linux/arch/tile/mm/init.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1995  Linus Torvalds
   3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   4 *
   5 *   This program is free software; you can redistribute it and/or
   6 *   modify it under the terms of the GNU General Public License
   7 *   as published by the Free Software Foundation, version 2.
   8 *
   9 *   This program is distributed in the hope that it will be useful, but
  10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *   NON INFRINGEMENT.  See the GNU General Public License for
  13 *   more details.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/hugetlb.h>
  27#include <linux/swap.h>
  28#include <linux/smp.h>
  29#include <linux/init.h>
  30#include <linux/highmem.h>
  31#include <linux/pagemap.h>
  32#include <linux/poison.h>
  33#include <linux/bootmem.h>
  34#include <linux/slab.h>
  35#include <linux/proc_fs.h>
  36#include <linux/efi.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/processor.h>
  41#include <asm/pgtable.h>
  42#include <asm/pgalloc.h>
  43#include <asm/dma.h>
  44#include <asm/fixmap.h>
  45#include <asm/tlb.h>
  46#include <asm/tlbflush.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/homecache.h>
  50#include <hv/hypervisor.h>
  51#include <arch/chip.h>
  52
  53#include "migrate.h"
  54
  55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  56
  57#ifndef __tilegx__
  58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  59EXPORT_SYMBOL(VMALLOC_RESERVE);
  60#endif
  61
  62/* Create an L2 page table */
  63static pte_t * __init alloc_pte(void)
  64{
  65        return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  66}
  67
  68/*
  69 * L2 page tables per controller.  We allocate these all at once from
  70 * the bootmem allocator and store them here.  This saves on kernel L2
  71 * page table memory, compared to allocating a full 64K page per L2
  72 * page table, and also means that in cases where we use huge pages,
  73 * we are guaranteed to later be able to shatter those huge pages and
  74 * switch to using these page tables instead, without requiring
  75 * further allocation.  Each l2_ptes[] entry points to the first page
  76 * table for the first hugepage-size piece of memory on the
  77 * controller; other page tables are just indexed directly, i.e. the
  78 * L2 page tables are contiguous in memory for each controller.
  79 */
  80static pte_t *l2_ptes[MAX_NUMNODES];
  81static int num_l2_ptes[MAX_NUMNODES];
  82
  83static void init_prealloc_ptes(int node, int pages)
  84{
  85        BUG_ON(pages & (PTRS_PER_PTE - 1));
  86        if (pages) {
  87                num_l2_ptes[node] = pages;
  88                l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  89                                                HV_PAGE_TABLE_ALIGN, 0);
  90        }
  91}
  92
  93pte_t *get_prealloc_pte(unsigned long pfn)
  94{
  95        int node = pfn_to_nid(pfn);
  96        pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  97        BUG_ON(node >= MAX_NUMNODES);
  98        BUG_ON(pfn >= num_l2_ptes[node]);
  99        return &l2_ptes[node][pfn];
 100}
 101
 102/*
 103 * What caching do we expect pages from the heap to have when
 104 * they are allocated during bootup?  (Once we've installed the
 105 * "real" swapper_pg_dir.)
 106 */
 107static int initial_heap_home(void)
 108{
 109        if (hash_default)
 110                return PAGE_HOME_HASH;
 111        return smp_processor_id();
 112}
 113
 114/*
 115 * Place a pointer to an L2 page table in a middle page
 116 * directory entry.
 117 */
 118static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 119{
 120        phys_addr_t pa = __pa(page_table);
 121        unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 122        pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 123        BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 124        pteval = pte_set_home(pteval, initial_heap_home());
 125        *(pte_t *)pmd = pteval;
 126        if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 127                BUG();
 128}
 129
 130#ifdef __tilegx__
 131
 132static inline pmd_t *alloc_pmd(void)
 133{
 134        return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
 135}
 136
 137static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 138{
 139        assign_pte((pmd_t *)pud, (pte_t *)pmd);
 140}
 141
 142#endif /* __tilegx__ */
 143
 144/* Replace the given pmd with a full PTE table. */
 145void __init shatter_pmd(pmd_t *pmd)
 146{
 147        pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 148        assign_pte(pmd, pte);
 149}
 150
 151#ifdef __tilegx__
 152static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 153{
 154        pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 155        if (pud_none(*pud))
 156                assign_pmd(pud, alloc_pmd());
 157        return pmd_offset(pud, va);
 158}
 159#else
 160static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 161{
 162        return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 163}
 164#endif
 165
 166/*
 167 * This function initializes a certain range of kernel virtual memory
 168 * with new bootmem page tables, everywhere page tables are missing in
 169 * the given range.
 170 */
 171
 172/*
 173 * NOTE: The pagetables are allocated contiguous on the physical space
 174 * so we can cache the place of the first one and move around without
 175 * checking the pgd every time.
 176 */
 177static void __init page_table_range_init(unsigned long start,
 178                                         unsigned long end, pgd_t *pgd)
 179{
 180        unsigned long vaddr;
 181        start = round_down(start, PMD_SIZE);
 182        end = round_up(end, PMD_SIZE);
 183        for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
 184                pmd_t *pmd = get_pmd(pgd, vaddr);
 185                if (pmd_none(*pmd))
 186                        assign_pte(pmd, alloc_pte());
 187        }
 188}
 189
 190
 191static int __initdata ktext_hash = 1;  /* .text pages */
 192static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 193int __write_once hash_default = 1;     /* kernel allocator pages */
 194EXPORT_SYMBOL(hash_default);
 195int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 196
 197/*
 198 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 199 * is available, this is only relevant if kcache_hash sets up the
 200 * .data and .bss to be page-homed, and we don't want the default mode
 201 * of using the full set of kernel cpus for the striping.
 202 */
 203static __initdata struct cpumask kdata_mask;
 204static __initdata int kdata_arg_seen;
 205
 206int __write_once kdata_huge;       /* if no homecaching, small pages */
 207
 208
 209/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 210static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 211{
 212        prot = pte_set_home(prot, home);
 213        if (home == PAGE_HOME_IMMUTABLE) {
 214                if (ktext_hash)
 215                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 216                else
 217                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 218        }
 219        return prot;
 220}
 221
 222/*
 223 * For a given kernel data VA, how should it be cached?
 224 * We return the complete pgprot_t with caching bits set.
 225 */
 226static pgprot_t __init init_pgprot(ulong address)
 227{
 228        int cpu;
 229        unsigned long page;
 230        enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
 231
 232        /* For kdata=huge, everything is just hash-for-home. */
 233        if (kdata_huge)
 234                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 235
 236        /* We map the aliased pages of permanent text inaccessible. */
 237        if (address < (ulong) _sinittext - CODE_DELTA)
 238                return PAGE_NONE;
 239
 240        /* We map read-only data non-coherent for performance. */
 241        if ((address >= (ulong) __start_rodata &&
 242             address < (ulong) __end_rodata) ||
 243            address == (ulong) empty_zero_page) {
 244                return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 245        }
 246
 247#ifndef __tilegx__
 248        /* Force the atomic_locks[] array page to be hash-for-home. */
 249        if (address == (ulong) atomic_locks)
 250                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 251#endif
 252
 253        /*
 254         * Everything else that isn't data or bss is heap, so mark it
 255         * with the initial heap home (hash-for-home, or this cpu).  This
 256         * includes any addresses after the loaded image and any address before
 257         * _einitdata, since we already captured the case of text before
 258         * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
 259         *
 260         * All the LOWMEM pages that we mark this way will get their
 261         * struct page homecache properly marked later, in set_page_homes().
 262         * The HIGHMEM pages we leave with a default zero for their
 263         * homes, but with a zero free_time we don't have to actually
 264         * do a flush action the first time we use them, either.
 265         */
 266        if (address >= (ulong) _end || address < (ulong) _einitdata)
 267                return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 268
 269        /* Use hash-for-home if requested for data/bss. */
 270        if (kdata_hash)
 271                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 272
 273        /*
 274         * Otherwise we just hand out consecutive cpus.  To avoid
 275         * requiring this function to hold state, we just walk forward from
 276         * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to
 277         * reach the requested address, while walking cpu home around
 278         * kdata_mask. This is typically no more than a dozen or so iterations.
 279         */
 280        page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK;
 281        BUG_ON(address < page || address >= (ulong)_end);
 282        cpu = cpumask_first(&kdata_mask);
 283        for (; page < address; page += PAGE_SIZE) {
 284                if (page >= (ulong)&init_thread_union &&
 285                    page < (ulong)&init_thread_union + THREAD_SIZE)
 286                        continue;
 287                if (page == (ulong)empty_zero_page)
 288                        continue;
 289#ifndef __tilegx__
 290                if (page == (ulong)atomic_locks)
 291                        continue;
 292#endif
 293                cpu = cpumask_next(cpu, &kdata_mask);
 294                if (cpu == NR_CPUS)
 295                        cpu = cpumask_first(&kdata_mask);
 296        }
 297        return construct_pgprot(PAGE_KERNEL, cpu);
 298}
 299
 300/*
 301 * This function sets up how we cache the kernel text.  If we have
 302 * hash-for-home support, normally that is used instead (see the
 303 * kcache_hash boot flag for more information).  But if we end up
 304 * using a page-based caching technique, this option sets up the
 305 * details of that.  In addition, the "ktext=nocache" option may
 306 * always be used to disable local caching of text pages, if desired.
 307 */
 308
 309static int __initdata ktext_arg_seen;
 310static int __initdata ktext_small;
 311static int __initdata ktext_local;
 312static int __initdata ktext_all;
 313static int __initdata ktext_nondataplane;
 314static int __initdata ktext_nocache;
 315static struct cpumask __initdata ktext_mask;
 316
 317static int __init setup_ktext(char *str)
 318{
 319        if (str == NULL)
 320                return -EINVAL;
 321
 322        /* If you have a leading "nocache", turn off ktext caching */
 323        if (strncmp(str, "nocache", 7) == 0) {
 324                ktext_nocache = 1;
 325                pr_info("ktext: disabling local caching of kernel text\n");
 326                str += 7;
 327                if (*str == ',')
 328                        ++str;
 329                if (*str == '\0')
 330                        return 0;
 331        }
 332
 333        ktext_arg_seen = 1;
 334
 335        /* Default setting: use a huge page */
 336        if (strcmp(str, "huge") == 0)
 337                pr_info("ktext: using one huge locally cached page\n");
 338
 339        /* Pay TLB cost but get no cache benefit: cache small pages locally */
 340        else if (strcmp(str, "local") == 0) {
 341                ktext_small = 1;
 342                ktext_local = 1;
 343                pr_info("ktext: using small pages with local caching\n");
 344        }
 345
 346        /* Neighborhood cache ktext pages on all cpus. */
 347        else if (strcmp(str, "all") == 0) {
 348                ktext_small = 1;
 349                ktext_all = 1;
 350                pr_info("ktext: using maximal caching neighborhood\n");
 351        }
 352
 353
 354        /* Neighborhood ktext pages on specified mask */
 355        else if (cpulist_parse(str, &ktext_mask) == 0) {
 356                char buf[NR_CPUS * 5];
 357                cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
 358                if (cpumask_weight(&ktext_mask) > 1) {
 359                        ktext_small = 1;
 360                        pr_info("ktext: using caching neighborhood %s "
 361                               "with small pages\n", buf);
 362                } else {
 363                        pr_info("ktext: caching on cpu %s with one huge page\n",
 364                               buf);
 365                }
 366        }
 367
 368        else if (*str)
 369                return -EINVAL;
 370
 371        return 0;
 372}
 373
 374early_param("ktext", setup_ktext);
 375
 376
 377static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 378{
 379        if (!ktext_nocache)
 380                prot = hv_pte_set_nc(prot);
 381        else
 382                prot = hv_pte_set_no_alloc_l2(prot);
 383        return prot;
 384}
 385
 386/* Temporary page table we use for staging. */
 387static pgd_t pgtables[PTRS_PER_PGD]
 388 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
 389
 390/*
 391 * This maps the physical memory to kernel virtual address space, a total
 392 * of max_low_pfn pages, by creating page tables starting from address
 393 * PAGE_OFFSET.
 394 *
 395 * This routine transitions us from using a set of compiled-in large
 396 * pages to using some more precise caching, including removing access
 397 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 398 * marking read-only data as locally cacheable, striping the remaining
 399 * .data and .bss across all the available tiles, and removing access
 400 * to pages above the top of RAM (thus ensuring a page fault from a bad
 401 * virtual address rather than a hypervisor shoot down for accessing
 402 * memory outside the assigned limits).
 403 */
 404static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 405{
 406        unsigned long long irqmask;
 407        unsigned long address, pfn;
 408        pmd_t *pmd;
 409        pte_t *pte;
 410        int pte_ofs;
 411        const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 412        struct cpumask kstripe_mask;
 413        int rc, i;
 414
 415        if (ktext_arg_seen && ktext_hash) {
 416                pr_warning("warning: \"ktext\" boot argument ignored"
 417                           " if \"kcache_hash\" sets up text hash-for-home\n");
 418                ktext_small = 0;
 419        }
 420
 421        if (kdata_arg_seen && kdata_hash) {
 422                pr_warning("warning: \"kdata\" boot argument ignored"
 423                           " if \"kcache_hash\" sets up data hash-for-home\n");
 424        }
 425
 426        if (kdata_huge && !hash_default) {
 427                pr_warning("warning: disabling \"kdata=huge\"; requires"
 428                          " kcache_hash=all or =allbutstack\n");
 429                kdata_huge = 0;
 430        }
 431
 432        /*
 433         * Set up a mask for cpus to use for kernel striping.
 434         * This is normally all cpus, but minus dataplane cpus if any.
 435         * If the dataplane covers the whole chip, we stripe over
 436         * the whole chip too.
 437         */
 438        cpumask_copy(&kstripe_mask, cpu_possible_mask);
 439        if (!kdata_arg_seen)
 440                kdata_mask = kstripe_mask;
 441
 442        /* Allocate and fill in L2 page tables */
 443        for (i = 0; i < MAX_NUMNODES; ++i) {
 444#ifdef CONFIG_HIGHMEM
 445                unsigned long end_pfn = node_lowmem_end_pfn[i];
 446#else
 447                unsigned long end_pfn = node_end_pfn[i];
 448#endif
 449                unsigned long end_huge_pfn = 0;
 450
 451                /* Pre-shatter the last huge page to allow per-cpu pages. */
 452                if (kdata_huge)
 453                        end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 454
 455                pfn = node_start_pfn[i];
 456
 457                /* Allocate enough memory to hold L2 page tables for node. */
 458                init_prealloc_ptes(i, end_pfn - pfn);
 459
 460                address = (unsigned long) pfn_to_kaddr(pfn);
 461                while (pfn < end_pfn) {
 462                        BUG_ON(address & (HPAGE_SIZE-1));
 463                        pmd = get_pmd(pgtables, address);
 464                        pte = get_prealloc_pte(pfn);
 465                        if (pfn < end_huge_pfn) {
 466                                pgprot_t prot = init_pgprot(address);
 467                                *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 468                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 469                                     pfn++, pte_ofs++, address += PAGE_SIZE)
 470                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 471                        } else {
 472                                if (kdata_huge)
 473                                        printk(KERN_DEBUG "pre-shattered huge"
 474                                               " page at %#lx\n", address);
 475                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 476                                     pfn++, pte_ofs++, address += PAGE_SIZE) {
 477                                        pgprot_t prot = init_pgprot(address);
 478                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 479                                }
 480                                assign_pte(pmd, pte);
 481                        }
 482                }
 483        }
 484
 485        /*
 486         * Set or check ktext_map now that we have cpu_possible_mask
 487         * and kstripe_mask to work with.
 488         */
 489        if (ktext_all)
 490                cpumask_copy(&ktext_mask, cpu_possible_mask);
 491        else if (ktext_nondataplane)
 492                ktext_mask = kstripe_mask;
 493        else if (!cpumask_empty(&ktext_mask)) {
 494                /* Sanity-check any mask that was requested */
 495                struct cpumask bad;
 496                cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 497                cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 498                if (!cpumask_empty(&bad)) {
 499                        char buf[NR_CPUS * 5];
 500                        cpulist_scnprintf(buf, sizeof(buf), &bad);
 501                        pr_info("ktext: not using unavailable cpus %s\n", buf);
 502                }
 503                if (cpumask_empty(&ktext_mask)) {
 504                        pr_warning("ktext: no valid cpus; caching on %d.\n",
 505                                   smp_processor_id());
 506                        cpumask_copy(&ktext_mask,
 507                                     cpumask_of(smp_processor_id()));
 508                }
 509        }
 510
 511        address = MEM_SV_START;
 512        pmd = get_pmd(pgtables, address);
 513        pfn = 0;  /* code starts at PA 0 */
 514        if (ktext_small) {
 515                /* Allocate an L2 PTE for the kernel text */
 516                int cpu = 0;
 517                pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 518                                                 PAGE_HOME_IMMUTABLE);
 519
 520                if (ktext_local) {
 521                        if (ktext_nocache)
 522                                prot = hv_pte_set_mode(prot,
 523                                                       HV_PTE_MODE_UNCACHED);
 524                        else
 525                                prot = hv_pte_set_mode(prot,
 526                                                       HV_PTE_MODE_CACHE_NO_L3);
 527                } else {
 528                        prot = hv_pte_set_mode(prot,
 529                                               HV_PTE_MODE_CACHE_TILE_L3);
 530                        cpu = cpumask_first(&ktext_mask);
 531
 532                        prot = ktext_set_nocache(prot);
 533                }
 534
 535                BUG_ON(address != (unsigned long)_text);
 536                pte = NULL;
 537                for (; address < (unsigned long)_einittext;
 538                     pfn++, address += PAGE_SIZE) {
 539                        pte_ofs = pte_index(address);
 540                        if (pte_ofs == 0) {
 541                                if (pte)
 542                                        assign_pte(pmd++, pte);
 543                                pte = alloc_pte();
 544                        }
 545                        if (!ktext_local) {
 546                                prot = set_remote_cache_cpu(prot, cpu);
 547                                cpu = cpumask_next(cpu, &ktext_mask);
 548                                if (cpu == NR_CPUS)
 549                                        cpu = cpumask_first(&ktext_mask);
 550                        }
 551                        pte[pte_ofs] = pfn_pte(pfn, prot);
 552                }
 553                if (pte)
 554                        assign_pte(pmd, pte);
 555        } else {
 556                pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 557                pteval = pte_mkhuge(pteval);
 558                if (ktext_hash) {
 559                        pteval = hv_pte_set_mode(pteval,
 560                                                 HV_PTE_MODE_CACHE_HASH_L3);
 561                        pteval = ktext_set_nocache(pteval);
 562                } else
 563                if (cpumask_weight(&ktext_mask) == 1) {
 564                        pteval = set_remote_cache_cpu(pteval,
 565                                              cpumask_first(&ktext_mask));
 566                        pteval = hv_pte_set_mode(pteval,
 567                                                 HV_PTE_MODE_CACHE_TILE_L3);
 568                        pteval = ktext_set_nocache(pteval);
 569                } else if (ktext_nocache)
 570                        pteval = hv_pte_set_mode(pteval,
 571                                                 HV_PTE_MODE_UNCACHED);
 572                else
 573                        pteval = hv_pte_set_mode(pteval,
 574                                                 HV_PTE_MODE_CACHE_NO_L3);
 575                for (; address < (unsigned long)_einittext;
 576                     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
 577                        *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
 578        }
 579
 580        /* Set swapper_pgprot here so it is flushed to memory right away. */
 581        swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 582
 583        /*
 584         * Since we may be changing the caching of the stack and page
 585         * table itself, we invoke an assembly helper to do the
 586         * following steps:
 587         *
 588         *  - flush the cache so we start with an empty slate
 589         *  - install pgtables[] as the real page table
 590         *  - flush the TLB so the new page table takes effect
 591         */
 592        irqmask = interrupt_mask_save_mask();
 593        interrupt_mask_set_mask(-1ULL);
 594        rc = flush_and_install_context(__pa(pgtables),
 595                                       init_pgprot((unsigned long)pgtables),
 596                                       __get_cpu_var(current_asid),
 597                                       cpumask_bits(my_cpu_mask));
 598        interrupt_mask_restore_mask(irqmask);
 599        BUG_ON(rc != 0);
 600
 601        /* Copy the page table back to the normal swapper_pg_dir. */
 602        memcpy(pgd_base, pgtables, sizeof(pgtables));
 603        __install_page_table(pgd_base, __get_cpu_var(current_asid),
 604                             swapper_pgprot);
 605
 606        /*
 607         * We just read swapper_pgprot and thus brought it into the cache,
 608         * with its new home & caching mode.  When we start the other CPUs,
 609         * they're going to reference swapper_pgprot via their initial fake
 610         * VA-is-PA mappings, which cache everything locally.  At that
 611         * time, if it's in our cache with a conflicting home, the
 612         * simulator's coherence checker will complain.  So, flush it out
 613         * of our cache; we're not going to ever use it again anyway.
 614         */
 615        __insn_finv(&swapper_pgprot);
 616}
 617
 618/*
 619 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 620 * is valid. The argument is a physical page number.
 621 *
 622 * On Tile, the only valid things for which we can just hand out unchecked
 623 * PTEs are the kernel code and data.  Anything else might change its
 624 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 625 * Note that init_thread_union is released to heap soon after boot,
 626 * so we include it in the init data.
 627 *
 628 * For TILE-Gx, we might want to consider allowing access to PA
 629 * regions corresponding to PCI space, etc.
 630 */
 631int devmem_is_allowed(unsigned long pagenr)
 632{
 633        return pagenr < kaddr_to_pfn(_end) &&
 634                !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 635                  pagenr < kaddr_to_pfn(_einitdata)) &&
 636                !(pagenr >= kaddr_to_pfn(_sinittext) ||
 637                  pagenr <= kaddr_to_pfn(_einittext-1));
 638}
 639
 640#ifdef CONFIG_HIGHMEM
 641static void __init permanent_kmaps_init(pgd_t *pgd_base)
 642{
 643        pgd_t *pgd;
 644        pud_t *pud;
 645        pmd_t *pmd;
 646        pte_t *pte;
 647        unsigned long vaddr;
 648
 649        vaddr = PKMAP_BASE;
 650        page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 651
 652        pgd = swapper_pg_dir + pgd_index(vaddr);
 653        pud = pud_offset(pgd, vaddr);
 654        pmd = pmd_offset(pud, vaddr);
 655        pte = pte_offset_kernel(pmd, vaddr);
 656        pkmap_page_table = pte;
 657}
 658#endif /* CONFIG_HIGHMEM */
 659
 660
 661#ifndef CONFIG_64BIT
 662static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 663{
 664        unsigned long pfn;
 665        struct page *page = pfn_to_page(start);
 666
 667        for (pfn = start; pfn < end; ) {
 668                /* Optimize by freeing pages in large batches */
 669                int order = __ffs(pfn);
 670                int count, i;
 671                struct page *p;
 672
 673                if (order >= MAX_ORDER)
 674                        order = MAX_ORDER-1;
 675                count = 1 << order;
 676                while (pfn + count > end) {
 677                        count >>= 1;
 678                        --order;
 679                }
 680                for (p = page, i = 0; i < count; ++i, ++p) {
 681                        __ClearPageReserved(p);
 682                        /*
 683                         * Hacky direct set to avoid unnecessary
 684                         * lock take/release for EVERY page here.
 685                         */
 686                        p->_count.counter = 0;
 687                        p->_mapcount.counter = -1;
 688                }
 689                init_page_count(page);
 690                __free_pages(page, order);
 691                adjust_managed_page_count(page, count);
 692
 693                page += count;
 694                pfn += count;
 695        }
 696}
 697
 698static void __init set_non_bootmem_pages_init(void)
 699{
 700        struct zone *z;
 701        for_each_zone(z) {
 702                unsigned long start, end;
 703                int nid = z->zone_pgdat->node_id;
 704#ifdef CONFIG_HIGHMEM
 705                int idx = zone_idx(z);
 706#endif
 707
 708                start = z->zone_start_pfn;
 709                end = start + z->spanned_pages;
 710                start = max(start, node_free_pfn[nid]);
 711                start = max(start, max_low_pfn);
 712
 713#ifdef CONFIG_HIGHMEM
 714                if (idx == ZONE_HIGHMEM)
 715                        totalhigh_pages += z->spanned_pages;
 716#endif
 717                if (kdata_huge) {
 718                        unsigned long percpu_pfn = node_percpu_pfn[nid];
 719                        if (start < percpu_pfn && end > percpu_pfn)
 720                                end = percpu_pfn;
 721                }
 722#ifdef CONFIG_PCI
 723                if (start <= pci_reserve_start_pfn &&
 724                    end > pci_reserve_start_pfn) {
 725                        if (end > pci_reserve_end_pfn)
 726                                init_free_pfn_range(pci_reserve_end_pfn, end);
 727                        end = pci_reserve_start_pfn;
 728                }
 729#endif
 730                init_free_pfn_range(start, end);
 731        }
 732}
 733#endif
 734
 735/*
 736 * paging_init() sets up the page tables - note that all of lowmem is
 737 * already mapped by head.S.
 738 */
 739void __init paging_init(void)
 740{
 741#ifdef __tilegx__
 742        pud_t *pud;
 743#endif
 744        pgd_t *pgd_base = swapper_pg_dir;
 745
 746        kernel_physical_mapping_init(pgd_base);
 747
 748        /* Fixed mappings, only the page table structure has to be created. */
 749        page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
 750                              FIXADDR_TOP, pgd_base);
 751
 752#ifdef CONFIG_HIGHMEM
 753        permanent_kmaps_init(pgd_base);
 754#endif
 755
 756#ifdef __tilegx__
 757        /*
 758         * Since GX allocates just one pmd_t array worth of vmalloc space,
 759         * we go ahead and allocate it statically here, then share it
 760         * globally.  As a result we don't have to worry about any task
 761         * changing init_mm once we get up and running, and there's no
 762         * need for e.g. vmalloc_sync_all().
 763         */
 764        BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
 765        pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 766        assign_pmd(pud, alloc_pmd());
 767#endif
 768}
 769
 770
 771/*
 772 * Walk the kernel page tables and derive the page_home() from
 773 * the PTEs, so that set_pte() can properly validate the caching
 774 * of all PTEs it sees.
 775 */
 776void __init set_page_homes(void)
 777{
 778}
 779
 780static void __init set_max_mapnr_init(void)
 781{
 782#ifdef CONFIG_FLATMEM
 783        max_mapnr = max_low_pfn;
 784#endif
 785}
 786
 787void __init mem_init(void)
 788{
 789        int i;
 790#ifndef __tilegx__
 791        void *last;
 792#endif
 793
 794#ifdef CONFIG_FLATMEM
 795        BUG_ON(!mem_map);
 796#endif
 797
 798#ifdef CONFIG_HIGHMEM
 799        /* check that fixmap and pkmap do not overlap */
 800        if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 801                pr_err("fixmap and kmap areas overlap"
 802                       " - this will crash\n");
 803                pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 804                       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
 805                       FIXADDR_START);
 806                BUG();
 807        }
 808#endif
 809
 810        set_max_mapnr_init();
 811
 812        /* this will put all bootmem onto the freelists */
 813        free_all_bootmem();
 814
 815#ifndef CONFIG_64BIT
 816        /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 817        set_non_bootmem_pages_init();
 818#endif
 819
 820        mem_init_print_info(NULL);
 821
 822        /*
 823         * In debug mode, dump some interesting memory mappings.
 824         */
 825#ifdef CONFIG_HIGHMEM
 826        printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 827               FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 828        printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 829               PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 830#endif
 831        printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 832               _VMALLOC_START, _VMALLOC_END - 1);
 833#ifdef __tilegx__
 834        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 835                struct pglist_data *node = &node_data[i];
 836                if (node->node_present_pages) {
 837                        unsigned long start = (unsigned long)
 838                                pfn_to_kaddr(node->node_start_pfn);
 839                        unsigned long end = start +
 840                                (node->node_present_pages << PAGE_SHIFT);
 841                        printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 842                               i, start, end - 1);
 843                }
 844        }
 845#else
 846        last = high_memory;
 847        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 848                if ((unsigned long)vbase_map[i] != -1UL) {
 849                        printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 850                               i, (unsigned long) (vbase_map[i]),
 851                               (unsigned long) (last-1));
 852                        last = vbase_map[i];
 853                }
 854        }
 855#endif
 856
 857#ifndef __tilegx__
 858        /*
 859         * Convert from using one lock for all atomic operations to
 860         * one per cpu.
 861         */
 862        __init_atomic_per_cpu();
 863#endif
 864}
 865
 866/*
 867 * this is for the non-NUMA, single node SMP system case.
 868 * Specifically, in the case of x86, we will always add
 869 * memory to the highmem for now.
 870 */
 871#ifndef CONFIG_NEED_MULTIPLE_NODES
 872int arch_add_memory(u64 start, u64 size)
 873{
 874        struct pglist_data *pgdata = &contig_page_data;
 875        struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 876        unsigned long start_pfn = start >> PAGE_SHIFT;
 877        unsigned long nr_pages = size >> PAGE_SHIFT;
 878
 879        return __add_pages(zone, start_pfn, nr_pages);
 880}
 881
 882int remove_memory(u64 start, u64 size)
 883{
 884        return -EINVAL;
 885}
 886
 887#ifdef CONFIG_MEMORY_HOTREMOVE
 888int arch_remove_memory(u64 start, u64 size)
 889{
 890        /* TODO */
 891        return -EBUSY;
 892}
 893#endif
 894#endif
 895
 896struct kmem_cache *pgd_cache;
 897
 898void __init pgtable_cache_init(void)
 899{
 900        pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
 901        if (!pgd_cache)
 902                panic("pgtable_cache_init(): Cannot create pgd cache");
 903}
 904
 905#ifdef CONFIG_DEBUG_PAGEALLOC
 906static long __write_once initfree;
 907#else
 908static long __write_once initfree = 1;
 909#endif
 910
 911/* Select whether to free (1) or mark unusable (0) the __init pages. */
 912static int __init set_initfree(char *str)
 913{
 914        long val;
 915        if (kstrtol(str, 0, &val) == 0) {
 916                initfree = val;
 917                pr_info("initfree: %s free init pages\n",
 918                        initfree ? "will" : "won't");
 919        }
 920        return 1;
 921}
 922__setup("initfree=", set_initfree);
 923
 924static void free_init_pages(char *what, unsigned long begin, unsigned long end)
 925{
 926        unsigned long addr = (unsigned long) begin;
 927
 928        if (kdata_huge && !initfree) {
 929                pr_warning("Warning: ignoring initfree=0:"
 930                           " incompatible with kdata=huge\n");
 931                initfree = 1;
 932        }
 933        end = (end + PAGE_SIZE - 1) & PAGE_MASK;
 934        local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
 935        for (addr = begin; addr < end; addr += PAGE_SIZE) {
 936                /*
 937                 * Note we just reset the home here directly in the
 938                 * page table.  We know this is safe because our caller
 939                 * just flushed the caches on all the other cpus,
 940                 * and they won't be touching any of these pages.
 941                 */
 942                int pfn = kaddr_to_pfn((void *)addr);
 943                struct page *page = pfn_to_page(pfn);
 944                pte_t *ptep = virt_to_kpte(addr);
 945                if (!initfree) {
 946                        /*
 947                         * If debugging page accesses then do not free
 948                         * this memory but mark them not present - any
 949                         * buggy init-section access will create a
 950                         * kernel page fault:
 951                         */
 952                        pte_clear(&init_mm, addr, ptep);
 953                        continue;
 954                }
 955                if (pte_huge(*ptep))
 956                        BUG_ON(!kdata_huge);
 957                else
 958                        set_pte_at(&init_mm, addr, ptep,
 959                                   pfn_pte(pfn, PAGE_KERNEL));
 960                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
 961                free_reserved_page(page);
 962        }
 963        pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
 964}
 965
 966void free_initmem(void)
 967{
 968        const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET;
 969
 970        /*
 971         * Evict the cache on all cores to avoid incoherence.
 972         * We are guaranteed that no one will touch the init pages any more.
 973         */
 974        homecache_evict(&cpu_cacheable_map);
 975
 976        /* Free the data pages that we won't use again after init. */
 977        free_init_pages("unused kernel data",
 978                        (unsigned long)_sinitdata,
 979                        (unsigned long)_einitdata);
 980
 981        /*
 982         * Free the pages mapped from 0xc0000000 that correspond to code
 983         * pages from MEM_SV_START that we won't use again after init.
 984         */
 985        free_init_pages("unused kernel text",
 986                        (unsigned long)_sinittext - text_delta,
 987                        (unsigned long)_einittext - text_delta);
 988        /* Do a global TLB flush so everyone sees the changes. */
 989        flush_tlb_all();
 990}
 991