linux/arch/powerpc/platforms/pseries/eeh_pseries.c
<<
>>
Prefs
   1/*
   2 * The file intends to implement the platform dependent EEH operations on pseries.
   3 * Actually, the pseries platform is built based on RTAS heavily. That means the
   4 * pseries platform dependent EEH operations will be built on RTAS calls. The functions
   5 * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
   6 * been done.
   7 *
   8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
   9 * Copyright IBM Corporation 2001, 2005, 2006
  10 * Copyright Dave Engebretsen & Todd Inglett 2001
  11 * Copyright Linas Vepstas 2005, 2006
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or
  16 * (at your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful,
  19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  21 * GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  26 */
  27
  28#include <linux/atomic.h>
  29#include <linux/delay.h>
  30#include <linux/export.h>
  31#include <linux/init.h>
  32#include <linux/list.h>
  33#include <linux/of.h>
  34#include <linux/pci.h>
  35#include <linux/proc_fs.h>
  36#include <linux/rbtree.h>
  37#include <linux/sched.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40
  41#include <asm/eeh.h>
  42#include <asm/eeh_event.h>
  43#include <asm/io.h>
  44#include <asm/machdep.h>
  45#include <asm/ppc-pci.h>
  46#include <asm/rtas.h>
  47
  48/* RTAS tokens */
  49static int ibm_set_eeh_option;
  50static int ibm_set_slot_reset;
  51static int ibm_read_slot_reset_state;
  52static int ibm_read_slot_reset_state2;
  53static int ibm_slot_error_detail;
  54static int ibm_get_config_addr_info;
  55static int ibm_get_config_addr_info2;
  56static int ibm_configure_bridge;
  57static int ibm_configure_pe;
  58
  59/*
  60 * Buffer for reporting slot-error-detail rtas calls. Its here
  61 * in BSS, and not dynamically alloced, so that it ends up in
  62 * RMO where RTAS can access it.
  63 */
  64static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
  65static DEFINE_SPINLOCK(slot_errbuf_lock);
  66static int eeh_error_buf_size;
  67
  68/**
  69 * pseries_eeh_init - EEH platform dependent initialization
  70 *
  71 * EEH platform dependent initialization on pseries.
  72 */
  73static int pseries_eeh_init(void)
  74{
  75        /* figure out EEH RTAS function call tokens */
  76        ibm_set_eeh_option              = rtas_token("ibm,set-eeh-option");
  77        ibm_set_slot_reset              = rtas_token("ibm,set-slot-reset");
  78        ibm_read_slot_reset_state2      = rtas_token("ibm,read-slot-reset-state2");
  79        ibm_read_slot_reset_state       = rtas_token("ibm,read-slot-reset-state");
  80        ibm_slot_error_detail           = rtas_token("ibm,slot-error-detail");
  81        ibm_get_config_addr_info2       = rtas_token("ibm,get-config-addr-info2");
  82        ibm_get_config_addr_info        = rtas_token("ibm,get-config-addr-info");
  83        ibm_configure_pe                = rtas_token("ibm,configure-pe");
  84        ibm_configure_bridge            = rtas_token("ibm,configure-bridge");
  85
  86        /*
  87         * Necessary sanity check. We needn't check "get-config-addr-info"
  88         * and its variant since the old firmware probably support address
  89         * of domain/bus/slot/function for EEH RTAS operations.
  90         */
  91        if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) {
  92                pr_warning("%s: RTAS service <ibm,set-eeh-option> invalid\n",
  93                        __func__);
  94                return -EINVAL;
  95        } else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) {
  96                pr_warning("%s: RTAS service <ibm,set-slot-reset> invalid\n",
  97                        __func__);
  98                return -EINVAL;
  99        } else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
 100                   ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) {
 101                pr_warning("%s: RTAS service <ibm,read-slot-reset-state2> and "
 102                        "<ibm,read-slot-reset-state> invalid\n",
 103                        __func__);
 104                return -EINVAL;
 105        } else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) {
 106                pr_warning("%s: RTAS service <ibm,slot-error-detail> invalid\n",
 107                        __func__);
 108                return -EINVAL;
 109        } else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
 110                   ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) {
 111                pr_warning("%s: RTAS service <ibm,configure-pe> and "
 112                        "<ibm,configure-bridge> invalid\n",
 113                        __func__);
 114                return -EINVAL;
 115        }
 116
 117        /* Initialize error log lock and size */
 118        spin_lock_init(&slot_errbuf_lock);
 119        eeh_error_buf_size = rtas_token("rtas-error-log-max");
 120        if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
 121                pr_warning("%s: unknown EEH error log size\n",
 122                        __func__);
 123                eeh_error_buf_size = 1024;
 124        } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
 125                pr_warning("%s: EEH error log size %d exceeds the maximal %d\n",
 126                        __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
 127                eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
 128        }
 129
 130        /* Set EEH probe mode */
 131        eeh_probe_mode_set(EEH_PROBE_MODE_DEVTREE);
 132
 133        return 0;
 134}
 135
 136static int pseries_eeh_cap_start(struct device_node *dn)
 137{
 138        struct pci_dn *pdn = PCI_DN(dn);
 139        u32 status;
 140
 141        if (!pdn)
 142                return 0;
 143
 144        rtas_read_config(pdn, PCI_STATUS, 2, &status);
 145        if (!(status & PCI_STATUS_CAP_LIST))
 146                return 0;
 147
 148        return PCI_CAPABILITY_LIST;
 149}
 150
 151
 152static int pseries_eeh_find_cap(struct device_node *dn, int cap)
 153{
 154        struct pci_dn *pdn = PCI_DN(dn);
 155        int pos = pseries_eeh_cap_start(dn);
 156        int cnt = 48;   /* Maximal number of capabilities */
 157        u32 id;
 158
 159        if (!pos)
 160                return 0;
 161
 162        while (cnt--) {
 163                rtas_read_config(pdn, pos, 1, &pos);
 164                if (pos < 0x40)
 165                        break;
 166                pos &= ~3;
 167                rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
 168                if (id == 0xff)
 169                        break;
 170                if (id == cap)
 171                        return pos;
 172                pos += PCI_CAP_LIST_NEXT;
 173        }
 174
 175        return 0;
 176}
 177
 178static int pseries_eeh_find_ecap(struct device_node *dn, int cap)
 179{
 180        struct pci_dn *pdn = PCI_DN(dn);
 181        struct eeh_dev *edev = of_node_to_eeh_dev(dn);
 182        u32 header;
 183        int pos = 256;
 184        int ttl = (4096 - 256) / 8;
 185
 186        if (!edev || !edev->pcie_cap)
 187                return 0;
 188        if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
 189                return 0;
 190        else if (!header)
 191                return 0;
 192
 193        while (ttl-- > 0) {
 194                if (PCI_EXT_CAP_ID(header) == cap && pos)
 195                        return pos;
 196
 197                pos = PCI_EXT_CAP_NEXT(header);
 198                if (pos < 256)
 199                        break;
 200
 201                if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
 202                        break;
 203        }
 204
 205        return 0;
 206}
 207
 208/**
 209 * pseries_eeh_of_probe - EEH probe on the given device
 210 * @dn: OF node
 211 * @flag: Unused
 212 *
 213 * When EEH module is installed during system boot, all PCI devices
 214 * are checked one by one to see if it supports EEH. The function
 215 * is introduced for the purpose.
 216 */
 217static void *pseries_eeh_of_probe(struct device_node *dn, void *flag)
 218{
 219        struct eeh_dev *edev;
 220        struct eeh_pe pe;
 221        struct pci_dn *pdn = PCI_DN(dn);
 222        const __be32 *classp, *vendorp, *devicep;
 223        u32 class_code;
 224        const __be32 *regs;
 225        u32 pcie_flags;
 226        int enable = 0;
 227        int ret;
 228
 229        /* Retrieve OF node and eeh device */
 230        edev = of_node_to_eeh_dev(dn);
 231        if (edev->pe || !of_device_is_available(dn))
 232                return NULL;
 233
 234        /* Retrieve class/vendor/device IDs */
 235        classp = of_get_property(dn, "class-code", NULL);
 236        vendorp = of_get_property(dn, "vendor-id", NULL);
 237        devicep = of_get_property(dn, "device-id", NULL);
 238
 239        /* Skip for bad OF node or PCI-ISA bridge */
 240        if (!classp || !vendorp || !devicep)
 241                return NULL;
 242        if (dn->type && !strcmp(dn->type, "isa"))
 243                return NULL;
 244
 245        class_code = of_read_number(classp, 1);
 246
 247        /*
 248         * Update class code and mode of eeh device. We need
 249         * correctly reflects that current device is root port
 250         * or PCIe switch downstream port.
 251         */
 252        edev->class_code = class_code;
 253        edev->pcix_cap = pseries_eeh_find_cap(dn, PCI_CAP_ID_PCIX);
 254        edev->pcie_cap = pseries_eeh_find_cap(dn, PCI_CAP_ID_EXP);
 255        edev->aer_cap = pseries_eeh_find_ecap(dn, PCI_EXT_CAP_ID_ERR);
 256        edev->mode &= 0xFFFFFF00;
 257        if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
 258                edev->mode |= EEH_DEV_BRIDGE;
 259                if (edev->pcie_cap) {
 260                        rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
 261                                         2, &pcie_flags);
 262                        pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
 263                        if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
 264                                edev->mode |= EEH_DEV_ROOT_PORT;
 265                        else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
 266                                edev->mode |= EEH_DEV_DS_PORT;
 267                }
 268        }
 269
 270        /* Retrieve the device address */
 271        regs = of_get_property(dn, "reg", NULL);
 272        if (!regs) {
 273                pr_warning("%s: OF node property %s::reg not found\n",
 274                        __func__, dn->full_name);
 275                return NULL;
 276        }
 277
 278        /* Initialize the fake PE */
 279        memset(&pe, 0, sizeof(struct eeh_pe));
 280        pe.phb = edev->phb;
 281        pe.config_addr = of_read_number(regs, 1);
 282
 283        /* Enable EEH on the device */
 284        ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
 285        if (!ret) {
 286                edev->config_addr = of_read_number(regs, 1);
 287                /* Retrieve PE address */
 288                edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
 289                pe.addr = edev->pe_config_addr;
 290
 291                /* Some older systems (Power4) allow the ibm,set-eeh-option
 292                 * call to succeed even on nodes where EEH is not supported.
 293                 * Verify support explicitly.
 294                 */
 295                ret = eeh_ops->get_state(&pe, NULL);
 296                if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
 297                        enable = 1;
 298
 299                if (enable) {
 300                        eeh_set_enable(true);
 301                        eeh_add_to_parent_pe(edev);
 302
 303                        pr_debug("%s: EEH enabled on %s PHB#%d-PE#%x, config addr#%x\n",
 304                                __func__, dn->full_name, pe.phb->global_number,
 305                                pe.addr, pe.config_addr);
 306                } else if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
 307                           (of_node_to_eeh_dev(dn->parent))->pe) {
 308                        /* This device doesn't support EEH, but it may have an
 309                         * EEH parent, in which case we mark it as supported.
 310                         */
 311                        edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
 312                        edev->pe_config_addr = of_node_to_eeh_dev(dn->parent)->pe_config_addr;
 313                        eeh_add_to_parent_pe(edev);
 314                }
 315        }
 316
 317        /* Save memory bars */
 318        eeh_save_bars(edev);
 319
 320        return NULL;
 321}
 322
 323/**
 324 * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
 325 * @pe: EEH PE
 326 * @option: operation to be issued
 327 *
 328 * The function is used to control the EEH functionality globally.
 329 * Currently, following options are support according to PAPR:
 330 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
 331 */
 332static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
 333{
 334        int ret = 0;
 335        int config_addr;
 336
 337        /*
 338         * When we're enabling or disabling EEH functioality on
 339         * the particular PE, the PE config address is possibly
 340         * unavailable. Therefore, we have to figure it out from
 341         * the FDT node.
 342         */
 343        switch (option) {
 344        case EEH_OPT_DISABLE:
 345        case EEH_OPT_ENABLE:
 346        case EEH_OPT_THAW_MMIO:
 347        case EEH_OPT_THAW_DMA:
 348                config_addr = pe->config_addr;
 349                if (pe->addr)
 350                        config_addr = pe->addr;
 351                break;
 352
 353        default:
 354                pr_err("%s: Invalid option %d\n",
 355                        __func__, option);
 356                return -EINVAL;
 357        }
 358
 359        ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
 360                        config_addr, BUID_HI(pe->phb->buid),
 361                        BUID_LO(pe->phb->buid), option);
 362
 363        return ret;
 364}
 365
 366/**
 367 * pseries_eeh_get_pe_addr - Retrieve PE address
 368 * @pe: EEH PE
 369 *
 370 * Retrieve the assocated PE address. Actually, there're 2 RTAS
 371 * function calls dedicated for the purpose. We need implement
 372 * it through the new function and then the old one. Besides,
 373 * you should make sure the config address is figured out from
 374 * FDT node before calling the function.
 375 *
 376 * It's notable that zero'ed return value means invalid PE config
 377 * address.
 378 */
 379static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
 380{
 381        int ret = 0;
 382        int rets[3];
 383
 384        if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
 385                /*
 386                 * First of all, we need to make sure there has one PE
 387                 * associated with the device. Otherwise, PE address is
 388                 * meaningless.
 389                 */
 390                ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
 391                                pe->config_addr, BUID_HI(pe->phb->buid),
 392                                BUID_LO(pe->phb->buid), 1);
 393                if (ret || (rets[0] == 0))
 394                        return 0;
 395
 396                /* Retrieve the associated PE config address */
 397                ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
 398                                pe->config_addr, BUID_HI(pe->phb->buid),
 399                                BUID_LO(pe->phb->buid), 0);
 400                if (ret) {
 401                        pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
 402                                __func__, pe->phb->global_number, pe->config_addr);
 403                        return 0;
 404                }
 405
 406                return rets[0];
 407        }
 408
 409        if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
 410                ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
 411                                pe->config_addr, BUID_HI(pe->phb->buid),
 412                                BUID_LO(pe->phb->buid), 0);
 413                if (ret) {
 414                        pr_warning("%s: Failed to get address for PHB#%d-PE#%x\n",
 415                                __func__, pe->phb->global_number, pe->config_addr);
 416                        return 0;
 417                }
 418
 419                return rets[0];
 420        }
 421
 422        return ret;
 423}
 424
 425/**
 426 * pseries_eeh_get_state - Retrieve PE state
 427 * @pe: EEH PE
 428 * @state: return value
 429 *
 430 * Retrieve the state of the specified PE. On RTAS compliant
 431 * pseries platform, there already has one dedicated RTAS function
 432 * for the purpose. It's notable that the associated PE config address
 433 * might be ready when calling the function. Therefore, endeavour to
 434 * use the PE config address if possible. Further more, there're 2
 435 * RTAS calls for the purpose, we need to try the new one and back
 436 * to the old one if the new one couldn't work properly.
 437 */
 438static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
 439{
 440        int config_addr;
 441        int ret;
 442        int rets[4];
 443        int result;
 444
 445        /* Figure out PE config address if possible */
 446        config_addr = pe->config_addr;
 447        if (pe->addr)
 448                config_addr = pe->addr;
 449
 450        if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
 451                ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
 452                                config_addr, BUID_HI(pe->phb->buid),
 453                                BUID_LO(pe->phb->buid));
 454        } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
 455                /* Fake PE unavailable info */
 456                rets[2] = 0;
 457                ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
 458                                config_addr, BUID_HI(pe->phb->buid),
 459                                BUID_LO(pe->phb->buid));
 460        } else {
 461                return EEH_STATE_NOT_SUPPORT;
 462        }
 463
 464        if (ret)
 465                return ret;
 466
 467        /* Parse the result out */
 468        result = 0;
 469        if (rets[1]) {
 470                switch(rets[0]) {
 471                case 0:
 472                        result &= ~EEH_STATE_RESET_ACTIVE;
 473                        result |= EEH_STATE_MMIO_ACTIVE;
 474                        result |= EEH_STATE_DMA_ACTIVE;
 475                        break;
 476                case 1:
 477                        result |= EEH_STATE_RESET_ACTIVE;
 478                        result |= EEH_STATE_MMIO_ACTIVE;
 479                        result |= EEH_STATE_DMA_ACTIVE;
 480                        break;
 481                case 2:
 482                        result &= ~EEH_STATE_RESET_ACTIVE;
 483                        result &= ~EEH_STATE_MMIO_ACTIVE;
 484                        result &= ~EEH_STATE_DMA_ACTIVE;
 485                        break;
 486                case 4:
 487                        result &= ~EEH_STATE_RESET_ACTIVE;
 488                        result &= ~EEH_STATE_MMIO_ACTIVE;
 489                        result &= ~EEH_STATE_DMA_ACTIVE;
 490                        result |= EEH_STATE_MMIO_ENABLED;
 491                        break;
 492                case 5:
 493                        if (rets[2]) {
 494                                if (state) *state = rets[2];
 495                                result = EEH_STATE_UNAVAILABLE;
 496                        } else {
 497                                result = EEH_STATE_NOT_SUPPORT;
 498                        }
 499                        break;
 500                default:
 501                        result = EEH_STATE_NOT_SUPPORT;
 502                }
 503        } else {
 504                result = EEH_STATE_NOT_SUPPORT;
 505        }
 506
 507        return result;
 508}
 509
 510/**
 511 * pseries_eeh_reset - Reset the specified PE
 512 * @pe: EEH PE
 513 * @option: reset option
 514 *
 515 * Reset the specified PE
 516 */
 517static int pseries_eeh_reset(struct eeh_pe *pe, int option)
 518{
 519        int config_addr;
 520        int ret;
 521
 522        /* Figure out PE address */
 523        config_addr = pe->config_addr;
 524        if (pe->addr)
 525                config_addr = pe->addr;
 526
 527        /* Reset PE through RTAS call */
 528        ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
 529                        config_addr, BUID_HI(pe->phb->buid),
 530                        BUID_LO(pe->phb->buid), option);
 531
 532        /* If fundamental-reset not supported, try hot-reset */
 533        if (option == EEH_RESET_FUNDAMENTAL &&
 534            ret == -8) {
 535                option = EEH_RESET_HOT;
 536                ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
 537                                config_addr, BUID_HI(pe->phb->buid),
 538                                BUID_LO(pe->phb->buid), option);
 539        }
 540
 541        /* We need reset hold or settlement delay */
 542        if (option == EEH_RESET_FUNDAMENTAL ||
 543            option == EEH_RESET_HOT)
 544                msleep(EEH_PE_RST_HOLD_TIME);
 545        else
 546                msleep(EEH_PE_RST_SETTLE_TIME);
 547
 548        return ret;
 549}
 550
 551/**
 552 * pseries_eeh_wait_state - Wait for PE state
 553 * @pe: EEH PE
 554 * @max_wait: maximal period in microsecond
 555 *
 556 * Wait for the state of associated PE. It might take some time
 557 * to retrieve the PE's state.
 558 */
 559static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
 560{
 561        int ret;
 562        int mwait;
 563
 564        /*
 565         * According to PAPR, the state of PE might be temporarily
 566         * unavailable. Under the circumstance, we have to wait
 567         * for indicated time determined by firmware. The maximal
 568         * wait time is 5 minutes, which is acquired from the original
 569         * EEH implementation. Also, the original implementation
 570         * also defined the minimal wait time as 1 second.
 571         */
 572#define EEH_STATE_MIN_WAIT_TIME (1000)
 573#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
 574
 575        while (1) {
 576                ret = pseries_eeh_get_state(pe, &mwait);
 577
 578                /*
 579                 * If the PE's state is temporarily unavailable,
 580                 * we have to wait for the specified time. Otherwise,
 581                 * the PE's state will be returned immediately.
 582                 */
 583                if (ret != EEH_STATE_UNAVAILABLE)
 584                        return ret;
 585
 586                if (max_wait <= 0) {
 587                        pr_warning("%s: Timeout when getting PE's state (%d)\n",
 588                                __func__, max_wait);
 589                        return EEH_STATE_NOT_SUPPORT;
 590                }
 591
 592                if (mwait <= 0) {
 593                        pr_warning("%s: Firmware returned bad wait value %d\n",
 594                                __func__, mwait);
 595                        mwait = EEH_STATE_MIN_WAIT_TIME;
 596                } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
 597                        pr_warning("%s: Firmware returned too long wait value %d\n",
 598                                __func__, mwait);
 599                        mwait = EEH_STATE_MAX_WAIT_TIME;
 600                }
 601
 602                max_wait -= mwait;
 603                msleep(mwait);
 604        }
 605
 606        return EEH_STATE_NOT_SUPPORT;
 607}
 608
 609/**
 610 * pseries_eeh_get_log - Retrieve error log
 611 * @pe: EEH PE
 612 * @severity: temporary or permanent error log
 613 * @drv_log: driver log to be combined with retrieved error log
 614 * @len: length of driver log
 615 *
 616 * Retrieve the temporary or permanent error from the PE.
 617 * Actually, the error will be retrieved through the dedicated
 618 * RTAS call.
 619 */
 620static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
 621{
 622        int config_addr;
 623        unsigned long flags;
 624        int ret;
 625
 626        spin_lock_irqsave(&slot_errbuf_lock, flags);
 627        memset(slot_errbuf, 0, eeh_error_buf_size);
 628
 629        /* Figure out the PE address */
 630        config_addr = pe->config_addr;
 631        if (pe->addr)
 632                config_addr = pe->addr;
 633
 634        ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
 635                        BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
 636                        virt_to_phys(drv_log), len,
 637                        virt_to_phys(slot_errbuf), eeh_error_buf_size,
 638                        severity);
 639        if (!ret)
 640                log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
 641        spin_unlock_irqrestore(&slot_errbuf_lock, flags);
 642
 643        return ret;
 644}
 645
 646/**
 647 * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
 648 * @pe: EEH PE
 649 *
 650 * The function will be called to reconfigure the bridges included
 651 * in the specified PE so that the mulfunctional PE would be recovered
 652 * again.
 653 */
 654static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
 655{
 656        int config_addr;
 657        int ret;
 658
 659        /* Figure out the PE address */
 660        config_addr = pe->config_addr;
 661        if (pe->addr)
 662                config_addr = pe->addr;
 663
 664        /* Use new configure-pe function, if supported */
 665        if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
 666                ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
 667                                config_addr, BUID_HI(pe->phb->buid),
 668                                BUID_LO(pe->phb->buid));
 669        } else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
 670                ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
 671                                config_addr, BUID_HI(pe->phb->buid),
 672                                BUID_LO(pe->phb->buid));
 673        } else {
 674                return -EFAULT;
 675        }
 676
 677        if (ret)
 678                pr_warning("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
 679                        __func__, pe->phb->global_number, pe->addr, ret);
 680
 681        return ret;
 682}
 683
 684/**
 685 * pseries_eeh_read_config - Read PCI config space
 686 * @dn: device node
 687 * @where: PCI address
 688 * @size: size to read
 689 * @val: return value
 690 *
 691 * Read config space from the speicifed device
 692 */
 693static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
 694{
 695        struct pci_dn *pdn;
 696
 697        pdn = PCI_DN(dn);
 698
 699        return rtas_read_config(pdn, where, size, val);
 700}
 701
 702/**
 703 * pseries_eeh_write_config - Write PCI config space
 704 * @dn: device node
 705 * @where: PCI address
 706 * @size: size to write
 707 * @val: value to be written
 708 *
 709 * Write config space to the specified device
 710 */
 711static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
 712{
 713        struct pci_dn *pdn;
 714
 715        pdn = PCI_DN(dn);
 716
 717        return rtas_write_config(pdn, where, size, val);
 718}
 719
 720static struct eeh_ops pseries_eeh_ops = {
 721        .name                   = "pseries",
 722        .init                   = pseries_eeh_init,
 723        .of_probe               = pseries_eeh_of_probe,
 724        .dev_probe              = NULL,
 725        .set_option             = pseries_eeh_set_option,
 726        .get_pe_addr            = pseries_eeh_get_pe_addr,
 727        .get_state              = pseries_eeh_get_state,
 728        .reset                  = pseries_eeh_reset,
 729        .wait_state             = pseries_eeh_wait_state,
 730        .get_log                = pseries_eeh_get_log,
 731        .configure_bridge       = pseries_eeh_configure_bridge,
 732        .read_config            = pseries_eeh_read_config,
 733        .write_config           = pseries_eeh_write_config,
 734        .next_error             = NULL,
 735        .restore_config         = NULL
 736};
 737
 738/**
 739 * eeh_pseries_init - Register platform dependent EEH operations
 740 *
 741 * EEH initialization on pseries platform. This function should be
 742 * called before any EEH related functions.
 743 */
 744static int __init eeh_pseries_init(void)
 745{
 746        int ret = -EINVAL;
 747
 748        if (!machine_is(pseries))
 749                return ret;
 750
 751        ret = eeh_ops_register(&pseries_eeh_ops);
 752        if (!ret)
 753                pr_info("EEH: pSeries platform initialized\n");
 754        else
 755                pr_info("EEH: pSeries platform initialization failure (%d)\n",
 756                        ret);
 757
 758        return ret;
 759}
 760
 761early_initcall(eeh_pseries_init);
 762