linux/arch/powerpc/include/asm/kvm_book3s_64.h
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program; if not, write to the Free Software
  13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  14 *
  15 * Copyright SUSE Linux Products GmbH 2010
  16 *
  17 * Authors: Alexander Graf <agraf@suse.de>
  18 */
  19
  20#ifndef __ASM_KVM_BOOK3S_64_H__
  21#define __ASM_KVM_BOOK3S_64_H__
  22
  23#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
  24static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
  25{
  26        preempt_disable();
  27        return &get_paca()->shadow_vcpu;
  28}
  29
  30static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
  31{
  32        preempt_enable();
  33}
  34#endif
  35
  36#define SPAPR_TCE_SHIFT         12
  37
  38#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
  39#define KVM_DEFAULT_HPT_ORDER   24      /* 16MB HPT by default */
  40extern unsigned long kvm_rma_pages;
  41#endif
  42
  43#define VRMA_VSID       0x1ffffffUL     /* 1TB VSID reserved for VRMA */
  44
  45/*
  46 * We use a lock bit in HPTE dword 0 to synchronize updates and
  47 * accesses to each HPTE, and another bit to indicate non-present
  48 * HPTEs.
  49 */
  50#define HPTE_V_HVLOCK   0x40UL
  51#define HPTE_V_ABSENT   0x20UL
  52
  53/*
  54 * We use this bit in the guest_rpte field of the revmap entry
  55 * to indicate a modified HPTE.
  56 */
  57#define HPTE_GR_MODIFIED        (1ul << 62)
  58
  59/* These bits are reserved in the guest view of the HPTE */
  60#define HPTE_GR_RESERVED        HPTE_GR_MODIFIED
  61
  62static inline long try_lock_hpte(unsigned long *hpte, unsigned long bits)
  63{
  64        unsigned long tmp, old;
  65
  66        asm volatile("  ldarx   %0,0,%2\n"
  67                     "  and.    %1,%0,%3\n"
  68                     "  bne     2f\n"
  69                     "  ori     %0,%0,%4\n"
  70                     "  stdcx.  %0,0,%2\n"
  71                     "  beq+    2f\n"
  72                     "  mr      %1,%3\n"
  73                     "2:        isync"
  74                     : "=&r" (tmp), "=&r" (old)
  75                     : "r" (hpte), "r" (bits), "i" (HPTE_V_HVLOCK)
  76                     : "cc", "memory");
  77        return old == 0;
  78}
  79
  80static inline int __hpte_actual_psize(unsigned int lp, int psize)
  81{
  82        int i, shift;
  83        unsigned int mask;
  84
  85        /* start from 1 ignoring MMU_PAGE_4K */
  86        for (i = 1; i < MMU_PAGE_COUNT; i++) {
  87
  88                /* invalid penc */
  89                if (mmu_psize_defs[psize].penc[i] == -1)
  90                        continue;
  91                /*
  92                 * encoding bits per actual page size
  93                 *        PTE LP     actual page size
  94                 *    rrrr rrrz         >=8KB
  95                 *    rrrr rrzz         >=16KB
  96                 *    rrrr rzzz         >=32KB
  97                 *    rrrr zzzz         >=64KB
  98                 * .......
  99                 */
 100                shift = mmu_psize_defs[i].shift - LP_SHIFT;
 101                if (shift > LP_BITS)
 102                        shift = LP_BITS;
 103                mask = (1 << shift) - 1;
 104                if ((lp & mask) == mmu_psize_defs[psize].penc[i])
 105                        return i;
 106        }
 107        return -1;
 108}
 109
 110static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
 111                                             unsigned long pte_index)
 112{
 113        int b_psize, a_psize;
 114        unsigned int penc;
 115        unsigned long rb = 0, va_low, sllp;
 116        unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
 117
 118        if (!(v & HPTE_V_LARGE)) {
 119                /* both base and actual psize is 4k */
 120                b_psize = MMU_PAGE_4K;
 121                a_psize = MMU_PAGE_4K;
 122        } else {
 123                for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) {
 124
 125                        /* valid entries have a shift value */
 126                        if (!mmu_psize_defs[b_psize].shift)
 127                                continue;
 128
 129                        a_psize = __hpte_actual_psize(lp, b_psize);
 130                        if (a_psize != -1)
 131                                break;
 132                }
 133        }
 134        /*
 135         * Ignore the top 14 bits of va
 136         * v have top two bits covering segment size, hence move
 137         * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
 138         * AVA field in v also have the lower 23 bits ignored.
 139         * For base page size 4K we need 14 .. 65 bits (so need to
 140         * collect extra 11 bits)
 141         * For others we need 14..14+i
 142         */
 143        /* This covers 14..54 bits of va*/
 144        rb = (v & ~0x7fUL) << 16;               /* AVA field */
 145        /*
 146         * AVA in v had cleared lower 23 bits. We need to derive
 147         * that from pteg index
 148         */
 149        va_low = pte_index >> 3;
 150        if (v & HPTE_V_SECONDARY)
 151                va_low = ~va_low;
 152        /*
 153         * get the vpn bits from va_low using reverse of hashing.
 154         * In v we have va with 23 bits dropped and then left shifted
 155         * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
 156         * right shift it with (SID_SHIFT - (23 - 7))
 157         */
 158        if (!(v & HPTE_V_1TB_SEG))
 159                va_low ^= v >> (SID_SHIFT - 16);
 160        else
 161                va_low ^= v >> (SID_SHIFT_1T - 16);
 162        va_low &= 0x7ff;
 163
 164        switch (b_psize) {
 165        case MMU_PAGE_4K:
 166                sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) |
 167                        ((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4);
 168                rb |= sllp << 5;        /*  AP field */
 169                rb |= (va_low & 0x7ff) << 12;   /* remaining 11 bits of AVA */
 170                break;
 171        default:
 172        {
 173                int aval_shift;
 174                /*
 175                 * remaining 7bits of AVA/LP fields
 176                 * Also contain the rr bits of LP
 177                 */
 178                rb |= (va_low & 0x7f) << 16;
 179                /*
 180                 * Now clear not needed LP bits based on actual psize
 181                 */
 182                rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1);
 183                /*
 184                 * AVAL field 58..77 - base_page_shift bits of va
 185                 * we have space for 58..64 bits, Missing bits should
 186                 * be zero filled. +1 is to take care of L bit shift
 187                 */
 188                aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1;
 189                rb |= ((va_low << aval_shift) & 0xfe);
 190
 191                rb |= 1;                /* L field */
 192                penc = mmu_psize_defs[b_psize].penc[a_psize];
 193                rb |= penc << 12;       /* LP field */
 194                break;
 195        }
 196        }
 197        rb |= (v >> 54) & 0x300;                /* B field */
 198        return rb;
 199}
 200
 201static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
 202                                             bool is_base_size)
 203{
 204
 205        int size, a_psize;
 206        /* Look at the 8 bit LP value */
 207        unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
 208
 209        /* only handle 4k, 64k and 16M pages for now */
 210        if (!(h & HPTE_V_LARGE))
 211                return 1ul << 12;
 212        else {
 213                for (size = 0; size < MMU_PAGE_COUNT; size++) {
 214                        /* valid entries have a shift value */
 215                        if (!mmu_psize_defs[size].shift)
 216                                continue;
 217
 218                        a_psize = __hpte_actual_psize(lp, size);
 219                        if (a_psize != -1) {
 220                                if (is_base_size)
 221                                        return 1ul << mmu_psize_defs[size].shift;
 222                                return 1ul << mmu_psize_defs[a_psize].shift;
 223                        }
 224                }
 225
 226        }
 227        return 0;
 228}
 229
 230static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
 231{
 232        return __hpte_page_size(h, l, 0);
 233}
 234
 235static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
 236{
 237        return __hpte_page_size(h, l, 1);
 238}
 239
 240static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
 241{
 242        return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
 243}
 244
 245static inline int hpte_is_writable(unsigned long ptel)
 246{
 247        unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
 248
 249        return pp != PP_RXRX && pp != PP_RXXX;
 250}
 251
 252static inline unsigned long hpte_make_readonly(unsigned long ptel)
 253{
 254        if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
 255                ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
 256        else
 257                ptel |= PP_RXRX;
 258        return ptel;
 259}
 260
 261static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type)
 262{
 263        unsigned int wimg = ptel & HPTE_R_WIMG;
 264
 265        /* Handle SAO */
 266        if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
 267            cpu_has_feature(CPU_FTR_ARCH_206))
 268                wimg = HPTE_R_M;
 269
 270        if (!io_type)
 271                return wimg == HPTE_R_M;
 272
 273        return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type;
 274}
 275
 276/*
 277 * If it's present and writable, atomically set dirty and referenced bits and
 278 * return the PTE, otherwise return 0. If we find a transparent hugepage
 279 * and if it is marked splitting we return 0;
 280 */
 281static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing,
 282                                                 unsigned int hugepage)
 283{
 284        pte_t old_pte, new_pte = __pte(0);
 285
 286        while (1) {
 287                old_pte = pte_val(*ptep);
 288                /*
 289                 * wait until _PAGE_BUSY is clear then set it atomically
 290                 */
 291                if (unlikely(old_pte & _PAGE_BUSY)) {
 292                        cpu_relax();
 293                        continue;
 294                }
 295#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 296                /* If hugepage and is trans splitting return None */
 297                if (unlikely(hugepage &&
 298                             pmd_trans_splitting(pte_pmd(old_pte))))
 299                        return __pte(0);
 300#endif
 301                /* If pte is not present return None */
 302                if (unlikely(!(old_pte & _PAGE_PRESENT)))
 303                        return __pte(0);
 304
 305                new_pte = pte_mkyoung(old_pte);
 306                if (writing && pte_write(old_pte))
 307                        new_pte = pte_mkdirty(new_pte);
 308
 309                if (old_pte == __cmpxchg_u64((unsigned long *)ptep, old_pte,
 310                                             new_pte))
 311                        break;
 312        }
 313        return new_pte;
 314}
 315
 316
 317/* Return HPTE cache control bits corresponding to Linux pte bits */
 318static inline unsigned long hpte_cache_bits(unsigned long pte_val)
 319{
 320#if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W
 321        return pte_val & (HPTE_R_W | HPTE_R_I);
 322#else
 323        return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) +
 324                ((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0);
 325#endif
 326}
 327
 328static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
 329{
 330        if (key)
 331                return PP_RWRX <= pp && pp <= PP_RXRX;
 332        return 1;
 333}
 334
 335static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
 336{
 337        if (key)
 338                return pp == PP_RWRW;
 339        return pp <= PP_RWRW;
 340}
 341
 342static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
 343{
 344        unsigned long skey;
 345
 346        skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
 347                ((hpte_r & HPTE_R_KEY_LO) >> 9);
 348        return (amr >> (62 - 2 * skey)) & 3;
 349}
 350
 351static inline void lock_rmap(unsigned long *rmap)
 352{
 353        do {
 354                while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
 355                        cpu_relax();
 356        } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
 357}
 358
 359static inline void unlock_rmap(unsigned long *rmap)
 360{
 361        __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
 362}
 363
 364static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
 365                                   unsigned long pagesize)
 366{
 367        unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
 368
 369        if (pagesize <= PAGE_SIZE)
 370                return 1;
 371        return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
 372}
 373
 374/*
 375 * This works for 4k, 64k and 16M pages on POWER7,
 376 * and 4k and 16M pages on PPC970.
 377 */
 378static inline unsigned long slb_pgsize_encoding(unsigned long psize)
 379{
 380        unsigned long senc = 0;
 381
 382        if (psize > 0x1000) {
 383                senc = SLB_VSID_L;
 384                if (psize == 0x10000)
 385                        senc |= SLB_VSID_LP_01;
 386        }
 387        return senc;
 388}
 389
 390static inline int is_vrma_hpte(unsigned long hpte_v)
 391{
 392        return (hpte_v & ~0xffffffUL) ==
 393                (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
 394}
 395
 396#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
 397/*
 398 * Note modification of an HPTE; set the HPTE modified bit
 399 * if anyone is interested.
 400 */
 401static inline void note_hpte_modification(struct kvm *kvm,
 402                                          struct revmap_entry *rev)
 403{
 404        if (atomic_read(&kvm->arch.hpte_mod_interest))
 405                rev->guest_rpte |= HPTE_GR_MODIFIED;
 406}
 407
 408/*
 409 * Like kvm_memslots(), but for use in real mode when we can't do
 410 * any RCU stuff (since the secondary threads are offline from the
 411 * kernel's point of view), and we can't print anything.
 412 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
 413 */
 414static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
 415{
 416        return rcu_dereference_raw_notrace(kvm->memslots);
 417}
 418
 419#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
 420
 421#endif /* __ASM_KVM_BOOK3S_64_H__ */
 422