linux/arch/tile/mm/fault.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * From i386 code copyright (C) 1995  Linus Torvalds
  15 */
  16
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/smp.h>
  27#include <linux/interrupt.h>
  28#include <linux/init.h>
  29#include <linux/tty.h>
  30#include <linux/vt_kern.h>              /* For unblank_screen() */
  31#include <linux/highmem.h>
  32#include <linux/module.h>
  33#include <linux/kprobes.h>
  34#include <linux/hugetlb.h>
  35#include <linux/syscalls.h>
  36#include <linux/uaccess.h>
  37#include <linux/kdebug.h>
  38
  39#include <asm/pgalloc.h>
  40#include <asm/sections.h>
  41#include <asm/traps.h>
  42#include <asm/syscalls.h>
  43
  44#include <arch/interrupts.h>
  45
  46static noinline void force_sig_info_fault(const char *type, int si_signo,
  47                                          int si_code, unsigned long address,
  48                                          int fault_num,
  49                                          struct task_struct *tsk,
  50                                          struct pt_regs *regs)
  51{
  52        siginfo_t info;
  53
  54        if (unlikely(tsk->pid < 2)) {
  55                panic("Signal %d (code %d) at %#lx sent to %s!",
  56                      si_signo, si_code & 0xffff, address,
  57                      is_idle_task(tsk) ? "the idle task" : "init");
  58        }
  59
  60        info.si_signo = si_signo;
  61        info.si_errno = 0;
  62        info.si_code = si_code;
  63        info.si_addr = (void __user *)address;
  64        info.si_trapno = fault_num;
  65        trace_unhandled_signal(type, regs, address, si_signo);
  66        force_sig_info(si_signo, &info, tsk);
  67}
  68
  69#ifndef __tilegx__
  70/*
  71 * Synthesize the fault a PL0 process would get by doing a word-load of
  72 * an unaligned address or a high kernel address.
  73 */
  74SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
  75{
  76        struct pt_regs *regs = current_pt_regs();
  77
  78        if (address >= PAGE_OFFSET)
  79                force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
  80                                     address, INT_DTLB_MISS, current, regs);
  81        else
  82                force_sig_info_fault("atomic alignment fault", SIGBUS,
  83                                     BUS_ADRALN, address,
  84                                     INT_UNALIGN_DATA, current, regs);
  85
  86        /*
  87         * Adjust pc to point at the actual instruction, which is unusual
  88         * for syscalls normally, but is appropriate when we are claiming
  89         * that a syscall swint1 caused a page fault or bus error.
  90         */
  91        regs->pc -= 8;
  92
  93        /*
  94         * Mark this as a caller-save interrupt, like a normal page fault,
  95         * so that when we go through the signal handler path we will
  96         * properly restore r0, r1, and r2 for the signal handler arguments.
  97         */
  98        regs->flags |= PT_FLAGS_CALLER_SAVES;
  99
 100        return 0;
 101}
 102#endif
 103
 104static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 105{
 106        unsigned index = pgd_index(address);
 107        pgd_t *pgd_k;
 108        pud_t *pud, *pud_k;
 109        pmd_t *pmd, *pmd_k;
 110
 111        pgd += index;
 112        pgd_k = init_mm.pgd + index;
 113
 114        if (!pgd_present(*pgd_k))
 115                return NULL;
 116
 117        pud = pud_offset(pgd, address);
 118        pud_k = pud_offset(pgd_k, address);
 119        if (!pud_present(*pud_k))
 120                return NULL;
 121
 122        pmd = pmd_offset(pud, address);
 123        pmd_k = pmd_offset(pud_k, address);
 124        if (!pmd_present(*pmd_k))
 125                return NULL;
 126        if (!pmd_present(*pmd))
 127                set_pmd(pmd, *pmd_k);
 128        else
 129                BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
 130        return pmd_k;
 131}
 132
 133/*
 134 * Handle a fault on the vmalloc area.
 135 */
 136static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
 137{
 138        pmd_t *pmd_k;
 139        pte_t *pte_k;
 140
 141        /* Make sure we are in vmalloc area */
 142        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 143                return -1;
 144
 145        /*
 146         * Synchronize this task's top level page-table
 147         * with the 'reference' page table.
 148         */
 149        pmd_k = vmalloc_sync_one(pgd, address);
 150        if (!pmd_k)
 151                return -1;
 152        pte_k = pte_offset_kernel(pmd_k, address);
 153        if (!pte_present(*pte_k))
 154                return -1;
 155        return 0;
 156}
 157
 158/* Wait until this PTE has completed migration. */
 159static void wait_for_migration(pte_t *pte)
 160{
 161        if (pte_migrating(*pte)) {
 162                /*
 163                 * Wait until the migrater fixes up this pte.
 164                 * We scale the loop count by the clock rate so we'll wait for
 165                 * a few seconds here.
 166                 */
 167                int retries = 0;
 168                int bound = get_clock_rate();
 169                while (pte_migrating(*pte)) {
 170                        barrier();
 171                        if (++retries > bound)
 172                                panic("Hit migrating PTE (%#llx) and"
 173                                      " page PFN %#lx still migrating",
 174                                      pte->val, pte_pfn(*pte));
 175                }
 176        }
 177}
 178
 179/*
 180 * It's not generally safe to use "current" to get the page table pointer,
 181 * since we might be running an oprofile interrupt in the middle of a
 182 * task switch.
 183 */
 184static pgd_t *get_current_pgd(void)
 185{
 186        HV_Context ctx = hv_inquire_context();
 187        unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
 188        struct page *pgd_page = pfn_to_page(pgd_pfn);
 189        BUG_ON(PageHighMem(pgd_page));
 190        return (pgd_t *) __va(ctx.page_table);
 191}
 192
 193/*
 194 * We can receive a page fault from a migrating PTE at any time.
 195 * Handle it by just waiting until the fault resolves.
 196 *
 197 * It's also possible to get a migrating kernel PTE that resolves
 198 * itself during the downcall from hypervisor to Linux.  We just check
 199 * here to see if the PTE seems valid, and if so we retry it.
 200 *
 201 * NOTE! We MUST NOT take any locks for this case.  We may be in an
 202 * interrupt or a critical region, and must do as little as possible.
 203 * Similarly, we can't use atomic ops here, since we may be handling a
 204 * fault caused by an atomic op access.
 205 *
 206 * If we find a migrating PTE while we're in an NMI context, and we're
 207 * at a PC that has a registered exception handler, we don't wait,
 208 * since this thread may (e.g.) have been interrupted while migrating
 209 * its own stack, which would then cause us to self-deadlock.
 210 */
 211static int handle_migrating_pte(pgd_t *pgd, int fault_num,
 212                                unsigned long address, unsigned long pc,
 213                                int is_kernel_mode, int write)
 214{
 215        pud_t *pud;
 216        pmd_t *pmd;
 217        pte_t *pte;
 218        pte_t pteval;
 219
 220        if (pgd_addr_invalid(address))
 221                return 0;
 222
 223        pgd += pgd_index(address);
 224        pud = pud_offset(pgd, address);
 225        if (!pud || !pud_present(*pud))
 226                return 0;
 227        pmd = pmd_offset(pud, address);
 228        if (!pmd || !pmd_present(*pmd))
 229                return 0;
 230        pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
 231                pte_offset_kernel(pmd, address);
 232        pteval = *pte;
 233        if (pte_migrating(pteval)) {
 234                if (in_nmi() && search_exception_tables(pc))
 235                        return 0;
 236                wait_for_migration(pte);
 237                return 1;
 238        }
 239
 240        if (!is_kernel_mode || !pte_present(pteval))
 241                return 0;
 242        if (fault_num == INT_ITLB_MISS) {
 243                if (pte_exec(pteval))
 244                        return 1;
 245        } else if (write) {
 246                if (pte_write(pteval))
 247                        return 1;
 248        } else {
 249                if (pte_read(pteval))
 250                        return 1;
 251        }
 252
 253        return 0;
 254}
 255
 256/*
 257 * This routine is responsible for faulting in user pages.
 258 * It passes the work off to one of the appropriate routines.
 259 * It returns true if the fault was successfully handled.
 260 */
 261static int handle_page_fault(struct pt_regs *regs,
 262                             int fault_num,
 263                             int is_page_fault,
 264                             unsigned long address,
 265                             int write)
 266{
 267        struct task_struct *tsk;
 268        struct mm_struct *mm;
 269        struct vm_area_struct *vma;
 270        unsigned long stack_offset;
 271        int fault;
 272        int si_code;
 273        int is_kernel_mode;
 274        pgd_t *pgd;
 275        unsigned int flags;
 276
 277        /* on TILE, protection faults are always writes */
 278        if (!is_page_fault)
 279                write = 1;
 280
 281        flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 282
 283        is_kernel_mode = !user_mode(regs);
 284
 285        tsk = validate_current();
 286
 287        /*
 288         * Check to see if we might be overwriting the stack, and bail
 289         * out if so.  The page fault code is a relatively likely
 290         * place to get trapped in an infinite regress, and once we
 291         * overwrite the whole stack, it becomes very hard to recover.
 292         */
 293        stack_offset = stack_pointer & (THREAD_SIZE-1);
 294        if (stack_offset < THREAD_SIZE / 8) {
 295                pr_alert("Potential stack overrun: sp %#lx\n",
 296                       stack_pointer);
 297                show_regs(regs);
 298                pr_alert("Killing current process %d/%s\n",
 299                       tsk->pid, tsk->comm);
 300                do_group_exit(SIGKILL);
 301        }
 302
 303        /*
 304         * Early on, we need to check for migrating PTE entries;
 305         * see homecache.c.  If we find a migrating PTE, we wait until
 306         * the backing page claims to be done migrating, then we proceed.
 307         * For kernel PTEs, we rewrite the PTE and return and retry.
 308         * Otherwise, we treat the fault like a normal "no PTE" fault,
 309         * rather than trying to patch up the existing PTE.
 310         */
 311        pgd = get_current_pgd();
 312        if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
 313                                 is_kernel_mode, write))
 314                return 1;
 315
 316        si_code = SEGV_MAPERR;
 317
 318        /*
 319         * We fault-in kernel-space virtual memory on-demand. The
 320         * 'reference' page table is init_mm.pgd.
 321         *
 322         * NOTE! We MUST NOT take any locks for this case. We may
 323         * be in an interrupt or a critical region, and should
 324         * only copy the information from the master page table,
 325         * nothing more.
 326         *
 327         * This verifies that the fault happens in kernel space
 328         * and that the fault was not a protection fault.
 329         */
 330        if (unlikely(address >= TASK_SIZE &&
 331                     !is_arch_mappable_range(address, 0))) {
 332                if (is_kernel_mode && is_page_fault &&
 333                    vmalloc_fault(pgd, address) >= 0)
 334                        return 1;
 335                /*
 336                 * Don't take the mm semaphore here. If we fixup a prefetch
 337                 * fault we could otherwise deadlock.
 338                 */
 339                mm = NULL;  /* happy compiler */
 340                vma = NULL;
 341                goto bad_area_nosemaphore;
 342        }
 343
 344        /*
 345         * If we're trying to touch user-space addresses, we must
 346         * be either at PL0, or else with interrupts enabled in the
 347         * kernel, so either way we can re-enable interrupts here
 348         * unless we are doing atomic access to user space with
 349         * interrupts disabled.
 350         */
 351        if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
 352                local_irq_enable();
 353
 354        mm = tsk->mm;
 355
 356        /*
 357         * If we're in an interrupt, have no user context or are running in an
 358         * atomic region then we must not take the fault.
 359         */
 360        if (in_atomic() || !mm) {
 361                vma = NULL;  /* happy compiler */
 362                goto bad_area_nosemaphore;
 363        }
 364
 365        if (!is_kernel_mode)
 366                flags |= FAULT_FLAG_USER;
 367
 368        /*
 369         * When running in the kernel we expect faults to occur only to
 370         * addresses in user space.  All other faults represent errors in the
 371         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 372         * erroneous fault occurring in a code path which already holds mmap_sem
 373         * we will deadlock attempting to validate the fault against the
 374         * address space.  Luckily the kernel only validly references user
 375         * space from well defined areas of code, which are listed in the
 376         * exceptions table.
 377         *
 378         * As the vast majority of faults will be valid we will only perform
 379         * the source reference check when there is a possibility of a deadlock.
 380         * Attempt to lock the address space, if we cannot we then validate the
 381         * source.  If this is invalid we can skip the address space check,
 382         * thus avoiding the deadlock.
 383         */
 384        if (!down_read_trylock(&mm->mmap_sem)) {
 385                if (is_kernel_mode &&
 386                    !search_exception_tables(regs->pc)) {
 387                        vma = NULL;  /* happy compiler */
 388                        goto bad_area_nosemaphore;
 389                }
 390
 391retry:
 392                down_read(&mm->mmap_sem);
 393        }
 394
 395        vma = find_vma(mm, address);
 396        if (!vma)
 397                goto bad_area;
 398        if (vma->vm_start <= address)
 399                goto good_area;
 400        if (!(vma->vm_flags & VM_GROWSDOWN))
 401                goto bad_area;
 402        if (regs->sp < PAGE_OFFSET) {
 403                /*
 404                 * accessing the stack below sp is always a bug.
 405                 */
 406                if (address < regs->sp)
 407                        goto bad_area;
 408        }
 409        if (expand_stack(vma, address))
 410                goto bad_area;
 411
 412/*
 413 * Ok, we have a good vm_area for this memory access, so
 414 * we can handle it..
 415 */
 416good_area:
 417        si_code = SEGV_ACCERR;
 418        if (fault_num == INT_ITLB_MISS) {
 419                if (!(vma->vm_flags & VM_EXEC))
 420                        goto bad_area;
 421        } else if (write) {
 422#ifdef TEST_VERIFY_AREA
 423                if (!is_page_fault && regs->cs == KERNEL_CS)
 424                        pr_err("WP fault at "REGFMT"\n", regs->eip);
 425#endif
 426                if (!(vma->vm_flags & VM_WRITE))
 427                        goto bad_area;
 428                flags |= FAULT_FLAG_WRITE;
 429        } else {
 430                if (!is_page_fault || !(vma->vm_flags & VM_READ))
 431                        goto bad_area;
 432        }
 433
 434        /*
 435         * If for any reason at all we couldn't handle the fault,
 436         * make sure we exit gracefully rather than endlessly redo
 437         * the fault.
 438         */
 439        fault = handle_mm_fault(mm, vma, address, flags);
 440
 441        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 442                return 0;
 443
 444        if (unlikely(fault & VM_FAULT_ERROR)) {
 445                if (fault & VM_FAULT_OOM)
 446                        goto out_of_memory;
 447                else if (fault & VM_FAULT_SIGBUS)
 448                        goto do_sigbus;
 449                BUG();
 450        }
 451        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 452                if (fault & VM_FAULT_MAJOR)
 453                        tsk->maj_flt++;
 454                else
 455                        tsk->min_flt++;
 456                if (fault & VM_FAULT_RETRY) {
 457                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 458                        flags |= FAULT_FLAG_TRIED;
 459
 460                         /*
 461                          * No need to up_read(&mm->mmap_sem) as we would
 462                          * have already released it in __lock_page_or_retry
 463                          * in mm/filemap.c.
 464                          */
 465                        goto retry;
 466                }
 467        }
 468
 469#if CHIP_HAS_TILE_DMA()
 470        /* If this was a DMA TLB fault, restart the DMA engine. */
 471        switch (fault_num) {
 472        case INT_DMATLB_MISS:
 473        case INT_DMATLB_MISS_DWNCL:
 474        case INT_DMATLB_ACCESS:
 475        case INT_DMATLB_ACCESS_DWNCL:
 476                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 477                break;
 478        }
 479#endif
 480
 481        up_read(&mm->mmap_sem);
 482        return 1;
 483
 484/*
 485 * Something tried to access memory that isn't in our memory map..
 486 * Fix it, but check if it's kernel or user first..
 487 */
 488bad_area:
 489        up_read(&mm->mmap_sem);
 490
 491bad_area_nosemaphore:
 492        /* User mode accesses just cause a SIGSEGV */
 493        if (!is_kernel_mode) {
 494                /*
 495                 * It's possible to have interrupts off here.
 496                 */
 497                local_irq_enable();
 498
 499                force_sig_info_fault("segfault", SIGSEGV, si_code, address,
 500                                     fault_num, tsk, regs);
 501                return 0;
 502        }
 503
 504no_context:
 505        /* Are we prepared to handle this kernel fault?  */
 506        if (fixup_exception(regs))
 507                return 0;
 508
 509/*
 510 * Oops. The kernel tried to access some bad page. We'll have to
 511 * terminate things with extreme prejudice.
 512 */
 513
 514        bust_spinlocks(1);
 515
 516        /* FIXME: no lookup_address() yet */
 517#ifdef SUPPORT_LOOKUP_ADDRESS
 518        if (fault_num == INT_ITLB_MISS) {
 519                pte_t *pte = lookup_address(address);
 520
 521                if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
 522                        pr_crit("kernel tried to execute"
 523                               " non-executable page - exploit attempt?"
 524                               " (uid: %d)\n", current->uid);
 525        }
 526#endif
 527        if (address < PAGE_SIZE)
 528                pr_alert("Unable to handle kernel NULL pointer dereference\n");
 529        else
 530                pr_alert("Unable to handle kernel paging request\n");
 531        pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
 532                 address, regs->pc);
 533
 534        show_regs(regs);
 535
 536        if (unlikely(tsk->pid < 2)) {
 537                panic("Kernel page fault running %s!",
 538                      is_idle_task(tsk) ? "the idle task" : "init");
 539        }
 540
 541        /*
 542         * More FIXME: we should probably copy the i386 here and
 543         * implement a generic die() routine.  Not today.
 544         */
 545#ifdef SUPPORT_DIE
 546        die("Oops", regs);
 547#endif
 548        bust_spinlocks(1);
 549
 550        do_group_exit(SIGKILL);
 551
 552/*
 553 * We ran out of memory, or some other thing happened to us that made
 554 * us unable to handle the page fault gracefully.
 555 */
 556out_of_memory:
 557        up_read(&mm->mmap_sem);
 558        if (is_kernel_mode)
 559                goto no_context;
 560        pagefault_out_of_memory();
 561        return 0;
 562
 563do_sigbus:
 564        up_read(&mm->mmap_sem);
 565
 566        /* Kernel mode? Handle exceptions or die */
 567        if (is_kernel_mode)
 568                goto no_context;
 569
 570        force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
 571                             fault_num, tsk, regs);
 572        return 0;
 573}
 574
 575#ifndef __tilegx__
 576
 577/* We must release ICS before panicking or we won't get anywhere. */
 578#define ics_panic(fmt, ...) do { \
 579        __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
 580        panic(fmt, __VA_ARGS__); \
 581} while (0)
 582
 583/*
 584 * When we take an ITLB or DTLB fault or access violation in the
 585 * supervisor while the critical section bit is set, the hypervisor is
 586 * reluctant to write new values into the EX_CONTEXT_K_x registers,
 587 * since that might indicate we have not yet squirreled the SPR
 588 * contents away and can thus safely take a recursive interrupt.
 589 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
 590 *
 591 * Note that this routine is called before homecache_tlb_defer_enter(),
 592 * which means that we can properly unlock any atomics that might
 593 * be used there (good), but also means we must be very sensitive
 594 * to not touch any data structures that might be located in memory
 595 * that could migrate, as we could be entering the kernel on a dataplane
 596 * cpu that has been deferring kernel TLB updates.  This means, for
 597 * example, that we can't migrate init_mm or its pgd.
 598 */
 599struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
 600                                      unsigned long address,
 601                                      unsigned long info)
 602{
 603        unsigned long pc = info & ~1;
 604        int write = info & 1;
 605        pgd_t *pgd = get_current_pgd();
 606
 607        /* Retval is 1 at first since we will handle the fault fully. */
 608        struct intvec_state state = {
 609                do_page_fault, fault_num, address, write, 1
 610        };
 611
 612        /* Validate that we are plausibly in the right routine. */
 613        if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
 614            (fault_num != INT_DTLB_MISS &&
 615             fault_num != INT_DTLB_ACCESS)) {
 616                unsigned long old_pc = regs->pc;
 617                regs->pc = pc;
 618                ics_panic("Bad ICS page fault args:"
 619                          " old PC %#lx, fault %d/%d at %#lx\n",
 620                          old_pc, fault_num, write, address);
 621        }
 622
 623        /* We might be faulting on a vmalloc page, so check that first. */
 624        if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
 625                return state;
 626
 627        /*
 628         * If we faulted with ICS set in sys_cmpxchg, we are providing
 629         * a user syscall service that should generate a signal on
 630         * fault.  We didn't set up a kernel stack on initial entry to
 631         * sys_cmpxchg, but instead had one set up by the fault, which
 632         * (because sys_cmpxchg never releases ICS) came to us via the
 633         * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
 634         * still referencing the original user code.  We release the
 635         * atomic lock and rewrite pt_regs so that it appears that we
 636         * came from user-space directly, and after we finish the
 637         * fault we'll go back to user space and re-issue the swint.
 638         * This way the backtrace information is correct if we need to
 639         * emit a stack dump at any point while handling this.
 640         *
 641         * Must match register use in sys_cmpxchg().
 642         */
 643        if (pc >= (unsigned long) sys_cmpxchg &&
 644            pc < (unsigned long) __sys_cmpxchg_end) {
 645#ifdef CONFIG_SMP
 646                /* Don't unlock before we could have locked. */
 647                if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
 648                        int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
 649                        __atomic_fault_unlock(lock_ptr);
 650                }
 651#endif
 652                regs->sp = regs->regs[27];
 653        }
 654
 655        /*
 656         * We can also fault in the atomic assembly, in which
 657         * case we use the exception table to do the first-level fixup.
 658         * We may re-fixup again in the real fault handler if it
 659         * turns out the faulting address is just bad, and not,
 660         * for example, migrating.
 661         */
 662        else if (pc >= (unsigned long) __start_atomic_asm_code &&
 663                   pc < (unsigned long) __end_atomic_asm_code) {
 664                const struct exception_table_entry *fixup;
 665#ifdef CONFIG_SMP
 666                /* Unlock the atomic lock. */
 667                int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
 668                __atomic_fault_unlock(lock_ptr);
 669#endif
 670                fixup = search_exception_tables(pc);
 671                if (!fixup)
 672                        ics_panic("ICS atomic fault not in table:"
 673                                  " PC %#lx, fault %d", pc, fault_num);
 674                regs->pc = fixup->fixup;
 675                regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
 676        }
 677
 678        /*
 679         * Now that we have released the atomic lock (if necessary),
 680         * it's safe to spin if the PTE that caused the fault was migrating.
 681         */
 682        if (fault_num == INT_DTLB_ACCESS)
 683                write = 1;
 684        if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
 685                return state;
 686
 687        /* Return zero so that we continue on with normal fault handling. */
 688        state.retval = 0;
 689        return state;
 690}
 691
 692#endif /* !__tilegx__ */
 693
 694/*
 695 * This routine handles page faults.  It determines the address, and the
 696 * problem, and then passes it handle_page_fault() for normal DTLB and
 697 * ITLB issues, and for DMA or SN processor faults when we are in user
 698 * space.  For the latter, if we're in kernel mode, we just save the
 699 * interrupt away appropriately and return immediately.  We can't do
 700 * page faults for user code while in kernel mode.
 701 */
 702void do_page_fault(struct pt_regs *regs, int fault_num,
 703                   unsigned long address, unsigned long write)
 704{
 705        int is_page_fault;
 706
 707#ifdef CONFIG_KPROBES
 708        /*
 709         * This is to notify the fault handler of the kprobes.  The
 710         * exception code is redundant as it is also carried in REGS,
 711         * but we pass it anyhow.
 712         */
 713        if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
 714                       regs->faultnum, SIGSEGV) == NOTIFY_STOP)
 715                return;
 716#endif
 717
 718#ifdef __tilegx__
 719        /*
 720         * We don't need early do_page_fault_ics() support, since unlike
 721         * Pro we don't need to worry about unlocking the atomic locks.
 722         * There is only one current case in GX where we touch any memory
 723         * under ICS other than our own kernel stack, and we handle that
 724         * here.  (If we crash due to trying to touch our own stack,
 725         * we're in too much trouble for C code to help out anyway.)
 726         */
 727        if (write & ~1) {
 728                unsigned long pc = write & ~1;
 729                if (pc >= (unsigned long) __start_unalign_asm_code &&
 730                    pc < (unsigned long) __end_unalign_asm_code) {
 731                        struct thread_info *ti = current_thread_info();
 732                        /*
 733                         * Our EX_CONTEXT is still what it was from the
 734                         * initial unalign exception, but now we've faulted
 735                         * on the JIT page.  We would like to complete the
 736                         * page fault however is appropriate, and then retry
 737                         * the instruction that caused the unalign exception.
 738                         * Our state has been "corrupted" by setting the low
 739                         * bit in "sp", and stashing r0..r3 in the
 740                         * thread_info area, so we revert all of that, then
 741                         * continue as if this were a normal page fault.
 742                         */
 743                        regs->sp &= ~1UL;
 744                        regs->regs[0] = ti->unalign_jit_tmp[0];
 745                        regs->regs[1] = ti->unalign_jit_tmp[1];
 746                        regs->regs[2] = ti->unalign_jit_tmp[2];
 747                        regs->regs[3] = ti->unalign_jit_tmp[3];
 748                        write &= 1;
 749                } else {
 750                        pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
 751                                 current->comm, current->pid, pc, address);
 752                        show_regs(regs);
 753                        do_group_exit(SIGKILL);
 754                        return;
 755                }
 756        }
 757#else
 758        /* This case should have been handled by do_page_fault_ics(). */
 759        BUG_ON(write & ~1);
 760#endif
 761
 762#if CHIP_HAS_TILE_DMA()
 763        /*
 764         * If it's a DMA fault, suspend the transfer while we're
 765         * handling the miss; we'll restart after it's handled.  If we
 766         * don't suspend, it's possible that this process could swap
 767         * out and back in, and restart the engine since the DMA is
 768         * still 'running'.
 769         */
 770        if (fault_num == INT_DMATLB_MISS ||
 771            fault_num == INT_DMATLB_ACCESS ||
 772            fault_num == INT_DMATLB_MISS_DWNCL ||
 773            fault_num == INT_DMATLB_ACCESS_DWNCL) {
 774                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
 775                while (__insn_mfspr(SPR_DMA_USER_STATUS) &
 776                       SPR_DMA_STATUS__BUSY_MASK)
 777                        ;
 778        }
 779#endif
 780
 781        /* Validate fault num and decide if this is a first-time page fault. */
 782        switch (fault_num) {
 783        case INT_ITLB_MISS:
 784        case INT_DTLB_MISS:
 785#if CHIP_HAS_TILE_DMA()
 786        case INT_DMATLB_MISS:
 787        case INT_DMATLB_MISS_DWNCL:
 788#endif
 789                is_page_fault = 1;
 790                break;
 791
 792        case INT_DTLB_ACCESS:
 793#if CHIP_HAS_TILE_DMA()
 794        case INT_DMATLB_ACCESS:
 795        case INT_DMATLB_ACCESS_DWNCL:
 796#endif
 797                is_page_fault = 0;
 798                break;
 799
 800        default:
 801                panic("Bad fault number %d in do_page_fault", fault_num);
 802        }
 803
 804#if CHIP_HAS_TILE_DMA()
 805        if (!user_mode(regs)) {
 806                struct async_tlb *async;
 807                switch (fault_num) {
 808#if CHIP_HAS_TILE_DMA()
 809                case INT_DMATLB_MISS:
 810                case INT_DMATLB_ACCESS:
 811                case INT_DMATLB_MISS_DWNCL:
 812                case INT_DMATLB_ACCESS_DWNCL:
 813                        async = &current->thread.dma_async_tlb;
 814                        break;
 815#endif
 816                default:
 817                        async = NULL;
 818                }
 819                if (async) {
 820
 821                        /*
 822                         * No vmalloc check required, so we can allow
 823                         * interrupts immediately at this point.
 824                         */
 825                        local_irq_enable();
 826
 827                        set_thread_flag(TIF_ASYNC_TLB);
 828                        if (async->fault_num != 0) {
 829                                panic("Second async fault %d;"
 830                                      " old fault was %d (%#lx/%ld)",
 831                                      fault_num, async->fault_num,
 832                                      address, write);
 833                        }
 834                        BUG_ON(fault_num == 0);
 835                        async->fault_num = fault_num;
 836                        async->is_fault = is_page_fault;
 837                        async->is_write = write;
 838                        async->address = address;
 839                        return;
 840                }
 841        }
 842#endif
 843
 844        handle_page_fault(regs, fault_num, is_page_fault, address, write);
 845}
 846
 847
 848#if CHIP_HAS_TILE_DMA()
 849/*
 850 * This routine effectively re-issues asynchronous page faults
 851 * when we are returning to user space.
 852 */
 853void do_async_page_fault(struct pt_regs *regs)
 854{
 855        struct async_tlb *async = &current->thread.dma_async_tlb;
 856
 857        /*
 858         * Clear thread flag early.  If we re-interrupt while processing
 859         * code here, we will reset it and recall this routine before
 860         * returning to user space.
 861         */
 862        clear_thread_flag(TIF_ASYNC_TLB);
 863
 864        if (async->fault_num) {
 865                /*
 866                 * Clear async->fault_num before calling the page-fault
 867                 * handler so that if we re-interrupt before returning
 868                 * from the function we have somewhere to put the
 869                 * information from the new interrupt.
 870                 */
 871                int fault_num = async->fault_num;
 872                async->fault_num = 0;
 873                handle_page_fault(regs, fault_num, async->is_fault,
 874                                  async->address, async->is_write);
 875        }
 876}
 877#endif /* CHIP_HAS_TILE_DMA() */
 878
 879
 880void vmalloc_sync_all(void)
 881{
 882#ifdef __tilegx__
 883        /* Currently all L1 kernel pmd's are static and shared. */
 884        BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
 885                     pgd_index(VMALLOC_START));
 886#else
 887        /*
 888         * Note that races in the updates of insync and start aren't
 889         * problematic: insync can only get set bits added, and updates to
 890         * start are only improving performance (without affecting correctness
 891         * if undone).
 892         */
 893        static DECLARE_BITMAP(insync, PTRS_PER_PGD);
 894        static unsigned long start = PAGE_OFFSET;
 895        unsigned long address;
 896
 897        BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
 898        for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
 899                if (!test_bit(pgd_index(address), insync)) {
 900                        unsigned long flags;
 901                        struct list_head *pos;
 902
 903                        spin_lock_irqsave(&pgd_lock, flags);
 904                        list_for_each(pos, &pgd_list)
 905                                if (!vmalloc_sync_one(list_to_pgd(pos),
 906                                                                address)) {
 907                                        /* Must be at first entry in list. */
 908                                        BUG_ON(pos != pgd_list.next);
 909                                        break;
 910                                }
 911                        spin_unlock_irqrestore(&pgd_lock, flags);
 912                        if (pos != pgd_list.next)
 913                                set_bit(pgd_index(address), insync);
 914                }
 915                if (address == start && test_bit(pgd_index(address), insync))
 916                        start = address + PGDIR_SIZE;
 917        }
 918#endif
 919}
 920