ts->tv_nsec = tm.nanosecond;
 251}
 252
 253static int
 254is_memory_available (efi_memory_desc_t *md)
 255{
 256        if (!(md->attribute & EFI_MEMORY_WB))
 257                return 0;
 258
 259        switch (md->type) {
 260              case EFI_LOADER_CODE:
 261              case EFI_LOADER_DATA:
 262              case EFI_BOOT_SERVICES_CODE:
 263              case EFI_BOOT_SERVICES_DATA:
 264              case EFI_CONVENTIONAL_MEMORY:
 265                return 1;
 266        }
 267        return 0;
 268}
 269
 270typedef struct kern_memdesc {
 271        u64 attribute;
 272        u64 start;
 273        u64 num_pages;
 274} kern_memdesc_t;
 275
 276static kern_memdesc_t *kern_memmap;
 277
 278#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 279
 280static inline u64
 281kmd_end(kern_memdesc_t *kmd)
 282{
 283        return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 284}
 285
 286static inline u64
 287efi_md_end(efi_memory_desc_t *md)
 288{
 289        return (md->phys_addr + efi_md_size(md));
 290}
 291
 292static inline int
 293efi_wb(efi_memory_desc_t *md)
 294{
 295        return (md->attribute & EFI_MEMORY_WB);
 296}
 297
 298static inline int
 299efi_uc(efi_memory_desc_t *md)
 300{
 301        return (md->attribute & EFI_MEMORY_UC);
 302}
 303
 304static void
 305walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 306{
 307        kern_memdesc_t *k;
 308        u64 start, end, voff;
 309
 310        voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 311        for (k = kern_memmap; k->start != ~0UL; k++) {
 312                if (k->attribute != attr)
 313                        continue;
 314                start = PAGE_ALIGN(k->start);
 315                end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 316                if (start < end)
 317                        if ((*callback)(start + voff, end + voff, arg) < 0)
 318                                return;
 319        }
 320}
 321
 322/*
 323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 324 * descriptor that has memory that is available for OS use.
 325 */
 326void
 327efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 328{
 329        walk(callback, arg, EFI_MEMORY_WB);
 330}
 331
 332/*
 333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 334 * descriptor that has memory that is available for uncached allocator.
 335 */
 336void
 337efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 338{
 339        walk(callback, arg, EFI_MEMORY_UC);
 340}
 341
 342/*
 343 * Look for the PAL_CODE region reported by EFI and map it using an
 344 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 345 * Abstraction Layer chapter 11 in ADAG
 346 */
 347void *
 348efi_get_pal_addr (void)
 349{
 350        void *efi_map_start, *efi_map_end, *p;
 351        efi_memory_desc_t *md;
 352        u64 efi_desc_size;
 353        int pal_code_count = 0;
 354        u64 vaddr, mask;
 355
 356        efi_map_start = __va(ia64_boot_param->efi_memmap);
 357        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 358        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 359
 360        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 361                md = p;
 362                if (md->type != EFI_PAL_CODE)
 363                        continue;
 364
 365                if (++pal_code_count > 1) {
 366                        printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 367                               "dropped @ %llx\n", md->phys_addr);
 368                        continue;
 369                }
 370                /*
 371                 * The only ITLB entry in region 7 that is used is the one
 372                 * installed by __start().  That entry covers a 64MB range.
 373                 */
 374                mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 375                vaddr = PAGE_OFFSET + md->phys_addr;
 376
 377                /*
 378                 * We must check that the PAL mapping won't overlap with the
 379                 * kernel mapping.
 380                 *
 381                 * PAL code is guaranteed to be aligned on a power of 2 between
 382                 * 4k and 256KB and that only one ITR is needed to map it. This
 383                 * implies that the PAL code is always aligned on its size,
 384                 * i.e., the closest matching page size supported by the TLB.
 385                 * Therefore PAL code is guaranteed never to cross a 64MB unless
 386                 * it is bigger than 64MB (very unlikely!).  So for now the
 387                 * following test is enough to determine whether or not we need
 388                 * a dedicated ITR for the PAL code.
 389                 */
 390                if ((vaddr & mask) == (KERNEL_START & mask)) {
 391                        printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 392                               __func__);
 393                        continue;
 394                }
 395
 396                if (efi_md_size(md) > IA64_GRANULE_SIZE)
 397                        panic("Whoa!  PAL code size bigger than a granule!");
 398
 399#if EFI_DEBUG
 400                mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 401
 402                printk(KERN_INFO "CPU %d: mapping PAL code "
 403                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 404                       smp_processor_id(), md->phys_addr,
 405                       md->phys_addr + efi_md_size(md),
 406                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 407#endif
 408                return __va(md->phys_addr);
 409        }
 410        printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 411               __func__);
 412        return NULL;
 413}
 414
 415
 416static u8 __init palo_checksum(u8 *buffer, u32 length)
 417{
 418        u8 sum = 0;
 419        u8 *end = buffer + length;
 420
 421        while (buffer < end)
 422                sum = (u8) (sum + *(buffer++));
 423
 424        return sum;
 425}
 426
 427/*
 428 * Parse and handle PALO table which is published at:
 429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 430 */
 431static void __init handle_palo(unsigned long phys_addr)
 432{
 433        struct palo_table *palo = __va(phys_addr);
 434        u8  checksum;
 435
 436        if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 437                printk(KERN_INFO "PALO signature incorrect.\n");
 438                return;
 439        }
 440
 441        checksum = palo_checksum((u8 *)palo, palo->length);
 442        if (checksum) {
 443                printk(KERN_INFO "PALO checksum incorrect.\n");
 444                return;
 445        }
 446
 447        setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 448}
 449
 450void
 451efi_map_pal_code (void)
 452{
 453        void *pal_vaddr = efi_get_pal_addr ();
 454        u64 psr;
 455
 456        if (!pal_vaddr)
 457                return;
 458
 459        /*
 460         * Cannot write to CRx with PSR.ic=1
 461         */
 462        psr = ia64_clear_ic();
 463        ia64_itr(0x1, IA64_TR_PALCODE,
 464                 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 465                 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 466                 IA64_GRANULE_SHIFT);
 467        paravirt_dv_serialize_data();
 468        ia64_set_psr(psr);              /* restore psr */
 469}
 470
 471void __init
 472efi_init (void)
 473{
 474        void *efi_map_start, *efi_map_end;
 475        efi_char16_t *c16;
 476        u64 efi_desc_size;
 477        char *cp, vendor[100] = "unknown";
 478        int i;
 479
 480        set_bit(EFI_BOOT, &efi.flags);
 481        set_bit(EFI_64BIT, &efi.flags);
 482
 483        /*
 484         * It's too early to be able to use the standard kernel command line
 485         * support...
 486         */
 487        for (cp = boot_command_line; *cp; ) {
 488                if (memcmp(cp, "mem=", 4) == 0) {
 489                        mem_limit = memparse(cp + 4, &cp);
 490                } else if (memcmp(cp, "max_addr=", 9) == 0) {
 491                        max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 492                } else if (memcmp(cp, "min_addr=", 9) == 0) {
 493                        min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 494                } else {
 495                        while (*cp != ' ' && *cp)
 496                                ++cp;
 497                        while (*cp == ' ')
 498                                ++cp;
 499                }
 500        }
 501        if (min_addr != 0UL)
 502                printk(KERN_INFO "Ignoring memory below %lluMB\n",
 503                       min_addr >> 20);
 504        if (max_addr != ~0UL)
 505                printk(KERN_INFO "Ignoring memory above %lluMB\n",
 506                       max_addr >> 20);
 507
 508        efi.systab = __va(ia64_boot_param->efi_systab);
 509
 510        /*
 511         * Verify the EFI Table
 512         */
 513        if (efi.systab == NULL)
 514                panic("Whoa! Can't find EFI system table.\n");
 515        if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 516                panic("Whoa! EFI system table signature incorrect\n");
 517        if ((efi.systab->hdr.revision >> 16) == 0)
 518                printk(KERN_WARNING "Warning: EFI system table version "
 519                       "%d.%02d, expected 1.00 or greater\n",
 520                       efi.systab->hdr.revision >> 16,
 521                       efi.systab->hdr.revision & 0xffff);
 522
 523        /* Show what we know for posterity */
 524        c16 = __va(efi.systab->fw_vendor);
 525        if (c16) {
 526                for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 527                        vendor[i] = *c16++;
 528                vendor[i] = '\0';
 529        }
 530
 531        printk(KERN_INFO "EFI v%u.%.02u by %s:",
 532               efi.systab->hdr.revision >> 16,
 533               efi.systab->hdr.revision & 0xffff, vendor);
 534
 535        set_bit(EFI_SYSTEM_TABLES, &efi.flags);
 536
 537        palo_phys      = EFI_INVALID_TABLE_ADDR;
 538
 539        if (efi_config_init(arch_tables) != 0)
 540                return;
 541
 542        if (palo_phys != EFI_INVALID_TABLE_ADDR)
 543                handle_palo(palo_phys);
 544
 545        runtime = __va(efi.systab->runtime);
 546        efi.get_time = phys_get_time;
 547        efi.set_time = phys_set_time;
 548        efi.get_wakeup_time = phys_get_wakeup_time;
 549        efi.set_wakeup_time = phys_set_wakeup_time;
 550        efi.get_variable = phys_get_variable;
 551        efi.get_next_variable = phys_get_next_variable;
 552        efi.set_variable = phys_set_variable;
 553        efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 554        efi.reset_system = phys_reset_system;
 555
 556        efi_map_start = __va(ia64_boot_param->efi_memmap);
 557        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 558        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 559
 560#if EFI_DEBUG
 561        /* print EFI memory map: */
 562        {
 563                efi_memory_desc_t *md;
 564                void *p;
 565
 566                for (i = 0, p = efi_map_start; p < efi_map_end;
 567                     ++i, p += efi_desc_size)
 568                {
 569                        const char *unit;
 570                        unsigned long size;
 571
 572                        md = p;
 573                        size = md->num_pages << EFI_PAGE_SHIFT;
 574
 575                        if ((size >> 40) > 0) {
 576                                size >>= 40;
 577                                unit = "TB";
 578                        } else if ((size >> 30) > 0) {
 579                                size >>= 30;
 580                                unit = "GB";
 581                        } else if ((size >> 20) > 0) {
 582                                size >>= 20;
 583                                unit = "MB";
 584                        } else {
 585                                size >>= 10;
 586                                unit = "KB";
 587                        }
 588
 589                        printk("mem%02d: type=%2u, attr=0x%016lx, "
 590                               "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 591                               i, md->type, md->attribute, md->phys_addr,
 592                               md->phys_addr + efi_md_size(md), size, unit);
 593                }
 594        }
 595#endif
 596
 597        efi_map_pal_code();
 598        efi_enter_virtual_mode();
 599}
 600
 601void
 602efi_enter_virtual_mode (void)
 603{
 604        void *efi_map_start, *efi_map_end, *p;
 605        efi_memory_desc_t *md;
 606        efi_status_t status;
 607        u64 efi_desc_size;
 608
 609        efi_map_start = __va(ia64_boot_param->efi_memmap);
 610        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 611        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 612
 613        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 614                md = p;
 615                if (md->attribute & EFI_MEMORY_RUNTIME) {
 616                        /*
 617                         * Some descriptors have multiple bits set, so the
 618                         * order of the tests is relevant.
 619                         */
 620                        if (md->attribute & EFI_MEMORY_WB) {
 621                                md->virt_addr = (u64) __va(md->phys_addr);
 622                        } else if (md->attribute & EFI_MEMORY_UC) {
 623                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 624                        } else if (md->attribute & EFI_MEMORY_WC) {
 625#if 0
 626                                md->virt_addr = ia64_remap(md->phys_addr,
 627                                                           (_PAGE_A |
 628                                                            _PAGE_P |
 629                                                            _PAGE_D |
 630                                                            _PAGE_MA_WC |
 631                                                            _PAGE_PL_0 |
 632                                                            _PAGE_AR_RW));
 633#else
 634                                printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 635                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 636#endif
 637                        } else if (md->attribute & EFI_MEMORY_WT) {
 638#if 0
 639                                md->virt_addr = ia64_remap(md->phys_addr,
 640                                                           (_PAGE_A |
 641                                                            _PAGE_P |
 642                                                            _PAGE_D |
 643                                                            _PAGE_MA_WT |
 644                                                            _PAGE_PL_0 |
 645                                                            _PAGE_AR_RW));
 646#else
 647                                printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 648                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 649#endif
 650                        }
 651                }
 652        }
 653
 654        status = efi_call_phys(__va(runtime->set_virtual_address_map),
 655                               ia64_boot_param->efi_memmap_size,
 656                               efi_desc_size,
 657                               ia64_boot_param->efi_memdesc_version,
 658                               ia64_boot_param->efi_memmap);
 659        if (status != EFI_SUCCESS) {
 660                printk(KERN_WARNING "warning: unable to switch EFI into "
 661                       "virtual mode (status=%lu)\n", status);
 662                return;
 663        }
 664
 665        set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 666
 667        /*
 668         * Now that EFI is in virtual mode, we call the EFI functions more
 669         * efficiently:
 670         */
 671        efi.get_time = virt_get_time;
 672        efi.set_time = virt_set_time;
 673        efi.get_wakeup_time = virt_get_wakeup_time;
 674        efi.set_wakeup_time = virt_set_wakeup_time;
 675        efi.get_variable = virt_get_variable;
 676        efi.get_next_variable = virt_get_next_variable;
 677        efi.set_variable = virt_set_variable;
 678        efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 679        efi.reset_system = virt_reset_system;
 680}
 681
 682/*
 683 * Walk the EFI memory map looking for the I/O port range.  There can only be
 684 * one entry of this type, other I/O port ranges should be described via ACPI.
 685 */
 686u64
 687efi_get_iobase (void)
 688{
 689        void *efi_map_start, *efi_map_end, *p;
 690        efi_memory_desc_t *md;
 691        u64 efi_desc_size;
 692
 693        efi_map_start = __va(ia64_boot_param->efi_memmap);
 694        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 695        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 696
 697        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 698                md = p;
 699                if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 700                        if (md->attribute & EFI_MEMORY_UC)
 701                                return md->phys_addr;
 702                }
 703        }
 704        return 0;
 705}
 706
 707static struct kern_memdesc *
 708kern_memory_descriptor (unsigned long phys_addr)
 709{
 710        struct kern_memdesc *md;
 711
 712        for (md = kern_memmap; md->start != ~0UL; md++) {
 713                if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 714                         return md;
 715        }
 716        return NULL;
 717}
 718
 719static efi_memory_desc_t *
 720efi_memory_descriptor (unsigned long phys_addr)
 721{
 722        void *efi_map_start, *efi_map_end, *p;
 723        efi_memory_desc_t *md;
 724        u64 efi_desc_size;
 725
 726        efi_map_start = __va(ia64_boot_param->efi_memmap);
 727        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 728        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 729
 730        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 731                md = p;
 732
 733                if (phys_addr - md->phys_addr < efi_md_size(md))
 734                         return md;
 735        }
 736        return NULL;
 737}
 738
 739static int
 740efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 741{
 742        void *efi_map_start, *efi_map_end, *p;
 743        efi_memory_desc_t *md;
 744        u64 efi_desc_size;
 745        unsigned long end;
 746
 747        efi_map_start = __va(ia64_boot_param->efi_memmap);
 748        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 749        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 750
 751        end = phys_addr + size;
 752
 753        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 754                md = p;
 755                if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 756                        return 1;
 757        }
 758        return 0;
 759}
 760
 761u32
 762efi_mem_type (unsigned long phys_addr)
 763{
 764        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 765
 766        if (md)
 767                return md->type;
 768        return 0;
 769}
 770
 771u64
 772efi_mem_attributes (unsigned long phys_addr)
 773{
 774        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 775
 776        if (md)
 777                return md->attribute;
 778        return 0;
 779}
 780EXPORT_SYMBOL(efi_mem_attributes);
 781
 782u64
 783efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 784{
 785        unsigned long end = phys_addr + size;
 786        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 787        u64 attr;
 788
 789        if (!md)
 790                return 0;
 791
 792        /*
 793         * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 794         * the kernel that firmware needs this region mapped.
 795         */
 796        attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 797        do {
 798                unsigned long md_end = efi_md_end(md);
 799
 800                if (end <= md_end)
 801                        return attr;
 802
 803                md = efi_memory_descriptor(md_end);
 804                if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 805                        return 0;
 806        } while (md);
 807        return 0;       /* never reached */
 808}
 809
 810u64
 811kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 812{
 813        unsigned long end = phys_addr + size;
 814        struct kern_memdesc *md;
 815        u64 attr;
 816
 817        /*
 818         * This is a hack for ioremap calls before we set up kern_memmap.
 819         * Maybe we should do efi_memmap_init() earlier instead.
 820         */
 821        if (!kern_memmap) {
 822                attr = efi_mem_attribute(phys_addr, size);
 823                if (attr & EFI_MEMORY_WB)
 824                        return EFI_MEMORY_WB;
 825                return 0;
 826        }
 827
 828        md = kern_memory_descriptor(phys_addr);
 829        if (!md)
 830                return 0;
 831
 832        attr = md->attribute;
 833        do {
 834                unsigned long md_end = kmd_end(md);
 835
 836                if (end <= md_end)
 837                        return attr;
 838
 839                md = kern_memory_descriptor(md_end);
 840                if (!md || md->attribute != attr)
 841                        return 0;
 842        } while (md);
 843        return 0;       /* never reached */
 844}
 845EXPORT_SYMBOL(kern_mem_attribute);
 846
 847int
 848valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 849{
 850        u64 attr;
 851
 852        /*
 853         * /dev/mem reads and writes use copy_to_user(), which implicitly
 854         * uses a granule-sized kernel identity mapping.  It's really
 855         * only safe to do this for regions in kern_memmap.  For more
 856         * details, see Documentation/ia64/aliasing.txt.
 857         */
 858        attr = kern_mem_attribute(phys_addr, size);
 859        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 860                return 1;
 861        return 0;
 862}
 863
 864int
 865valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 866{
 867        unsigned long phys_addr = pfn << PAGE_SHIFT;
 868        u64 attr;
 869
 870        attr = efi_mem_attribute(phys_addr, size);
 871
 872        /*
 873         * /dev/mem mmap uses normal user pages, so we don't need the entire
 874         * granule, but the entire region we're mapping must support the same
 875         * attribute.
 876         */
 877        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 878                return 1;
 879
 880        /*
 881         * Intel firmware doesn't tell us about all the MMIO regions, so
 882         * in general we have to allow mmap requests.  But if EFI *does*
 883         * tell us about anything inside this region, we should deny it.
 884         * The user can always map a smaller region to avoid the overlap.
 885         */
 886        if (efi_memmap_intersects(phys_addr, size))
 887                return 0;
 888
 889        return 1;
 890}
 891
 892pgprot_t
 893phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 894                     pgprot_t vma_prot)
 895{
 896        unsigned long phys_addr = pfn << PAGE_SHIFT;
 897        u64 attr;
 898
 899        /*
 900         * For /dev/mem mmap, we use user mappings, but if the region is
 901         * in kern_memmap (and hence may be covered by a kernel mapping),
 902         * we must use the same attribute as the kernel mapping.
 903         */
 904        attr = kern_mem_attribute(phys_addr, size);
 905        if (attr & EFI_MEMORY_WB)
 906                return pgprot_cacheable(vma_prot);
 907        else if (attr & EFI_MEMORY_UC)
 908                return pgprot_noncached(vma_prot);
 909
 910        /*
 911         * Some chipsets don't support UC access to memory.  If
 912         * WB is supported, we prefer that.
 913         */
 914        if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 915                return pgprot_cacheable(vma_prot);
 916
 917        return pgprot_noncached(vma_prot);
 918}
 919
 920int __init
 921efi_uart_console_only(void)
 922{
 923        efi_status_t status;
 924        char *s, name[] = "ConOut";
 925        efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 926        efi_char16_t *utf16, name_utf16[32];
 927        unsigned char data[1024];
 928        unsigned long size = sizeof(data);
 929        struct efi_generic_dev_path *hdr, *end_addr;
 930        int uart = 0;
 931
 932        /* Convert to UTF-16 */
 933        utf16 = name_utf16;
 934        s = name;
 935        while (*s)
 936                *utf16++ = *s++ & 0x7f;
 937        *utf16 = 0;
 938
 939        status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 940        if (status != EFI_SUCCESS) {
 941                printk(KERN_ERR "No EFI %s variable?\n", name);
 942                return 0;
 943        }
 944
 945        hdr = (struct efi_generic_dev_path *) data;
 946        end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 947        while (hdr < end_addr) {
 948                if (hdr->type == EFI_DEV_MSG &&
 949                    hdr->sub_type == EFI_DEV_MSG_UART)
 950                        uart = 1;
 951                else if (hdr->type == EFI_DEV_END_PATH ||
 952                          hdr->type == EFI_DEV_END_PATH2) {
 953                        if (!uart)
 954                                return 0;
 955                        if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 956                                return 1;
 957                        uart = 0;
 958                }
 959                hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 960        }
 961        printk(KERN_ERR "Malformed %s value\n", name);
 962        return 0;
 963}
 964
 965/*
 966 * Look for the first granule aligned memory descriptor memory
 967 * that is big enough to hold EFI memory map. Make sure this
 968 * descriptor is atleast granule sized so it does not get trimmed
 969 */
 970struct kern_memdesc *
 971find_memmap_space (void)
 972{
 973        u64     contig_low=0, contig_high=0;
 974        u64     as = 0, ae;
 975        void *efi_map_start, *efi_map_end, *p, *q;
 976        efi_memory_desc_t *md, *pmd = NULL, *check_md;
 977        u64     space_needed, efi_desc_size;
 978        unsigned long total_mem = 0;
 979
 980        efi_map_start = __va(ia64_boot_param->efi_memmap);
 981        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 982        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 983
 984        /*
 985         * Worst case: we need 3 kernel descriptors for each efi descriptor
 986         * (if every entry has a WB part in the middle, and UC head and tail),
 987         * plus one for the end marker.
 988         */
 989        space_needed = sizeof(kern_memdesc_t) *
 990                (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 991
 992        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 993                md = p;
 994                if (!efi_wb(md)) {
 995                        continue;
 996                }
 997                if (pmd == NULL || !efi_wb(pmd) ||
 998                    efi_md_end(pmd) != md->phys_addr) {
 999                        contig_low = GRANULEROUNDUP(md->phys_addr);
1000                        contig_high = efi_md_end(md);
1001                        for (q = p + efi_desc_size; q < efi_map_end;
1002                             q += efi_desc_size) {
1003                                check_md = q;
1004                                if (!efi_wb(check_md))
1005                                        break;
1006                                if (contig_high != check_md->phys_addr)
1007                                        break;
1008                                contig_high = efi_md_end(check_md);
1009                        }
1010                        contig_high = GRANULEROUNDDOWN(contig_high);
1011                }
1012                if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1013                        continue;
1014
1015                /* Round ends inward to granule boundaries */
1016                as = max(contig_low, md->phys_addr);
1017                ae = min(contig_high, efi_md_end(md));
1018
1019                /* keep within max_addr= and min_addr= command line arg */
1020                as = max(as, min_addr);
1021                ae = min(ae, max_addr);
1022                if (ae <= as)
1023                        continue;
1024
1025                /* avoid going over mem= command line arg */
1026                if (total_mem + (ae - as) > mem_limit)
1027                        ae -= total_mem + (ae - as) - mem_limit;
1028
1029                if (ae <= as)
1030                        continue;
1031
1032                if (ae - as > space_needed)
1033                        break;
1034        }
1035        if (p >= efi_map_end)
1036                panic("Can't allocate space for kernel memory descriptors");
1037
1038        return __va(as);
1039}
1040
1041/*
1042 * Walk the EFI memory map and gather all memory available for kernel
1043 * to use.  We can allocate partial granules only if the unavailable
1044 * parts exist, and are WB.
1045 */
1046unsigned long
1047efi_memmap_init(u64 *s, u64 *e)
1048{
1049        struct kern_memdesc *k, *prev = NULL;
1050        u64     contig_low=0, contig_high=0;
1051        u64     as, ae, lim;
1052        void *efi_map_start, *efi_map_end, *p, *q;
1053        efi_memory_desc_t *md, *pmd = NULL, *check_md;
1054        u64     efi_desc_size;
1055        unsigned long total_mem = 0;
1056
1057        k = kern_memmap = find_memmap_space();
1058
1059        efi_map_start = __va(ia64_boot_param->efi_memmap);
1060        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1061        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1062
1063        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1064                md = p;
1065                if (!efi_wb(md)) {
1066                        if (efi_uc(md) &&
1067                            (md->type == EFI_CONVENTIONAL_MEMORY ||
1068                             md->type == EFI_BOOT_SERVICES_DATA)) {
1069                                k->attribute = EFI_MEMORY_UC;
1070                                k->start = md->phys_addr;
1071                                k->num_pages = md->num_pages;
1072                                k++;
1073                        }
1074                        continue;
1075                }
1076                if (pmd == NULL || !efi_wb(pmd) ||
1077                    efi_md_end(pmd) != md->phys_addr) {
1078                        contig_low = GRANULEROUNDUP(md->phys_addr);
1079                        contig_high = efi_md_end(md);
1080                        for (q = p + efi_desc_size; q < efi_map_end;
1081                             q += efi_desc_size) {
1082                                check_md = q;
1083                                if (!efi_wb(check_md))
1084                                        break;
1085                                if (contig_high != check_md->phys_addr)
1086                                        break;
1087                                contig_high = efi_md_end(check_md);
1088                        }
1089                        contig_high = GRANULEROUNDDOWN(contig_high);
1090                }
1091                if (!is_memory_available(md))
1092                        continue;
1093
1094                /*
1095                 * Round ends inward to granule boundaries
1096                 * Give trimmings to uncached allocator
1097                 */
1098                if (md->phys_addr < contig_low) {
1099                        lim = min(efi_md_end(md), contig_low);
1100                        if (efi_uc(md)) {
1101                                if (k > kern_memmap &&
1102                                    (k-1)->attribute == EFI_MEMORY_UC &&
1103                                    kmd_end(k-1) == md->phys_addr) {
1104                                        (k-1)->num_pages +=
1105                                                (lim - md->phys_addr)
1106                                                >> EFI_PAGE_SHIFT;
1107                                } else {
1108                                        k->attribute = EFI_MEMORY_UC;
1109                                        k->start = md->phys_addr;
1110                                        k->num_pages = (lim - md->phys_addr)
1111                                                >> EFI_PAGE_SHIFT;
1112                                        k++;
1113                                }
1114                        }
1115                        as = contig_low;
1116                } else
1117                        as = md->phys_addr;
1118
1119                if (efi_md_end(md) > contig_high) {
1120                        lim = max(md->phys_addr, contig_high);
1121                        if (efi_uc(md)) {
1122                                if (lim == md->phys_addr && k > kern_memmap &&
1123                                    (k-1)->attribute == EFI_MEMORY_UC &&
1124                                    kmd_end(k-1) == md->phys_addr) {
1125                                        (k-1)->num_pages += md->num_pages;
1126                                } else {
1127                                        k->attribute = EFI_MEMORY_UC;
1128                                        k->start = lim;
1129                                        k->num_pages = (efi_md_end(md) - lim)
1130                                                >> EFI_PAGE_SHIFT;
1131                                        k++;
1132                                }
1133                        }
1134                        ae = contig_high;
1135                } else
1136                        ae = efi_md_end(md);
1137
1138                /* keep within max_addr= and min_addr= command line arg */
1139                as = max(as, min_addr);
1140                ae = min(ae, max_addr);
1141                if (ae <= as)
1142                        continue;
1143
1144                /* avoid going over mem= command line arg */
1145                if (total_mem + (ae - as) > mem_limit)
1146                        ae -= total_mem + (ae - as) - mem_limit;
1147
1148                if (ae <= as)
1149                        continue;
1150                if (prev && kmd_end(prev) == md->phys_addr) {
1151                        prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1152                        total_mem += ae - as;
1153                        continue;
1154                }
1155                k->attribute = EFI_MEMORY_WB;
1156                k->start = as;
1157                k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1158                total_mem += ae - as;
1159                prev = k++;
1160        }
1161        k->start = ~0L; /* end-marker */
1162
1163        /* reserve the memory we are using for kern_memmap */
1164        *s = (u64)kern_memmap;
1165        *e = (u64)++k;
1166
1167        return total_mem;
1168}
1169
1170void
1171efi_initialize_iomem_resources(struct resource *code_resource,
1172                               struct resource *data_resource,
1173                               struct resource *bss_resource)
1174{
1175        struct resource *res;
1176        void *efi_map_start, *efi_map_end, *p;
1177        efi_memory_desc_t *md;
1178        u64 efi_desc_size;
1179        char *name;
1180        unsigned long flags;
1181
1182        efi_map_start = __va(ia64_boot_param->efi_memmap);
1183        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1184        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1185
1186        res = NULL;
1187
1188        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1189                md = p;
1190
1191                if (md->num_pages == 0) /* should not happen */
1192                        continue;
1193
1194                flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1195                switch (md->type) {
1196
1197                        case EFI_MEMORY_MAPPED_IO:
1198                        case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1199                                continue;
1200
1201                        case EFI_LOADER_CODE:
1202                        case EFI_LOADER_DATA:
1203                        case EFI_BOOT_SERVICES_DATA:
1204                        case EFI_BOOT_SERVICES_CODE:
1205                        case EFI_CONVENTIONAL_MEMORY:
1206                                if (md->attribute & EFI_MEMORY_WP) {
1207                                        name = "System ROM";
1208                                        flags |= IORESOURCE_READONLY;
1209                                } else if (md->attribute == EFI_MEMORY_UC)
1210                                        name = "Uncached RAM";
1211                                else
1212                                        name = "System RAM";
1213                                break;
1214
1215                        case EFI_ACPI_MEMORY_NVS:
1216                                name = "ACPI Non-volatile Storage";
1217                                break;
1218
1219                        case EFI_UNUSABLE_MEMORY:
1220                                name = "reserved";
1221                                flags |= IORESOURCE_DISABLED;
1222                                break;
1223
1224                        case EFI_RESERVED_TYPE:
1225                        case EFI_RUNTIME_SERVICES_CODE:
1226                        case EFI_RUNTIME_SERVICES_DATA:
1227                        case EFI_ACPI_RECLAIM_MEMORY:
1228                        default:
1229                                name = "reserved";
1230                                break;
1231                }
1232
1233                if ((res = kzalloc(sizeof(struct resource),
1234                                   GFP_KERNEL)) == NULL) {
1235                        printk(KERN_ERR
1236                               "failed to allocate resource for iomem\n");
1237                        return;
1238                }
1239
1240                res->name = name;
1241                res->start = md->phys_addr;
1242                res->end = md->phys_addr + efi_md_size(md) - 1;
1243                res->flags = flags;
1244
1245                if (insert_resource(&iomem_resource, res) < 0)
1246                        kfree(res);
1247                else {
1248                        /*
1249                         * We don't know which region contains
1250                         * kernel data so we try it repeatedly and
1251                         * let the resource manager test it.
1252                         */
1253                        insert_resource(res, code_resource);
1254                        insert_resource(res, data_resource);
1255                        insert_resource(res, bss_resource);
1256#ifdef CONFIG_KEXEC
1257                        insert_resource(res, &efi_memmap_res);
1258                        insert_resource(res, &boot_param_res);
1259                        if (crashk_res.end > crashk_res.start)
1260                                insert_resource(res, &crashk_res);
1261#endif
1262                }
1263        }
1264}
1265
1266#ifdef CONFIG_KEXEC
1267/* find a block of memory aligned to 64M exclude reserved regions
1268   rsvd_regions are sorted
1269 */
1270unsigned long __init
1271kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1272{
1273        int i;
1274        u64 start, end;
1275        u64 alignment = 1UL << _PAGE_SIZE_64M;
1276        void *efi_map_start, *efi_map_end, *p;
1277        efi_memory_desc_t *md;
1278        u64 efi_desc_size;
1279
1280        efi_map_start = __va(ia64_boot_param->efi_memmap);
1281        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1282        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1283
1284        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1285                md = p;
1286                if (!efi_wb(md))
1287                        continue;
1288                start = ALIGN(md->phys_addr, alignment);
1289                end = efi_md_end(md);
1290                for (i = 0; i < n; i++) {
1291                        if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1292                                if (__pa(r[i].start) > start + size)
1293                                        return start;
1294                                start = ALIGN(__pa(r[i].end), alignment);
1295                                if (i < n-1 &&
1296                                    __pa(r[i+1].start) < start + size)
1297                                        continue;
1298                                else
1299                                        break;
1300                        }
1301                }
1302                if (end > start + size)
1303                        return start;
1304        }
1305
1306        printk(KERN_WARNING
1307               "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1308        return ~0UL;
1309}
1310#endif
1311
1312#ifdef CONFIG_CRASH_DUMP
1313/* locate the size find a the descriptor at a certain address */
1314unsigned long __init
1315vmcore_find_descriptor_size (unsigned long address)
1316{
1317        void *efi_map_start, *efi_map_end, *p;
1318        efi_memory_desc_t *md;
1319        u64 efi_desc_size;
1320        unsigned long ret = 0;
1321
1322        efi_map_start = __va(ia64_boot_param->efi_memmap);
1323        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1324        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1325
1326        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1327                md = p;
1328                if (efi_wb(md) && md->type == EFI_LOADER_DATA
1329                    && md->phys_addr == address) {
1330                        ret = efi_md_size(md);
1331                        break;
1332                }
1333        }
1334
1335        if (ret == 0)
1336                printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1337
1338        return ret;
1339}
1340#endif
1341