linux/arch/x86/kvm/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "cpuid.h"
  22
  23#include <linux/kvm_host.h>
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/mm.h>
  27#include <linux/highmem.h>
  28#include <linux/sched.h>
  29#include <linux/moduleparam.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/ftrace_event.h>
  32#include <linux/slab.h>
  33#include <linux/tboot.h>
  34#include <linux/hrtimer.h>
  35#include "kvm_cache_regs.h"
  36#include "x86.h"
  37
  38#include <asm/io.h>
  39#include <asm/desc.h>
  40#include <asm/vmx.h>
  41#include <asm/virtext.h>
  42#include <asm/mce.h>
  43#include <asm/i387.h>
  44#include <asm/xcr.h>
  45#include <asm/perf_event.h>
  46#include <asm/debugreg.h>
  47#include <asm/kexec.h>
  48
  49#include "trace.h"
  50
  51#define __ex(x) __kvm_handle_fault_on_reboot(x)
  52#define __ex_clear(x, reg) \
  53        ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  54
  55MODULE_AUTHOR("Qumranet");
  56MODULE_LICENSE("GPL");
  57
  58static const struct x86_cpu_id vmx_cpu_id[] = {
  59        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  60        {}
  61};
  62MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  63
  64static bool __read_mostly enable_vpid = 1;
  65module_param_named(vpid, enable_vpid, bool, 0444);
  66
  67static bool __read_mostly flexpriority_enabled = 1;
  68module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  69
  70static bool __read_mostly enable_ept = 1;
  71module_param_named(ept, enable_ept, bool, S_IRUGO);
  72
  73static bool __read_mostly enable_unrestricted_guest = 1;
  74module_param_named(unrestricted_guest,
  75                        enable_unrestricted_guest, bool, S_IRUGO);
  76
  77static bool __read_mostly enable_ept_ad_bits = 1;
  78module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  79
  80static bool __read_mostly emulate_invalid_guest_state = true;
  81module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  82
  83static bool __read_mostly vmm_exclusive = 1;
  84module_param(vmm_exclusive, bool, S_IRUGO);
  85
  86static bool __read_mostly fasteoi = 1;
  87module_param(fasteoi, bool, S_IRUGO);
  88
  89static bool __read_mostly enable_apicv = 1;
  90module_param(enable_apicv, bool, S_IRUGO);
  91
  92static bool __read_mostly enable_shadow_vmcs = 1;
  93module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  94/*
  95 * If nested=1, nested virtualization is supported, i.e., guests may use
  96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  97 * use VMX instructions.
  98 */
  99static bool __read_mostly nested = 0;
 100module_param(nested, bool, S_IRUGO);
 101
 102#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
 103#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
 104#define KVM_VM_CR0_ALWAYS_ON                                            \
 105        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 106#define KVM_CR4_GUEST_OWNED_BITS                                      \
 107        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 108         | X86_CR4_OSXMMEXCPT)
 109
 110#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 111#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 112
 113#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 114
 115#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
 116
 117/*
 118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 119 * ple_gap:    upper bound on the amount of time between two successive
 120 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 121 *             According to test, this time is usually smaller than 128 cycles.
 122 * ple_window: upper bound on the amount of time a guest is allowed to execute
 123 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 124 *             less than 2^12 cycles
 125 * Time is measured based on a counter that runs at the same rate as the TSC,
 126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 127 */
 128#define KVM_VMX_DEFAULT_PLE_GAP    128
 129#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
 130static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
 131module_param(ple_gap, int, S_IRUGO);
 132
 133static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 134module_param(ple_window, int, S_IRUGO);
 135
 136extern const ulong vmx_return;
 137
 138#define NR_AUTOLOAD_MSRS 8
 139#define VMCS02_POOL_SIZE 1
 140
 141struct vmcs {
 142        u32 revision_id;
 143        u32 abort;
 144        char data[0];
 145};
 146
 147/*
 148 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 149 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 150 * loaded on this CPU (so we can clear them if the CPU goes down).
 151 */
 152struct loaded_vmcs {
 153        struct vmcs *vmcs;
 154        int cpu;
 155        int launched;
 156        struct list_head loaded_vmcss_on_cpu_link;
 157};
 158
 159struct shared_msr_entry {
 160        unsigned index;
 161        u64 data;
 162        u64 mask;
 163};
 164
 165/*
 166 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 167 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 168 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 169 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 170 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 171 * More than one of these structures may exist, if L1 runs multiple L2 guests.
 172 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
 173 * underlying hardware which will be used to run L2.
 174 * This structure is packed to ensure that its layout is identical across
 175 * machines (necessary for live migration).
 176 * If there are changes in this struct, VMCS12_REVISION must be changed.
 177 */
 178typedef u64 natural_width;
 179struct __packed vmcs12 {
 180        /* According to the Intel spec, a VMCS region must start with the
 181         * following two fields. Then follow implementation-specific data.
 182         */
 183        u32 revision_id;
 184        u32 abort;
 185
 186        u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
 187        u32 padding[7]; /* room for future expansion */
 188
 189        u64 io_bitmap_a;
 190        u64 io_bitmap_b;
 191        u64 msr_bitmap;
 192        u64 vm_exit_msr_store_addr;
 193        u64 vm_exit_msr_load_addr;
 194        u64 vm_entry_msr_load_addr;
 195        u64 tsc_offset;
 196        u64 virtual_apic_page_addr;
 197        u64 apic_access_addr;
 198        u64 ept_pointer;
 199        u64 guest_physical_address;
 200        u64 vmcs_link_pointer;
 201        u64 guest_ia32_debugctl;
 202        u64 guest_ia32_pat;
 203        u64 guest_ia32_efer;
 204        u64 guest_ia32_perf_global_ctrl;
 205        u64 guest_pdptr0;
 206        u64 guest_pdptr1;
 207        u64 guest_pdptr2;
 208        u64 guest_pdptr3;
 209        u64 guest_bndcfgs;
 210        u64 host_ia32_pat;
 211        u64 host_ia32_efer;
 212        u64 host_ia32_perf_global_ctrl;
 213        u64 padding64[8]; /* room for future expansion */
 214        /*
 215         * To allow migration of L1 (complete with its L2 guests) between
 216         * machines of different natural widths (32 or 64 bit), we cannot have
 217         * unsigned long fields with no explict size. We use u64 (aliased
 218         * natural_width) instead. Luckily, x86 is little-endian.
 219         */
 220        natural_width cr0_guest_host_mask;
 221        natural_width cr4_guest_host_mask;
 222        natural_width cr0_read_shadow;
 223        natural_width cr4_read_shadow;
 224        natural_width cr3_target_value0;
 225        natural_width cr3_target_value1;
 226        natural_width cr3_target_value2;
 227        natural_width cr3_target_value3;
 228        natural_width exit_qualification;
 229        natural_width guest_linear_address;
 230        natural_width guest_cr0;
 231        natural_width guest_cr3;
 232        natural_width guest_cr4;
 233        natural_width guest_es_base;
 234        natural_width guest_cs_base;
 235        natural_width guest_ss_base;
 236        natural_width guest_ds_base;
 237        natural_width guest_fs_base;
 238        natural_width guest_gs_base;
 239        natural_width guest_ldtr_base;
 240        natural_width guest_tr_base;
 241        natural_width guest_gdtr_base;
 242        natural_width guest_idtr_base;
 243        natural_width guest_dr7;
 244        natural_width guest_rsp;
 245        natural_width guest_rip;
 246        natural_width guest_rflags;
 247        natural_width guest_pending_dbg_exceptions;
 248        natural_width guest_sysenter_esp;
 249        natural_width guest_sysenter_eip;
 250        natural_width host_cr0;
 251        natural_width host_cr3;
 252        natural_width host_cr4;
 253        natural_width host_fs_base;
 254        natural_width host_gs_base;
 255        natural_width host_tr_base;
 256        natural_width host_gdtr_base;
 257        natural_width host_idtr_base;
 258        natural_width host_ia32_sysenter_esp;
 259        natural_width host_ia32_sysenter_eip;
 260        natural_width host_rsp;
 261        natural_width host_rip;
 262        natural_width paddingl[8]; /* room for future expansion */
 263        u32 pin_based_vm_exec_control;
 264        u32 cpu_based_vm_exec_control;
 265        u32 exception_bitmap;
 266        u32 page_fault_error_code_mask;
 267        u32 page_fault_error_code_match;
 268        u32 cr3_target_count;
 269        u32 vm_exit_controls;
 270        u32 vm_exit_msr_store_count;
 271        u32 vm_exit_msr_load_count;
 272        u32 vm_entry_controls;
 273        u32 vm_entry_msr_load_count;
 274        u32 vm_entry_intr_info_field;
 275        u32 vm_entry_exception_error_code;
 276        u32 vm_entry_instruction_len;
 277        u32 tpr_threshold;
 278        u32 secondary_vm_exec_control;
 279        u32 vm_instruction_error;
 280        u32 vm_exit_reason;
 281        u32 vm_exit_intr_info;
 282        u32 vm_exit_intr_error_code;
 283        u32 idt_vectoring_info_field;
 284        u32 idt_vectoring_error_code;
 285        u32 vm_exit_instruction_len;
 286        u32 vmx_instruction_info;
 287        u32 guest_es_limit;
 288        u32 guest_cs_limit;
 289        u32 guest_ss_limit;
 290        u32 guest_ds_limit;
 291        u32 guest_fs_limit;
 292        u32 guest_gs_limit;
 293        u32 guest_ldtr_limit;
 294        u32 guest_tr_limit;
 295        u32 guest_gdtr_limit;
 296        u32 guest_idtr_limit;
 297        u32 guest_es_ar_bytes;
 298        u32 guest_cs_ar_bytes;
 299        u32 guest_ss_ar_bytes;
 300        u32 guest_ds_ar_bytes;
 301        u32 guest_fs_ar_bytes;
 302        u32 guest_gs_ar_bytes;
 303        u32 guest_ldtr_ar_bytes;
 304        u32 guest_tr_ar_bytes;
 305        u32 guest_interruptibility_info;
 306        u32 guest_activity_state;
 307        u32 guest_sysenter_cs;
 308        u32 host_ia32_sysenter_cs;
 309        u32 vmx_preemption_timer_value;
 310        u32 padding32[7]; /* room for future expansion */
 311        u16 virtual_processor_id;
 312        u16 guest_es_selector;
 313        u16 guest_cs_selector;
 314        u16 guest_ss_selector;
 315        u16 guest_ds_selector;
 316        u16 guest_fs_selector;
 317        u16 guest_gs_selector;
 318        u16 guest_ldtr_selector;
 319        u16 guest_tr_selector;
 320        u16 host_es_selector;
 321        u16 host_cs_selector;
 322        u16 host_ss_selector;
 323        u16 host_ds_selector;
 324        u16 host_fs_selector;
 325        u16 host_gs_selector;
 326        u16 host_tr_selector;
 327};
 328
 329/*
 330 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 331 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 332 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 333 */
 334#define VMCS12_REVISION 0x11e57ed0
 335
 336/*
 337 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 338 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 339 * current implementation, 4K are reserved to avoid future complications.
 340 */
 341#define VMCS12_SIZE 0x1000
 342
 343/* Used to remember the last vmcs02 used for some recently used vmcs12s */
 344struct vmcs02_list {
 345        struct list_head list;
 346        gpa_t vmptr;
 347        struct loaded_vmcs vmcs02;
 348};
 349
 350/*
 351 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 352 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 353 */
 354struct nested_vmx {
 355        /* Has the level1 guest done vmxon? */
 356        bool vmxon;
 357        gpa_t vmxon_ptr;
 358
 359        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 360        gpa_t current_vmptr;
 361        /* The host-usable pointer to the above */
 362        struct page *current_vmcs12_page;
 363        struct vmcs12 *current_vmcs12;
 364        struct vmcs *current_shadow_vmcs;
 365        /*
 366         * Indicates if the shadow vmcs must be updated with the
 367         * data hold by vmcs12
 368         */
 369        bool sync_shadow_vmcs;
 370
 371        /* vmcs02_list cache of VMCSs recently used to run L2 guests */
 372        struct list_head vmcs02_pool;
 373        int vmcs02_num;
 374        u64 vmcs01_tsc_offset;
 375        /* L2 must run next, and mustn't decide to exit to L1. */
 376        bool nested_run_pending;
 377        /*
 378         * Guest pages referred to in vmcs02 with host-physical pointers, so
 379         * we must keep them pinned while L2 runs.
 380         */
 381        struct page *apic_access_page;
 382        u64 msr_ia32_feature_control;
 383
 384        struct hrtimer preemption_timer;
 385        bool preemption_timer_expired;
 386};
 387
 388#define POSTED_INTR_ON  0
 389/* Posted-Interrupt Descriptor */
 390struct pi_desc {
 391        u32 pir[8];     /* Posted interrupt requested */
 392        u32 control;    /* bit 0 of control is outstanding notification bit */
 393        u32 rsvd[7];
 394} __aligned(64);
 395
 396static bool pi_test_and_set_on(struct pi_desc *pi_desc)
 397{
 398        return test_and_set_bit(POSTED_INTR_ON,
 399                        (unsigned long *)&pi_desc->control);
 400}
 401
 402static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
 403{
 404        return test_and_clear_bit(POSTED_INTR_ON,
 405                        (unsigned long *)&pi_desc->control);
 406}
 407
 408static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
 409{
 410        return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
 411}
 412
 413struct vcpu_vmx {
 414        struct kvm_vcpu       vcpu;
 415        unsigned long         host_rsp;
 416        u8                    fail;
 417        bool                  nmi_known_unmasked;
 418        u32                   exit_intr_info;
 419        u32                   idt_vectoring_info;
 420        ulong                 rflags;
 421        struct shared_msr_entry *guest_msrs;
 422        int                   nmsrs;
 423        int                   save_nmsrs;
 424        unsigned long         host_idt_base;
 425#ifdef CONFIG_X86_64
 426        u64                   msr_host_kernel_gs_base;
 427        u64                   msr_guest_kernel_gs_base;
 428#endif
 429        u32 vm_entry_controls_shadow;
 430        u32 vm_exit_controls_shadow;
 431        /*
 432         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 433         * non-nested (L1) guest, it always points to vmcs01. For a nested
 434         * guest (L2), it points to a different VMCS.
 435         */
 436        struct loaded_vmcs    vmcs01;
 437        struct loaded_vmcs   *loaded_vmcs;
 438        bool                  __launched; /* temporary, used in vmx_vcpu_run */
 439        struct msr_autoload {
 440                unsigned nr;
 441                struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
 442                struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
 443        } msr_autoload;
 444        struct {
 445                int           loaded;
 446                u16           fs_sel, gs_sel, ldt_sel;
 447#ifdef CONFIG_X86_64
 448                u16           ds_sel, es_sel;
 449#endif
 450                int           gs_ldt_reload_needed;
 451                int           fs_reload_needed;
 452                u64           msr_host_bndcfgs;
 453        } host_state;
 454        struct {
 455                int vm86_active;
 456                ulong save_rflags;
 457                struct kvm_segment segs[8];
 458        } rmode;
 459        struct {
 460                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 461                struct kvm_save_segment {
 462                        u16 selector;
 463                        unsigned long base;
 464                        u32 limit;
 465                        u32 ar;
 466                } seg[8];
 467        } segment_cache;
 468        int vpid;
 469        bool emulation_required;
 470
 471        /* Support for vnmi-less CPUs */
 472        int soft_vnmi_blocked;
 473        ktime_t entry_time;
 474        s64 vnmi_blocked_time;
 475        u32 exit_reason;
 476
 477        bool rdtscp_enabled;
 478
 479        /* Posted interrupt descriptor */
 480        struct pi_desc pi_desc;
 481
 482        /* Support for a guest hypervisor (nested VMX) */
 483        struct nested_vmx nested;
 484};
 485
 486enum segment_cache_field {
 487        SEG_FIELD_SEL = 0,
 488        SEG_FIELD_BASE = 1,
 489        SEG_FIELD_LIMIT = 2,
 490        SEG_FIELD_AR = 3,
 491
 492        SEG_FIELD_NR = 4
 493};
 494
 495static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 496{
 497        return container_of(vcpu, struct vcpu_vmx, vcpu);
 498}
 499
 500#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
 501#define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
 502#define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
 503                                [number##_HIGH] = VMCS12_OFFSET(name)+4
 504
 505
 506static unsigned long shadow_read_only_fields[] = {
 507        /*
 508         * We do NOT shadow fields that are modified when L0
 509         * traps and emulates any vmx instruction (e.g. VMPTRLD,
 510         * VMXON...) executed by L1.
 511         * For example, VM_INSTRUCTION_ERROR is read
 512         * by L1 if a vmx instruction fails (part of the error path).
 513         * Note the code assumes this logic. If for some reason
 514         * we start shadowing these fields then we need to
 515         * force a shadow sync when L0 emulates vmx instructions
 516         * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
 517         * by nested_vmx_failValid)
 518         */
 519        VM_EXIT_REASON,
 520        VM_EXIT_INTR_INFO,
 521        VM_EXIT_INSTRUCTION_LEN,
 522        IDT_VECTORING_INFO_FIELD,
 523        IDT_VECTORING_ERROR_CODE,
 524        VM_EXIT_INTR_ERROR_CODE,
 525        EXIT_QUALIFICATION,
 526        GUEST_LINEAR_ADDRESS,
 527        GUEST_PHYSICAL_ADDRESS
 528};
 529static int max_shadow_read_only_fields =
 530        ARRAY_SIZE(shadow_read_only_fields);
 531
 532static unsigned long shadow_read_write_fields[] = {
 533        GUEST_RIP,
 534        GUEST_RSP,
 535        GUEST_CR0,
 536        GUEST_CR3,
 537        GUEST_CR4,
 538        GUEST_INTERRUPTIBILITY_INFO,
 539        GUEST_RFLAGS,
 540        GUEST_CS_SELECTOR,
 541        GUEST_CS_AR_BYTES,
 542        GUEST_CS_LIMIT,
 543        GUEST_CS_BASE,
 544        GUEST_ES_BASE,
 545        GUEST_BNDCFGS,
 546        CR0_GUEST_HOST_MASK,
 547        CR0_READ_SHADOW,
 548        CR4_READ_SHADOW,
 549        TSC_OFFSET,
 550        EXCEPTION_BITMAP,
 551        CPU_BASED_VM_EXEC_CONTROL,
 552        VM_ENTRY_EXCEPTION_ERROR_CODE,
 553        VM_ENTRY_INTR_INFO_FIELD,
 554        VM_ENTRY_INSTRUCTION_LEN,
 555        VM_ENTRY_EXCEPTION_ERROR_CODE,
 556        HOST_FS_BASE,
 557        HOST_GS_BASE,
 558        HOST_FS_SELECTOR,
 559        HOST_GS_SELECTOR
 560};
 561static int max_shadow_read_write_fields =
 562        ARRAY_SIZE(shadow_read_write_fields);
 563
 564static const unsigned short vmcs_field_to_offset_table[] = {
 565        FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
 566        FIELD(GUEST_ES_SELECTOR, guest_es_selector),
 567        FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
 568        FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
 569        FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
 570        FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
 571        FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
 572        FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
 573        FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
 574        FIELD(HOST_ES_SELECTOR, host_es_selector),
 575        FIELD(HOST_CS_SELECTOR, host_cs_selector),
 576        FIELD(HOST_SS_SELECTOR, host_ss_selector),
 577        FIELD(HOST_DS_SELECTOR, host_ds_selector),
 578        FIELD(HOST_FS_SELECTOR, host_fs_selector),
 579        FIELD(HOST_GS_SELECTOR, host_gs_selector),
 580        FIELD(HOST_TR_SELECTOR, host_tr_selector),
 581        FIELD64(IO_BITMAP_A, io_bitmap_a),
 582        FIELD64(IO_BITMAP_B, io_bitmap_b),
 583        FIELD64(MSR_BITMAP, msr_bitmap),
 584        FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
 585        FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
 586        FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
 587        FIELD64(TSC_OFFSET, tsc_offset),
 588        FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
 589        FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
 590        FIELD64(EPT_POINTER, ept_pointer),
 591        FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
 592        FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
 593        FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
 594        FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
 595        FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
 596        FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
 597        FIELD64(GUEST_PDPTR0, guest_pdptr0),
 598        FIELD64(GUEST_PDPTR1, guest_pdptr1),
 599        FIELD64(GUEST_PDPTR2, guest_pdptr2),
 600        FIELD64(GUEST_PDPTR3, guest_pdptr3),
 601        FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
 602        FIELD64(HOST_IA32_PAT, host_ia32_pat),
 603        FIELD64(HOST_IA32_EFER, host_ia32_efer),
 604        FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
 605        FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
 606        FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
 607        FIELD(EXCEPTION_BITMAP, exception_bitmap),
 608        FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
 609        FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
 610        FIELD(CR3_TARGET_COUNT, cr3_target_count),
 611        FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
 612        FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
 613        FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
 614        FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
 615        FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
 616        FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
 617        FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
 618        FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
 619        FIELD(TPR_THRESHOLD, tpr_threshold),
 620        FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
 621        FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
 622        FIELD(VM_EXIT_REASON, vm_exit_reason),
 623        FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
 624        FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
 625        FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
 626        FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
 627        FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
 628        FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
 629        FIELD(GUEST_ES_LIMIT, guest_es_limit),
 630        FIELD(GUEST_CS_LIMIT, guest_cs_limit),
 631        FIELD(GUEST_SS_LIMIT, guest_ss_limit),
 632        FIELD(GUEST_DS_LIMIT, guest_ds_limit),
 633        FIELD(GUEST_FS_LIMIT, guest_fs_limit),
 634        FIELD(GUEST_GS_LIMIT, guest_gs_limit),
 635        FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
 636        FIELD(GUEST_TR_LIMIT, guest_tr_limit),
 637        FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
 638        FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
 639        FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
 640        FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
 641        FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
 642        FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
 643        FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
 644        FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
 645        FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
 646        FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
 647        FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
 648        FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
 649        FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
 650        FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
 651        FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
 652        FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
 653        FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
 654        FIELD(CR0_READ_SHADOW, cr0_read_shadow),
 655        FIELD(CR4_READ_SHADOW, cr4_read_shadow),
 656        FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
 657        FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
 658        FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
 659        FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
 660        FIELD(EXIT_QUALIFICATION, exit_qualification),
 661        FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
 662        FIELD(GUEST_CR0, guest_cr0),
 663        FIELD(GUEST_CR3, guest_cr3),
 664        FIELD(GUEST_CR4, guest_cr4),
 665        FIELD(GUEST_ES_BASE, guest_es_base),
 666        FIELD(GUEST_CS_BASE, guest_cs_base),
 667        FIELD(GUEST_SS_BASE, guest_ss_base),
 668        FIELD(GUEST_DS_BASE, guest_ds_base),
 669        FIELD(GUEST_FS_BASE, guest_fs_base),
 670        FIELD(GUEST_GS_BASE, guest_gs_base),
 671        FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
 672        FIELD(GUEST_TR_BASE, guest_tr_base),
 673        FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
 674        FIELD(GUEST_IDTR_BASE, guest_idtr_base),
 675        FIELD(GUEST_DR7, guest_dr7),
 676        FIELD(GUEST_RSP, guest_rsp),
 677        FIELD(GUEST_RIP, guest_rip),
 678        FIELD(GUEST_RFLAGS, guest_rflags),
 679        FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
 680        FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
 681        FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
 682        FIELD(HOST_CR0, host_cr0),
 683        FIELD(HOST_CR3, host_cr3),
 684        FIELD(HOST_CR4, host_cr4),
 685        FIELD(HOST_FS_BASE, host_fs_base),
 686        FIELD(HOST_GS_BASE, host_gs_base),
 687        FIELD(HOST_TR_BASE, host_tr_base),
 688        FIELD(HOST_GDTR_BASE, host_gdtr_base),
 689        FIELD(HOST_IDTR_BASE, host_idtr_base),
 690        FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
 691        FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
 692        FIELD(HOST_RSP, host_rsp),
 693        FIELD(HOST_RIP, host_rip),
 694};
 695static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
 696
 697static inline short vmcs_field_to_offset(unsigned long field)
 698{
 699        if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
 700                return -1;
 701        return vmcs_field_to_offset_table[field];
 702}
 703
 704static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
 705{
 706        return to_vmx(vcpu)->nested.current_vmcs12;
 707}
 708
 709static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
 710{
 711        struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
 712        if (is_error_page(page))
 713                return NULL;
 714
 715        return page;
 716}
 717
 718static void nested_release_page(struct page *page)
 719{
 720        kvm_release_page_dirty(page);
 721}
 722
 723static void nested_release_page_clean(struct page *page)
 724{
 725        kvm_release_page_clean(page);
 726}
 727
 728static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
 729static u64 construct_eptp(unsigned long root_hpa);
 730static void kvm_cpu_vmxon(u64 addr);
 731static void kvm_cpu_vmxoff(void);
 732static bool vmx_mpx_supported(void);
 733static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
 734static void vmx_set_segment(struct kvm_vcpu *vcpu,
 735                            struct kvm_segment *var, int seg);
 736static void vmx_get_segment(struct kvm_vcpu *vcpu,
 737                            struct kvm_segment *var, int seg);
 738static bool guest_state_valid(struct kvm_vcpu *vcpu);
 739static u32 vmx_segment_access_rights(struct kvm_segment *var);
 740static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
 741static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
 742static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
 743static bool vmx_mpx_supported(void);
 744
 745static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 746static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 747/*
 748 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 749 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 750 */
 751static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 752static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
 753
 754static unsigned long *vmx_io_bitmap_a;
 755static unsigned long *vmx_io_bitmap_b;
 756static unsigned long *vmx_msr_bitmap_legacy;
 757static unsigned long *vmx_msr_bitmap_longmode;
 758static unsigned long *vmx_msr_bitmap_legacy_x2apic;
 759static unsigned long *vmx_msr_bitmap_longmode_x2apic;
 760static unsigned long *vmx_vmread_bitmap;
 761static unsigned long *vmx_vmwrite_bitmap;
 762
 763static bool cpu_has_load_ia32_efer;
 764static bool cpu_has_load_perf_global_ctrl;
 765
 766static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 767static DEFINE_SPINLOCK(vmx_vpid_lock);
 768
 769static struct vmcs_config {
 770        int size;
 771        int order;
 772        u32 revision_id;
 773        u32 pin_based_exec_ctrl;
 774        u32 cpu_based_exec_ctrl;
 775        u32 cpu_based_2nd_exec_ctrl;
 776        u32 vmexit_ctrl;
 777        u32 vmentry_ctrl;
 778} vmcs_config;
 779
 780static struct vmx_capability {
 781        u32 ept;
 782        u32 vpid;
 783} vmx_capability;
 784
 785#define VMX_SEGMENT_FIELD(seg)                                  \
 786        [VCPU_SREG_##seg] = {                                   \
 787                .selector = GUEST_##seg##_SELECTOR,             \
 788                .base = GUEST_##seg##_BASE,                     \
 789                .limit = GUEST_##seg##_LIMIT,                   \
 790                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 791        }
 792
 793static const struct kvm_vmx_segment_field {
 794        unsigned selector;
 795        unsigned base;
 796        unsigned limit;
 797        unsigned ar_bytes;
 798} kvm_vmx_segment_fields[] = {
 799        VMX_SEGMENT_FIELD(CS),
 800        VMX_SEGMENT_FIELD(DS),
 801        VMX_SEGMENT_FIELD(ES),
 802        VMX_SEGMENT_FIELD(FS),
 803        VMX_SEGMENT_FIELD(GS),
 804        VMX_SEGMENT_FIELD(SS),
 805        VMX_SEGMENT_FIELD(TR),
 806        VMX_SEGMENT_FIELD(LDTR),
 807};
 808
 809static u64 host_efer;
 810
 811static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 812
 813/*
 814 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
 815 * away by decrementing the array size.
 816 */
 817static const u32 vmx_msr_index[] = {
 818#ifdef CONFIG_X86_64
 819        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 820#endif
 821        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 822};
 823#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
 824
 825static inline bool is_page_fault(u32 intr_info)
 826{
 827        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 828                             INTR_INFO_VALID_MASK)) ==
 829                (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
 830}
 831
 832static inline bool is_no_device(u32 intr_info)
 833{
 834        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 835                             INTR_INFO_VALID_MASK)) ==
 836                (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
 837}
 838
 839static inline bool is_invalid_opcode(u32 intr_info)
 840{
 841        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 842                             INTR_INFO_VALID_MASK)) ==
 843                (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
 844}
 845
 846static inline bool is_external_interrupt(u32 intr_info)
 847{
 848        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 849                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
 850}
 851
 852static inline bool is_machine_check(u32 intr_info)
 853{
 854        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 855                             INTR_INFO_VALID_MASK)) ==
 856                (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
 857}
 858
 859static inline bool cpu_has_vmx_msr_bitmap(void)
 860{
 861        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
 862}
 863
 864static inline bool cpu_has_vmx_tpr_shadow(void)
 865{
 866        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
 867}
 868
 869static inline bool vm_need_tpr_shadow(struct kvm *kvm)
 870{
 871        return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
 872}
 873
 874static inline bool cpu_has_secondary_exec_ctrls(void)
 875{
 876        return vmcs_config.cpu_based_exec_ctrl &
 877                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 878}
 879
 880static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
 881{
 882        return vmcs_config.cpu_based_2nd_exec_ctrl &
 883                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 884}
 885
 886static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
 887{
 888        return vmcs_config.cpu_based_2nd_exec_ctrl &
 889                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 890}
 891
 892static inline bool cpu_has_vmx_apic_register_virt(void)
 893{
 894        return vmcs_config.cpu_based_2nd_exec_ctrl &
 895                SECONDARY_EXEC_APIC_REGISTER_VIRT;
 896}
 897
 898static inline bool cpu_has_vmx_virtual_intr_delivery(void)
 899{
 900        return vmcs_config.cpu_based_2nd_exec_ctrl &
 901                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
 902}
 903
 904static inline bool cpu_has_vmx_posted_intr(void)
 905{
 906        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
 907}
 908
 909static inline bool cpu_has_vmx_apicv(void)
 910{
 911        return cpu_has_vmx_apic_register_virt() &&
 912                cpu_has_vmx_virtual_intr_delivery() &&
 913                cpu_has_vmx_posted_intr();
 914}
 915
 916static inline bool cpu_has_vmx_flexpriority(void)
 917{
 918        return cpu_has_vmx_tpr_shadow() &&
 919                cpu_has_vmx_virtualize_apic_accesses();
 920}
 921
 922static inline bool cpu_has_vmx_ept_execute_only(void)
 923{
 924        return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
 925}
 926
 927static inline bool cpu_has_vmx_eptp_uncacheable(void)
 928{
 929        return vmx_capability.ept & VMX_EPTP_UC_BIT;
 930}
 931
 932static inline bool cpu_has_vmx_eptp_writeback(void)
 933{
 934        return vmx_capability.ept & VMX_EPTP_WB_BIT;
 935}
 936
 937static inline bool cpu_has_vmx_ept_2m_page(void)
 938{
 939        return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
 940}
 941
 942static inline bool cpu_has_vmx_ept_1g_page(void)
 943{
 944        return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
 945}
 946
 947static inline bool cpu_has_vmx_ept_4levels(void)
 948{
 949        return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
 950}
 951
 952static inline bool cpu_has_vmx_ept_ad_bits(void)
 953{
 954        return vmx_capability.ept & VMX_EPT_AD_BIT;
 955}
 956
 957static inline bool cpu_has_vmx_invept_context(void)
 958{
 959        return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
 960}
 961
 962static inline bool cpu_has_vmx_invept_global(void)
 963{
 964        return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
 965}
 966
 967static inline bool cpu_has_vmx_invvpid_single(void)
 968{
 969        return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
 970}
 971
 972static inline bool cpu_has_vmx_invvpid_global(void)
 973{
 974        return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
 975}
 976
 977static inline bool cpu_has_vmx_ept(void)
 978{
 979        return vmcs_config.cpu_based_2nd_exec_ctrl &
 980                SECONDARY_EXEC_ENABLE_EPT;
 981}
 982
 983static inline bool cpu_has_vmx_unrestricted_guest(void)
 984{
 985        return vmcs_config.cpu_based_2nd_exec_ctrl &
 986                SECONDARY_EXEC_UNRESTRICTED_GUEST;
 987}
 988
 989static inline bool cpu_has_vmx_ple(void)
 990{
 991        return vmcs_config.cpu_based_2nd_exec_ctrl &
 992                SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 993}
 994
 995static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
 996{
 997        return flexpriority_enabled && irqchip_in_kernel(kvm);
 998}
 999
1000static inline bool cpu_has_vmx_vpid(void)
1001{
1002        return vmcs_config.cpu_based_2nd_exec_ctrl &
1003                SECONDARY_EXEC_ENABLE_VPID;
1004}
1005
1006static inline bool cpu_has_vmx_rdtscp(void)
1007{
1008        return vmcs_config.cpu_based_2nd_exec_ctrl &
1009                SECONDARY_EXEC_RDTSCP;
1010}
1011
1012static inline bool cpu_has_vmx_invpcid(void)
1013{
1014        return vmcs_config.cpu_based_2nd_exec_ctrl &
1015                SECONDARY_EXEC_ENABLE_INVPCID;
1016}
1017
1018static inline bool cpu_has_virtual_nmis(void)
1019{
1020        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1021}
1022
1023static inline bool cpu_has_vmx_wbinvd_exit(void)
1024{
1025        return vmcs_config.cpu_based_2nd_exec_ctrl &
1026                SECONDARY_EXEC_WBINVD_EXITING;
1027}
1028
1029static inline bool cpu_has_vmx_shadow_vmcs(void)
1030{
1031        u64 vmx_msr;
1032        rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1033        /* check if the cpu supports writing r/o exit information fields */
1034        if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1035                return false;
1036
1037        return vmcs_config.cpu_based_2nd_exec_ctrl &
1038                SECONDARY_EXEC_SHADOW_VMCS;
1039}
1040
1041static inline bool report_flexpriority(void)
1042{
1043        return flexpriority_enabled;
1044}
1045
1046static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1047{
1048        return vmcs12->cpu_based_vm_exec_control & bit;
1049}
1050
1051static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1052{
1053        return (vmcs12->cpu_based_vm_exec_control &
1054                        CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1055                (vmcs12->secondary_vm_exec_control & bit);
1056}
1057
1058static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1059{
1060        return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1061}
1062
1063static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1064{
1065        return vmcs12->pin_based_vm_exec_control &
1066                PIN_BASED_VMX_PREEMPTION_TIMER;
1067}
1068
1069static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1070{
1071        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1072}
1073
1074static inline bool is_exception(u32 intr_info)
1075{
1076        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1077                == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1078}
1079
1080static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1081                              u32 exit_intr_info,
1082                              unsigned long exit_qualification);
1083static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1084                        struct vmcs12 *vmcs12,
1085                        u32 reason, unsigned long qualification);
1086
1087static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1088{
1089        int i;
1090
1091        for (i = 0; i < vmx->nmsrs; ++i)
1092                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1093                        return i;
1094        return -1;
1095}
1096
1097static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1098{
1099    struct {
1100        u64 vpid : 16;
1101        u64 rsvd : 48;
1102        u64 gva;
1103    } operand = { vpid, 0, gva };
1104
1105    asm volatile (__ex(ASM_VMX_INVVPID)
1106                  /* CF==1 or ZF==1 --> rc = -1 */
1107                  "; ja 1f ; ud2 ; 1:"
1108                  : : "a"(&operand), "c"(ext) : "cc", "memory");
1109}
1110
1111static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1112{
1113        struct {
1114                u64 eptp, gpa;
1115        } operand = {eptp, gpa};
1116
1117        asm volatile (__ex(ASM_VMX_INVEPT)
1118                        /* CF==1 or ZF==1 --> rc = -1 */
1119                        "; ja 1f ; ud2 ; 1:\n"
1120                        : : "a" (&operand), "c" (ext) : "cc", "memory");
1121}
1122
1123static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1124{
1125        int i;
1126
1127        i = __find_msr_index(vmx, msr);
1128        if (i >= 0)
1129                return &vmx->guest_msrs[i];
1130        return NULL;
1131}
1132
1133static void vmcs_clear(struct vmcs *vmcs)
1134{
1135        u64 phys_addr = __pa(vmcs);
1136        u8 error;
1137
1138        asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1139                      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1140                      : "cc", "memory");
1141        if (error)
1142                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1143                       vmcs, phys_addr);
1144}
1145
1146static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1147{
1148        vmcs_clear(loaded_vmcs->vmcs);
1149        loaded_vmcs->cpu = -1;
1150        loaded_vmcs->launched = 0;
1151}
1152
1153static void vmcs_load(struct vmcs *vmcs)
1154{
1155        u64 phys_addr = __pa(vmcs);
1156        u8 error;
1157
1158        asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1159                        : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1160                        : "cc", "memory");
1161        if (error)
1162                printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1163                       vmcs, phys_addr);
1164}
1165
1166#ifdef CONFIG_KEXEC
1167/*
1168 * This bitmap is used to indicate whether the vmclear
1169 * operation is enabled on all cpus. All disabled by
1170 * default.
1171 */
1172static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1173
1174static inline void crash_enable_local_vmclear(int cpu)
1175{
1176        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1177}
1178
1179static inline void crash_disable_local_vmclear(int cpu)
1180{
1181        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1182}
1183
1184static inline int crash_local_vmclear_enabled(int cpu)
1185{
1186        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1187}
1188
1189static void crash_vmclear_local_loaded_vmcss(void)
1190{
1191        int cpu = raw_smp_processor_id();
1192        struct loaded_vmcs *v;
1193
1194        if (!crash_local_vmclear_enabled(cpu))
1195                return;
1196
1197        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1198                            loaded_vmcss_on_cpu_link)
1199                vmcs_clear(v->vmcs);
1200}
1201#else
1202static inline void crash_enable_local_vmclear(int cpu) { }
1203static inline void crash_disable_local_vmclear(int cpu) { }
1204#endif /* CONFIG_KEXEC */
1205
1206static void __loaded_vmcs_clear(void *arg)
1207{
1208        struct loaded_vmcs *loaded_vmcs = arg;
1209        int cpu = raw_smp_processor_id();
1210
1211        if (loaded_vmcs->cpu != cpu)
1212                return; /* vcpu migration can race with cpu offline */
1213        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1214                per_cpu(current_vmcs, cpu) = NULL;
1215        crash_disable_local_vmclear(cpu);
1216        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1217
1218        /*
1219         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1220         * is before setting loaded_vmcs->vcpu to -1 which is done in
1221         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1222         * then adds the vmcs into percpu list before it is deleted.
1223         */
1224        smp_wmb();
1225
1226        loaded_vmcs_init(loaded_vmcs);
1227        crash_enable_local_vmclear(cpu);
1228}
1229
1230static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1231{
1232        int cpu = loaded_vmcs->cpu;
1233
1234        if (cpu != -1)
1235                smp_call_function_single(cpu,
1236                         __loaded_vmcs_clear, loaded_vmcs, 1);
1237}
1238
1239static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1240{
1241        if (vmx->vpid == 0)
1242                return;
1243
1244        if (cpu_has_vmx_invvpid_single())
1245                __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1246}
1247
1248static inline void vpid_sync_vcpu_global(void)
1249{
1250        if (cpu_has_vmx_invvpid_global())
1251                __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1252}
1253
1254static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1255{
1256        if (cpu_has_vmx_invvpid_single())
1257                vpid_sync_vcpu_single(vmx);
1258        else
1259                vpid_sync_vcpu_global();
1260}
1261
1262static inline void ept_sync_global(void)
1263{
1264        if (cpu_has_vmx_invept_global())
1265                __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1266}
1267
1268static inline void ept_sync_context(u64 eptp)
1269{
1270        if (enable_ept) {
1271                if (cpu_has_vmx_invept_context())
1272                        __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1273                else
1274                        ept_sync_global();
1275        }
1276}
1277
1278static __always_inline unsigned long vmcs_readl(unsigned long field)
1279{
1280        unsigned long value;
1281
1282        asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1283                      : "=a"(value) : "d"(field) : "cc");
1284        return value;
1285}
1286
1287static __always_inline u16 vmcs_read16(unsigned long field)
1288{
1289        return vmcs_readl(field);
1290}
1291
1292static __always_inline u32 vmcs_read32(unsigned long field)
1293{
1294        return vmcs_readl(field);
1295}
1296
1297static __always_inline u64 vmcs_read64(unsigned long field)
1298{
1299#ifdef CONFIG_X86_64
1300        return vmcs_readl(field);
1301#else
1302        return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1303#endif
1304}
1305
1306static noinline void vmwrite_error(unsigned long field, unsigned long value)
1307{
1308        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1309               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1310        dump_stack();
1311}
1312
1313static void vmcs_writel(unsigned long field, unsigned long value)
1314{
1315        u8 error;
1316
1317        asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1318                       : "=q"(error) : "a"(value), "d"(field) : "cc");
1319        if (unlikely(error))
1320                vmwrite_error(field, value);
1321}
1322
1323static void vmcs_write16(unsigned long field, u16 value)
1324{
1325        vmcs_writel(field, value);
1326}
1327
1328static void vmcs_write32(unsigned long field, u32 value)
1329{
1330        vmcs_writel(field, value);
1331}
1332
1333static void vmcs_write64(unsigned long field, u64 value)
1334{
1335        vmcs_writel(field, value);
1336#ifndef CONFIG_X86_64
1337        asm volatile ("");
1338        vmcs_writel(field+1, value >> 32);
1339#endif
1340}
1341
1342static void vmcs_clear_bits(unsigned long field, u32 mask)
1343{
1344        vmcs_writel(field, vmcs_readl(field) & ~mask);
1345}
1346
1347static void vmcs_set_bits(unsigned long field, u32 mask)
1348{
1349        vmcs_writel(field, vmcs_readl(field) | mask);
1350}
1351
1352static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1353{
1354        vmcs_write32(VM_ENTRY_CONTROLS, val);
1355        vmx->vm_entry_controls_shadow = val;
1356}
1357
1358static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1359{
1360        if (vmx->vm_entry_controls_shadow != val)
1361                vm_entry_controls_init(vmx, val);
1362}
1363
1364static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1365{
1366        return vmx->vm_entry_controls_shadow;
1367}
1368
1369
1370static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1371{
1372        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1373}
1374
1375static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1376{
1377        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1378}
1379
1380static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1381{
1382        vmcs_write32(VM_EXIT_CONTROLS, val);
1383        vmx->vm_exit_controls_shadow = val;
1384}
1385
1386static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1387{
1388        if (vmx->vm_exit_controls_shadow != val)
1389                vm_exit_controls_init(vmx, val);
1390}
1391
1392static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1393{
1394        return vmx->vm_exit_controls_shadow;
1395}
1396
1397
1398static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1399{
1400        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1401}
1402
1403static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1404{
1405        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1406}
1407
1408static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1409{
1410        vmx->segment_cache.bitmask = 0;
1411}
1412
1413static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1414                                       unsigned field)
1415{
1416        bool ret;
1417        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1418
1419        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1420                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1421                vmx->segment_cache.bitmask = 0;
1422        }
1423        ret = vmx->segment_cache.bitmask & mask;
1424        vmx->segment_cache.bitmask |= mask;
1425        return ret;
1426}
1427
1428static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1429{
1430        u16 *p = &vmx->segment_cache.seg[seg].selector;
1431
1432        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1433                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1434        return *p;
1435}
1436
1437static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1438{
1439        ulong *p = &vmx->segment_cache.seg[seg].base;
1440
1441        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1442                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1443        return *p;
1444}
1445
1446static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1447{
1448        u32 *p = &vmx->segment_cache.seg[seg].limit;
1449
1450        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1451                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1452        return *p;
1453}
1454
1455static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1456{
1457        u32 *p = &vmx->segment_cache.seg[seg].ar;
1458
1459        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1460                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1461        return *p;
1462}
1463
1464static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1465{
1466        u32 eb;
1467
1468        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1469             (1u << NM_VECTOR) | (1u << DB_VECTOR);
1470        if ((vcpu->guest_debug &
1471             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1472            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1473                eb |= 1u << BP_VECTOR;
1474        if (to_vmx(vcpu)->rmode.vm86_active)
1475                eb = ~0;
1476        if (enable_ept)
1477                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1478        if (vcpu->fpu_active)
1479                eb &= ~(1u << NM_VECTOR);
1480
1481        /* When we are running a nested L2 guest and L1 specified for it a
1482         * certain exception bitmap, we must trap the same exceptions and pass
1483         * them to L1. When running L2, we will only handle the exceptions
1484         * specified above if L1 did not want them.
1485         */
1486        if (is_guest_mode(vcpu))
1487                eb |= get_vmcs12(vcpu)->exception_bitmap;
1488
1489        vmcs_write32(EXCEPTION_BITMAP, eb);
1490}
1491
1492static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1493                unsigned long entry, unsigned long exit)
1494{
1495        vm_entry_controls_clearbit(vmx, entry);
1496        vm_exit_controls_clearbit(vmx, exit);
1497}
1498
1499static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1500{
1501        unsigned i;
1502        struct msr_autoload *m = &vmx->msr_autoload;
1503
1504        switch (msr) {
1505        case MSR_EFER:
1506                if (cpu_has_load_ia32_efer) {
1507                        clear_atomic_switch_msr_special(vmx,
1508                                        VM_ENTRY_LOAD_IA32_EFER,
1509                                        VM_EXIT_LOAD_IA32_EFER);
1510                        return;
1511                }
1512                break;
1513        case MSR_CORE_PERF_GLOBAL_CTRL:
1514                if (cpu_has_load_perf_global_ctrl) {
1515                        clear_atomic_switch_msr_special(vmx,
1516                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1517                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1518                        return;
1519                }
1520                break;
1521        }
1522
1523        for (i = 0; i < m->nr; ++i)
1524                if (m->guest[i].index == msr)
1525                        break;
1526
1527        if (i == m->nr)
1528                return;
1529        --m->nr;
1530        m->guest[i] = m->guest[m->nr];
1531        m->host[i] = m->host[m->nr];
1532        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1533        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1534}
1535
1536static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1537                unsigned long entry, unsigned long exit,
1538                unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1539                u64 guest_val, u64 host_val)
1540{
1541        vmcs_write64(guest_val_vmcs, guest_val);
1542        vmcs_write64(host_val_vmcs, host_val);
1543        vm_entry_controls_setbit(vmx, entry);
1544        vm_exit_controls_setbit(vmx, exit);
1545}
1546
1547static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1548                                  u64 guest_val, u64 host_val)
1549{
1550        unsigned i;
1551        struct msr_autoload *m = &vmx->msr_autoload;
1552
1553        switch (msr) {
1554        case MSR_EFER:
1555                if (cpu_has_load_ia32_efer) {
1556                        add_atomic_switch_msr_special(vmx,
1557                                        VM_ENTRY_LOAD_IA32_EFER,
1558                                        VM_EXIT_LOAD_IA32_EFER,
1559                                        GUEST_IA32_EFER,
1560                                        HOST_IA32_EFER,
1561                                        guest_val, host_val);
1562                        return;
1563                }
1564                break;
1565        case MSR_CORE_PERF_GLOBAL_CTRL:
1566                if (cpu_has_load_perf_global_ctrl) {
1567                        add_atomic_switch_msr_special(vmx,
1568                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1569                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1570                                        GUEST_IA32_PERF_GLOBAL_CTRL,
1571                                        HOST_IA32_PERF_GLOBAL_CTRL,
1572                                        guest_val, host_val);
1573                        return;
1574                }
1575                break;
1576        }
1577
1578        for (i = 0; i < m->nr; ++i)
1579                if (m->guest[i].index == msr)
1580                        break;
1581
1582        if (i == NR_AUTOLOAD_MSRS) {
1583                printk_once(KERN_WARNING "Not enough msr switch entries. "
1584                                "Can't add msr %x\n", msr);
1585                return;
1586        } else if (i == m->nr) {
1587                ++m->nr;
1588                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1589                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1590        }
1591
1592        m->guest[i].index = msr;
1593        m->guest[i].value = guest_val;
1594        m->host[i].index = msr;
1595        m->host[i].value = host_val;
1596}
1597
1598static void reload_tss(void)
1599{
1600        /*
1601         * VT restores TR but not its size.  Useless.
1602         */
1603        struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1604        struct desc_struct *descs;
1605
1606        descs = (void *)gdt->address;
1607        descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1608        load_TR_desc();
1609}
1610
1611static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1612{
1613        u64 guest_efer;
1614        u64 ignore_bits;
1615
1616        guest_efer = vmx->vcpu.arch.efer;
1617
1618        /*
1619         * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1620         * outside long mode
1621         */
1622        ignore_bits = EFER_NX | EFER_SCE;
1623#ifdef CONFIG_X86_64
1624        ignore_bits |= EFER_LMA | EFER_LME;
1625        /* SCE is meaningful only in long mode on Intel */
1626        if (guest_efer & EFER_LMA)
1627                ignore_bits &= ~(u64)EFER_SCE;
1628#endif
1629        guest_efer &= ~ignore_bits;
1630        guest_efer |= host_efer & ignore_bits;
1631        vmx->guest_msrs[efer_offset].data = guest_efer;
1632        vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1633
1634        clear_atomic_switch_msr(vmx, MSR_EFER);
1635        /* On ept, can't emulate nx, and must switch nx atomically */
1636        if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1637                guest_efer = vmx->vcpu.arch.efer;
1638                if (!(guest_efer & EFER_LMA))
1639                        guest_efer &= ~EFER_LME;
1640                add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1641                return false;
1642        }
1643
1644        return true;
1645}
1646
1647static unsigned long segment_base(u16 selector)
1648{
1649        struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1650        struct desc_struct *d;
1651        unsigned long table_base;
1652        unsigned long v;
1653
1654        if (!(selector & ~3))
1655                return 0;
1656
1657        table_base = gdt->address;
1658
1659        if (selector & 4) {           /* from ldt */
1660                u16 ldt_selector = kvm_read_ldt();
1661
1662                if (!(ldt_selector & ~3))
1663                        return 0;
1664
1665                table_base = segment_base(ldt_selector);
1666        }
1667        d = (struct desc_struct *)(table_base + (selector & ~7));
1668        v = get_desc_base(d);
1669#ifdef CONFIG_X86_64
1670       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1671               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1672#endif
1673        return v;
1674}
1675
1676static inline unsigned long kvm_read_tr_base(void)
1677{
1678        u16 tr;
1679        asm("str %0" : "=g"(tr));
1680        return segment_base(tr);
1681}
1682
1683static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1684{
1685        struct vcpu_vmx *vmx = to_vmx(vcpu);
1686        int i;
1687
1688        if (vmx->host_state.loaded)
1689                return;
1690
1691        vmx->host_state.loaded = 1;
1692        /*
1693         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1694         * allow segment selectors with cpl > 0 or ti == 1.
1695         */
1696        vmx->host_state.ldt_sel = kvm_read_ldt();
1697        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1698        savesegment(fs, vmx->host_state.fs_sel);
1699        if (!(vmx->host_state.fs_sel & 7)) {
1700                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1701                vmx->host_state.fs_reload_needed = 0;
1702        } else {
1703                vmcs_write16(HOST_FS_SELECTOR, 0);
1704                vmx->host_state.fs_reload_needed = 1;
1705        }
1706        savesegment(gs, vmx->host_state.gs_sel);
1707        if (!(vmx->host_state.gs_sel & 7))
1708                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1709        else {
1710                vmcs_write16(HOST_GS_SELECTOR, 0);
1711                vmx->host_state.gs_ldt_reload_needed = 1;
1712        }
1713
1714#ifdef CONFIG_X86_64
1715        savesegment(ds, vmx->host_state.ds_sel);
1716        savesegment(es, vmx->host_state.es_sel);
1717#endif
1718
1719#ifdef CONFIG_X86_64
1720        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1721        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1722#else
1723        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1724        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1725#endif
1726
1727#ifdef CONFIG_X86_64
1728        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1729        if (is_long_mode(&vmx->vcpu))
1730                wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1731#endif
1732        if (boot_cpu_has(X86_FEATURE_MPX))
1733                rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1734        for (i = 0; i < vmx->save_nmsrs; ++i)
1735                kvm_set_shared_msr(vmx->guest_msrs[i].index,
1736                                   vmx->guest_msrs[i].data,
1737                                   vmx->guest_msrs[i].mask);
1738}
1739
1740static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1741{
1742        if (!vmx->host_state.loaded)
1743                return;
1744
1745        ++vmx->vcpu.stat.host_state_reload;
1746        vmx->host_state.loaded = 0;
1747#ifdef CONFIG_X86_64
1748        if (is_long_mode(&vmx->vcpu))
1749                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1750#endif
1751        if (vmx->host_state.gs_ldt_reload_needed) {
1752                kvm_load_ldt(vmx->host_state.ldt_sel);
1753#ifdef CONFIG_X86_64
1754                load_gs_index(vmx->host_state.gs_sel);
1755#else
1756                loadsegment(gs, vmx->host_state.gs_sel);
1757#endif
1758        }
1759        if (vmx->host_state.fs_reload_needed)
1760                loadsegment(fs, vmx->host_state.fs_sel);
1761#ifdef CONFIG_X86_64
1762        if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1763                loadsegment(ds, vmx->host_state.ds_sel);
1764                loadsegment(es, vmx->host_state.es_sel);
1765        }
1766#endif
1767        reload_tss();
1768#ifdef CONFIG_X86_64
1769        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1770#endif
1771        if (vmx->host_state.msr_host_bndcfgs)
1772                wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1773        /*
1774         * If the FPU is not active (through the host task or
1775         * the guest vcpu), then restore the cr0.TS bit.
1776         */
1777        if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1778                stts();
1779        load_gdt(&__get_cpu_var(host_gdt));
1780}
1781
1782static void vmx_load_host_state(struct vcpu_vmx *vmx)
1783{
1784        preempt_disable();
1785        __vmx_load_host_state(vmx);
1786        preempt_enable();
1787}
1788
1789/*
1790 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1791 * vcpu mutex is already taken.
1792 */
1793static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1794{
1795        struct vcpu_vmx *vmx = to_vmx(vcpu);
1796        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1797
1798        if (!vmm_exclusive)
1799                kvm_cpu_vmxon(phys_addr);
1800        else if (vmx->loaded_vmcs->cpu != cpu)
1801                loaded_vmcs_clear(vmx->loaded_vmcs);
1802
1803        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1804                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1805                vmcs_load(vmx->loaded_vmcs->vmcs);
1806        }
1807
1808        if (vmx->loaded_vmcs->cpu != cpu) {
1809                struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1810                unsigned long sysenter_esp;
1811
1812                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1813                local_irq_disable();
1814                crash_disable_local_vmclear(cpu);
1815
1816                /*
1817                 * Read loaded_vmcs->cpu should be before fetching
1818                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1819                 * See the comments in __loaded_vmcs_clear().
1820                 */
1821                smp_rmb();
1822
1823                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1824                         &per_cpu(loaded_vmcss_on_cpu, cpu));
1825                crash_enable_local_vmclear(cpu);
1826                local_irq_enable();
1827
1828                /*
1829                 * Linux uses per-cpu TSS and GDT, so set these when switching
1830                 * processors.
1831                 */
1832                vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1833                vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1834
1835                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1836                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1837                vmx->loaded_vmcs->cpu = cpu;
1838        }
1839}
1840
1841static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1842{
1843        __vmx_load_host_state(to_vmx(vcpu));
1844        if (!vmm_exclusive) {
1845                __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1846                vcpu->cpu = -1;
1847                kvm_cpu_vmxoff();
1848        }
1849}
1850
1851static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1852{
1853        ulong cr0;
1854
1855        if (vcpu->fpu_active)
1856                return;
1857        vcpu->fpu_active = 1;
1858        cr0 = vmcs_readl(GUEST_CR0);
1859        cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1860        cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1861        vmcs_writel(GUEST_CR0, cr0);
1862        update_exception_bitmap(vcpu);
1863        vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1864        if (is_guest_mode(vcpu))
1865                vcpu->arch.cr0_guest_owned_bits &=
1866                        ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1867        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1868}
1869
1870static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1871
1872/*
1873 * Return the cr0 value that a nested guest would read. This is a combination
1874 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1875 * its hypervisor (cr0_read_shadow).
1876 */
1877static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1878{
1879        return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1880                (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1881}
1882static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1883{
1884        return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1885                (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1886}
1887
1888static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1889{
1890        /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1891         * set this *before* calling this function.
1892         */
1893        vmx_decache_cr0_guest_bits(vcpu);
1894        vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1895        update_exception_bitmap(vcpu);
1896        vcpu->arch.cr0_guest_owned_bits = 0;
1897        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1898        if (is_guest_mode(vcpu)) {
1899                /*
1900                 * L1's specified read shadow might not contain the TS bit,
1901                 * so now that we turned on shadowing of this bit, we need to
1902                 * set this bit of the shadow. Like in nested_vmx_run we need
1903                 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1904                 * up-to-date here because we just decached cr0.TS (and we'll
1905                 * only update vmcs12->guest_cr0 on nested exit).
1906                 */
1907                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1908                vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1909                        (vcpu->arch.cr0 & X86_CR0_TS);
1910                vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1911        } else
1912                vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1913}
1914
1915static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1916{
1917        unsigned long rflags, save_rflags;
1918
1919        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1920                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1921                rflags = vmcs_readl(GUEST_RFLAGS);
1922                if (to_vmx(vcpu)->rmode.vm86_active) {
1923                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1924                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1925                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1926                }
1927                to_vmx(vcpu)->rflags = rflags;
1928        }
1929        return to_vmx(vcpu)->rflags;
1930}
1931
1932static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1933{
1934        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1935        to_vmx(vcpu)->rflags = rflags;
1936        if (to_vmx(vcpu)->rmode.vm86_active) {
1937                to_vmx(vcpu)->rmode.save_rflags = rflags;
1938                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1939        }
1940        vmcs_writel(GUEST_RFLAGS, rflags);
1941}
1942
1943static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1944{
1945        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1946        int ret = 0;
1947
1948        if (interruptibility & GUEST_INTR_STATE_STI)
1949                ret |= KVM_X86_SHADOW_INT_STI;
1950        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1951                ret |= KVM_X86_SHADOW_INT_MOV_SS;
1952
1953        return ret & mask;
1954}
1955
1956static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1957{
1958        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1959        u32 interruptibility = interruptibility_old;
1960
1961        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1962
1963        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1964                interruptibility |= GUEST_INTR_STATE_MOV_SS;
1965        else if (mask & KVM_X86_SHADOW_INT_STI)
1966                interruptibility |= GUEST_INTR_STATE_STI;
1967
1968        if ((interruptibility != interruptibility_old))
1969                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1970}
1971
1972static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1973{
1974        unsigned long rip;
1975
1976        rip = kvm_rip_read(vcpu);
1977        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1978        kvm_rip_write(vcpu, rip);
1979
1980        /* skipping an emulated instruction also counts */
1981        vmx_set_interrupt_shadow(vcpu, 0);
1982}
1983
1984/*
1985 * KVM wants to inject page-faults which it got to the guest. This function
1986 * checks whether in a nested guest, we need to inject them to L1 or L2.
1987 */
1988static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1989{
1990        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1991
1992        if (!(vmcs12->exception_bitmap & (1u << nr)))
1993                return 0;
1994
1995        nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
1996                          vmcs_read32(VM_EXIT_INTR_INFO),
1997                          vmcs_readl(EXIT_QUALIFICATION));
1998        return 1;
1999}
2000
2001static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2002                                bool has_error_code, u32 error_code,
2003                                bool reinject)
2004{
2005        struct vcpu_vmx *vmx = to_vmx(vcpu);
2006        u32 intr_info = nr | INTR_INFO_VALID_MASK;
2007
2008        if (!reinject && is_guest_mode(vcpu) &&
2009            nested_vmx_check_exception(vcpu, nr))
2010                return;
2011
2012        if (has_error_code) {
2013                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2014                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2015        }
2016
2017        if (vmx->rmode.vm86_active) {
2018                int inc_eip = 0;
2019                if (kvm_exception_is_soft(nr))
2020                        inc_eip = vcpu->arch.event_exit_inst_len;
2021                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2022                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2023                return;
2024        }
2025
2026        if (kvm_exception_is_soft(nr)) {
2027                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2028                             vmx->vcpu.arch.event_exit_inst_len);
2029                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2030        } else
2031                intr_info |= INTR_TYPE_HARD_EXCEPTION;
2032
2033        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2034}
2035
2036static bool vmx_rdtscp_supported(void)
2037{
2038        return cpu_has_vmx_rdtscp();
2039}
2040
2041static bool vmx_invpcid_supported(void)
2042{
2043        return cpu_has_vmx_invpcid() && enable_ept;
2044}
2045
2046/*
2047 * Swap MSR entry in host/guest MSR entry array.
2048 */
2049static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2050{
2051        struct shared_msr_entry tmp;
2052
2053        tmp = vmx->guest_msrs[to];
2054        vmx->guest_msrs[to] = vmx->guest_msrs[from];
2055        vmx->guest_msrs[from] = tmp;
2056}
2057
2058static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2059{
2060        unsigned long *msr_bitmap;
2061
2062        if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2063                if (is_long_mode(vcpu))
2064                        msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2065                else
2066                        msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2067        } else {
2068                if (is_long_mode(vcpu))
2069                        msr_bitmap = vmx_msr_bitmap_longmode;
2070                else
2071                        msr_bitmap = vmx_msr_bitmap_legacy;
2072        }
2073
2074        vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2075}
2076
2077/*
2078 * Set up the vmcs to automatically save and restore system
2079 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2080 * mode, as fiddling with msrs is very expensive.
2081 */
2082static void setup_msrs(struct vcpu_vmx *vmx)
2083{
2084        int save_nmsrs, index;
2085
2086        save_nmsrs = 0;
2087#ifdef CONFIG_X86_64
2088        if (is_long_mode(&vmx->vcpu)) {
2089                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2090                if (index >= 0)
2091                        move_msr_up(vmx, index, save_nmsrs++);
2092                index = __find_msr_index(vmx, MSR_LSTAR);
2093                if (index >= 0)
2094                        move_msr_up(vmx, index, save_nmsrs++);
2095                index = __find_msr_index(vmx, MSR_CSTAR);
2096                if (index >= 0)
2097                        move_msr_up(vmx, index, save_nmsrs++);
2098                index = __find_msr_index(vmx, MSR_TSC_AUX);
2099                if (index >= 0 && vmx->rdtscp_enabled)
2100                        move_msr_up(vmx, index, save_nmsrs++);
2101                /*
2102                 * MSR_STAR is only needed on long mode guests, and only
2103                 * if efer.sce is enabled.
2104                 */
2105                index = __find_msr_index(vmx, MSR_STAR);
2106                if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2107                        move_msr_up(vmx, index, save_nmsrs++);
2108        }
2109#endif
2110        index = __find_msr_index(vmx, MSR_EFER);
2111        if (index >= 0 && update_transition_efer(vmx, index))
2112                move_msr_up(vmx, index, save_nmsrs++);
2113
2114        vmx->save_nmsrs = save_nmsrs;
2115
2116        if (cpu_has_vmx_msr_bitmap())
2117                vmx_set_msr_bitmap(&vmx->vcpu);
2118}
2119
2120/*
2121 * reads and returns guest's timestamp counter "register"
2122 * guest_tsc = host_tsc + tsc_offset    -- 21.3
2123 */
2124static u64 guest_read_tsc(void)
2125{
2126        u64 host_tsc, tsc_offset;
2127
2128        rdtscll(host_tsc);
2129        tsc_offset = vmcs_read64(TSC_OFFSET);
2130        return host_tsc + tsc_offset;
2131}
2132
2133/*
2134 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2135 * counter, even if a nested guest (L2) is currently running.
2136 */
2137u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2138{
2139        u64 tsc_offset;
2140
2141        tsc_offset = is_guest_mode(vcpu) ?
2142                to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2143                vmcs_read64(TSC_OFFSET);
2144        return host_tsc + tsc_offset;
2145}
2146
2147/*
2148 * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2149 * software catchup for faster rates on slower CPUs.
2150 */
2151static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2152{
2153        if (!scale)
2154                return;
2155
2156        if (user_tsc_khz > tsc_khz) {
2157                vcpu->arch.tsc_catchup = 1;
2158                vcpu->arch.tsc_always_catchup = 1;
2159        } else
2160                WARN(1, "user requested TSC rate below hardware speed\n");
2161}
2162
2163static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2164{
2165        return vmcs_read64(TSC_OFFSET);
2166}
2167
2168/*
2169 * writes 'offset' into guest's timestamp counter offset register
2170 */
2171static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2172{
2173        if (is_guest_mode(vcpu)) {
2174                /*
2175                 * We're here if L1 chose not to trap WRMSR to TSC. According
2176                 * to the spec, this should set L1's TSC; The offset that L1
2177                 * set for L2 remains unchanged, and still needs to be added
2178                 * to the newly set TSC to get L2's TSC.
2179                 */
2180                struct vmcs12 *vmcs12;
2181                to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2182                /* recalculate vmcs02.TSC_OFFSET: */
2183                vmcs12 = get_vmcs12(vcpu);
2184                vmcs_write64(TSC_OFFSET, offset +
2185                        (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2186                         vmcs12->tsc_offset : 0));
2187        } else {
2188                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2189                                           vmcs_read64(TSC_OFFSET), offset);
2190                vmcs_write64(TSC_OFFSET, offset);
2191        }
2192}
2193
2194static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2195{
2196        u64 offset = vmcs_read64(TSC_OFFSET);
2197
2198        vmcs_write64(TSC_OFFSET, offset + adjustment);
2199        if (is_guest_mode(vcpu)) {
2200                /* Even when running L2, the adjustment needs to apply to L1 */
2201                to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2202        } else
2203                trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2204                                           offset + adjustment);
2205}
2206
2207static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2208{
2209        return target_tsc - native_read_tsc();
2210}
2211
2212static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2213{
2214        struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2215        return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2216}
2217
2218/*
2219 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2220 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2221 * all guests if the "nested" module option is off, and can also be disabled
2222 * for a single guest by disabling its VMX cpuid bit.
2223 */
2224static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2225{
2226        return nested && guest_cpuid_has_vmx(vcpu);
2227}
2228
2229/*
2230 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2231 * returned for the various VMX controls MSRs when nested VMX is enabled.
2232 * The same values should also be used to verify that vmcs12 control fields are
2233 * valid during nested entry from L1 to L2.
2234 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2235 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2236 * bit in the high half is on if the corresponding bit in the control field
2237 * may be on. See also vmx_control_verify().
2238 * TODO: allow these variables to be modified (downgraded) by module options
2239 * or other means.
2240 */
2241static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2242static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2243static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2244static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2245static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2246static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2247static u32 nested_vmx_ept_caps;
2248static __init void nested_vmx_setup_ctls_msrs(void)
2249{
2250        /*
2251         * Note that as a general rule, the high half of the MSRs (bits in
2252         * the control fields which may be 1) should be initialized by the
2253         * intersection of the underlying hardware's MSR (i.e., features which
2254         * can be supported) and the list of features we want to expose -
2255         * because they are known to be properly supported in our code.
2256         * Also, usually, the low half of the MSRs (bits which must be 1) can
2257         * be set to 0, meaning that L1 may turn off any of these bits. The
2258         * reason is that if one of these bits is necessary, it will appear
2259         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2260         * fields of vmcs01 and vmcs02, will turn these bits off - and
2261         * nested_vmx_exit_handled() will not pass related exits to L1.
2262         * These rules have exceptions below.
2263         */
2264
2265        /* pin-based controls */
2266        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2267              nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2268        /*
2269         * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2270         * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2271         */
2272        nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2273        nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2274                PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2275        nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2276                PIN_BASED_VMX_PREEMPTION_TIMER;
2277
2278        /*
2279         * Exit controls
2280         * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2281         * 17 must be 1.
2282         */
2283        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2284                nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2285        nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2286
2287        nested_vmx_exit_ctls_high &=
2288#ifdef CONFIG_X86_64
2289                VM_EXIT_HOST_ADDR_SPACE_SIZE |
2290#endif
2291                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2292        nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2293                VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2294                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2295
2296        if (vmx_mpx_supported())
2297                nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2298
2299        /* entry controls */
2300        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2301                nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2302        /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2303        nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2304        nested_vmx_entry_ctls_high &=
2305#ifdef CONFIG_X86_64
2306                VM_ENTRY_IA32E_MODE |
2307#endif
2308                VM_ENTRY_LOAD_IA32_PAT;
2309        nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2310                                       VM_ENTRY_LOAD_IA32_EFER);
2311        if (vmx_mpx_supported())
2312                nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2313
2314        /* cpu-based controls */
2315        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2316                nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2317        nested_vmx_procbased_ctls_low = 0;
2318        nested_vmx_procbased_ctls_high &=
2319                CPU_BASED_VIRTUAL_INTR_PENDING |
2320                CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2321                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2322                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2323                CPU_BASED_CR3_STORE_EXITING |
2324#ifdef CONFIG_X86_64
2325                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2326#endif
2327                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2328                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2329                CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2330                CPU_BASED_PAUSE_EXITING |
2331                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2332        /*
2333         * We can allow some features even when not supported by the
2334         * hardware. For example, L1 can specify an MSR bitmap - and we
2335         * can use it to avoid exits to L1 - even when L0 runs L2
2336         * without MSR bitmaps.
2337         */
2338        nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2339
2340        /* secondary cpu-based controls */
2341        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2342                nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2343        nested_vmx_secondary_ctls_low = 0;
2344        nested_vmx_secondary_ctls_high &=
2345                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2346                SECONDARY_EXEC_UNRESTRICTED_GUEST |
2347                SECONDARY_EXEC_WBINVD_EXITING;
2348
2349        if (enable_ept) {
2350                /* nested EPT: emulate EPT also to L1 */
2351                nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2352                nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2353                         VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2354                         VMX_EPT_INVEPT_BIT;
2355                nested_vmx_ept_caps &= vmx_capability.ept;
2356                /*
2357                 * For nested guests, we don't do anything specific
2358                 * for single context invalidation. Hence, only advertise
2359                 * support for global context invalidation.
2360                 */
2361                nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2362        } else
2363                nested_vmx_ept_caps = 0;
2364
2365        /* miscellaneous data */
2366        rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2367        nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2368        nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2369                VMX_MISC_ACTIVITY_HLT;
2370        nested_vmx_misc_high = 0;
2371}
2372
2373static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2374{
2375        /*
2376         * Bits 0 in high must be 0, and bits 1 in low must be 1.
2377         */
2378        return ((control & high) | low) == control;
2379}
2380
2381static inline u64 vmx_control_msr(u32 low, u32 high)
2382{
2383        return low | ((u64)high << 32);
2384}
2385
2386/* Returns 0 on success, non-0 otherwise. */
2387static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2388{
2389        switch (msr_index) {
2390        case MSR_IA32_VMX_BASIC:
2391                /*
2392                 * This MSR reports some information about VMX support. We
2393                 * should return information about the VMX we emulate for the
2394                 * guest, and the VMCS structure we give it - not about the
2395                 * VMX support of the underlying hardware.
2396                 */
2397                *pdata = VMCS12_REVISION |
2398                           ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2399                           (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2400                break;
2401        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2402        case MSR_IA32_VMX_PINBASED_CTLS:
2403                *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2404                                        nested_vmx_pinbased_ctls_high);
2405                break;
2406        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2407        case MSR_IA32_VMX_PROCBASED_CTLS:
2408                *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2409                                        nested_vmx_procbased_ctls_high);
2410                break;
2411        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2412        case MSR_IA32_VMX_EXIT_CTLS:
2413                *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2414                                        nested_vmx_exit_ctls_high);
2415                break;
2416        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2417        case MSR_IA32_VMX_ENTRY_CTLS:
2418                *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2419                                        nested_vmx_entry_ctls_high);
2420                break;
2421        case MSR_IA32_VMX_MISC:
2422                *pdata = vmx_control_msr(nested_vmx_misc_low,
2423                                         nested_vmx_misc_high);
2424                break;
2425        /*
2426         * These MSRs specify bits which the guest must keep fixed (on or off)
2427         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2428         * We picked the standard core2 setting.
2429         */
2430#define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2431#define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2432        case MSR_IA32_VMX_CR0_FIXED0:
2433                *pdata = VMXON_CR0_ALWAYSON;
2434                break;
2435        case MSR_IA32_VMX_CR0_FIXED1:
2436                *pdata = -1ULL;
2437                break;
2438        case MSR_IA32_VMX_CR4_FIXED0:
2439                *pdata = VMXON_CR4_ALWAYSON;
2440                break;
2441        case MSR_IA32_VMX_CR4_FIXED1:
2442                *pdata = -1ULL;
2443                break;
2444        case MSR_IA32_VMX_VMCS_ENUM:
2445                *pdata = 0x1f;
2446                break;
2447        case MSR_IA32_VMX_PROCBASED_CTLS2:
2448                *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2449                                        nested_vmx_secondary_ctls_high);
2450                break;
2451        case MSR_IA32_VMX_EPT_VPID_CAP:
2452                /* Currently, no nested vpid support */
2453                *pdata = nested_vmx_ept_caps;
2454                break;
2455        default:
2456                return 1;
2457        }
2458
2459        return 0;
2460}
2461
2462/*
2463 * Reads an msr value (of 'msr_index') into 'pdata'.
2464 * Returns 0 on success, non-0 otherwise.
2465 * Assumes vcpu_load() was already called.
2466 */
2467static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2468{
2469        u64 data;
2470        struct shared_msr_entry *msr;
2471
2472        if (!pdata) {
2473                printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2474                return -EINVAL;
2475        }
2476
2477        switch (msr_index) {
2478#ifdef CONFIG_X86_64
2479        case MSR_FS_BASE:
2480                data = vmcs_readl(GUEST_FS_BASE);
2481                break;
2482        case MSR_GS_BASE:
2483                data = vmcs_readl(GUEST_GS_BASE);
2484                break;
2485        case MSR_KERNEL_GS_BASE:
2486                vmx_load_host_state(to_vmx(vcpu));
2487                data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2488                break;
2489#endif
2490        case MSR_EFER:
2491                return kvm_get_msr_common(vcpu, msr_index, pdata);
2492        case MSR_IA32_TSC:
2493                data = guest_read_tsc();
2494                break;
2495        case MSR_IA32_SYSENTER_CS:
2496                data = vmcs_read32(GUEST_SYSENTER_CS);
2497                break;
2498        case MSR_IA32_SYSENTER_EIP:
2499                data = vmcs_readl(GUEST_SYSENTER_EIP);
2500                break;
2501        case MSR_IA32_SYSENTER_ESP:
2502                data = vmcs_readl(GUEST_SYSENTER_ESP);
2503                break;
2504        case MSR_IA32_BNDCFGS:
2505                if (!vmx_mpx_supported())
2506                        return 1;
2507                data = vmcs_read64(GUEST_BNDCFGS);
2508                break;
2509        case MSR_IA32_FEATURE_CONTROL:
2510                if (!nested_vmx_allowed(vcpu))
2511                        return 1;
2512                data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2513                break;
2514        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2515                if (!nested_vmx_allowed(vcpu))
2516                        return 1;
2517                return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2518        case MSR_TSC_AUX:
2519                if (!to_vmx(vcpu)->rdtscp_enabled)
2520                        return 1;
2521                /* Otherwise falls through */
2522        default:
2523                msr = find_msr_entry(to_vmx(vcpu), msr_index);
2524                if (msr) {
2525                        data = msr->data;
2526                        break;
2527                }
2528                return kvm_get_msr_common(vcpu, msr_index, pdata);
2529        }
2530
2531        *pdata = data;
2532        return 0;
2533}
2534
2535static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2536
2537/*
2538 * Writes msr value into into the appropriate "register".
2539 * Returns 0 on success, non-0 otherwise.
2540 * Assumes vcpu_load() was already called.
2541 */
2542static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2543{
2544        struct vcpu_vmx *vmx = to_vmx(vcpu);
2545        struct shared_msr_entry *msr;
2546        int ret = 0;
2547        u32 msr_index = msr_info->index;
2548        u64 data = msr_info->data;
2549
2550        switch (msr_index) {
2551        case MSR_EFER:
2552                ret = kvm_set_msr_common(vcpu, msr_info);
2553                break;
2554#ifdef CONFIG_X86_64
2555        case MSR_FS_BASE:
2556                vmx_segment_cache_clear(vmx);
2557                vmcs_writel(GUEST_FS_BASE, data);
2558                break;
2559        case MSR_GS_BASE:
2560                vmx_segment_cache_clear(vmx);
2561                vmcs_writel(GUEST_GS_BASE, data);
2562                break;
2563        case MSR_KERNEL_GS_BASE:
2564                vmx_load_host_state(vmx);
2565                vmx->msr_guest_kernel_gs_base = data;
2566                break;
2567#endif
2568        case MSR_IA32_SYSENTER_CS:
2569                vmcs_write32(GUEST_SYSENTER_CS, data);
2570                break;
2571        case MSR_IA32_SYSENTER_EIP:
2572                vmcs_writel(GUEST_SYSENTER_EIP, data);
2573                break;
2574        case MSR_IA32_SYSENTER_ESP:
2575                vmcs_writel(GUEST_SYSENTER_ESP, data);
2576                break;
2577        case MSR_IA32_BNDCFGS:
2578                if (!vmx_mpx_supported())
2579                        return 1;
2580                vmcs_write64(GUEST_BNDCFGS, data);
2581                break;
2582        case MSR_IA32_TSC:
2583                kvm_write_tsc(vcpu, msr_info);
2584                break;
2585        case MSR_IA32_CR_PAT:
2586                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2587                        vmcs_write64(GUEST_IA32_PAT, data);
2588                        vcpu->arch.pat = data;
2589                        break;
2590                }
2591                ret = kvm_set_msr_common(vcpu, msr_info);
2592                break;
2593        case MSR_IA32_TSC_ADJUST:
2594                ret = kvm_set_msr_common(vcpu, msr_info);
2595                break;
2596        case MSR_IA32_FEATURE_CONTROL:
2597                if (!nested_vmx_allowed(vcpu) ||
2598                    (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2599                     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2600                        return 1;
2601                vmx->nested.msr_ia32_feature_control = data;
2602                if (msr_info->host_initiated && data == 0)
2603                        vmx_leave_nested(vcpu);
2604                break;
2605        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2606                return 1; /* they are read-only */
2607        case MSR_TSC_AUX:
2608                if (!vmx->rdtscp_enabled)
2609                        return 1;
2610                /* Check reserved bit, higher 32 bits should be zero */
2611                if ((data >> 32) != 0)
2612                        return 1;
2613                /* Otherwise falls through */
2614        default:
2615                msr = find_msr_entry(vmx, msr_index);
2616                if (msr) {
2617                        msr->data = data;
2618                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2619                                preempt_disable();
2620                                kvm_set_shared_msr(msr->index, msr->data,
2621                                                   msr->mask);
2622                                preempt_enable();
2623                        }
2624                        break;
2625                }
2626                ret = kvm_set_msr_common(vcpu, msr_info);
2627        }
2628
2629        return ret;
2630}
2631
2632static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2633{
2634        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2635        switch (reg) {
2636        case VCPU_REGS_RSP:
2637                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2638                break;
2639        case VCPU_REGS_RIP:
2640                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2641                break;
2642        case VCPU_EXREG_PDPTR:
2643                if (enable_ept)
2644                        ept_save_pdptrs(vcpu);
2645                break;
2646        default:
2647                break;
2648        }
2649}
2650
2651static __init int cpu_has_kvm_support(void)
2652{
2653        return cpu_has_vmx();
2654}
2655
2656static __init int vmx_disabled_by_bios(void)
2657{
2658        u64 msr;
2659
2660        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2661        if (msr & FEATURE_CONTROL_LOCKED) {
2662                /* launched w/ TXT and VMX disabled */
2663                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2664                        && tboot_enabled())
2665                        return 1;
2666                /* launched w/o TXT and VMX only enabled w/ TXT */
2667                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2668                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2669                        && !tboot_enabled()) {
2670                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2671                                "activate TXT before enabling KVM\n");
2672                        return 1;
2673                }
2674                /* launched w/o TXT and VMX disabled */
2675                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2676                        && !tboot_enabled())
2677                        return 1;
2678        }
2679
2680        return 0;
2681}
2682
2683static void kvm_cpu_vmxon(u64 addr)
2684{
2685        asm volatile (ASM_VMX_VMXON_RAX
2686                        : : "a"(&addr), "m"(addr)
2687                        : "memory", "cc");
2688}
2689
2690static int hardware_enable(void *garbage)
2691{
2692        int cpu = raw_smp_processor_id();
2693        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2694        u64 old, test_bits;
2695
2696        if (read_cr4() & X86_CR4_VMXE)
2697                return -EBUSY;
2698
2699        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2700
2701        /*
2702         * Now we can enable the vmclear operation in kdump
2703         * since the loaded_vmcss_on_cpu list on this cpu
2704         * has been initialized.
2705         *
2706         * Though the cpu is not in VMX operation now, there
2707         * is no problem to enable the vmclear operation
2708         * for the loaded_vmcss_on_cpu list is empty!
2709         */
2710        crash_enable_local_vmclear(cpu);
2711
2712        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2713
2714        test_bits = FEATURE_CONTROL_LOCKED;
2715        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2716        if (tboot_enabled())
2717                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2718
2719        if ((old & test_bits) != test_bits) {
2720                /* enable and lock */
2721                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2722        }
2723        write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2724
2725        if (vmm_exclusive) {
2726                kvm_cpu_vmxon(phys_addr);
2727                ept_sync_global();
2728        }
2729
2730        native_store_gdt(&__get_cpu_var(host_gdt));
2731
2732        return 0;
2733}
2734
2735static void vmclear_local_loaded_vmcss(void)
2736{
2737        int cpu = raw_smp_processor_id();
2738        struct loaded_vmcs *v, *n;
2739
2740        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2741                                 loaded_vmcss_on_cpu_link)
2742                __loaded_vmcs_clear(v);
2743}
2744
2745
2746/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2747 * tricks.
2748 */
2749static void kvm_cpu_vmxoff(void)
2750{
2751        asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2752}
2753
2754static void hardware_disable(void *garbage)
2755{
2756        if (vmm_exclusive) {
2757                vmclear_local_loaded_vmcss();
2758                kvm_cpu_vmxoff();
2759        }
2760        write_cr4(read_cr4() & ~X86_CR4_VMXE);
2761}
2762
2763static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2764                                      u32 msr, u32 *result)
2765{
2766        u32 vmx_msr_low, vmx_msr_high;
2767        u32 ctl = ctl_min | ctl_opt;
2768
2769        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2770
2771        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2772        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2773
2774        /* Ensure minimum (required) set of control bits are supported. */
2775        if (ctl_min & ~ctl)
2776                return -EIO;
2777
2778        *result = ctl;
2779        return 0;
2780}
2781
2782static __init bool allow_1_setting(u32 msr, u32 ctl)
2783{
2784        u32 vmx_msr_low, vmx_msr_high;
2785
2786        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2787        return vmx_msr_high & ctl;
2788}
2789
2790static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2791{
2792        u32 vmx_msr_low, vmx_msr_high;
2793        u32 min, opt, min2, opt2;
2794        u32 _pin_based_exec_control = 0;
2795        u32 _cpu_based_exec_control = 0;
2796        u32 _cpu_based_2nd_exec_control = 0;
2797        u32 _vmexit_control = 0;
2798        u32 _vmentry_control = 0;
2799
2800        min = CPU_BASED_HLT_EXITING |
2801#ifdef CONFIG_X86_64
2802              CPU_BASED_CR8_LOAD_EXITING |
2803              CPU_BASED_CR8_STORE_EXITING |
2804#endif
2805              CPU_BASED_CR3_LOAD_EXITING |
2806              CPU_BASED_CR3_STORE_EXITING |
2807              CPU_BASED_USE_IO_BITMAPS |
2808              CPU_BASED_MOV_DR_EXITING |
2809              CPU_BASED_USE_TSC_OFFSETING |
2810              CPU_BASED_MWAIT_EXITING |
2811              CPU_BASED_MONITOR_EXITING |
2812              CPU_BASED_INVLPG_EXITING |
2813              CPU_BASED_RDPMC_EXITING;
2814
2815        opt = CPU_BASED_TPR_SHADOW |
2816              CPU_BASED_USE_MSR_BITMAPS |
2817              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2818        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2819                                &_cpu_based_exec_control) < 0)
2820                return -EIO;
2821#ifdef CONFIG_X86_64
2822        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2823                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2824                                           ~CPU_BASED_CR8_STORE_EXITING;
2825#endif
2826        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2827                min2 = 0;
2828                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2829                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2830                        SECONDARY_EXEC_WBINVD_EXITING |
2831                        SECONDARY_EXEC_ENABLE_VPID |
2832                        SECONDARY_EXEC_ENABLE_EPT |
2833                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
2834                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2835                        SECONDARY_EXEC_RDTSCP |
2836                        SECONDARY_EXEC_ENABLE_INVPCID |
2837                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
2838                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2839                        SECONDARY_EXEC_SHADOW_VMCS;
2840                if (adjust_vmx_controls(min2, opt2,
2841                                        MSR_IA32_VMX_PROCBASED_CTLS2,
2842                                        &_cpu_based_2nd_exec_control) < 0)
2843                        return -EIO;
2844        }
2845#ifndef CONFIG_X86_64
2846        if (!(_cpu_based_2nd_exec_control &
2847                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2848                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2849#endif
2850
2851        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2852                _cpu_based_2nd_exec_control &= ~(
2853                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2854                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2855                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2856
2857        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2858                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2859                   enabled */
2860                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2861                                             CPU_BASED_CR3_STORE_EXITING |
2862                                             CPU_BASED_INVLPG_EXITING);
2863                rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2864                      vmx_capability.ept, vmx_capability.vpid);
2865        }
2866
2867        min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2868#ifdef CONFIG_X86_64
2869        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2870#endif
2871        opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2872                VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2873        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2874                                &_vmexit_control) < 0)
2875                return -EIO;
2876
2877        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2878        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2879        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2880                                &_pin_based_exec_control) < 0)
2881                return -EIO;
2882
2883        if (!(_cpu_based_2nd_exec_control &
2884                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2885                !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2886                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2887
2888        min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2889        opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2890        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2891                                &_vmentry_control) < 0)
2892                return -EIO;
2893
2894        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2895
2896        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2897        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2898                return -EIO;
2899
2900#ifdef CONFIG_X86_64
2901        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2902        if (vmx_msr_high & (1u<<16))
2903                return -EIO;
2904#endif
2905
2906        /* Require Write-Back (WB) memory type for VMCS accesses. */
2907        if (((vmx_msr_high >> 18) & 15) != 6)
2908                return -EIO;
2909
2910        vmcs_conf->size = vmx_msr_high & 0x1fff;
2911        vmcs_conf->order = get_order(vmcs_config.size);
2912        vmcs_conf->revision_id = vmx_msr_low;
2913
2914        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2915        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2916        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2917        vmcs_conf->vmexit_ctrl         = _vmexit_control;
2918        vmcs_conf->vmentry_ctrl        = _vmentry_control;
2919
2920        cpu_has_load_ia32_efer =
2921                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2922                                VM_ENTRY_LOAD_IA32_EFER)
2923                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2924                                   VM_EXIT_LOAD_IA32_EFER);
2925
2926        cpu_has_load_perf_global_ctrl =
2927                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2928                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2929                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2930                                   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2931
2932        /*
2933         * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2934         * but due to arrata below it can't be used. Workaround is to use
2935         * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2936         *
2937         * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2938         *
2939         * AAK155             (model 26)
2940         * AAP115             (model 30)
2941         * AAT100             (model 37)
2942         * BC86,AAY89,BD102   (model 44)
2943         * BA97               (model 46)
2944         *
2945         */
2946        if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2947                switch (boot_cpu_data.x86_model) {
2948                case 26:
2949                case 30:
2950                case 37:
2951                case 44:
2952                case 46:
2953                        cpu_has_load_perf_global_ctrl = false;
2954                        printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2955                                        "does not work properly. Using workaround\n");
2956                        break;
2957                default:
2958                        break;
2959                }
2960        }
2961
2962        return 0;
2963}
2964
2965static struct vmcs *alloc_vmcs_cpu(int cpu)
2966{
2967        int node = cpu_to_node(cpu);
2968        struct page *pages;
2969        struct vmcs *vmcs;
2970
2971        pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2972        if (!pages)
2973                return NULL;
2974        vmcs = page_address(pages);
2975        memset(vmcs, 0, vmcs_config.size);
2976        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2977        return vmcs;
2978}
2979
2980static struct vmcs *alloc_vmcs(void)
2981{
2982        return alloc_vmcs_cpu(raw_smp_processor_id());
2983}
2984
2985static void free_vmcs(struct vmcs *vmcs)
2986{
2987        free_pages((unsigned long)vmcs, vmcs_config.order);
2988}
2989
2990/*
2991 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2992 */
2993static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2994{
2995        if (!loaded_vmcs->vmcs)
2996                return;
2997        loaded_vmcs_clear(loaded_vmcs);
2998        free_vmcs(loaded_vmcs->vmcs);
2999        loaded_vmcs->vmcs = NULL;
3000}
3001
3002static void free_kvm_area(void)
3003{
3004        int cpu;
3005
3006        for_each_possible_cpu(cpu) {
3007                free_vmcs(per_cpu(vmxarea, cpu));
3008                per_cpu(vmxarea, cpu) = NULL;
3009        }
3010}
3011
3012static void init_vmcs_shadow_fields(void)
3013{
3014        int i, j;
3015
3016        /* No checks for read only fields yet */
3017
3018        for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3019                switch (shadow_read_write_fields[i]) {
3020                case GUEST_BNDCFGS:
3021                        if (!vmx_mpx_supported())
3022                                continue;
3023                        break;
3024                default:
3025                        break;
3026                }
3027
3028                if (j < i)
3029                        shadow_read_write_fields[j] =
3030                                shadow_read_write_fields[i];
3031                j++;
3032        }
3033        max_shadow_read_write_fields = j;
3034
3035        /* shadowed fields guest access without vmexit */
3036        for (i = 0; i < max_shadow_read_write_fields; i++) {
3037                clear_bit(shadow_read_write_fields[i],
3038                          vmx_vmwrite_bitmap);
3039                clear_bit(shadow_read_write_fields[i],
3040                          vmx_vmread_bitmap);
3041        }
3042        for (i = 0; i < max_shadow_read_only_fields; i++)
3043                clear_bit(shadow_read_only_fields[i],
3044                          vmx_vmread_bitmap);
3045}
3046
3047static __init int alloc_kvm_area(void)
3048{
3049        int cpu;
3050
3051        for_each_possible_cpu(cpu) {
3052                struct vmcs *vmcs;
3053
3054                vmcs = alloc_vmcs_cpu(cpu);
3055                if (!vmcs) {
3056                        free_kvm_area();
3057                        return -ENOMEM;
3058                }
3059
3060                per_cpu(vmxarea, cpu) = vmcs;
3061        }
3062        return 0;
3063}
3064
3065static __init int hardware_setup(void)
3066{
3067        if (setup_vmcs_config(&vmcs_config) < 0)
3068                return -EIO;
3069
3070        if (boot_cpu_has(X86_FEATURE_NX))
3071                kvm_enable_efer_bits(EFER_NX);
3072
3073        if (!cpu_has_vmx_vpid())
3074                enable_vpid = 0;
3075        if (!cpu_has_vmx_shadow_vmcs())
3076                enable_shadow_vmcs = 0;
3077        if (enable_shadow_vmcs)
3078                init_vmcs_shadow_fields();
3079
3080        if (!cpu_has_vmx_ept() ||
3081            !cpu_has_vmx_ept_4levels()) {
3082                enable_ept = 0;
3083                enable_unrestricted_guest = 0;
3084                enable_ept_ad_bits = 0;
3085        }
3086
3087        if (!cpu_has_vmx_ept_ad_bits())
3088                enable_ept_ad_bits = 0;
3089
3090        if (!cpu_has_vmx_unrestricted_guest())
3091                enable_unrestricted_guest = 0;
3092
3093        if (!cpu_has_vmx_flexpriority())
3094                flexpriority_enabled = 0;
3095
3096        if (!cpu_has_vmx_tpr_shadow())
3097                kvm_x86_ops->update_cr8_intercept = NULL;
3098
3099        if (enable_ept && !cpu_has_vmx_ept_2m_page())
3100                kvm_disable_largepages();
3101
3102        if (!cpu_has_vmx_ple())
3103                ple_gap = 0;
3104
3105        if (!cpu_has_vmx_apicv())
3106                enable_apicv = 0;
3107
3108        if (enable_apicv)
3109                kvm_x86_ops->update_cr8_intercept = NULL;
3110        else {
3111                kvm_x86_ops->hwapic_irr_update = NULL;
3112                kvm_x86_ops->deliver_posted_interrupt = NULL;
3113                kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3114        }
3115
3116        if (nested)
3117                nested_vmx_setup_ctls_msrs();
3118
3119        return alloc_kvm_area();
3120}
3121
3122static __exit void hardware_unsetup(void)
3123{
3124        free_kvm_area();
3125}
3126
3127static bool emulation_required(struct kvm_vcpu *vcpu)
3128{
3129        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3130}
3131
3132static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3133                struct kvm_segment *save)
3134{
3135        if (!emulate_invalid_guest_state) {
3136                /*
3137                 * CS and SS RPL should be equal during guest entry according
3138                 * to VMX spec, but in reality it is not always so. Since vcpu
3139                 * is in the middle of the transition from real mode to
3140                 * protected mode it is safe to assume that RPL 0 is a good
3141                 * default value.
3142                 */
3143                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3144                        save->selector &= ~SELECTOR_RPL_MASK;
3145                save->dpl = save->selector & SELECTOR_RPL_MASK;
3146                save->s = 1;
3147        }
3148        vmx_set_segment(vcpu, save, seg);
3149}
3150
3151static void enter_pmode(struct kvm_vcpu *vcpu)
3152{
3153        unsigned long flags;
3154        struct vcpu_vmx *vmx = to_vmx(vcpu);
3155
3156        /*
3157         * Update real mode segment cache. It may be not up-to-date if sement
3158         * register was written while vcpu was in a guest mode.
3159         */
3160        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3161        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3162        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3163        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3164        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3165        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3166
3167        vmx->rmode.vm86_active = 0;
3168
3169        vmx_segment_cache_clear(vmx);
3170
3171        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3172
3173        flags = vmcs_readl(GUEST_RFLAGS);
3174        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3175        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3176        vmcs_writel(GUEST_RFLAGS, flags);
3177
3178        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3179                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3180
3181        update_exception_bitmap(vcpu);
3182
3183        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3184        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3185        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3186        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3187        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3188        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3189}
3190
3191static void fix_rmode_seg(int seg, struct kvm_segment *save)
3192{
3193        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3194        struct kvm_segment var = *save;
3195
3196        var.dpl = 0x3;
3197        if (seg == VCPU_SREG_CS)
3198                var.type = 0x3;
3199
3200        if (!emulate_invalid_guest_state) {
3201                var.selector = var.base >> 4;
3202                var.base = var.base & 0xffff0;
3203                var.limit = 0xffff;
3204                var.g = 0;
3205                var.db = 0;
3206                var.present = 1;
3207                var.s = 1;
3208                var.l = 0;
3209                var.unusable = 0;
3210                var.type = 0x3;
3211                var.avl = 0;
3212                if (save->base & 0xf)
3213                        printk_once(KERN_WARNING "kvm: segment base is not "
3214                                        "paragraph aligned when entering "
3215                                        "protected mode (seg=%d)", seg);
3216        }
3217
3218        vmcs_write16(sf->selector, var.selector);
3219        vmcs_write32(sf->base, var.base);
3220        vmcs_write32(sf->limit, var.limit);
3221        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3222}
3223
3224static void enter_rmode(struct kvm_vcpu *vcpu)
3225{
3226        unsigned long flags;
3227        struct vcpu_vmx *vmx = to_vmx(vcpu);
3228
3229        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3230        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3231        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3232        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3233        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3234        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3235        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3236
3237        vmx->rmode.vm86_active = 1;
3238
3239        /*
3240         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3241         * vcpu. Warn the user that an update is overdue.
3242         */
3243        if (!vcpu->kvm->arch.tss_addr)
3244                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3245                             "called before entering vcpu\n");
3246
3247        vmx_segment_cache_clear(vmx);
3248
3249        vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3250        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3251        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3252
3253        flags = vmcs_readl(GUEST_RFLAGS);
3254        vmx->rmode.save_rflags = flags;
3255
3256        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3257
3258        vmcs_writel(GUEST_RFLAGS, flags);
3259        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3260        update_exception_bitmap(vcpu);
3261
3262        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3263        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3264        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3265        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3266        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3267        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3268
3269        kvm_mmu_reset_context(vcpu);
3270}
3271
3272static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3273{
3274        struct vcpu_vmx *vmx = to_vmx(vcpu);
3275        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3276
3277        if (!msr)
3278                return;
3279
3280        /*
3281         * Force kernel_gs_base reloading before EFER changes, as control
3282         * of this msr depends on is_long_mode().
3283         */
3284        vmx_load_host_state(to_vmx(vcpu));
3285        vcpu->arch.efer = efer;
3286        if (efer & EFER_LMA) {
3287                vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3288                msr->data = efer;
3289        } else {
3290                vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3291
3292                msr->data = efer & ~EFER_LME;
3293        }
3294        setup_msrs(vmx);
3295}
3296
3297#ifdef CONFIG_X86_64
3298
3299static void enter_lmode(struct kvm_vcpu *vcpu)
3300{
3301        u32 guest_tr_ar;
3302
3303        vmx_segment_cache_clear(to_vmx(vcpu));
3304
3305        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3306        if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3307                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3308                                     __func__);
3309                vmcs_write32(GUEST_TR_AR_BYTES,
3310                             (guest_tr_ar & ~AR_TYPE_MASK)
3311                             | AR_TYPE_BUSY_64_TSS);
3312        }
3313        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3314}
3315
3316static void exit_lmode(struct kvm_vcpu *vcpu)
3317{
3318        vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3319        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3320}
3321
3322#endif
3323
3324static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3325{
3326        vpid_sync_context(to_vmx(vcpu));
3327        if (enable_ept) {
3328                if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3329                        return;
3330                ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3331        }
3332}
3333
3334static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3335{
3336        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3337
3338        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3339        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3340}
3341
3342static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3343{
3344        if (enable_ept && is_paging(vcpu))
3345                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3346        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3347}
3348
3349static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3350{
3351        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3352
3353        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3354        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3355}
3356
3357static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3358{
3359        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3360
3361        if (!test_bit(VCPU_EXREG_PDPTR,
3362                      (unsigned long *)&vcpu->arch.regs_dirty))
3363                return;
3364
3365        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3366                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3367                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3368                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3369                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3370        }
3371}
3372
3373static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3374{
3375        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3376
3377        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3378                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3379                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3380                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3381                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3382        }
3383
3384        __set_bit(VCPU_EXREG_PDPTR,
3385                  (unsigned long *)&vcpu->arch.regs_avail);
3386        __set_bit(VCPU_EXREG_PDPTR,
3387                  (unsigned long *)&vcpu->arch.regs_dirty);
3388}
3389
3390static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3391
3392static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3393                                        unsigned long cr0,
3394                                        struct kvm_vcpu *vcpu)
3395{
3396        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3397                vmx_decache_cr3(vcpu);
3398        if (!(cr0 & X86_CR0_PG)) {
3399                /* From paging/starting to nonpaging */
3400                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3401                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3402                             (CPU_BASED_CR3_LOAD_EXITING |
3403                              CPU_BASED_CR3_STORE_EXITING));
3404                vcpu->arch.cr0 = cr0;
3405                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3406        } else if (!is_paging(vcpu)) {
3407                /* From nonpaging to paging */
3408                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3409                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3410                             ~(CPU_BASED_CR3_LOAD_EXITING |
3411                               CPU_BASED_CR3_STORE_EXITING));
3412                vcpu->arch.cr0 = cr0;
3413                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3414        }
3415
3416        if (!(cr0 & X86_CR0_WP))
3417                *hw_cr0 &= ~X86_CR0_WP;
3418}
3419
3420static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3421{
3422        struct vcpu_vmx *vmx = to_vmx(vcpu);
3423        unsigned long hw_cr0;
3424
3425        hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3426        if (enable_unrestricted_guest)
3427                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3428        else {
3429                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3430
3431                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3432                        enter_pmode(vcpu);
3433
3434                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3435                        enter_rmode(vcpu);
3436        }
3437
3438#ifdef CONFIG_X86_64
3439        if (vcpu->arch.efer & EFER_LME) {
3440                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3441                        enter_lmode(vcpu);
3442                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3443                        exit_lmode(vcpu);
3444        }
3445#endif
3446
3447        if (enable_ept)
3448                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3449
3450        if (!vcpu->fpu_active)
3451                hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3452
3453        vmcs_writel(CR0_READ_SHADOW, cr0);
3454        vmcs_writel(GUEST_CR0, hw_cr0);
3455        vcpu->arch.cr0 = cr0;
3456
3457        /* depends on vcpu->arch.cr0 to be set to a new value */
3458        vmx->emulation_required = emulation_required(vcpu);
3459}
3460
3461static u64 construct_eptp(unsigned long root_hpa)
3462{
3463        u64 eptp;
3464
3465        /* TODO write the value reading from MSR */
3466        eptp = VMX_EPT_DEFAULT_MT |
3467                VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3468        if (enable_ept_ad_bits)
3469                eptp |= VMX_EPT_AD_ENABLE_BIT;
3470        eptp |= (root_hpa & PAGE_MASK);
3471
3472        return eptp;
3473}
3474
3475static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3476{
3477        unsigned long guest_cr3;
3478        u64 eptp;
3479
3480        guest_cr3 = cr3;
3481        if (enable_ept) {
3482                eptp = construct_eptp(cr3);
3483                vmcs_write64(EPT_POINTER, eptp);
3484                if (is_paging(vcpu) || is_guest_mode(vcpu))
3485                        guest_cr3 = kvm_read_cr3(vcpu);
3486                else
3487                        guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3488                ept_load_pdptrs(vcpu);
3489        }
3490
3491        vmx_flush_tlb(vcpu);
3492        vmcs_writel(GUEST_CR3, guest_cr3);
3493}
3494
3495static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3496{
3497        unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3498                    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3499
3500        if (cr4 & X86_CR4_VMXE) {
3501                /*
3502                 * To use VMXON (and later other VMX instructions), a guest
3503                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3504                 * So basically the check on whether to allow nested VMX
3505                 * is here.
3506                 */
3507                if (!nested_vmx_allowed(vcpu))
3508                        return 1;
3509        }
3510        if (to_vmx(vcpu)->nested.vmxon &&
3511            ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3512                return 1;
3513
3514        vcpu->arch.cr4 = cr4;
3515        if (enable_ept) {
3516                if (!is_paging(vcpu)) {
3517                        hw_cr4 &= ~X86_CR4_PAE;
3518                        hw_cr4 |= X86_CR4_PSE;
3519                        /*
3520                         * SMEP/SMAP is disabled if CPU is in non-paging mode
3521                         * in hardware. However KVM always uses paging mode to
3522                         * emulate guest non-paging mode with TDP.
3523                         * To emulate this behavior, SMEP/SMAP needs to be
3524                         * manually disabled when guest switches to non-paging
3525                         * mode.
3526                         */
3527                        hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3528                } else if (!(cr4 & X86_CR4_PAE)) {
3529                        hw_cr4 &= ~X86_CR4_PAE;
3530                }
3531        }
3532
3533        vmcs_writel(CR4_READ_SHADOW, cr4);
3534        vmcs_writel(GUEST_CR4, hw_cr4);
3535        return 0;
3536}
3537
3538static void vmx_get_segment(struct kvm_vcpu *vcpu,
3539                            struct kvm_segment *var, int seg)
3540{
3541        struct vcpu_vmx *vmx = to_vmx(vcpu);
3542        u32 ar;
3543
3544        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3545                *var = vmx->rmode.segs[seg];
3546                if (seg == VCPU_SREG_TR
3547                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3548                        return;
3549                var->base = vmx_read_guest_seg_base(vmx, seg);
3550                var->selector = vmx_read_guest_seg_selector(vmx, seg);
3551                return;
3552        }
3553        var->base = vmx_read_guest_seg_base(vmx, seg);
3554        var->limit = vmx_read_guest_seg_limit(vmx, seg);
3555        var->selector = vmx_read_guest_seg_selector(vmx, seg);
3556        ar = vmx_read_guest_seg_ar(vmx, seg);
3557        var->unusable = (ar >> 16) & 1;
3558        var->type = ar & 15;
3559        var->s = (ar >> 4) & 1;
3560        var->dpl = (ar >> 5) & 3;
3561        /*
3562         * Some userspaces do not preserve unusable property. Since usable
3563         * segment has to be present according to VMX spec we can use present
3564         * property to amend userspace bug by making unusable segment always
3565         * nonpresent. vmx_segment_access_rights() already marks nonpresent
3566         * segment as unusable.
3567         */
3568        var->present = !var->unusable;
3569        var->avl = (ar >> 12) & 1;
3570        var->l = (ar >> 13) & 1;
3571        var->db = (ar >> 14) & 1;
3572        var->g = (ar >> 15) & 1;
3573}
3574
3575static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3576{
3577        struct kvm_segment s;
3578
3579        if (to_vmx(vcpu)->rmode.vm86_active) {
3580                vmx_get_segment(vcpu, &s, seg);
3581                return s.base;
3582        }
3583        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3584}
3585
3586static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3587{
3588        struct vcpu_vmx *vmx = to_vmx(vcpu);
3589
3590        if (unlikely(vmx->rmode.vm86_active))
3591                return 0;
3592        else {
3593                int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3594                return AR_DPL(ar);
3595        }
3596}
3597
3598static u32 vmx_segment_access_rights(struct kvm_segment *var)
3599{
3600        u32 ar;
3601
3602        if (var->unusable || !var->present)
3603                ar = 1 << 16;
3604        else {
3605                ar = var->type & 15;
3606                ar |= (var->s & 1) << 4;
3607                ar |= (var->dpl & 3) << 5;
3608                ar |= (var->present & 1) << 7;
3609                ar |= (var->avl & 1) << 12;
3610                ar |= (var->l & 1) << 13;
3611                ar |= (var->db & 1) << 14;
3612                ar |= (var->g & 1) << 15;
3613        }
3614
3615        return ar;
3616}
3617
3618static void vmx_set_segment(struct kvm_vcpu *vcpu,
3619                            struct kvm_segment *var, int seg)
3620{
3621        struct vcpu_vmx *vmx = to_vmx(vcpu);
3622        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3623
3624        vmx_segment_cache_clear(vmx);
3625
3626        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3627                vmx->rmode.segs[seg] = *var;
3628                if (seg == VCPU_SREG_TR)
3629                        vmcs_write16(sf->selector, var->selector);
3630                else if (var->s)
3631                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3632                goto out;
3633        }
3634
3635        vmcs_writel(sf->base, var->base);
3636        vmcs_write32(sf->limit, var->limit);
3637        vmcs_write16(sf->selector, var->selector);
3638
3639        /*
3640         *   Fix the "Accessed" bit in AR field of segment registers for older
3641         * qemu binaries.
3642         *   IA32 arch specifies that at the time of processor reset the
3643         * "Accessed" bit in the AR field of segment registers is 1. And qemu
3644         * is setting it to 0 in the userland code. This causes invalid guest
3645         * state vmexit when "unrestricted guest" mode is turned on.
3646         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3647         * tree. Newer qemu binaries with that qemu fix would not need this
3648         * kvm hack.
3649         */
3650        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3651                var->type |= 0x1; /* Accessed */
3652
3653        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3654
3655out:
3656        vmx->emulation_required |= emulation_required(vcpu);
3657}
3658
3659static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3660{
3661        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3662
3663        *db = (ar >> 14) & 1;
3664        *l = (ar >> 13) & 1;
3665}
3666
3667static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3668{
3669        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3670        dt->address = vmcs_readl(GUEST_IDTR_BASE);
3671}
3672
3673static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3674{
3675        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3676        vmcs_writel(GUEST_IDTR_BASE, dt->address);
3677}
3678
3679static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3680{
3681        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3682        dt->address = vmcs_readl(GUEST_GDTR_BASE);
3683}
3684
3685static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3686{
3687        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3688        vmcs_writel(GUEST_GDTR_BASE, dt->address);
3689}
3690
3691static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3692{
3693        struct kvm_segment var;
3694        u32 ar;
3695
3696        vmx_get_segment(vcpu, &var, seg);
3697        var.dpl = 0x3;
3698        if (seg == VCPU_SREG_CS)
3699                var.type = 0x3;
3700        ar = vmx_segment_access_rights(&var);
3701
3702        if (var.base != (var.selector << 4))
3703                return false;
3704        if (var.limit != 0xffff)
3705                return false;
3706        if (ar != 0xf3)
3707                return false;
3708
3709        return true;
3710}
3711
3712static bool code_segment_valid(struct kvm_vcpu *vcpu)
3713{
3714        struct kvm_segment cs;
3715        unsigned int cs_rpl;
3716
3717        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3718        cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3719
3720        if (cs.unusable)
3721                return false;
3722        if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3723                return false;
3724        if (!cs.s)
3725                return false;
3726        if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3727                if (cs.dpl > cs_rpl)
3728                        return false;
3729        } else {
3730                if (cs.dpl != cs_rpl)
3731                        return false;
3732        }
3733        if (!cs.present)
3734                return false;
3735
3736        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3737        return true;
3738}
3739
3740static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3741{
3742        struct kvm_segment ss;
3743        unsigned int ss_rpl;
3744
3745        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3746        ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3747
3748        if (ss.unusable)
3749                return true;
3750        if (ss.type != 3 && ss.type != 7)
3751                return false;
3752        if (!ss.s)
3753                return false;
3754        if (ss.dpl != ss_rpl) /* DPL != RPL */
3755                return false;
3756        if (!ss.present)
3757                return false;
3758
3759        return true;
3760}
3761
3762static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3763{
3764        struct kvm_segment var;
3765        unsigned int rpl;
3766
3767        vmx_get_segment(vcpu, &var, seg);
3768        rpl = var.selector & SELECTOR_RPL_MASK;
3769
3770        if (var.unusable)
3771                return true;
3772        if (!var.s)
3773                return false;
3774        if (!var.present)
3775                return false;
3776        if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3777                if (var.dpl < rpl) /* DPL < RPL */
3778                        return false;
3779        }
3780
3781        /* TODO: Add other members to kvm_segment_field to allow checking for other access
3782         * rights flags
3783         */
3784        return true;
3785}
3786
3787static bool tr_valid(struct kvm_vcpu *vcpu)
3788{
3789        struct kvm_segment tr;
3790
3791        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3792
3793        if (tr.unusable)
3794                return false;
3795        if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3796                return false;
3797        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3798                return false;
3799        if (!tr.present)
3800                return false;
3801
3802        return true;
3803}
3804
3805static bool ldtr_valid(struct kvm_vcpu *vcpu)
3806{
3807        struct kvm_segment ldtr;
3808
3809        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3810
3811        if (ldtr.unusable)
3812                return true;
3813        if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3814                return false;
3815        if (ldtr.type != 2)
3816                return false;
3817        if (!ldtr.present)
3818                return false;
3819
3820        return true;
3821}
3822
3823static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3824{
3825        struct kvm_segment cs, ss;
3826
3827        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3828        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3829
3830        return ((cs.selector & SELECTOR_RPL_MASK) ==
3831                 (ss.selector & SELECTOR_RPL_MASK));
3832}
3833
3834/*
3835 * Check if guest state is valid. Returns true if valid, false if
3836 * not.
3837 * We assume that registers are always usable
3838 */
3839static bool guest_state_valid(struct kvm_vcpu *vcpu)
3840{
3841        if (enable_unrestricted_guest)
3842                return true;
3843
3844        /* real mode guest state checks */
3845        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3846                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3847                        return false;
3848                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3849                        return false;
3850                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3851                        return false;
3852                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3853                        return false;
3854                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3855                        return false;
3856                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3857                        return false;
3858        } else {
3859        /* protected mode guest state checks */
3860                if (!cs_ss_rpl_check(vcpu))
3861                        return false;
3862                if (!code_segment_valid(vcpu))
3863                        return false;
3864                if (!stack_segment_valid(vcpu))
3865                        return false;
3866                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3867                        return false;
3868                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3869                        return false;
3870                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3871                        return false;
3872                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3873                        return false;
3874                if (!tr_valid(vcpu))
3875                        return false;
3876                if (!ldtr_valid(vcpu))
3877                        return false;
3878        }
3879        /* TODO:
3880         * - Add checks on RIP
3881         * - Add checks on RFLAGS
3882         */
3883
3884        return true;
3885}
3886
3887static int init_rmode_tss(struct kvm *kvm)
3888{
3889        gfn_t fn;
3890        u16 data = 0;
3891        int r, idx, ret = 0;
3892
3893        idx = srcu_read_lock(&kvm->srcu);
3894        fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3895        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3896        if (r < 0)
3897                goto out;
3898        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3899        r = kvm_write_guest_page(kvm, fn++, &data,
3900                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
3901        if (r < 0)
3902                goto out;
3903        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3904        if (r < 0)
3905                goto out;
3906        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3907        if (r < 0)
3908                goto out;
3909        data = ~0;
3910        r = kvm_write_guest_page(kvm, fn, &data,
3911                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3912                                 sizeof(u8));
3913        if (r < 0)
3914                goto out;
3915
3916        ret = 1;
3917out:
3918        srcu_read_unlock(&kvm->srcu, idx);
3919        return ret;
3920}
3921
3922static int init_rmode_identity_map(struct kvm *kvm)
3923{
3924        int i, idx, r, ret;
3925        pfn_t identity_map_pfn;
3926        u32 tmp;
3927
3928        if (!enable_ept)
3929                return 1;
3930        if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3931                printk(KERN_ERR "EPT: identity-mapping pagetable "
3932                        "haven't been allocated!\n");
3933                return 0;
3934        }
3935        if (likely(kvm->arch.ept_identity_pagetable_done))
3936                return 1;
3937        ret = 0;
3938        identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3939        idx = srcu_read_lock(&kvm->srcu);
3940        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3941        if (r < 0)
3942                goto out;
3943        /* Set up identity-mapping pagetable for EPT in real mode */
3944        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3945                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3946                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3947                r = kvm_write_guest_page(kvm, identity_map_pfn,
3948                                &tmp, i * sizeof(tmp), sizeof(tmp));
3949                if (r < 0)
3950                        goto out;
3951        }
3952        kvm->arch.ept_identity_pagetable_done = true;
3953        ret = 1;
3954out:
3955        srcu_read_unlock(&kvm->srcu, idx);
3956        return ret;
3957}
3958
3959static void seg_setup(int seg)
3960{
3961        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3962        unsigned int ar;
3963
3964        vmcs_write16(sf->selector, 0);
3965        vmcs_writel(sf->base, 0);
3966        vmcs_write32(sf->limit, 0xffff);
3967        ar = 0x93;
3968        if (seg == VCPU_SREG_CS)
3969                ar |= 0x08; /* code segment */
3970
3971        vmcs_write32(sf->ar_bytes, ar);
3972}
3973
3974static int alloc_apic_access_page(struct kvm *kvm)
3975{
3976        struct page *page;
3977        struct kvm_userspace_memory_region kvm_userspace_mem;
3978        int r = 0;
3979
3980        mutex_lock(&kvm->slots_lock);
3981        if (kvm->arch.apic_access_page)
3982                goto out;
3983        kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3984        kvm_userspace_mem.flags = 0;
3985        kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3986        kvm_userspace_mem.memory_size = PAGE_SIZE;
3987        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3988        if (r)
3989                goto out;
3990
3991        page = gfn_to_page(kvm, 0xfee00);
3992        if (is_error_page(page)) {
3993                r = -EFAULT;
3994                goto out;
3995        }
3996
3997        kvm->arch.apic_access_page = page;
3998out:
3999        mutex_unlock(&kvm->slots_lock);
4000        return r;
4001}
4002
4003static int alloc_identity_pagetable(struct kvm *kvm)
4004{
4005        struct page *page;
4006        struct kvm_userspace_memory_region kvm_userspace_mem;
4007        int r = 0;
4008
4009        mutex_lock(&kvm->slots_lock);
4010        if (kvm->arch.ept_identity_pagetable)
4011                goto out;
4012        kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4013        kvm_userspace_mem.flags = 0;
4014        kvm_userspace_mem.guest_phys_addr =
4015                kvm->arch.ept_identity_map_addr;
4016        kvm_userspace_mem.memory_size = PAGE_SIZE;
4017        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4018        if (r)
4019                goto out;
4020
4021        page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
4022        if (is_error_page(page)) {
4023                r = -EFAULT;
4024                goto out;
4025        }
4026
4027        kvm->arch.ept_identity_pagetable = page;
4028out:
4029        mutex_unlock(&kvm->slots_lock);
4030        return r;
4031}
4032
4033static void allocate_vpid(struct vcpu_vmx *vmx)
4034{
4035        int vpid;
4036
4037        vmx->vpid = 0;
4038        if (!enable_vpid)
4039                return;
4040        spin_lock(&vmx_vpid_lock);
4041        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4042        if (vpid < VMX_NR_VPIDS) {
4043                vmx->vpid = vpid;
4044                __set_bit(vpid, vmx_vpid_bitmap);
4045        }
4046        spin_unlock(&vmx_vpid_lock);
4047}
4048
4049static void free_vpid(struct vcpu_vmx *vmx)
4050{
4051        if (!enable_vpid)
4052                return;
4053        spin_lock(&vmx_vpid_lock);
4054        if (vmx->vpid != 0)
4055                __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4056        spin_unlock(&vmx_vpid_lock);
4057}
4058
4059#define MSR_TYPE_R      1
4060#define MSR_TYPE_W      2
4061static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4062                                                u32 msr, int type)
4063{
4064        int f = sizeof(unsigned long);
4065
4066        if (!cpu_has_vmx_msr_bitmap())
4067                return;
4068
4069        /*
4070         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4071         * have the write-low and read-high bitmap offsets the wrong way round.
4072         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4073         */
4074        if (msr <= 0x1fff) {
4075                if (type & MSR_TYPE_R)
4076                        /* read-low */
4077                        __clear_bit(msr, msr_bitmap + 0x000 / f);
4078
4079                if (type & MSR_TYPE_W)
4080                        /* write-low */
4081                        __clear_bit(msr, msr_bitmap + 0x800 / f);
4082
4083        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4084                msr &= 0x1fff;
4085                if (type & MSR_TYPE_R)
4086                        /* read-high */
4087                        __clear_bit(msr, msr_bitmap + 0x400 / f);
4088
4089                if (type & MSR_TYPE_W)
4090                        /* write-high */
4091                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
4092
4093        }
4094}
4095
4096static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4097                                                u32 msr, int type)
4098{
4099        int f = sizeof(unsigned long);
4100
4101        if (!cpu_has_vmx_msr_bitmap())
4102                return;
4103
4104        /*
4105         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4106         * have the write-low and read-high bitmap offsets the wrong way round.
4107         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4108         */
4109        if (msr <= 0x1fff) {
4110                if (type & MSR_TYPE_R)
4111                        /* read-low */
4112                        __set_bit(msr, msr_bitmap + 0x000 / f);
4113
4114                if (type & MSR_TYPE_W)
4115                        /* write-low */
4116                        __set_bit(msr, msr_bitmap + 0x800 / f);
4117
4118        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4119                msr &= 0x1fff;
4120                if (type & MSR_TYPE_R)
4121                        /* read-high */
4122                        __set_bit(msr, msr_bitmap + 0x400 / f);
4123
4124                if (type & MSR_TYPE_W)
4125                        /* write-high */
4126                        __set_bit(msr, msr_bitmap + 0xc00 / f);
4127
4128        }
4129}
4130
4131static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4132{
4133        if (!longmode_only)
4134                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4135                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4136        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4137                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4138}
4139
4140static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4141{
4142        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4143                        msr, MSR_TYPE_R);
4144        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4145                        msr, MSR_TYPE_R);
4146}
4147
4148static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4149{
4150        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4151                        msr, MSR_TYPE_R);
4152        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4153                        msr, MSR_TYPE_R);
4154}
4155
4156static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4157{
4158        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4159                        msr, MSR_TYPE_W);
4160        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4161                        msr, MSR_TYPE_W);
4162}
4163
4164static int vmx_vm_has_apicv(struct kvm *kvm)
4165{
4166        return enable_apicv && irqchip_in_kernel(kvm);
4167}
4168
4169/*
4170 * Send interrupt to vcpu via posted interrupt way.
4171 * 1. If target vcpu is running(non-root mode), send posted interrupt
4172 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4173 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4174 * interrupt from PIR in next vmentry.
4175 */
4176static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4177{
4178        struct vcpu_vmx *vmx = to_vmx(vcpu);
4179        int r;
4180
4181        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4182                return;
4183
4184        r = pi_test_and_set_on(&vmx->pi_desc);
4185        kvm_make_request(KVM_REQ_EVENT, vcpu);
4186#ifdef CONFIG_SMP
4187        if (!r && (vcpu->mode == IN_GUEST_MODE))
4188                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4189                                POSTED_INTR_VECTOR);
4190        else
4191#endif
4192                kvm_vcpu_kick(vcpu);
4193}
4194
4195static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4196{
4197        struct vcpu_vmx *vmx = to_vmx(vcpu);
4198
4199        if (!pi_test_and_clear_on(&vmx->pi_desc))
4200                return;
4201
4202        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4203}
4204
4205static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4206{
4207        return;
4208}
4209
4210/*
4211 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4212 * will not change in the lifetime of the guest.
4213 * Note that host-state that does change is set elsewhere. E.g., host-state
4214 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4215 */
4216static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4217{
4218        u32 low32, high32;
4219        unsigned long tmpl;
4220        struct desc_ptr dt;
4221
4222        vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4223        vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4224        vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4225
4226        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4227#ifdef CONFIG_X86_64
4228        /*
4229         * Load null selectors, so we can avoid reloading them in
4230         * __vmx_load_host_state(), in case userspace uses the null selectors
4231         * too (the expected case).
4232         */
4233        vmcs_write16(HOST_DS_SELECTOR, 0);
4234        vmcs_write16(HOST_ES_SELECTOR, 0);
4235#else
4236        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4237        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4238#endif
4239        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4240        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4241
4242        native_store_idt(&dt);
4243        vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4244        vmx->host_idt_base = dt.address;
4245
4246        vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4247
4248        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4249        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4250        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4251        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4252
4253        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4254                rdmsr(MSR_IA32_CR_PAT, low32, high32);
4255                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4256        }
4257}
4258
4259static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4260{
4261        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4262        if (enable_ept)
4263                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4264        if (is_guest_mode(&vmx->vcpu))
4265                vmx->vcpu.arch.cr4_guest_owned_bits &=
4266                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4267        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4268}
4269
4270static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4271{
4272        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4273
4274        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4275                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4276        return pin_based_exec_ctrl;
4277}
4278
4279static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4280{
4281        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4282
4283        if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4284                exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4285
4286        if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4287                exec_control &= ~CPU_BASED_TPR_SHADOW;
4288#ifdef CONFIG_X86_64
4289                exec_control |= CPU_BASED_CR8_STORE_EXITING |
4290                                CPU_BASED_CR8_LOAD_EXITING;
4291#endif
4292        }
4293        if (!enable_ept)
4294                exec_control |= CPU_BASED_CR3_STORE_EXITING |
4295                                CPU_BASED_CR3_LOAD_EXITING  |
4296                                CPU_BASED_INVLPG_EXITING;
4297        return exec_control;
4298}
4299
4300static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4301{
4302        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4303        if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4304                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4305        if (vmx->vpid == 0)
4306                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4307        if (!enable_ept) {
4308                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4309                enable_unrestricted_guest = 0;
4310                /* Enable INVPCID for non-ept guests may cause performance regression. */
4311                exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4312        }
4313        if (!enable_unrestricted_guest)
4314                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4315        if (!ple_gap)
4316                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4317        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4318                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4319                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4320        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4321        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4322           (handle_vmptrld).
4323           We can NOT enable shadow_vmcs here because we don't have yet
4324           a current VMCS12
4325        */
4326        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4327        return exec_control;
4328}
4329
4330static void ept_set_mmio_spte_mask(void)
4331{
4332        /*
4333         * EPT Misconfigurations can be generated if the value of bits 2:0
4334         * of an EPT paging-structure entry is 110b (write/execute).
4335         * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4336         * spte.
4337         */
4338        kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4339}
4340
4341/*
4342 * Sets up the vmcs for emulated real mode.
4343 */
4344static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4345{
4346#ifdef CONFIG_X86_64
4347        unsigned long a;
4348#endif
4349        int i;
4350
4351        /* I/O */
4352        vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4353        vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4354
4355        if (enable_shadow_vmcs) {
4356                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4357                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4358        }
4359        if (cpu_has_vmx_msr_bitmap())
4360                vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4361
4362        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4363
4364        /* Control */
4365        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4366
4367        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4368
4369        if (cpu_has_secondary_exec_ctrls()) {
4370                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4371                                vmx_secondary_exec_control(vmx));
4372        }
4373
4374        if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4375                vmcs_write64(EOI_EXIT_BITMAP0, 0);
4376                vmcs_write64(EOI_EXIT_BITMAP1, 0);
4377                vmcs_write64(EOI_EXIT_BITMAP2, 0);
4378                vmcs_write64(EOI_EXIT_BITMAP3, 0);
4379
4380                vmcs_write16(GUEST_INTR_STATUS, 0);
4381
4382                vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4383                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4384        }
4385
4386        if (ple_gap) {
4387                vmcs_write32(PLE_GAP, ple_gap);
4388                vmcs_write32(PLE_WINDOW, ple_window);
4389        }
4390
4391        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4392        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4393        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4394
4395        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4396        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4397        vmx_set_constant_host_state(vmx);
4398#ifdef CONFIG_X86_64
4399        rdmsrl(MSR_FS_BASE, a);
4400        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4401        rdmsrl(MSR_GS_BASE, a);
4402        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4403#else
4404        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4405        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4406#endif
4407
4408        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4409        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4410        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4411        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4412        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4413
4414        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4415                u32 msr_low, msr_high;
4416                u64 host_pat;
4417                rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4418                host_pat = msr_low | ((u64) msr_high << 32);
4419                /* Write the default value follow host pat */
4420                vmcs_write64(GUEST_IA32_PAT, host_pat);
4421                /* Keep arch.pat sync with GUEST_IA32_PAT */
4422                vmx->vcpu.arch.pat = host_pat;
4423        }
4424
4425        for (i = 0; i < NR_VMX_MSR; ++i) {
4426                u32 index = vmx_msr_index[i];
4427                u32 data_low, data_high;
4428                int j = vmx->nmsrs;
4429
4430                if (rdmsr_safe(index, &data_low, &data_high) < 0)
4431                        continue;
4432                if (wrmsr_safe(index, data_low, data_high) < 0)
4433                        continue;
4434                vmx->guest_msrs[j].index = i;
4435                vmx->guest_msrs[j].data = 0;
4436                vmx->guest_msrs[j].mask = -1ull;
4437                ++vmx->nmsrs;
4438        }
4439
4440
4441        vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4442
4443        /* 22.2.1, 20.8.1 */
4444        vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4445
4446        vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4447        set_cr4_guest_host_mask(vmx);
4448
4449        return 0;
4450}
4451
4452static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4453{
4454        struct vcpu_vmx *vmx = to_vmx(vcpu);
4455        struct msr_data apic_base_msr;
4456
4457        vmx->rmode.vm86_active = 0;
4458
4459        vmx->soft_vnmi_blocked = 0;
4460
4461        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4462        kvm_set_cr8(&vmx->vcpu, 0);
4463        apic_base_msr.data = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4464        if (kvm_vcpu_is_bsp(&vmx->vcpu))
4465                apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4466        apic_base_msr.host_initiated = true;
4467        kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4468
4469        vmx_segment_cache_clear(vmx);
4470
4471        seg_setup(VCPU_SREG_CS);
4472        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4473        vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4474
4475        seg_setup(VCPU_SREG_DS);
4476        seg_setup(VCPU_SREG_ES);
4477        seg_setup(VCPU_SREG_FS);
4478        seg_setup(VCPU_SREG_GS);
4479        seg_setup(VCPU_SREG_SS);
4480
4481        vmcs_write16(GUEST_TR_SELECTOR, 0);
4482        vmcs_writel(GUEST_TR_BASE, 0);
4483        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4484        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4485
4486        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4487        vmcs_writel(GUEST_LDTR_BASE, 0);
4488        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4489        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4490
4491        vmcs_write32(GUEST_SYSENTER_CS, 0);
4492        vmcs_writel(GUEST_SYSENTER_ESP, 0);
4493        vmcs_writel(GUEST_SYSENTER_EIP, 0);
4494
4495        vmcs_writel(GUEST_RFLAGS, 0x02);
4496        kvm_rip_write(vcpu, 0xfff0);
4497
4498        vmcs_writel(GUEST_GDTR_BASE, 0);
4499        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4500
4501        vmcs_writel(GUEST_IDTR_BASE, 0);
4502        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4503
4504        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4505        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4506        vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4507
4508        /* Special registers */
4509        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4510
4511        setup_msrs(vmx);
4512
4513        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4514
4515        if (cpu_has_vmx_tpr_shadow()) {
4516                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4517                if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4518                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4519                                     __pa(vmx->vcpu.arch.apic->regs));
4520                vmcs_write32(TPR_THRESHOLD, 0);
4521        }
4522
4523        if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4524                vmcs_write64(APIC_ACCESS_ADDR,
4525                             page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4526
4527        if (vmx_vm_has_apicv(vcpu->kvm))
4528                memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4529
4530        if (vmx->vpid != 0)
4531                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4532
4533        vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4534        vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4535        vmx_set_cr4(&vmx->vcpu, 0);
4536        vmx_set_efer(&vmx->vcpu, 0);
4537        vmx_fpu_activate(&vmx->vcpu);
4538        update_exception_bitmap(&vmx->vcpu);
4539
4540        vpid_sync_context(vmx);
4541}
4542
4543/*
4544 * In nested virtualization, check if L1 asked to exit on external interrupts.
4545 * For most existing hypervisors, this will always return true.
4546 */
4547static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4548{
4549        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4550                PIN_BASED_EXT_INTR_MASK;
4551}
4552
4553/*
4554 * In nested virtualization, check if L1 has set
4555 * VM_EXIT_ACK_INTR_ON_EXIT
4556 */
4557static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4558{
4559        return get_vmcs12(vcpu)->vm_exit_controls &
4560                VM_EXIT_ACK_INTR_ON_EXIT;
4561}
4562
4563static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4564{
4565        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4566                PIN_BASED_NMI_EXITING;
4567}
4568
4569static void enable_irq_window(struct kvm_vcpu *vcpu)
4570{
4571        u32 cpu_based_vm_exec_control;
4572
4573        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4574        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4575        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4576}
4577
4578static void enable_nmi_window(struct kvm_vcpu *vcpu)
4579{
4580        u32 cpu_based_vm_exec_control;
4581
4582        if (!cpu_has_virtual_nmis() ||
4583            vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4584                enable_irq_window(vcpu);
4585                return;
4586        }
4587
4588        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4589        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4590        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4591}
4592
4593static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4594{
4595        struct vcpu_vmx *vmx = to_vmx(vcpu);
4596        uint32_t intr;
4597        int irq = vcpu->arch.interrupt.nr;
4598
4599        trace_kvm_inj_virq(irq);
4600
4601        ++vcpu->stat.irq_injections;
4602        if (vmx->rmode.vm86_active) {
4603                int inc_eip = 0;
4604                if (vcpu->arch.interrupt.soft)
4605                        inc_eip = vcpu->arch.event_exit_inst_len;
4606                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4607                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4608                return;
4609        }
4610        intr = irq | INTR_INFO_VALID_MASK;
4611        if (vcpu->arch.interrupt.soft) {
4612                intr |= INTR_TYPE_SOFT_INTR;
4613                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4614                             vmx->vcpu.arch.event_exit_inst_len);
4615        } else
4616                intr |= INTR_TYPE_EXT_INTR;
4617        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4618}
4619
4620static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4621{
4622        struct vcpu_vmx *vmx = to_vmx(vcpu);
4623
4624        if (is_guest_mode(vcpu))
4625                return;
4626
4627        if (!cpu_has_virtual_nmis()) {
4628                /*
4629                 * Tracking the NMI-blocked state in software is built upon
4630                 * finding the next open IRQ window. This, in turn, depends on
4631                 * well-behaving guests: They have to keep IRQs disabled at
4632                 * least as long as the NMI handler runs. Otherwise we may
4633                 * cause NMI nesting, maybe breaking the guest. But as this is
4634                 * highly unlikely, we can live with the residual risk.
4635                 */
4636                vmx->soft_vnmi_blocked = 1;
4637                vmx->vnmi_blocked_time = 0;
4638        }
4639
4640        ++vcpu->stat.nmi_injections;
4641        vmx->nmi_known_unmasked = false;
4642        if (vmx->rmode.vm86_active) {
4643                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4644                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4645                return;
4646        }
4647        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4648                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4649}
4650
4651static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4652{
4653        if (!cpu_has_virtual_nmis())
4654                return to_vmx(vcpu)->soft_vnmi_blocked;
4655        if (to_vmx(vcpu)->nmi_known_unmasked)
4656                return false;
4657        return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4658}
4659
4660static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4661{
4662        struct vcpu_vmx *vmx = to_vmx(vcpu);
4663
4664        if (!cpu_has_virtual_nmis()) {
4665                if (vmx->soft_vnmi_blocked != masked) {
4666                        vmx->soft_vnmi_blocked = masked;
4667                        vmx->vnmi_blocked_time = 0;
4668                }
4669        } else {
4670                vmx->nmi_known_unmasked = !masked;
4671                if (masked)
4672                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4673                                      GUEST_INTR_STATE_NMI);
4674                else
4675                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4676                                        GUEST_INTR_STATE_NMI);
4677        }
4678}
4679
4680static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4681{
4682        if (to_vmx(vcpu)->nested.nested_run_pending)
4683                return 0;
4684
4685        if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4686                return 0;
4687
4688        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4689                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4690                   | GUEST_INTR_STATE_NMI));
4691}
4692
4693static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4694{
4695        return (!to_vmx(vcpu)->nested.nested_run_pending &&
4696                vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4697                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4698                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4699}
4700
4701static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4702{
4703        int ret;
4704        struct kvm_userspace_memory_region tss_mem = {
4705                .slot = TSS_PRIVATE_MEMSLOT,
4706                .guest_phys_addr = addr,
4707                .memory_size = PAGE_SIZE * 3,
4708                .flags = 0,
4709        };
4710
4711        ret = kvm_set_memory_region(kvm, &tss_mem);
4712        if (ret)
4713                return ret;
4714        kvm->arch.tss_addr = addr;
4715        if (!init_rmode_tss(kvm))
4716                return  -ENOMEM;
4717
4718        return 0;
4719}
4720
4721static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4722{
4723        switch (vec) {
4724        case BP_VECTOR:
4725                /*
4726                 * Update instruction length as we may reinject the exception
4727                 * from user space while in guest debugging mode.
4728                 */
4729                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4730                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4731                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4732                        return false;
4733                /* fall through */
4734        case DB_VECTOR:
4735                if (vcpu->guest_debug &
4736                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4737                        return false;
4738                /* fall through */
4739        case DE_VECTOR:
4740        case OF_VECTOR:
4741        case BR_VECTOR:
4742        case UD_VECTOR:
4743        case DF_VECTOR:
4744        case SS_VECTOR:
4745        case GP_VECTOR:
4746        case MF_VECTOR:
4747                return true;
4748        break;
4749        }
4750        return false;
4751}
4752
4753static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4754                                  int vec, u32 err_code)
4755{
4756        /*
4757         * Instruction with address size override prefix opcode 0x67
4758         * Cause the #SS fault with 0 error code in VM86 mode.
4759         */
4760        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4761                if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4762                        if (vcpu->arch.halt_request) {
4763                                vcpu->arch.halt_request = 0;
4764                                return kvm_emulate_halt(vcpu);
4765                        }
4766                        return 1;
4767                }
4768                return 0;
4769        }
4770
4771        /*
4772         * Forward all other exceptions that are valid in real mode.
4773         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4774         *        the required debugging infrastructure rework.
4775         */
4776        kvm_queue_exception(vcpu, vec);
4777        return 1;
4778}
4779
4780/*
4781 * Trigger machine check on the host. We assume all the MSRs are already set up
4782 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4783 * We pass a fake environment to the machine check handler because we want
4784 * the guest to be always treated like user space, no matter what context
4785 * it used internally.
4786 */
4787static void kvm_machine_check(void)
4788{
4789#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4790        struct pt_regs regs = {
4791                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4792                .flags = X86_EFLAGS_IF,
4793        };
4794
4795        do_machine_check(&regs, 0);
4796#endif
4797}
4798
4799static int handle_machine_check(struct kvm_vcpu *vcpu)
4800{
4801        /* already handled by vcpu_run */
4802        return 1;
4803}
4804
4805static int handle_exception(struct kvm_vcpu *vcpu)
4806{
4807        struct vcpu_vmx *vmx = to_vmx(vcpu);
4808        struct kvm_run *kvm_run = vcpu->run;
4809        u32 intr_info, ex_no, error_code;
4810        unsigned long cr2, rip, dr6;
4811        u32 vect_info;
4812        enum emulation_result er;
4813
4814        vect_info = vmx->idt_vectoring_info;
4815        intr_info = vmx->exit_intr_info;
4816
4817        if (is_machine_check(intr_info))
4818                return handle_machine_check(vcpu);
4819
4820        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4821                return 1;  /* already handled by vmx_vcpu_run() */
4822
4823        if (is_no_device(intr_info)) {
4824                vmx_fpu_activate(vcpu);
4825                return 1;
4826        }
4827
4828        if (is_invalid_opcode(intr_info)) {
4829                er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4830                if (er != EMULATE_DONE)
4831                        kvm_queue_exception(vcpu, UD_VECTOR);
4832                return 1;
4833        }
4834
4835        error_code = 0;
4836        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4837                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4838
4839        /*
4840         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4841         * MMIO, it is better to report an internal error.
4842         * See the comments in vmx_handle_exit.
4843         */
4844        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4845            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4846                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4847                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4848                vcpu->run->internal.ndata = 2;
4849                vcpu->run->internal.data[0] = vect_info;
4850                vcpu->run->internal.data[1] = intr_info;
4851                return 0;
4852        }
4853
4854        if (is_page_fault(intr_info)) {
4855                /* EPT won't cause page fault directly */
4856                BUG_ON(enable_ept);
4857                cr2 = vmcs_readl(EXIT_QUALIFICATION);
4858                trace_kvm_page_fault(cr2, error_code);
4859
4860                if (kvm_event_needs_reinjection(vcpu))
4861                        kvm_mmu_unprotect_page_virt(vcpu, cr2);
4862                return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4863        }
4864
4865        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4866
4867        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4868                return handle_rmode_exception(vcpu, ex_no, error_code);
4869
4870        switch (ex_no) {
4871        case DB_VECTOR:
4872                dr6 = vmcs_readl(EXIT_QUALIFICATION);
4873                if (!(vcpu->guest_debug &
4874                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4875                        vcpu->arch.dr6 &= ~15;
4876                        vcpu->arch.dr6 |= dr6;
4877                        if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4878                                skip_emulated_instruction(vcpu);
4879
4880                        kvm_queue_exception(vcpu, DB_VECTOR);
4881                        return 1;
4882                }
4883                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4884                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4885                /* fall through */
4886        case BP_VECTOR:
4887                /*
4888                 * Update instruction length as we may reinject #BP from
4889                 * user space while in guest debugging mode. Reading it for
4890                 * #DB as well causes no harm, it is not used in that case.
4891                 */
4892                vmx->vcpu.arch.event_exit_inst_len =
4893                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4894                kvm_run->exit_reason = KVM_EXIT_DEBUG;
4895                rip = kvm_rip_read(vcpu);
4896                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4897                kvm_run->debug.arch.exception = ex_no;
4898                break;
4899        default:
4900                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4901                kvm_run->ex.exception = ex_no;
4902                kvm_run->ex.error_code = error_code;
4903                break;
4904        }
4905        return 0;
4906}
4907
4908static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4909{
4910        ++vcpu->stat.irq_exits;
4911        return 1;
4912}
4913
4914static int handle_triple_fault(struct kvm_vcpu *vcpu)
4915{
4916        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4917        return 0;
4918}
4919
4920static int handle_io(struct kvm_vcpu *vcpu)
4921{
4922        unsigned long exit_qualification;
4923        int size, in, string;
4924        unsigned port;
4925
4926        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4927        string = (exit_qualification & 16) != 0;
4928        in = (exit_qualification & 8) != 0;
4929
4930        ++vcpu->stat.io_exits;
4931
4932        if (string || in)
4933                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4934
4935        port = exit_qualification >> 16;
4936        size = (exit_qualification & 7) + 1;
4937        skip_emulated_instruction(vcpu);
4938
4939        return kvm_fast_pio_out(vcpu, size, port);
4940}
4941
4942static void
4943vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4944{
4945        /*
4946         * Patch in the VMCALL instruction:
4947         */
4948        hypercall[0] = 0x0f;
4949        hypercall[1] = 0x01;
4950        hypercall[2] = 0xc1;
4951}
4952
4953static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4954{
4955        unsigned long always_on = VMXON_CR0_ALWAYSON;
4956
4957        if (nested_vmx_secondary_ctls_high &
4958                SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4959            nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4960                always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4961        return (val & always_on) == always_on;
4962}
4963
4964/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4965static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4966{
4967        if (is_guest_mode(vcpu)) {
4968                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4969                unsigned long orig_val = val;
4970
4971                /*
4972                 * We get here when L2 changed cr0 in a way that did not change
4973                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4974                 * but did change L0 shadowed bits. So we first calculate the
4975                 * effective cr0 value that L1 would like to write into the
4976                 * hardware. It consists of the L2-owned bits from the new
4977                 * value combined with the L1-owned bits from L1's guest_cr0.
4978                 */
4979                val = (val & ~vmcs12->cr0_guest_host_mask) |
4980                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4981
4982                if (!nested_cr0_valid(vmcs12, val))
4983                        return 1;
4984
4985                if (kvm_set_cr0(vcpu, val))
4986                        return 1;
4987                vmcs_writel(CR0_READ_SHADOW, orig_val);
4988                return 0;
4989        } else {
4990                if (to_vmx(vcpu)->nested.vmxon &&
4991                    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4992                        return 1;
4993                return kvm_set_cr0(vcpu, val);
4994        }
4995}
4996
4997static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4998{
4999        if (is_guest_mode(vcpu)) {
5000                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5001                unsigned long orig_val = val;
5002
5003                /* analogously to handle_set_cr0 */
5004                val = (val & ~vmcs12->cr4_guest_host_mask) |
5005                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5006                if (kvm_set_cr4(vcpu, val))
5007                        return 1;
5008                vmcs_writel(CR4_READ_SHADOW, orig_val);
5009                return 0;
5010        } else
5011                return kvm_set_cr4(vcpu, val);
5012}
5013
5014/* called to set cr0 as approriate for clts instruction exit. */
5015static void handle_clts(struct kvm_vcpu *vcpu)
5016{
5017        if (is_guest_mode(vcpu)) {
5018                /*
5019                 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5020                 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5021                 * just pretend it's off (also in arch.cr0 for fpu_activate).
5022                 */
5023                vmcs_writel(CR0_READ_SHADOW,
5024                        vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5025                vcpu->arch.cr0 &= ~X86_CR0_TS;
5026        } else
5027                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5028}
5029
5030static int handle_cr(struct kvm_vcpu *vcpu)
5031{
5032        unsigned long exit_qualification, val;
5033        int cr;
5034        int reg;
5035        int err;
5036
5037        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5038        cr = exit_qualification & 15;
5039        reg = (exit_qualification >> 8) & 15;
5040        switch ((exit_qualification >> 4) & 3) {
5041        case 0: /* mov to cr */
5042                val = kvm_register_read(vcpu, reg);
5043                trace_kvm_cr_write(cr, val);
5044                switch (cr) {
5045                case 0:
5046                        err = handle_set_cr0(vcpu, val);
5047                        kvm_complete_insn_gp(vcpu, err);
5048                        return 1;
5049                case 3:
5050                        err = kvm_set_cr3(vcpu, val);
5051                        kvm_complete_insn_gp(vcpu, err);
5052                        return 1;
5053                case 4:
5054                        err = handle_set_cr4(vcpu, val);
5055                        kvm_complete_insn_gp(vcpu, err);
5056                        return 1;
5057                case 8: {
5058                                u8 cr8_prev = kvm_get_cr8(vcpu);
5059                                u8 cr8 = kvm_register_read(vcpu, reg);
5060                                err = kvm_set_cr8(vcpu, cr8);
5061                                kvm_complete_insn_gp(vcpu, err);
5062                                if (irqchip_in_kernel(vcpu->kvm))
5063                                        return 1;
5064                                if (cr8_prev <= cr8)
5065                                        return 1;
5066                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5067                                return 0;
5068                        }
5069                }
5070                break;
5071        case 2: /* clts */
5072                handle_clts(vcpu);
5073                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5074                skip_emulated_instruction(vcpu);
5075                vmx_fpu_activate(vcpu);
5076                return 1;
5077        case 1: /*mov from cr*/
5078                switch (cr) {
5079                case 3:
5080                        val = kvm_read_cr3(vcpu);
5081                        kvm_register_write(vcpu, reg, val);
5082                        trace_kvm_cr_read(cr, val);
5083                        skip_emulated_instruction(vcpu);
5084                        return 1;
5085                case 8:
5086                        val = kvm_get_cr8(vcpu);
5087                        kvm_register_write(vcpu, reg, val);
5088                        trace_kvm_cr_read(cr, val);
5089                        skip_emulated_instruction(vcpu);
5090                        return 1;
5091                }
5092                break;
5093        case 3: /* lmsw */
5094                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5095                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5096                kvm_lmsw(vcpu, val);
5097
5098                skip_emulated_instruction(vcpu);
5099                return 1;
5100        default:
5101                break;
5102        }
5103        vcpu->run->exit_reason = 0;
5104        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5105               (int)(exit_qualification >> 4) & 3, cr);
5106        return 0;
5107}
5108
5109static int handle_dr(struct kvm_vcpu *vcpu)
5110{
5111        unsigned long exit_qualification;
5112        int dr, reg;
5113
5114        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5115        if (!kvm_require_cpl(vcpu, 0))
5116                return 1;
5117        dr = vmcs_readl(GUEST_DR7);
5118        if (dr & DR7_GD) {
5119                /*
5120                 * As the vm-exit takes precedence over the debug trap, we
5121                 * need to emulate the latter, either for the host or the
5122                 * guest debugging itself.
5123                 */
5124                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5125                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5126                        vcpu->run->debug.arch.dr7 = dr;
5127                        vcpu->run->debug.arch.pc =
5128                                vmcs_readl(GUEST_CS_BASE) +
5129                                vmcs_readl(GUEST_RIP);
5130                        vcpu->run->debug.arch.exception = DB_VECTOR;
5131                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5132                        return 0;
5133                } else {
5134                        vcpu->arch.dr7 &= ~DR7_GD;
5135                        vcpu->arch.dr6 |= DR6_BD;
5136                        vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5137                        kvm_queue_exception(vcpu, DB_VECTOR);
5138                        return 1;
5139                }
5140        }
5141
5142        if (vcpu->guest_debug == 0) {
5143                u32 cpu_based_vm_exec_control;
5144
5145                cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5146                cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5147                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5148
5149                /*
5150                 * No more DR vmexits; force a reload of the debug registers
5151                 * and reenter on this instruction.  The next vmexit will
5152                 * retrieve the full state of the debug registers.
5153                 */
5154                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5155                return 1;
5156        }
5157
5158        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5159        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5160        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5161        if (exit_qualification & TYPE_MOV_FROM_DR) {
5162                unsigned long val;
5163
5164                if (kvm_get_dr(vcpu, dr, &val))
5165                        return 1;
5166                kvm_register_write(vcpu, reg, val);
5167        } else
5168                if (kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)))
5169                        return 1;
5170
5171        skip_emulated_instruction(vcpu);
5172        return 1;
5173}
5174
5175static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5176{
5177        return vcpu->arch.dr6;
5178}
5179
5180static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5181{
5182}
5183
5184static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5185{
5186        u32 cpu_based_vm_exec_control;
5187
5188        get_debugreg(vcpu->arch.db[0], 0);
5189        get_debugreg(vcpu->arch.db[1], 1);
5190        get_debugreg(vcpu->arch.db[2], 2);
5191        get_debugreg(vcpu->arch.db[3], 3);
5192        get_debugreg(vcpu->arch.dr6, 6);
5193        vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5194
5195        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5196
5197        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5198        cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5199        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5200}
5201
5202static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5203{
5204        vmcs_writel(GUEST_DR7, val);
5205}
5206
5207static int handle_cpuid(struct kvm_vcpu *vcpu)
5208{
5209        kvm_emulate_cpuid(vcpu);
5210        return 1;
5211}
5212
5213static int handle_rdmsr(struct kvm_vcpu *vcpu)
5214{
5215        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5216        u64 data;
5217
5218        if (vmx_get_msr(vcpu, ecx, &data)) {
5219                trace_kvm_msr_read_ex(ecx);
5220                kvm_inject_gp(vcpu, 0);
5221                return 1;
5222        }
5223
5224        trace_kvm_msr_read(ecx, data);
5225
5226        /* FIXME: handling of bits 32:63 of rax, rdx */
5227        vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5228        vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5229        skip_emulated_instruction(vcpu);
5230        return 1;
5231}
5232
5233static int handle_wrmsr(struct kvm_vcpu *vcpu)
5234{
5235        struct msr_data msr;
5236        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5237        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5238                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5239
5240        msr.data = data;
5241        msr.index = ecx;
5242        msr.host_initiated = false;
5243        if (vmx_set_msr(vcpu, &msr) != 0) {
5244                trace_kvm_msr_write_ex(ecx, data);
5245                kvm_inject_gp(vcpu, 0);
5246                return 1;
5247        }
5248
5249        trace_kvm_msr_write(ecx, data);
5250        skip_emulated_instruction(vcpu);
5251        return 1;
5252}
5253
5254static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5255{
5256        kvm_make_request(KVM_REQ_EVENT, vcpu);
5257        return 1;
5258}
5259
5260static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5261{
5262        u32 cpu_based_vm_exec_control;
5263
5264        /* clear pending irq */
5265        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5266        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5267        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5268
5269        kvm_make_request(KVM_REQ_EVENT, vcpu);
5270
5271        ++vcpu->stat.irq_window_exits;
5272
5273        /*
5274         * If the user space waits to inject interrupts, exit as soon as
5275         * possible
5276         */
5277        if (!irqchip_in_kernel(vcpu->kvm) &&
5278            vcpu->run->request_interrupt_window &&
5279            !kvm_cpu_has_interrupt(vcpu)) {
5280                vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5281                return 0;
5282        }
5283        return 1;
5284}
5285
5286static int handle_halt(struct kvm_vcpu *vcpu)
5287{
5288        skip_emulated_instruction(vcpu);
5289        return kvm_emulate_halt(vcpu);
5290}
5291
5292static int handle_vmcall(struct kvm_vcpu *vcpu)
5293{
5294        skip_emulated_instruction(vcpu);
5295        kvm_emulate_hypercall(vcpu);
5296        return 1;
5297}
5298
5299static int handle_invd(struct kvm_vcpu *vcpu)
5300{
5301        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5302}
5303
5304static int handle_invlpg(struct kvm_vcpu *vcpu)
5305{
5306        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5307
5308        kvm_mmu_invlpg(vcpu, exit_qualification);
5309        skip_emulated_instruction(vcpu);
5310        return 1;
5311}
5312
5313static int handle_rdpmc(struct kvm_vcpu *vcpu)
5314{
5315        int err;
5316
5317        err = kvm_rdpmc(vcpu);
5318        kvm_complete_insn_gp(vcpu, err);
5319
5320        return 1;
5321}
5322
5323static int handle_wbinvd(struct kvm_vcpu *vcpu)
5324{
5325        skip_emulated_instruction(vcpu);
5326        kvm_emulate_wbinvd(vcpu);
5327        return 1;
5328}
5329
5330static int handle_xsetbv(struct kvm_vcpu *vcpu)
5331{
5332        u64 new_bv = kvm_read_edx_eax(vcpu);
5333        u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5334
5335        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5336                skip_emulated_instruction(vcpu);
5337        return 1;
5338}
5339
5340static int handle_apic_access(struct kvm_vcpu *vcpu)
5341{
5342        if (likely(fasteoi)) {
5343                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5344                int access_type, offset;
5345
5346                access_type = exit_qualification & APIC_ACCESS_TYPE;
5347                offset = exit_qualification & APIC_ACCESS_OFFSET;
5348                /*
5349                 * Sane guest uses MOV to write EOI, with written value
5350                 * not cared. So make a short-circuit here by avoiding
5351                 * heavy instruction emulation.
5352                 */
5353                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5354                    (offset == APIC_EOI)) {
5355                        kvm_lapic_set_eoi(vcpu);
5356                        skip_emulated_instruction(vcpu);
5357                        return 1;
5358                }
5359        }
5360        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5361}
5362
5363static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5364{
5365        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5366        int vector = exit_qualification & 0xff;
5367
5368        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5369        kvm_apic_set_eoi_accelerated(vcpu, vector);
5370        return 1;
5371}
5372
5373static int handle_apic_write(struct kvm_vcpu *vcpu)
5374{
5375        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5376        u32 offset = exit_qualification & 0xfff;
5377
5378        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5379        kvm_apic_write_nodecode(vcpu, offset);
5380        return 1;
5381}
5382
5383static int handle_task_switch(struct kvm_vcpu *vcpu)
5384{
5385        struct vcpu_vmx *vmx = to_vmx(vcpu);
5386        unsigned long exit_qualification;
5387        bool has_error_code = false;
5388        u32 error_code = 0;
5389        u16 tss_selector;
5390        int reason, type, idt_v, idt_index;
5391
5392        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5393        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5394        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5395
5396        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5397
5398        reason = (u32)exit_qualification >> 30;
5399        if (reason == TASK_SWITCH_GATE && idt_v) {
5400                switch (type) {
5401                case INTR_TYPE_NMI_INTR:
5402                        vcpu->arch.nmi_injected = false;
5403                        vmx_set_nmi_mask(vcpu, true);
5404                        break;
5405                case INTR_TYPE_EXT_INTR:
5406                case INTR_TYPE_SOFT_INTR:
5407                        kvm_clear_interrupt_queue(vcpu);
5408                        break;
5409                case INTR_TYPE_HARD_EXCEPTION:
5410                        if (vmx->idt_vectoring_info &
5411                            VECTORING_INFO_DELIVER_CODE_MASK) {
5412                                has_error_code = true;
5413                                error_code =
5414                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
5415                        }
5416                        /* fall through */
5417                case INTR_TYPE_SOFT_EXCEPTION:
5418                        kvm_clear_exception_queue(vcpu);
5419                        break;
5420                default:
5421                        break;
5422                }
5423        }
5424        tss_selector = exit_qualification;
5425
5426        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5427                       type != INTR_TYPE_EXT_INTR &&
5428                       type != INTR_TYPE_NMI_INTR))
5429                skip_emulated_instruction(vcpu);
5430
5431        if (kvm_task_switch(vcpu, tss_selector,
5432                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5433                            has_error_code, error_code) == EMULATE_FAIL) {
5434                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5435                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5436                vcpu->run->internal.ndata = 0;
5437                return 0;
5438        }
5439
5440        /* clear all local breakpoint enable flags */
5441        vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5442
5443        /*
5444         * TODO: What about debug traps on tss switch?
5445         *       Are we supposed to inject them and update dr6?
5446         */
5447
5448        return 1;
5449}
5450
5451static int handle_ept_violation(struct kvm_vcpu *vcpu)
5452{
5453        unsigned long exit_qualification;
5454        gpa_t gpa;
5455        u32 error_code;
5456        int gla_validity;
5457
5458        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5459
5460        gla_validity = (exit_qualification >> 7) & 0x3;
5461        if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5462                printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5463                printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5464                        (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5465                        vmcs_readl(GUEST_LINEAR_ADDRESS));
5466                printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5467                        (long unsigned int)exit_qualification);
5468                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5469                vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5470                return 0;
5471        }
5472
5473        /*
5474         * EPT violation happened while executing iret from NMI,
5475         * "blocked by NMI" bit has to be set before next VM entry.
5476         * There are errata that may cause this bit to not be set:
5477         * AAK134, BY25.
5478         */
5479        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5480                        cpu_has_virtual_nmis() &&
5481                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5482                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5483
5484        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5485        trace_kvm_page_fault(gpa, exit_qualification);
5486
5487        /* It is a write fault? */
5488        error_code = exit_qualification & (1U << 1);
5489        /* It is a fetch fault? */
5490        error_code |= (exit_qualification & (1U << 2)) << 2;
5491        /* ept page table is present? */
5492        error_code |= (exit_qualification >> 3) & 0x1;
5493
5494        vcpu->arch.exit_qualification = exit_qualification;
5495
5496        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5497}
5498
5499static u64 ept_rsvd_mask(u64 spte, int level)
5500{
5501        int i;
5502        u64 mask = 0;
5503
5504        for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5505                mask |= (1ULL << i);
5506
5507        if (level > 2)
5508                /* bits 7:3 reserved */
5509                mask |= 0xf8;
5510        else if (level == 2) {
5511                if (spte & (1ULL << 7))
5512                        /* 2MB ref, bits 20:12 reserved */
5513                        mask |= 0x1ff000;
5514                else
5515                        /* bits 6:3 reserved */
5516                        mask |= 0x78;
5517        }
5518
5519        return mask;
5520}
5521
5522static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5523                                       int level)
5524{
5525        printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5526
5527        /* 010b (write-only) */
5528        WARN_ON((spte & 0x7) == 0x2);
5529
5530        /* 110b (write/execute) */
5531        WARN_ON((spte & 0x7) == 0x6);
5532
5533        /* 100b (execute-only) and value not supported by logical processor */
5534        if (!cpu_has_vmx_ept_execute_only())
5535                WARN_ON((spte & 0x7) == 0x4);
5536
5537        /* not 000b */
5538        if ((spte & 0x7)) {
5539                u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5540
5541                if (rsvd_bits != 0) {
5542                        printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5543                                         __func__, rsvd_bits);
5544                        WARN_ON(1);
5545                }
5546
5547                if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5548                        u64 ept_mem_type = (spte & 0x38) >> 3;
5549
5550                        if (ept_mem_type == 2 || ept_mem_type == 3 ||
5551                            ept_mem_type == 7) {
5552                                printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5553                                                __func__, ept_mem_type);
5554                                WARN_ON(1);
5555                        }
5556                }
5557        }
5558}
5559
5560static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5561{
5562        u64 sptes[4];
5563        int nr_sptes, i, ret;
5564        gpa_t gpa;
5565
5566        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5567        if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5568                skip_emulated_instruction(vcpu);
5569                return 1;
5570        }
5571
5572        ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5573        if (likely(ret == RET_MMIO_PF_EMULATE))
5574                return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5575                                              EMULATE_DONE;
5576
5577        if (unlikely(ret == RET_MMIO_PF_INVALID))
5578                return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5579
5580        if (unlikely(ret == RET_MMIO_PF_RETRY))
5581                return 1;
5582
5583        /* It is the real ept misconfig */
5584        printk(KERN_ERR "EPT: Misconfiguration.\n");
5585        printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5586
5587        nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5588
5589        for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5590                ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5591
5592        vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5593        vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5594
5595        return 0;
5596}
5597
5598static int handle_nmi_window(struct kvm_vcpu *vcpu)
5599{
5600        u32 cpu_based_vm_exec_control;
5601
5602        /* clear pending NMI */
5603        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5604        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5605        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5606        ++vcpu->stat.nmi_window_exits;
5607        kvm_make_request(KVM_REQ_EVENT, vcpu);
5608
5609        return 1;
5610}
5611
5612static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5613{
5614        struct vcpu_vmx *vmx = to_vmx(vcpu);
5615        enum emulation_result err = EMULATE_DONE;
5616        int ret = 1;
5617        u32 cpu_exec_ctrl;
5618        bool intr_window_requested;
5619        unsigned count = 130;
5620
5621        cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5622        intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5623
5624        while (!guest_state_valid(vcpu) && count-- != 0) {
5625                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5626                        return handle_interrupt_window(&vmx->vcpu);
5627
5628                if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5629                        return 1;
5630
5631                err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5632
5633                if (err == EMULATE_USER_EXIT) {
5634                        ++vcpu->stat.mmio_exits;
5635                        ret = 0;
5636                        goto out;
5637                }
5638
5639                if (err != EMULATE_DONE) {
5640                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5641                        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5642                        vcpu->run->internal.ndata = 0;
5643                        return 0;
5644                }
5645
5646                if (vcpu->arch.halt_request) {
5647                        vcpu->arch.halt_request = 0;
5648                        ret = kvm_emulate_halt(vcpu);
5649                        goto out;
5650                }
5651
5652                if (signal_pending(current))
5653                        goto out;
5654                if (need_resched())
5655                        schedule();
5656        }
5657
5658        vmx->emulation_required = emulation_required(vcpu);
5659out:
5660        return ret;
5661}
5662
5663/*
5664 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5665 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5666 */
5667static int handle_pause(struct kvm_vcpu *vcpu)
5668{
5669        skip_emulated_instruction(vcpu);
5670        kvm_vcpu_on_spin(vcpu);
5671
5672        return 1;
5673}
5674
5675static int handle_nop(struct kvm_vcpu *vcpu)
5676{
5677        skip_emulated_instruction(vcpu);
5678        return 1;
5679}
5680
5681static int handle_mwait(struct kvm_vcpu *vcpu)
5682{
5683        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5684        return handle_nop(vcpu);
5685}
5686
5687static int handle_monitor(struct kvm_vcpu *vcpu)
5688{
5689        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5690        return handle_nop(vcpu);
5691}
5692
5693/*
5694 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5695 * We could reuse a single VMCS for all the L2 guests, but we also want the
5696 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5697 * allows keeping them loaded on the processor, and in the future will allow
5698 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5699 * every entry if they never change.
5700 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5701 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5702 *
5703 * The following functions allocate and free a vmcs02 in this pool.
5704 */
5705
5706/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5707static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5708{
5709        struct vmcs02_list *item;
5710        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5711                if (item->vmptr == vmx->nested.current_vmptr) {
5712                        list_move(&item->list, &vmx->nested.vmcs02_pool);
5713                        return &item->vmcs02;
5714                }
5715
5716        if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5717                /* Recycle the least recently used VMCS. */
5718                item = list_entry(vmx->nested.vmcs02_pool.prev,
5719                        struct vmcs02_list, list);
5720                item->vmptr = vmx->nested.current_vmptr;
5721                list_move(&item->list, &vmx->nested.vmcs02_pool);
5722                return &item->vmcs02;
5723        }
5724
5725        /* Create a new VMCS */
5726        item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5727        if (!item)
5728                return NULL;
5729        item->vmcs02.vmcs = alloc_vmcs();
5730        if (!item->vmcs02.vmcs) {
5731                kfree(item);
5732                return NULL;
5733        }
5734        loaded_vmcs_init(&item->vmcs02);
5735        item->vmptr = vmx->nested.current_vmptr;
5736        list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5737        vmx->nested.vmcs02_num++;
5738        return &item->vmcs02;
5739}
5740
5741/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5742static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5743{
5744        struct vmcs02_list *item;
5745        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5746                if (item->vmptr == vmptr) {
5747                        free_loaded_vmcs(&item->vmcs02);
5748                        list_del(&item->list);
5749                        kfree(item);
5750                        vmx->nested.vmcs02_num--;
5751                        return;
5752                }
5753}
5754
5755/*
5756 * Free all VMCSs saved for this vcpu, except the one pointed by
5757 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5758 * currently used, if running L2), and vmcs01 when running L2.
5759 */
5760static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5761{
5762        struct vmcs02_list *item, *n;
5763        list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5764                if (vmx->loaded_vmcs != &item->vmcs02)
5765                        free_loaded_vmcs(&item->vmcs02);
5766                list_del(&item->list);
5767                kfree(item);
5768        }
5769        vmx->nested.vmcs02_num = 0;
5770
5771        if (vmx->loaded_vmcs != &vmx->vmcs01)
5772                free_loaded_vmcs(&vmx->vmcs01);
5773}
5774
5775/*
5776 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5777 * set the success or error code of an emulated VMX instruction, as specified
5778 * by Vol 2B, VMX Instruction Reference, "Conventions".
5779 */
5780static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5781{
5782        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5783                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5784                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5785}
5786
5787static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5788{
5789        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5790                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5791                            X86_EFLAGS_SF | X86_EFLAGS_OF))
5792                        | X86_EFLAGS_CF);
5793}
5794
5795static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5796                                        u32 vm_instruction_error)
5797{
5798        if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5799                /*
5800                 * failValid writes the error number to the current VMCS, which
5801                 * can't be done there isn't a current VMCS.
5802                 */
5803                nested_vmx_failInvalid(vcpu);
5804                return;
5805        }
5806        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5807                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5808                            X86_EFLAGS_SF | X86_EFLAGS_OF))
5809                        | X86_EFLAGS_ZF);
5810        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5811        /*
5812         * We don't need to force a shadow sync because
5813         * VM_INSTRUCTION_ERROR is not shadowed
5814         */
5815}
5816
5817static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5818{
5819        struct vcpu_vmx *vmx =
5820                container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5821
5822        vmx->nested.preemption_timer_expired = true;
5823        kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5824        kvm_vcpu_kick(&vmx->vcpu);
5825
5826        return HRTIMER_NORESTART;
5827}
5828
5829/*
5830 * Decode the memory-address operand of a vmx instruction, as recorded on an
5831 * exit caused by such an instruction (run by a guest hypervisor).
5832 * On success, returns 0. When the operand is invalid, returns 1 and throws
5833 * #UD or #GP.
5834 */
5835static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5836                                 unsigned long exit_qualification,
5837                                 u32 vmx_instruction_info, gva_t *ret)
5838{
5839        /*
5840         * According to Vol. 3B, "Information for VM Exits Due to Instruction
5841         * Execution", on an exit, vmx_instruction_info holds most of the
5842         * addressing components of the operand. Only the displacement part
5843         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5844         * For how an actual address is calculated from all these components,
5845         * refer to Vol. 1, "Operand Addressing".
5846         */
5847        int  scaling = vmx_instruction_info & 3;
5848        int  addr_size = (vmx_instruction_info >> 7) & 7;
5849        bool is_reg = vmx_instruction_info & (1u << 10);
5850        int  seg_reg = (vmx_instruction_info >> 15) & 7;
5851        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5852        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5853        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5854        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5855
5856        if (is_reg) {
5857                kvm_queue_exception(vcpu, UD_VECTOR);
5858                return 1;
5859        }
5860
5861        /* Addr = segment_base + offset */
5862        /* offset = base + [index * scale] + displacement */
5863        *ret = vmx_get_segment_base(vcpu, seg_reg);
5864        if (base_is_valid)
5865                *ret += kvm_register_read(vcpu, base_reg);
5866        if (index_is_valid)
5867                *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5868        *ret += exit_qualification; /* holds the displacement */
5869
5870        if (addr_size == 1) /* 32 bit */
5871                *ret &= 0xffffffff;
5872
5873        /*
5874         * TODO: throw #GP (and return 1) in various cases that the VM*
5875         * instructions require it - e.g., offset beyond segment limit,
5876         * unusable or unreadable/unwritable segment, non-canonical 64-bit
5877         * address, and so on. Currently these are not checked.
5878         */
5879        return 0;
5880}
5881
5882/*
5883 * This function performs the various checks including
5884 * - if it's 4KB aligned
5885 * - No bits beyond the physical address width are set
5886 * - Returns 0 on success or else 1
5887 * (Intel SDM Section 30.3)
5888 */
5889static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
5890                                  gpa_t *vmpointer)
5891{
5892        gva_t gva;
5893        gpa_t vmptr;
5894        struct x86_exception e;
5895        struct page *page;
5896        struct vcpu_vmx *vmx = to_vmx(vcpu);
5897        int maxphyaddr = cpuid_maxphyaddr(vcpu);
5898
5899        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5900                        vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5901                return 1;
5902
5903        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5904                                sizeof(vmptr), &e)) {
5905                kvm_inject_page_fault(vcpu, &e);
5906                return 1;
5907        }
5908
5909        switch (exit_reason) {
5910        case EXIT_REASON_VMON:
5911                /*
5912                 * SDM 3: 24.11.5
5913                 * The first 4 bytes of VMXON region contain the supported
5914                 * VMCS revision identifier
5915                 *
5916                 * Note - IA32_VMX_BASIC[48] will never be 1
5917                 * for the nested case;
5918                 * which replaces physical address width with 32
5919                 *
5920                 */
5921                if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
5922                        nested_vmx_failInvalid(vcpu);
5923                        skip_emulated_instruction(vcpu);
5924                        return 1;
5925                }
5926
5927                page = nested_get_page(vcpu, vmptr);
5928                if (page == NULL ||
5929                    *(u32 *)kmap(page) != VMCS12_REVISION) {
5930                        nested_vmx_failInvalid(vcpu);
5931                        kunmap(page);
5932                        skip_emulated_instruction(vcpu);
5933                        return 1;
5934                }
5935                kunmap(page);
5936                vmx->nested.vmxon_ptr = vmptr;
5937                break;
5938        case EXIT_REASON_VMCLEAR:
5939                if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
5940                        nested_vmx_failValid(vcpu,
5941                                             VMXERR_VMCLEAR_INVALID_ADDRESS);
5942                        skip_emulated_instruction(vcpu);
5943                        return 1;
5944                }
5945
5946                if (vmptr == vmx->nested.vmxon_ptr) {
5947                        nested_vmx_failValid(vcpu,
5948                                             VMXERR_VMCLEAR_VMXON_POINTER);
5949                        skip_emulated_instruction(vcpu);
5950                        return 1;
5951                }
5952                break;
5953        case EXIT_REASON_VMPTRLD:
5954                if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
5955                        nested_vmx_failValid(vcpu,
5956                                             VMXERR_VMPTRLD_INVALID_ADDRESS);
5957                        skip_emulated_instruction(vcpu);
5958                        return 1;
5959                }
5960
5961                if (vmptr == vmx->nested.vmxon_ptr) {
5962                        nested_vmx_failValid(vcpu,
5963                                             VMXERR_VMCLEAR_VMXON_POINTER);
5964                        skip_emulated_instruction(vcpu);
5965                        return 1;
5966                }
5967                break;
5968        default:
5969                return 1; /* shouldn't happen */
5970        }
5971
5972        if (vmpointer)
5973                *vmpointer = vmptr;
5974        return 0;
5975}
5976
5977/*
5978 * Emulate the VMXON instruction.
5979 * Currently, we just remember that VMX is active, and do not save or even
5980 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5981 * do not currently need to store anything in that guest-allocated memory
5982 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5983 * argument is different from the VMXON pointer (which the spec says they do).
5984 */
5985static int handle_vmon(struct kvm_vcpu *vcpu)
5986{
5987        struct kvm_segment cs;
5988        struct vcpu_vmx *vmx = to_vmx(vcpu);
5989        struct vmcs *shadow_vmcs;
5990        const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5991                | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5992
5993        /* The Intel VMX Instruction Reference lists a bunch of bits that
5994         * are prerequisite to running VMXON, most notably cr4.VMXE must be
5995         * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5996         * Otherwise, we should fail with #UD. We test these now:
5997         */
5998        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5999            !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6000            (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6001                kvm_queue_exception(vcpu, UD_VECTOR);
6002                return 1;
6003        }
6004
6005        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6006        if (is_long_mode(vcpu) && !cs.l) {
6007                kvm_queue_exception(vcpu, UD_VECTOR);
6008                return 1;
6009        }
6010
6011        if (vmx_get_cpl(vcpu)) {
6012                kvm_inject_gp(vcpu, 0);
6013                return 1;
6014        }
6015
6016        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6017                return 1;
6018
6019        if (vmx->nested.vmxon) {
6020                nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6021                skip_emulated_instruction(vcpu);
6022                return 1;
6023        }
6024
6025        if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6026                        != VMXON_NEEDED_FEATURES) {
6027                kvm_inject_gp(vcpu, 0);
6028                return 1;
6029        }
6030
6031        if (enable_shadow_vmcs) {
6032                shadow_vmcs = alloc_vmcs();
6033                if (!shadow_vmcs)
6034                        return -ENOMEM;
6035                /* mark vmcs as shadow */
6036                shadow_vmcs->revision_id |= (1u << 31);
6037                /* init shadow vmcs */
6038                vmcs_clear(shadow_vmcs);
6039                vmx->nested.current_shadow_vmcs = shadow_vmcs;
6040        }
6041
6042        INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6043        vmx->nested.vmcs02_num = 0;
6044
6045        hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6046                     HRTIMER_MODE_REL);
6047        vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6048
6049        vmx->nested.vmxon = true;
6050
6051        skip_emulated_instruction(vcpu);
6052        nested_vmx_succeed(vcpu);
6053        return 1;
6054}
6055
6056/*
6057 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6058 * for running VMX instructions (except VMXON, whose prerequisites are
6059 * slightly different). It also specifies what exception to inject otherwise.
6060 */
6061static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6062{
6063        struct kvm_segment cs;
6064        struct vcpu_vmx *vmx = to_vmx(vcpu);
6065
6066        if (!vmx->nested.vmxon) {
6067                kvm_queue_exception(vcpu, UD_VECTOR);
6068                return 0;
6069        }
6070
6071        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6072        if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6073            (is_long_mode(vcpu) && !cs.l)) {
6074                kvm_queue_exception(vcpu, UD_VECTOR);
6075                return 0;
6076        }
6077
6078        if (vmx_get_cpl(vcpu)) {
6079                kvm_inject_gp(vcpu, 0);
6080                return 0;
6081        }
6082
6083        return 1;
6084}
6085
6086static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6087{
6088        u32 exec_control;
6089        if (enable_shadow_vmcs) {
6090                if (vmx->nested.current_vmcs12 != NULL) {
6091                        /* copy to memory all shadowed fields in case
6092                           they were modified */
6093                        copy_shadow_to_vmcs12(vmx);
6094                        vmx->nested.sync_shadow_vmcs = false;
6095                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6096                        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6097                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6098                        vmcs_write64(VMCS_LINK_POINTER, -1ull);
6099                }
6100        }
6101        kunmap(vmx->nested.current_vmcs12_page);
6102        nested_release_page(vmx->nested.current_vmcs12_page);
6103}
6104
6105/*
6106 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6107 * just stops using VMX.
6108 */
6109static void free_nested(struct vcpu_vmx *vmx)
6110{
6111        if (!vmx->nested.vmxon)
6112                return;
6113        vmx->nested.vmxon = false;
6114        if (vmx->nested.current_vmptr != -1ull) {
6115                nested_release_vmcs12(vmx);
6116                vmx->nested.current_vmptr = -1ull;
6117                vmx->nested.current_vmcs12 = NULL;
6118        }
6119        if (enable_shadow_vmcs)
6120                free_vmcs(vmx->nested.current_shadow_vmcs);
6121        /* Unpin physical memory we referred to in current vmcs02 */
6122        if (vmx->nested.apic_access_page) {
6123                nested_release_page(vmx->nested.apic_access_page);
6124                vmx->nested.apic_access_page = 0;
6125        }
6126
6127        nested_free_all_saved_vmcss(vmx);
6128}
6129
6130/* Emulate the VMXOFF instruction */
6131static int handle_vmoff(struct kvm_vcpu *vcpu)
6132{
6133        if (!nested_vmx_check_permission(vcpu))
6134                return 1;
6135        free_nested(to_vmx(vcpu));
6136        skip_emulated_instruction(vcpu);
6137        nested_vmx_succeed(vcpu);
6138        return 1;
6139}
6140
6141/* Emulate the VMCLEAR instruction */
6142static int handle_vmclear(struct kvm_vcpu *vcpu)
6143{
6144        struct vcpu_vmx *vmx = to_vmx(vcpu);
6145        gpa_t vmptr;
6146        struct vmcs12 *vmcs12;
6147        struct page *page;
6148
6149        if (!nested_vmx_check_permission(vcpu))
6150                return 1;
6151
6152        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6153                return 1;
6154
6155        if (vmptr == vmx->nested.current_vmptr) {
6156                nested_release_vmcs12(vmx);
6157                vmx->nested.current_vmptr = -1ull;
6158                vmx->nested.current_vmcs12 = NULL;
6159        }
6160
6161        page = nested_get_page(vcpu, vmptr);
6162        if (page == NULL) {
6163                /*
6164                 * For accurate processor emulation, VMCLEAR beyond available
6165                 * physical memory should do nothing at all. However, it is
6166                 * possible that a nested vmx bug, not a guest hypervisor bug,
6167                 * resulted in this case, so let's shut down before doing any
6168                 * more damage:
6169                 */
6170                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6171                return 1;
6172        }
6173        vmcs12 = kmap(page);
6174        vmcs12->launch_state = 0;
6175        kunmap(page);
6176        nested_release_page(page);
6177
6178        nested_free_vmcs02(vmx, vmptr);
6179
6180        skip_emulated_instruction(vcpu);
6181        nested_vmx_succeed(vcpu);
6182        return 1;
6183}
6184
6185static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6186
6187/* Emulate the VMLAUNCH instruction */
6188static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6189{
6190        return nested_vmx_run(vcpu, true);
6191}
6192
6193/* Emulate the VMRESUME instruction */
6194static int handle_vmresume(struct kvm_vcpu *vcpu)
6195{
6196
6197        return nested_vmx_run(vcpu, false);
6198}
6199
6200enum vmcs_field_type {
6201        VMCS_FIELD_TYPE_U16 = 0,
6202        VMCS_FIELD_TYPE_U64 = 1,
6203        VMCS_FIELD_TYPE_U32 = 2,
6204        VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6205};
6206
6207static inline int vmcs_field_type(unsigned long field)
6208{
6209        if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6210                return VMCS_FIELD_TYPE_U32;
6211        return (field >> 13) & 0x3 ;
6212}
6213
6214static inline int vmcs_field_readonly(unsigned long field)
6215{
6216        return (((field >> 10) & 0x3) == 1);
6217}
6218
6219/*
6220 * Read a vmcs12 field. Since these can have varying lengths and we return
6221 * one type, we chose the biggest type (u64) and zero-extend the return value
6222 * to that size. Note that the caller, handle_vmread, might need to use only
6223 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6224 * 64-bit fields are to be returned).
6225 */
6226static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6227                                        unsigned long field, u64 *ret)
6228{
6229        short offset = vmcs_field_to_offset(field);
6230        char *p;
6231
6232        if (offset < 0)
6233                return 0;
6234
6235        p = ((char *)(get_vmcs12(vcpu))) + offset;
6236
6237        switch (vmcs_field_type(field)) {
6238        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6239                *ret = *((natural_width *)p);
6240                return 1;
6241        case VMCS_FIELD_TYPE_U16:
6242                *ret = *((u16 *)p);
6243                return 1;
6244        case VMCS_FIELD_TYPE_U32:
6245                *ret = *((u32 *)p);
6246                return 1;
6247        case VMCS_FIELD_TYPE_U64:
6248                *ret = *((u64 *)p);
6249                return 1;
6250        default:
6251                return 0; /* can never happen. */
6252        }
6253}
6254
6255
6256static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6257                                    unsigned long field, u64 field_value){
6258        short offset = vmcs_field_to_offset(field);
6259        char *p = ((char *) get_vmcs12(vcpu)) + offset;
6260        if (offset < 0)
6261                return false;
6262
6263        switch (vmcs_field_type(field)) {
6264        case VMCS_FIELD_TYPE_U16:
6265                *(u16 *)p = field_value;
6266                return true;
6267        case VMCS_FIELD_TYPE_U32:
6268                *(u32 *)p = field_value;
6269                return true;
6270        case VMCS_FIELD_TYPE_U64:
6271                *(u64 *)p = field_value;
6272                return true;
6273        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6274                *(natural_width *)p = field_value;
6275                return true;
6276        default:
6277                return false; /* can never happen. */
6278        }
6279
6280}
6281
6282static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6283{
6284        int i;
6285        unsigned long field;
6286        u64 field_value;
6287        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6288        const unsigned long *fields = shadow_read_write_fields;
6289        const int num_fields = max_shadow_read_write_fields;
6290
6291        vmcs_load(shadow_vmcs);
6292
6293        for (i = 0; i < num_fields; i++) {
6294                field = fields[i];
6295                switch (vmcs_field_type(field)) {
6296                case VMCS_FIELD_TYPE_U16:
6297                        field_value = vmcs_read16(field);
6298                        break;
6299                case VMCS_FIELD_TYPE_U32:
6300                        field_value = vmcs_read32(field);
6301                        break;
6302                case VMCS_FIELD_TYPE_U64:
6303                        field_value = vmcs_read64(field);
6304                        break;
6305                case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6306                        field_value = vmcs_readl(field);
6307                        break;
6308                }
6309                vmcs12_write_any(&vmx->vcpu, field, field_value);
6310        }
6311
6312        vmcs_clear(shadow_vmcs);
6313        vmcs_load(vmx->loaded_vmcs->vmcs);
6314}
6315
6316static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6317{
6318        const unsigned long *fields[] = {
6319                shadow_read_write_fields,
6320                shadow_read_only_fields
6321        };
6322        const int max_fields[] = {
6323                max_shadow_read_write_fields,
6324                max_shadow_read_only_fields
6325        };
6326        int i, q;
6327        unsigned long field;
6328        u64 field_value = 0;
6329        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6330
6331        vmcs_load(shadow_vmcs);
6332
6333        for (q = 0; q < ARRAY_SIZE(fields); q++) {
6334                for (i = 0; i < max_fields[q]; i++) {
6335                        field = fields[q][i];
6336                        vmcs12_read_any(&vmx->vcpu, field, &field_value);
6337
6338                        switch (vmcs_field_type(field)) {
6339                        case VMCS_FIELD_TYPE_U16:
6340                                vmcs_write16(field, (u16)field_value);
6341                                break;
6342                        case VMCS_FIELD_TYPE_U32:
6343                                vmcs_write32(field, (u32)field_value);
6344                                break;
6345                        case VMCS_FIELD_TYPE_U64:
6346                                vmcs_write64(field, (u64)field_value);
6347                                break;
6348                        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6349                                vmcs_writel(field, (long)field_value);
6350                                break;
6351                        }
6352                }
6353        }
6354
6355        vmcs_clear(shadow_vmcs);
6356        vmcs_load(vmx->loaded_vmcs->vmcs);
6357}
6358
6359/*
6360 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6361 * used before) all generate the same failure when it is missing.
6362 */
6363static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6364{
6365        struct vcpu_vmx *vmx = to_vmx(vcpu);
6366        if (vmx->nested.current_vmptr == -1ull) {
6367                nested_vmx_failInvalid(vcpu);
6368                skip_emulated_instruction(vcpu);
6369                return 0;
6370        }
6371        return 1;
6372}
6373
6374static int handle_vmread(struct kvm_vcpu *vcpu)
6375{
6376        unsigned long field;
6377        u64 field_value;
6378        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6379        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6380        gva_t gva = 0;
6381
6382        if (!nested_vmx_check_permission(vcpu) ||
6383            !nested_vmx_check_vmcs12(vcpu))
6384                return 1;
6385
6386        /* Decode instruction info and find the field to read */
6387        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6388        /* Read the field, zero-extended to a u64 field_value */
6389        if (!vmcs12_read_any(vcpu, field, &field_value)) {
6390                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6391                skip_emulated_instruction(vcpu);
6392                return 1;
6393        }
6394        /*
6395         * Now copy part of this value to register or memory, as requested.
6396         * Note that the number of bits actually copied is 32 or 64 depending
6397         * on the guest's mode (32 or 64 bit), not on the given field's length.
6398         */
6399        if (vmx_instruction_info & (1u << 10)) {
6400                kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6401                        field_value);
6402        } else {
6403                if (get_vmx_mem_address(vcpu, exit_qualification,
6404                                vmx_instruction_info, &gva))
6405                        return 1;
6406                /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6407                kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6408                             &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6409        }
6410
6411        nested_vmx_succeed(vcpu);
6412        skip_emulated_instruction(vcpu);
6413        return 1;
6414}
6415
6416
6417static int handle_vmwrite(struct kvm_vcpu *vcpu)
6418{
6419        unsigned long field;
6420        gva_t gva;
6421        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6422        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6423        /* The value to write might be 32 or 64 bits, depending on L1's long
6424         * mode, and eventually we need to write that into a field of several
6425         * possible lengths. The code below first zero-extends the value to 64
6426         * bit (field_value), and then copies only the approriate number of
6427         * bits into the vmcs12 field.
6428         */
6429        u64 field_value = 0;
6430        struct x86_exception e;
6431
6432        if (!nested_vmx_check_permission(vcpu) ||
6433            !nested_vmx_check_vmcs12(vcpu))
6434                return 1;
6435
6436        if (vmx_instruction_info & (1u << 10))
6437                field_value = kvm_register_read(vcpu,
6438                        (((vmx_instruction_info) >> 3) & 0xf));
6439        else {
6440                if (get_vmx_mem_address(vcpu, exit_qualification,
6441                                vmx_instruction_info, &gva))
6442                        return 1;
6443                if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6444                           &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6445                        kvm_inject_page_fault(vcpu, &e);
6446                        return 1;
6447                }
6448        }
6449
6450
6451        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6452        if (vmcs_field_readonly(field)) {
6453                nested_vmx_failValid(vcpu,
6454                        VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6455                skip_emulated_instruction(vcpu);
6456                return 1;
6457        }
6458
6459        if (!vmcs12_write_any(vcpu, field, field_value)) {
6460                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6461                skip_emulated_instruction(vcpu);
6462                return 1;
6463        }
6464
6465        nested_vmx_succeed(vcpu);
6466        skip_emulated_instruction(vcpu);
6467        return 1;
6468}
6469
6470/* Emulate the VMPTRLD instruction */
6471static int handle_vmptrld(struct kvm_vcpu *vcpu)
6472{
6473        struct vcpu_vmx *vmx = to_vmx(vcpu);
6474        gpa_t vmptr;
6475        u32 exec_control;
6476
6477        if (!nested_vmx_check_permission(vcpu))
6478                return 1;
6479
6480        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6481                return 1;
6482
6483        if (vmx->nested.current_vmptr != vmptr) {
6484                struct vmcs12 *new_vmcs12;
6485                struct page *page;
6486                page = nested_get_page(vcpu, vmptr);
6487                if (page == NULL) {
6488                        nested_vmx_failInvalid(vcpu);
6489                        skip_emulated_instruction(vcpu);
6490                        return 1;
6491                }
6492                new_vmcs12 = kmap(page);
6493                if (new_vmcs12->revision_id != VMCS12_REVISION) {
6494                        kunmap(page);
6495                        nested_release_page_clean(page);
6496                        nested_vmx_failValid(vcpu,
6497                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6498                        skip_emulated_instruction(vcpu);
6499                        return 1;
6500                }
6501                if (vmx->nested.current_vmptr != -1ull)
6502                        nested_release_vmcs12(vmx);
6503
6504                vmx->nested.current_vmptr = vmptr;
6505                vmx->nested.current_vmcs12 = new_vmcs12;
6506                vmx->nested.current_vmcs12_page = page;
6507                if (enable_shadow_vmcs) {
6508                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6509                        exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6510                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6511                        vmcs_write64(VMCS_LINK_POINTER,
6512                                     __pa(vmx->nested.current_shadow_vmcs));
6513                        vmx->nested.sync_shadow_vmcs = true;
6514                }
6515        }
6516
6517        nested_vmx_succeed(vcpu);
6518        skip_emulated_instruction(vcpu);
6519        return 1;
6520}
6521
6522/* Emulate the VMPTRST instruction */
6523static int handle_vmptrst(struct kvm_vcpu *vcpu)
6524{
6525        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6526        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6527        gva_t vmcs_gva;
6528        struct x86_exception e;
6529
6530        if (!nested_vmx_check_permission(vcpu))
6531                return 1;
6532
6533        if (get_vmx_mem_address(vcpu, exit_qualification,
6534                        vmx_instruction_info, &vmcs_gva))
6535                return 1;
6536        /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6537        if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6538                                 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6539                                 sizeof(u64), &e)) {
6540                kvm_inject_page_fault(vcpu, &e);
6541                return 1;
6542        }
6543        nested_vmx_succeed(vcpu);
6544        skip_emulated_instruction(vcpu);
6545        return 1;
6546}
6547
6548/* Emulate the INVEPT instruction */
6549static int handle_invept(struct kvm_vcpu *vcpu)
6550{
6551        u32 vmx_instruction_info, types;
6552        unsigned long type;
6553        gva_t gva;
6554        struct x86_exception e;
6555        struct {
6556                u64 eptp, gpa;
6557        } operand;
6558
6559        if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6560            !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6561                kvm_queue_exception(vcpu, UD_VECTOR);
6562                return 1;
6563        }
6564
6565        if (!nested_vmx_check_permission(vcpu))
6566                return 1;
6567
6568        if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6569                kvm_queue_exception(vcpu, UD_VECTOR);
6570                return 1;
6571        }
6572
6573        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6574        type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6575
6576        types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6577
6578        if (!(types & (1UL << type))) {
6579                nested_vmx_failValid(vcpu,
6580                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6581                return 1;
6582        }
6583
6584        /* According to the Intel VMX instruction reference, the memory
6585         * operand is read even if it isn't needed (e.g., for type==global)
6586         */
6587        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6588                        vmx_instruction_info, &gva))
6589                return 1;
6590        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6591                                sizeof(operand), &e)) {
6592                kvm_inject_page_fault(vcpu, &e);
6593                return 1;
6594        }
6595
6596        switch (type) {
6597        case VMX_EPT_EXTENT_GLOBAL:
6598                kvm_mmu_sync_roots(vcpu);
6599                kvm_mmu_flush_tlb(vcpu);
6600                nested_vmx_succeed(vcpu);
6601                break;
6602        default:
6603                /* Trap single context invalidation invept calls */
6604                BUG_ON(1);
6605                break;
6606        }
6607
6608        skip_emulated_instruction(vcpu);
6609        return 1;
6610}
6611
6612/*
6613 * The exit handlers return 1 if the exit was handled fully and guest execution
6614 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6615 * to be done to userspace and return 0.
6616 */
6617static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6618        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6619        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6620        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6621        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6622        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6623        [EXIT_REASON_CR_ACCESS]               = handle_cr,
6624        [EXIT_REASON_DR_ACCESS]               = handle_dr,
6625        [EXIT_REASON_CPUID]                   = handle_cpuid,
6626        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6627        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6628        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6629        [EXIT_REASON_HLT]                     = handle_halt,
6630        [EXIT_REASON_INVD]                    = handle_invd,
6631        [EXIT_REASON_INVLPG]                  = handle_invlpg,
6632        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6633        [EXIT_REASON_VMCALL]                  = handle_vmcall,
6634        [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6635        [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6636        [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6637        [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6638        [EXIT_REASON_VMREAD]                  = handle_vmread,
6639        [EXIT_REASON_VMRESUME]                = handle_vmresume,
6640        [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6641        [EXIT_REASON_VMOFF]                   = handle_vmoff,
6642        [EXIT_REASON_VMON]                    = handle_vmon,
6643        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6644        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6645        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6646        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6647        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6648        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6649        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6650        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6651        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6652        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6653        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6654        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
6655        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
6656        [EXIT_REASON_INVEPT]                  = handle_invept,
6657};
6658
6659static const int kvm_vmx_max_exit_handlers =
6660        ARRAY_SIZE(kvm_vmx_exit_handlers);
6661
6662static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6663                                       struct vmcs12 *vmcs12)
6664{
6665        unsigned long exit_qualification;
6666        gpa_t bitmap, last_bitmap;
6667        unsigned int port;
6668        int size;
6669        u8 b;
6670
6671        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6672                return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6673
6674        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6675
6676        port = exit_qualification >> 16;
6677        size = (exit_qualification & 7) + 1;
6678
6679        last_bitmap = (gpa_t)-1;
6680        b = -1;
6681
6682        while (size > 0) {
6683                if (port < 0x8000)
6684                        bitmap = vmcs12->io_bitmap_a;
6685                else if (port < 0x10000)
6686                        bitmap = vmcs12->io_bitmap_b;
6687                else
6688                        return 1;
6689                bitmap += (port & 0x7fff) / 8;
6690
6691                if (last_bitmap != bitmap)
6692                        if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6693                                return 1;
6694                if (b & (1 << (port & 7)))
6695                        return 1;
6696
6697                port++;
6698                size--;
6699                last_bitmap = bitmap;
6700        }
6701
6702        return 0;
6703}
6704
6705/*
6706 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6707 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6708 * disinterest in the current event (read or write a specific MSR) by using an
6709 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6710 */
6711static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6712        struct vmcs12 *vmcs12, u32 exit_reason)
6713{
6714        u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6715        gpa_t bitmap;
6716
6717        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6718                return 1;
6719
6720        /*
6721         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6722         * for the four combinations of read/write and low/high MSR numbers.
6723         * First we need to figure out which of the four to use:
6724         */
6725        bitmap = vmcs12->msr_bitmap;
6726        if (exit_reason == EXIT_REASON_MSR_WRITE)
6727                bitmap += 2048;
6728        if (msr_index >= 0xc0000000) {
6729                msr_index -= 0xc0000000;
6730                bitmap += 1024;
6731        }
6732
6733        /* Then read the msr_index'th bit from this bitmap: */
6734        if (msr_index < 1024*8) {
6735                unsigned char b;
6736                if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6737                        return 1;
6738                return 1 & (b >> (msr_index & 7));
6739        } else
6740                return 1; /* let L1 handle the wrong parameter */
6741}
6742
6743/*
6744 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6745 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6746 * intercept (via guest_host_mask etc.) the current event.
6747 */
6748static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6749        struct vmcs12 *vmcs12)
6750{
6751        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6752        int cr = exit_qualification & 15;
6753        int reg = (exit_qualification >> 8) & 15;
6754        unsigned long val = kvm_register_read(vcpu, reg);
6755
6756        switch ((exit_qualification >> 4) & 3) {
6757        case 0: /* mov to cr */
6758                switch (cr) {
6759                case 0:
6760                        if (vmcs12->cr0_guest_host_mask &
6761                            (val ^ vmcs12->cr0_read_shadow))
6762                                return 1;
6763                        break;
6764                case 3:
6765                        if ((vmcs12->cr3_target_count >= 1 &&
6766                                        vmcs12->cr3_target_value0 == val) ||
6767                                (vmcs12->cr3_target_count >= 2 &&
6768                                        vmcs12->cr3_target_value1 == val) ||
6769                                (vmcs12->cr3_target_count >= 3 &&
6770                                        vmcs12->cr3_target_value2 == val) ||
6771                                (vmcs12->cr3_target_count >= 4 &&
6772                                        vmcs12->cr3_target_value3 == val))
6773                                return 0;
6774                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6775                                return 1;
6776                        break;
6777                case 4:
6778                        if (vmcs12->cr4_guest_host_mask &
6779                            (vmcs12->cr4_read_shadow ^ val))
6780                                return 1;
6781                        break;
6782                case 8:
6783                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6784                                return 1;
6785                        break;
6786                }
6787                break;
6788        case 2: /* clts */
6789                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6790                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6791                        return 1;
6792                break;
6793        case 1: /* mov from cr */
6794                switch (cr) {
6795                case 3:
6796                        if (vmcs12->cpu_based_vm_exec_control &
6797                            CPU_BASED_CR3_STORE_EXITING)
6798                                return 1;
6799                        break;
6800                case 8:
6801                        if (vmcs12->cpu_based_vm_exec_control &
6802                            CPU_BASED_CR8_STORE_EXITING)
6803                                return 1;
6804                        break;
6805                }
6806                break;
6807        case 3: /* lmsw */
6808                /*
6809                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6810                 * cr0. Other attempted changes are ignored, with no exit.
6811                 */
6812                if (vmcs12->cr0_guest_host_mask & 0xe &
6813                    (val ^ vmcs12->cr0_read_shadow))
6814                        return 1;
6815                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6816                    !(vmcs12->cr0_read_shadow & 0x1) &&
6817                    (val & 0x1))
6818                        return 1;
6819                break;
6820        }
6821        return 0;
6822}
6823
6824/*
6825 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6826 * should handle it ourselves in L0 (and then continue L2). Only call this
6827 * when in is_guest_mode (L2).
6828 */
6829static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6830{
6831        u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6832        struct vcpu_vmx *vmx = to_vmx(vcpu);
6833        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6834        u32 exit_reason = vmx->exit_reason;
6835
6836        trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6837                                vmcs_readl(EXIT_QUALIFICATION),
6838                                vmx->idt_vectoring_info,
6839                                intr_info,
6840                                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6841                                KVM_ISA_VMX);
6842
6843        if (vmx->nested.nested_run_pending)
6844                return 0;
6845
6846        if (unlikely(vmx->fail)) {
6847                pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6848                                    vmcs_read32(VM_INSTRUCTION_ERROR));
6849                return 1;
6850        }
6851
6852        switch (exit_reason) {
6853        case EXIT_REASON_EXCEPTION_NMI:
6854                if (!is_exception(intr_info))
6855                        return 0;
6856                else if (is_page_fault(intr_info))
6857                        return enable_ept;
6858                else if (is_no_device(intr_info) &&
6859                         !(vmcs12->guest_cr0 & X86_CR0_TS))
6860                        return 0;
6861                return vmcs12->exception_bitmap &
6862                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6863        case EXIT_REASON_EXTERNAL_INTERRUPT:
6864                return 0;
6865        case EXIT_REASON_TRIPLE_FAULT:
6866                return 1;
6867        case EXIT_REASON_PENDING_INTERRUPT:
6868                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6869        case EXIT_REASON_NMI_WINDOW:
6870                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6871        case EXIT_REASON_TASK_SWITCH:
6872                return 1;
6873        case EXIT_REASON_CPUID:
6874                return 1;
6875        case EXIT_REASON_HLT:
6876                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6877        case EXIT_REASON_INVD:
6878                return 1;
6879        case EXIT_REASON_INVLPG:
6880                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6881        case EXIT_REASON_RDPMC:
6882                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6883        case EXIT_REASON_RDTSC:
6884                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6885        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6886        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6887        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6888        case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6889        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6890        case EXIT_REASON_INVEPT:
6891                /*
6892                 * VMX instructions trap unconditionally. This allows L1 to
6893                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6894                 */
6895                return 1;
6896        case EXIT_REASON_CR_ACCESS:
6897                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6898        case EXIT_REASON_DR_ACCESS:
6899                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6900        case EXIT_REASON_IO_INSTRUCTION:
6901                return nested_vmx_exit_handled_io(vcpu, vmcs12);
6902        case EXIT_REASON_MSR_READ:
6903        case EXIT_REASON_MSR_WRITE:
6904                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6905        case EXIT_REASON_INVALID_STATE:
6906                return 1;
6907        case EXIT_REASON_MWAIT_INSTRUCTION:
6908                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6909        case EXIT_REASON_MONITOR_INSTRUCTION:
6910                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6911        case EXIT_REASON_PAUSE_INSTRUCTION:
6912                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6913                        nested_cpu_has2(vmcs12,
6914                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6915        case EXIT_REASON_MCE_DURING_VMENTRY:
6916                return 0;
6917        case EXIT_REASON_TPR_BELOW_THRESHOLD:
6918                return 1;
6919        case EXIT_REASON_APIC_ACCESS:
6920                return nested_cpu_has2(vmcs12,
6921                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6922        case EXIT_REASON_EPT_VIOLATION:
6923                /*
6924                 * L0 always deals with the EPT violation. If nested EPT is
6925                 * used, and the nested mmu code discovers that the address is
6926                 * missing in the guest EPT table (EPT12), the EPT violation
6927                 * will be injected with nested_ept_inject_page_fault()
6928                 */
6929                return 0;
6930        case EXIT_REASON_EPT_MISCONFIG:
6931                /*
6932                 * L2 never uses directly L1's EPT, but rather L0's own EPT
6933                 * table (shadow on EPT) or a merged EPT table that L0 built
6934                 * (EPT on EPT). So any problems with the structure of the
6935                 * table is L0's fault.
6936                 */
6937                return 0;
6938        case EXIT_REASON_WBINVD:
6939                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6940        case EXIT_REASON_XSETBV:
6941                return 1;
6942        default:
6943                return 1;
6944        }
6945}
6946
6947static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6948{
6949        *info1 = vmcs_readl(EXIT_QUALIFICATION);
6950        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6951}
6952
6953/*
6954 * The guest has exited.  See if we can fix it or if we need userspace
6955 * assistance.
6956 */
6957static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6958{
6959        struct vcpu_vmx *vmx = to_vmx(vcpu);
6960        u32 exit_reason = vmx->exit_reason;
6961        u32 vectoring_info = vmx->idt_vectoring_info;
6962
6963        /* If guest state is invalid, start emulating */
6964        if (vmx->emulation_required)
6965                return handle_invalid_guest_state(vcpu);
6966
6967        if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6968                nested_vmx_vmexit(vcpu, exit_reason,
6969                                  vmcs_read32(VM_EXIT_INTR_INFO),
6970                                  vmcs_readl(EXIT_QUALIFICATION));
6971                return 1;
6972        }
6973
6974        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6975                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6976                vcpu->run->fail_entry.hardware_entry_failure_reason
6977                        = exit_reason;
6978                return 0;
6979        }
6980
6981        if (unlikely(vmx->fail)) {
6982                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6983                vcpu->run->fail_entry.hardware_entry_failure_reason
6984                        = vmcs_read32(VM_INSTRUCTION_ERROR);
6985                return 0;
6986        }
6987
6988        /*
6989         * Note:
6990         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6991         * delivery event since it indicates guest is accessing MMIO.
6992         * The vm-exit can be triggered again after return to guest that
6993         * will cause infinite loop.
6994         */
6995        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6996                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6997                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
6998                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
6999                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7000                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7001                vcpu->run->internal.ndata = 2;
7002                vcpu->run->internal.data[0] = vectoring_info;
7003                vcpu->run->internal.data[1] = exit_reason;
7004                return 0;
7005        }
7006
7007        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7008            !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7009                                        get_vmcs12(vcpu))))) {
7010                if (vmx_interrupt_allowed(vcpu)) {
7011                        vmx->soft_vnmi_blocked = 0;
7012                } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7013                           vcpu->arch.nmi_pending) {
7014                        /*
7015                         * This CPU don't support us in finding the end of an
7016                         * NMI-blocked window if the guest runs with IRQs
7017                         * disabled. So we pull the trigger after 1 s of
7018                         * futile waiting, but inform the user about this.
7019                         */
7020                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7021                               "state on VCPU %d after 1 s timeout\n",
7022                               __func__, vcpu->vcpu_id);
7023                        vmx->soft_vnmi_blocked = 0;
7024                }
7025        }
7026
7027        if (exit_reason < kvm_vmx_max_exit_handlers
7028            && kvm_vmx_exit_handlers[exit_reason])
7029                return kvm_vmx_exit_handlers[exit_reason](vcpu);
7030        else {
7031                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
7032                vcpu->run->hw.hardware_exit_reason = exit_reason;
7033        }
7034        return 0;
7035}
7036
7037static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7038{
7039        if (irr == -1 || tpr < irr) {
7040                vmcs_write32(TPR_THRESHOLD, 0);
7041                return;
7042        }
7043
7044        vmcs_write32(TPR_THRESHOLD, irr);
7045}
7046
7047static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7048{
7049        u32 sec_exec_control;
7050
7051        /*
7052         * There is not point to enable virtualize x2apic without enable
7053         * apicv
7054         */
7055        if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7056                                !vmx_vm_has_apicv(vcpu->kvm))
7057                return;
7058
7059        if (!vm_need_tpr_shadow(vcpu->kvm))
7060                return;
7061
7062        sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7063
7064        if (set) {
7065                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7066                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7067        } else {
7068                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7069                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7070        }
7071        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7072
7073        vmx_set_msr_bitmap(vcpu);
7074}
7075
7076static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7077{
7078        u16 status;
7079        u8 old;
7080
7081        if (!vmx_vm_has_apicv(kvm))
7082                return;
7083
7084        if (isr == -1)
7085                isr = 0;
7086
7087        status = vmcs_read16(GUEST_INTR_STATUS);
7088        old = status >> 8;
7089        if (isr != old) {
7090                status &= 0xff;
7091                status |= isr << 8;
7092                vmcs_write16(GUEST_INTR_STATUS, status);
7093        }
7094}
7095
7096static void vmx_set_rvi(int vector)
7097{
7098        u16 status;
7099        u8 old;
7100
7101        status = vmcs_read16(GUEST_INTR_STATUS);
7102        old = (u8)status & 0xff;
7103        if ((u8)vector != old) {
7104                status &= ~0xff;
7105                status |= (u8)vector;
7106                vmcs_write16(GUEST_INTR_STATUS, status);
7107        }
7108}
7109
7110static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7111{
7112        if (max_irr == -1)
7113                return;
7114
7115        vmx_set_rvi(max_irr);
7116}
7117
7118static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7119{
7120        if (!vmx_vm_has_apicv(vcpu->kvm))
7121                return;
7122
7123        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7124        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7125        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7126        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7127}
7128
7129static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7130{
7131        u32 exit_intr_info;
7132
7133        if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7134              || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7135                return;
7136
7137        vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7138        exit_intr_info = vmx->exit_intr_info;
7139
7140        /* Handle machine checks before interrupts are enabled */
7141        if (is_machine_check(exit_intr_info))
7142                kvm_machine_check();
7143
7144        /* We need to handle NMIs before interrupts are enabled */
7145        if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7146            (exit_intr_info & INTR_INFO_VALID_MASK)) {
7147                kvm_before_handle_nmi(&vmx->vcpu);
7148                asm("int $2");
7149                kvm_after_handle_nmi(&vmx->vcpu);
7150        }
7151}
7152
7153static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7154{
7155        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7156
7157        /*
7158         * If external interrupt exists, IF bit is set in rflags/eflags on the
7159         * interrupt stack frame, and interrupt will be enabled on a return
7160         * from interrupt handler.
7161         */
7162        if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7163                        == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7164                unsigned int vector;
7165                unsigned long entry;
7166                gate_desc *desc;
7167                struct vcpu_vmx *vmx = to_vmx(vcpu);
7168#ifdef CONFIG_X86_64
7169                unsigned long tmp;
7170#endif
7171
7172                vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7173                desc = (gate_desc *)vmx->host_idt_base + vector;
7174                entry = gate_offset(*desc);
7175                asm volatile(
7176#ifdef CONFIG_X86_64
7177                        "mov %%" _ASM_SP ", %[sp]\n\t"
7178                        "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7179                        "push $%c[ss]\n\t"
7180                        "push %[sp]\n\t"
7181#endif
7182                        "pushf\n\t"
7183                        "orl $0x200, (%%" _ASM_SP ")\n\t"
7184                        __ASM_SIZE(push) " $%c[cs]\n\t"
7185                        "call *%[entry]\n\t"
7186                        :
7187#ifdef CONFIG_X86_64
7188                        [sp]"=&r"(tmp)
7189#endif
7190                        :
7191                        [entry]"r"(entry),
7192                        [ss]"i"(__KERNEL_DS),
7193                        [cs]"i"(__KERNEL_CS)
7194                        );
7195        } else
7196                local_irq_enable();
7197}
7198
7199static bool vmx_mpx_supported(void)
7200{
7201        return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7202                (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7203}
7204
7205static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7206{
7207        u32 exit_intr_info;
7208        bool unblock_nmi;
7209        u8 vector;
7210        bool idtv_info_valid;
7211
7212        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7213
7214        if (cpu_has_virtual_nmis()) {
7215                if (vmx->nmi_known_unmasked)
7216                        return;
7217                /*
7218                 * Can't use vmx->exit_intr_info since we're not sure what
7219                 * the exit reason is.
7220                 */
7221                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7222                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7223                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7224                /*
7225                 * SDM 3: 27.7.1.2 (September 2008)
7226                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7227                 * a guest IRET fault.
7228                 * SDM 3: 23.2.2 (September 2008)
7229                 * Bit 12 is undefined in any of the following cases:
7230                 *  If the VM exit sets the valid bit in the IDT-vectoring
7231                 *   information field.
7232                 *  If the VM exit is due to a double fault.
7233                 */
7234                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7235                    vector != DF_VECTOR && !idtv_info_valid)
7236                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7237                                      GUEST_INTR_STATE_NMI);
7238                else
7239                        vmx->nmi_known_unmasked =
7240                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7241                                  & GUEST_INTR_STATE_NMI);
7242        } else if (unlikely(vmx->soft_vnmi_blocked))
7243                vmx->vnmi_blocked_time +=
7244                        ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7245}
7246
7247static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7248                                      u32 idt_vectoring_info,
7249                                      int instr_len_field,
7250                                      int error_code_field)
7251{
7252        u8 vector;
7253        int type;
7254        bool idtv_info_valid;
7255
7256        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7257
7258        vcpu->arch.nmi_injected = false;
7259        kvm_clear_exception_queue(vcpu);
7260        kvm_clear_interrupt_queue(vcpu);
7261
7262        if (!idtv_info_valid)
7263                return;
7264
7265        kvm_make_request(KVM_REQ_EVENT, vcpu);
7266
7267        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7268        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7269
7270        switch (type) {
7271        case INTR_TYPE_NMI_INTR:
7272                vcpu->arch.nmi_injected = true;
7273                /*
7274                 * SDM 3: 27.7.1.2 (September 2008)
7275                 * Clear bit "block by NMI" before VM entry if a NMI
7276                 * delivery faulted.
7277                 */
7278                vmx_set_nmi_mask(vcpu, false);
7279                break;
7280        case INTR_TYPE_SOFT_EXCEPTION:
7281                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7282                /* fall through */
7283        case INTR_TYPE_HARD_EXCEPTION:
7284                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7285                        u32 err = vmcs_read32(error_code_field);
7286                        kvm_requeue_exception_e(vcpu, vector, err);
7287                } else
7288                        kvm_requeue_exception(vcpu, vector);
7289                break;
7290        case INTR_TYPE_SOFT_INTR:
7291                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7292                /* fall through */
7293        case INTR_TYPE_EXT_INTR:
7294                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7295                break;
7296        default:
7297                break;
7298        }
7299}
7300
7301static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7302{
7303        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7304                                  VM_EXIT_INSTRUCTION_LEN,
7305                                  IDT_VECTORING_ERROR_CODE);
7306}
7307
7308static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7309{
7310        __vmx_complete_interrupts(vcpu,
7311                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7312                                  VM_ENTRY_INSTRUCTION_LEN,
7313                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
7314
7315        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7316}
7317
7318static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7319{
7320        int i, nr_msrs;
7321        struct perf_guest_switch_msr *msrs;
7322
7323        msrs = perf_guest_get_msrs(&nr_msrs);
7324
7325        if (!msrs)
7326                return;
7327
7328        for (i = 0; i < nr_msrs; i++)
7329                if (msrs[i].host == msrs[i].guest)
7330                        clear_atomic_switch_msr(vmx, msrs[i].msr);
7331                else
7332                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7333                                        msrs[i].host);
7334}
7335
7336static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7337{
7338        struct vcpu_vmx *vmx = to_vmx(vcpu);
7339        unsigned long debugctlmsr;
7340
7341        /* Record the guest's net vcpu time for enforced NMI injections. */
7342        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7343                vmx->entry_time = ktime_get();
7344
7345        /* Don't enter VMX if guest state is invalid, let the exit handler
7346           start emulation until we arrive back to a valid state */
7347        if (vmx->emulation_required)
7348                return;
7349
7350        if (vmx->nested.sync_shadow_vmcs) {
7351                copy_vmcs12_to_shadow(vmx);
7352                vmx->nested.sync_shadow_vmcs = false;
7353        }
7354
7355        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7356                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7357        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7358                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7359
7360        /* When single-stepping over STI and MOV SS, we must clear the
7361         * corresponding interruptibility bits in the guest state. Otherwise
7362         * vmentry fails as it then expects bit 14 (BS) in pending debug
7363         * exceptions being set, but that's not correct for the guest debugging
7364         * case. */
7365        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7366                vmx_set_interrupt_shadow(vcpu, 0);
7367
7368        atomic_switch_perf_msrs(vmx);
7369        debugctlmsr = get_debugctlmsr();
7370
7371        vmx->__launched = vmx->loaded_vmcs->launched;
7372        asm(
7373                /* Store host registers */
7374                "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7375                "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7376                "push %%" _ASM_CX " \n\t"
7377                "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7378                "je 1f \n\t"
7379                "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7380                __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7381                "1: \n\t"
7382                /* Reload cr2 if changed */
7383                "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7384                "mov %%cr2, %%" _ASM_DX " \n\t"
7385                "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7386                "je 2f \n\t"
7387                "mov %%" _ASM_AX", %%cr2 \n\t"
7388                "2: \n\t"
7389                /* Check if vmlaunch of vmresume is needed */
7390                "cmpl $0, %c[launched](%0) \n\t"
7391                /* Load guest registers.  Don't clobber flags. */
7392                "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7393                "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7394                "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7395                "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7396                "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7397                "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7398#ifdef CONFIG_X86_64
7399                "mov %c[r8](%0),  %%r8  \n\t"
7400                "mov %c[r9](%0),  %%r9  \n\t"
7401                "mov %c[r10](%0), %%r10 \n\t"
7402                "mov %c[r11](%0), %%r11 \n\t"
7403                "mov %c[r12](%0), %%r12 \n\t"
7404                "mov %c[r13](%0), %%r13 \n\t"
7405                "mov %c[r14](%0), %%r14 \n\t"
7406                "mov %c[r15](%0), %%r15 \n\t"
7407#endif
7408                "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7409
7410                /* Enter guest mode */
7411                "jne 1f \n\t"
7412                __ex(ASM_VMX_VMLAUNCH) "\n\t"
7413                "jmp 2f \n\t"
7414                "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7415                "2: "
7416                /* Save guest registers, load host registers, keep flags */
7417                "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7418                "pop %0 \n\t"
7419                "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7420                "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7421                __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7422                "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7423                "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7424                "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7425                "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7426#ifdef CONFIG_X86_64
7427                "mov %%r8,  %c[r8](%0) \n\t"
7428                "mov %%r9,  %c[r9](%0) \n\t"
7429                "mov %%r10, %c[r10](%0) \n\t"
7430                "mov %%r11, %c[r11](%0) \n\t"
7431                "mov %%r12, %c[r12](%0) \n\t"
7432                "mov %%r13, %c[r13](%0) \n\t"
7433                "mov %%r14, %c[r14](%0) \n\t"
7434                "mov %%r15, %c[r15](%0) \n\t"
7435#endif
7436                "mov %%cr2, %%" _ASM_AX "   \n\t"
7437                "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7438
7439                "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7440                "setbe %c[fail](%0) \n\t"
7441                ".pushsection .rodata \n\t"
7442                ".global vmx_return \n\t"
7443                "vmx_return: " _ASM_PTR " 2b \n\t"
7444                ".popsection"
7445              : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7446                [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7447                [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7448                [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7449                [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7450                [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7451                [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7452                [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7453                [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7454                [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7455                [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7456#ifdef CONFIG_X86_64
7457                [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7458                [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7459                [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7460                [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7461                [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7462                [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7463                [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7464                [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7465#endif
7466                [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7467                [wordsize]"i"(sizeof(ulong))
7468              : "cc", "memory"
7469#ifdef CONFIG_X86_64
7470                , "rax", "rbx", "rdi", "rsi"
7471                , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7472#else
7473                , "eax", "ebx", "edi", "esi"
7474#endif
7475              );
7476
7477        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7478        if (debugctlmsr)
7479                update_debugctlmsr(debugctlmsr);
7480
7481#ifndef CONFIG_X86_64
7482        /*
7483         * The sysexit path does not restore ds/es, so we must set them to
7484         * a reasonable value ourselves.
7485         *
7486         * We can't defer this to vmx_load_host_state() since that function
7487         * may be executed in interrupt context, which saves and restore segments
7488         * around it, nullifying its effect.
7489         */
7490        loadsegment(ds, __USER_DS);
7491        loadsegment(es, __USER_DS);
7492#endif
7493
7494        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7495                                  | (1 << VCPU_EXREG_RFLAGS)
7496                                  | (1 << VCPU_EXREG_PDPTR)
7497                                  | (1 << VCPU_EXREG_SEGMENTS)
7498                                  | (1 << VCPU_EXREG_CR3));
7499        vcpu->arch.regs_dirty = 0;
7500
7501        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7502
7503        vmx->loaded_vmcs->launched = 1;
7504
7505        vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7506        trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7507
7508        /*
7509         * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7510         * we did not inject a still-pending event to L1 now because of
7511         * nested_run_pending, we need to re-enable this bit.
7512         */
7513        if (vmx->nested.nested_run_pending)
7514                kvm_make_request(KVM_REQ_EVENT, vcpu);
7515
7516        vmx->nested.nested_run_pending = 0;
7517
7518        vmx_complete_atomic_exit(vmx);
7519        vmx_recover_nmi_blocking(vmx);
7520        vmx_complete_interrupts(vmx);
7521}
7522
7523static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7524{
7525        struct vcpu_vmx *vmx = to_vmx(vcpu);
7526
7527        free_vpid(vmx);
7528        free_loaded_vmcs(vmx->loaded_vmcs);
7529        free_nested(vmx);
7530        kfree(vmx->guest_msrs);
7531        kvm_vcpu_uninit(vcpu);
7532        kmem_cache_free(kvm_vcpu_cache, vmx);
7533}
7534
7535static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7536{
7537        int err;
7538        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7539        int cpu;
7540
7541        if (!vmx)
7542                return ERR_PTR(-ENOMEM);
7543
7544        allocate_vpid(vmx);
7545
7546        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7547        if (err)
7548                goto free_vcpu;
7549
7550        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7551        err = -ENOMEM;
7552        if (!vmx->guest_msrs) {
7553                goto uninit_vcpu;
7554        }
7555
7556        vmx->loaded_vmcs = &vmx->vmcs01;
7557        vmx->loaded_vmcs->vmcs = alloc_vmcs();
7558        if (!vmx->loaded_vmcs->vmcs)
7559                goto free_msrs;
7560        if (!vmm_exclusive)
7561                kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7562        loaded_vmcs_init(vmx->loaded_vmcs);
7563        if (!vmm_exclusive)
7564                kvm_cpu_vmxoff();
7565
7566        cpu = get_cpu();
7567        vmx_vcpu_load(&vmx->vcpu, cpu);
7568        vmx->vcpu.cpu = cpu;
7569        err = vmx_vcpu_setup(vmx);
7570        vmx_vcpu_put(&vmx->vcpu);
7571        put_cpu();
7572        if (err)
7573                goto free_vmcs;
7574        if (vm_need_virtualize_apic_accesses(kvm)) {
7575                err = alloc_apic_access_page(kvm);
7576                if (err)
7577                        goto free_vmcs;
7578        }
7579
7580        if (enable_ept) {
7581                if (!kvm->arch.ept_identity_map_addr)
7582                        kvm->arch.ept_identity_map_addr =
7583                                VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7584                err = -ENOMEM;
7585                if (alloc_identity_pagetable(kvm) != 0)
7586                        goto free_vmcs;
7587                if (!init_rmode_identity_map(kvm))
7588                        goto free_vmcs;
7589        }
7590
7591        vmx->nested.current_vmptr = -1ull;
7592        vmx->nested.current_vmcs12 = NULL;
7593
7594        return &vmx->vcpu;
7595
7596free_vmcs:
7597        free_loaded_vmcs(vmx->loaded_vmcs);
7598free_msrs:
7599        kfree(vmx->guest_msrs);
7600uninit_vcpu:
7601        kvm_vcpu_uninit(&vmx->vcpu);
7602free_vcpu:
7603        free_vpid(vmx);
7604        kmem_cache_free(kvm_vcpu_cache, vmx);
7605        return ERR_PTR(err);
7606}
7607
7608static void __init vmx_check_processor_compat(void *rtn)
7609{
7610        struct vmcs_config vmcs_conf;
7611
7612        *(int *)rtn = 0;
7613        if (setup_vmcs_config(&vmcs_conf) < 0)
7614                *(int *)rtn = -EIO;
7615        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7616                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7617                                smp_processor_id());
7618                *(int *)rtn = -EIO;
7619        }
7620}
7621
7622static int get_ept_level(void)
7623{
7624        return VMX_EPT_DEFAULT_GAW + 1;
7625}
7626
7627static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7628{
7629        u64 ret;
7630
7631        /* For VT-d and EPT combination
7632         * 1. MMIO: always map as UC
7633         * 2. EPT with VT-d:
7634         *   a. VT-d without snooping control feature: can't guarantee the
7635         *      result, try to trust guest.
7636         *   b. VT-d with snooping control feature: snooping control feature of
7637         *      VT-d engine can guarantee the cache correctness. Just set it
7638         *      to WB to keep consistent with host. So the same as item 3.
7639         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7640         *    consistent with host MTRR
7641         */
7642        if (is_mmio)
7643                ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7644        else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7645                ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7646                      VMX_EPT_MT_EPTE_SHIFT;
7647        else
7648                ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7649                        | VMX_EPT_IPAT_BIT;
7650
7651        return ret;
7652}
7653
7654static int vmx_get_lpage_level(void)
7655{
7656        if (enable_ept && !cpu_has_vmx_ept_1g_page())
7657                return PT_DIRECTORY_LEVEL;
7658        else
7659                /* For shadow and EPT supported 1GB page */
7660                return PT_PDPE_LEVEL;
7661}
7662
7663static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7664{
7665        struct kvm_cpuid_entry2 *best;
7666        struct vcpu_vmx *vmx = to_vmx(vcpu);
7667        u32 exec_control;
7668
7669        vmx->rdtscp_enabled = false;
7670        if (vmx_rdtscp_supported()) {
7671                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7672                if (exec_control & SECONDARY_EXEC_RDTSCP) {
7673                        best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7674                        if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7675                                vmx->rdtscp_enabled = true;
7676                        else {
7677                                exec_control &= ~SECONDARY_EXEC_RDTSCP;
7678                                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7679                                                exec_control);
7680                        }
7681                }
7682        }
7683
7684        /* Exposing INVPCID only when PCID is exposed */
7685        best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7686        if (vmx_invpcid_supported() &&
7687            best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7688            guest_cpuid_has_pcid(vcpu)) {
7689                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7690                exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7691                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7692                             exec_control);
7693        } else {
7694                if (cpu_has_secondary_exec_ctrls()) {
7695                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7696                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7697                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7698                                     exec_control);
7699                }
7700                if (best)
7701                        best->ebx &= ~bit(X86_FEATURE_INVPCID);
7702        }
7703}
7704
7705static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7706{
7707        if (func == 1 && nested)
7708                entry->ecx |= bit(X86_FEATURE_VMX);
7709}
7710
7711static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7712                struct x86_exception *fault)
7713{
7714        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7715        u32 exit_reason;
7716
7717        if (fault->error_code & PFERR_RSVD_MASK)
7718                exit_reason = EXIT_REASON_EPT_MISCONFIG;
7719        else
7720                exit_reason = EXIT_REASON_EPT_VIOLATION;
7721        nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7722        vmcs12->guest_physical_address = fault->address;
7723}
7724
7725/* Callbacks for nested_ept_init_mmu_context: */
7726
7727static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7728{
7729        /* return the page table to be shadowed - in our case, EPT12 */
7730        return get_vmcs12(vcpu)->ept_pointer;
7731}
7732
7733static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7734{
7735        kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7736                        nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7737
7738        vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7739        vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7740        vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7741
7742        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7743}
7744
7745static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7746{
7747        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7748}
7749
7750static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7751                struct x86_exception *fault)
7752{
7753        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7754
7755        WARN_ON(!is_guest_mode(vcpu));
7756
7757        /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7758        if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7759                nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7760                                  vmcs_read32(VM_EXIT_INTR_INFO),
7761                                  vmcs_readl(EXIT_QUALIFICATION));
7762        else
7763                kvm_inject_page_fault(vcpu, fault);
7764}
7765
7766static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
7767{
7768        u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
7769        struct vcpu_vmx *vmx = to_vmx(vcpu);
7770
7771        if (vcpu->arch.virtual_tsc_khz == 0)
7772                return;
7773
7774        /* Make sure short timeouts reliably trigger an immediate vmexit.
7775         * hrtimer_start does not guarantee this. */
7776        if (preemption_timeout <= 1) {
7777                vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
7778                return;
7779        }
7780
7781        preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
7782        preemption_timeout *= 1000000;
7783        do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
7784        hrtimer_start(&vmx->nested.preemption_timer,
7785                      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
7786}
7787
7788/*
7789 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7790 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7791 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7792 * guest in a way that will both be appropriate to L1's requests, and our
7793 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7794 * function also has additional necessary side-effects, like setting various
7795 * vcpu->arch fields.
7796 */
7797static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7798{
7799        struct vcpu_vmx *vmx = to_vmx(vcpu);
7800        u32 exec_control;
7801
7802        vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7803        vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7804        vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7805        vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7806        vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7807        vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7808        vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7809        vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7810        vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7811        vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7812        vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7813        vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7814        vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7815        vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7816        vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7817        vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7818        vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7819        vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7820        vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7821        vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7822        vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7823        vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7824        vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7825        vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7826        vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7827        vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7828        vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7829        vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7830        vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7831        vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7832        vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7833        vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7834        vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7835        vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7836        vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7837        vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7838
7839        vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7840        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7841                vmcs12->vm_entry_intr_info_field);
7842        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7843                vmcs12->vm_entry_exception_error_code);
7844        vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7845                vmcs12->vm_entry_instruction_len);
7846        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7847                vmcs12->guest_interruptibility_info);
7848        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7849        kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7850        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7851        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7852                vmcs12->guest_pending_dbg_exceptions);
7853        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7854        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7855
7856        vmcs_write64(VMCS_LINK_POINTER, -1ull);
7857
7858        exec_control = vmcs12->pin_based_vm_exec_control;
7859        exec_control |= vmcs_config.pin_based_exec_ctrl;
7860        exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
7861                          PIN_BASED_POSTED_INTR);
7862        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
7863
7864        vmx->nested.preemption_timer_expired = false;
7865        if (nested_cpu_has_preemption_timer(vmcs12))
7866                vmx_start_preemption_timer(vcpu);
7867
7868        /*
7869         * Whether page-faults are trapped is determined by a combination of
7870         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7871         * If enable_ept, L0 doesn't care about page faults and we should
7872         * set all of these to L1's desires. However, if !enable_ept, L0 does
7873         * care about (at least some) page faults, and because it is not easy
7874         * (if at all possible?) to merge L0 and L1's desires, we simply ask
7875         * to exit on each and every L2 page fault. This is done by setting
7876         * MASK=MATCH=0 and (see below) EB.PF=1.
7877         * Note that below we don't need special code to set EB.PF beyond the
7878         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7879         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7880         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7881         *
7882         * A problem with this approach (when !enable_ept) is that L1 may be
7883         * injected with more page faults than it asked for. This could have
7884         * caused problems, but in practice existing hypervisors don't care.
7885         * To fix this, we will need to emulate the PFEC checking (on the L1
7886         * page tables), using walk_addr(), when injecting PFs to L1.
7887         */
7888        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7889                enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7890        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7891                enable_ept ? vmcs12->page_fault_error_code_match : 0);
7892
7893        if (cpu_has_secondary_exec_ctrls()) {
7894                exec_control = vmx_secondary_exec_control(vmx);
7895                if (!vmx->rdtscp_enabled)
7896                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
7897                /* Take the following fields only from vmcs12 */
7898                exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7899                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7900                                  SECONDARY_EXEC_APIC_REGISTER_VIRT);
7901                if (nested_cpu_has(vmcs12,
7902                                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7903                        exec_control |= vmcs12->secondary_vm_exec_control;
7904
7905                if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7906                        /*
7907                         * Translate L1 physical address to host physical
7908                         * address for vmcs02. Keep the page pinned, so this
7909                         * physical address remains valid. We keep a reference
7910                         * to it so we can release it later.
7911                         */
7912                        if (vmx->nested.apic_access_page) /* shouldn't happen */
7913                                nested_release_page(vmx->nested.apic_access_page);
7914                        vmx->nested.apic_access_page =
7915                                nested_get_page(vcpu, vmcs12->apic_access_addr);
7916                        /*
7917                         * If translation failed, no matter: This feature asks
7918                         * to exit when accessing the given address, and if it
7919                         * can never be accessed, this feature won't do
7920                         * anything anyway.
7921                         */
7922                        if (!vmx->nested.apic_access_page)
7923                                exec_control &=
7924                                  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7925                        else
7926                                vmcs_write64(APIC_ACCESS_ADDR,
7927                                  page_to_phys(vmx->nested.apic_access_page));
7928                } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7929                        exec_control |=
7930                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7931                        vmcs_write64(APIC_ACCESS_ADDR,
7932                                page_to_phys(vcpu->kvm->arch.apic_access_page));
7933                }
7934
7935                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7936        }
7937
7938
7939        /*
7940         * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7941         * Some constant fields are set here by vmx_set_constant_host_state().
7942         * Other fields are different per CPU, and will be set later when
7943         * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7944         */
7945        vmx_set_constant_host_state(vmx);
7946
7947        /*
7948         * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7949         * entry, but only if the current (host) sp changed from the value
7950         * we wrote last (vmx->host_rsp). This cache is no longer relevant
7951         * if we switch vmcs, and rather than hold a separate cache per vmcs,
7952         * here we just force the write to happen on entry.
7953         */
7954        vmx->host_rsp = 0;
7955
7956        exec_control = vmx_exec_control(vmx); /* L0's desires */
7957        exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7958        exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7959        exec_control &= ~CPU_BASED_TPR_SHADOW;
7960        exec_control |= vmcs12->cpu_based_vm_exec_control;
7961        /*
7962         * Merging of IO and MSR bitmaps not currently supported.
7963         * Rather, exit every time.
7964         */
7965        exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7966        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7967        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7968
7969        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7970
7971        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7972         * bitwise-or of what L1 wants to trap for L2, and what we want to
7973         * trap. Note that CR0.TS also needs updating - we do this later.
7974         */
7975        update_exception_bitmap(vcpu);
7976        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7977        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7978
7979        /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7980         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7981         * bits are further modified by vmx_set_efer() below.
7982         */
7983        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
7984
7985        /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7986         * emulated by vmx_set_efer(), below.
7987         */
7988        vm_entry_controls_init(vmx, 
7989                (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7990                        ~VM_ENTRY_IA32E_MODE) |
7991                (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7992
7993        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7994                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7995                vcpu->arch.pat = vmcs12->guest_ia32_pat;
7996        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7997                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7998
7999
8000        set_cr4_guest_host_mask(vmx);
8001
8002        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8003                vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8004
8005        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8006                vmcs_write64(TSC_OFFSET,
8007                        vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8008        else
8009                vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8010
8011        if (enable_vpid) {
8012                /*
8013                 * Trivially support vpid by letting L2s share their parent
8014                 * L1's vpid. TODO: move to a more elaborate solution, giving
8015                 * each L2 its own vpid and exposing the vpid feature to L1.
8016                 */
8017                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8018                vmx_flush_tlb(vcpu);
8019        }
8020
8021        if (nested_cpu_has_ept(vmcs12)) {
8022                kvm_mmu_unload(vcpu);
8023                nested_ept_init_mmu_context(vcpu);
8024        }
8025
8026        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8027                vcpu->arch.efer = vmcs12->guest_ia32_efer;
8028        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8029                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8030        else
8031                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8032        /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8033        vmx_set_efer(vcpu, vcpu->arch.efer);
8034
8035        /*
8036         * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8037         * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8038         * The CR0_READ_SHADOW is what L2 should have expected to read given
8039         * the specifications by L1; It's not enough to take
8040         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8041         * have more bits than L1 expected.
8042         */
8043        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8044        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8045
8046        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8047        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8048
8049        /* shadow page tables on either EPT or shadow page tables */
8050        kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8051        kvm_mmu_reset_context(vcpu);
8052
8053        if (!enable_ept)
8054                vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8055
8056        /*
8057         * L1 may access the L2's PDPTR, so save them to construct vmcs12
8058         */
8059        if (enable_ept) {
8060                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8061                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8062                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8063                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8064        }
8065
8066        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8067        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8068}
8069
8070/*
8071 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8072 * for running an L2 nested guest.
8073 */
8074static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8075{
8076        struct vmcs12 *vmcs12;
8077        struct vcpu_vmx *vmx = to_vmx(vcpu);
8078        int cpu;
8079        struct loaded_vmcs *vmcs02;
8080        bool ia32e;
8081
8082        if (!nested_vmx_check_permission(vcpu) ||
8083            !nested_vmx_check_vmcs12(vcpu))
8084                return 1;
8085
8086        skip_emulated_instruction(vcpu);
8087        vmcs12 = get_vmcs12(vcpu);
8088
8089        if (enable_shadow_vmcs)
8090                copy_shadow_to_vmcs12(vmx);
8091
8092        /*
8093         * The nested entry process starts with enforcing various prerequisites
8094         * on vmcs12 as required by the Intel SDM, and act appropriately when
8095         * they fail: As the SDM explains, some conditions should cause the
8096         * instruction to fail, while others will cause the instruction to seem
8097         * to succeed, but return an EXIT_REASON_INVALID_STATE.
8098         * To speed up the normal (success) code path, we should avoid checking
8099         * for misconfigurations which will anyway be caught by the processor
8100         * when using the merged vmcs02.
8101         */
8102        if (vmcs12->launch_state == launch) {
8103                nested_vmx_failValid(vcpu,
8104                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8105                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8106                return 1;
8107        }
8108
8109        if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8110            vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8111                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8112                return 1;
8113        }
8114
8115        if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8116                        !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
8117                /*TODO: Also verify bits beyond physical address width are 0*/
8118                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8119                return 1;
8120        }
8121
8122        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
8123                        !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
8124                /*TODO: Also verify bits beyond physical address width are 0*/
8125                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8126                return 1;
8127        }
8128
8129        if (vmcs12->vm_entry_msr_load_count > 0 ||
8130            vmcs12->vm_exit_msr_load_count > 0 ||
8131            vmcs12->vm_exit_msr_store_count > 0) {
8132                pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8133                                    __func__);
8134                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8135                return 1;
8136        }
8137
8138        if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8139              nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
8140            !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8141              nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8142            !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8143              nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8144            !vmx_control_verify(vmcs12->vm_exit_controls,
8145              nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
8146            !vmx_control_verify(vmcs12->vm_entry_controls,
8147              nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
8148        {
8149                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8150                return 1;
8151        }
8152
8153        if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8154            ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8155                nested_vmx_failValid(vcpu,
8156                        VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8157                return 1;
8158        }
8159
8160        if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8161            ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8162                nested_vmx_entry_failure(vcpu, vmcs12,
8163                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8164                return 1;
8165        }
8166        if (vmcs12->vmcs_link_pointer != -1ull) {
8167                nested_vmx_entry_failure(vcpu, vmcs12,
8168                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8169                return 1;
8170        }
8171
8172        /*
8173         * If the load IA32_EFER VM-entry control is 1, the following checks
8174         * are performed on the field for the IA32_EFER MSR:
8175         * - Bits reserved in the IA32_EFER MSR must be 0.
8176         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8177         *   the IA-32e mode guest VM-exit control. It must also be identical
8178         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8179         *   CR0.PG) is 1.
8180         */
8181        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8182                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8183                if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8184                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8185                    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8186                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8187                        nested_vmx_entry_failure(vcpu, vmcs12,
8188                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8189                        return 1;
8190                }
8191        }
8192
8193        /*
8194         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8195         * IA32_EFER MSR must be 0 in the field for that register. In addition,
8196         * the values of the LMA and LME bits in the field must each be that of
8197         * the host address-space size VM-exit control.
8198         */
8199        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8200                ia32e = (vmcs12->vm_exit_controls &
8201                         VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8202                if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8203                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8204                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8205                        nested_vmx_entry_failure(vcpu, vmcs12,
8206                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8207                        return 1;
8208                }
8209        }
8210
8211        /*
8212         * We're finally done with prerequisite checking, and can start with
8213         * the nested entry.
8214         */
8215
8216        vmcs02 = nested_get_current_vmcs02(vmx);
8217        if (!vmcs02)
8218                return -ENOMEM;
8219
8220        enter_guest_mode(vcpu);
8221
8222        vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8223
8224        cpu = get_cpu();
8225        vmx->loaded_vmcs = vmcs02;
8226        vmx_vcpu_put(vcpu);
8227        vmx_vcpu_load(vcpu, cpu);
8228        vcpu->cpu = cpu;
8229        put_cpu();
8230
8231        vmx_segment_cache_clear(vmx);
8232
8233        vmcs12->launch_state = 1;
8234
8235        prepare_vmcs02(vcpu, vmcs12);
8236
8237        if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8238                return kvm_emulate_halt(vcpu);
8239
8240        vmx->nested.nested_run_pending = 1;
8241
8242        /*
8243         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8244         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8245         * returned as far as L1 is concerned. It will only return (and set
8246         * the success flag) when L2 exits (see nested_vmx_vmexit()).
8247         */
8248        return 1;
8249}
8250
8251/*
8252 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8253 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8254 * This function returns the new value we should put in vmcs12.guest_cr0.
8255 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8256 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8257 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8258 *     didn't trap the bit, because if L1 did, so would L0).
8259 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8260 *     been modified by L2, and L1 knows it. So just leave the old value of
8261 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8262 *     isn't relevant, because if L0 traps this bit it can set it to anything.
8263 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8264 *     changed these bits, and therefore they need to be updated, but L0
8265 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8266 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8267 */
8268static inline unsigned long
8269vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8270{
8271        return
8272        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8273        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8274        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8275                        vcpu->arch.cr0_guest_owned_bits));
8276}
8277
8278static inline unsigned long
8279vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8280{
8281        return
8282        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8283        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8284        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8285                        vcpu->arch.cr4_guest_owned_bits));
8286}
8287
8288static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8289                                       struct vmcs12 *vmcs12)
8290{
8291        u32 idt_vectoring;
8292        unsigned int nr;
8293
8294        if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8295                nr = vcpu->arch.exception.nr;
8296                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8297
8298                if (kvm_exception_is_soft(nr)) {
8299                        vmcs12->vm_exit_instruction_len =
8300                                vcpu->arch.event_exit_inst_len;
8301                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8302                } else
8303                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8304
8305                if (vcpu->arch.exception.has_error_code) {
8306                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8307                        vmcs12->idt_vectoring_error_code =
8308                                vcpu->arch.exception.error_code;
8309                }
8310
8311                vmcs12->idt_vectoring_info_field = idt_vectoring;
8312        } else if (vcpu->arch.nmi_injected) {
8313                vmcs12->idt_vectoring_info_field =
8314                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8315        } else if (vcpu->arch.interrupt.pending) {
8316                nr = vcpu->arch.interrupt.nr;
8317                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8318
8319                if (vcpu->arch.interrupt.soft) {
8320                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
8321                        vmcs12->vm_entry_instruction_len =
8322                                vcpu->arch.event_exit_inst_len;
8323                } else
8324                        idt_vectoring |= INTR_TYPE_EXT_INTR;
8325
8326                vmcs12->idt_vectoring_info_field = idt_vectoring;
8327        }
8328}
8329
8330static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8331{
8332        struct vcpu_vmx *vmx = to_vmx(vcpu);
8333
8334        if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8335            vmx->nested.preemption_timer_expired) {
8336                if (vmx->nested.nested_run_pending)
8337                        return -EBUSY;
8338                nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8339                return 0;
8340        }
8341
8342        if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8343                if (vmx->nested.nested_run_pending ||
8344                    vcpu->arch.interrupt.pending)
8345                        return -EBUSY;
8346                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8347                                  NMI_VECTOR | INTR_TYPE_NMI_INTR |
8348                                  INTR_INFO_VALID_MASK, 0);
8349                /*
8350                 * The NMI-triggered VM exit counts as injection:
8351                 * clear this one and block further NMIs.
8352                 */
8353                vcpu->arch.nmi_pending = 0;
8354                vmx_set_nmi_mask(vcpu, true);
8355                return 0;
8356        }
8357
8358        if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8359            nested_exit_on_intr(vcpu)) {
8360                if (vmx->nested.nested_run_pending)
8361                        return -EBUSY;
8362                nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8363        }
8364
8365        return 0;
8366}
8367
8368static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8369{
8370        ktime_t remaining =
8371                hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8372        u64 value;
8373
8374        if (ktime_to_ns(remaining) <= 0)
8375                return 0;
8376
8377        value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8378        do_div(value, 1000000);
8379        return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8380}
8381
8382/*
8383 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8384 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8385 * and this function updates it to reflect the changes to the guest state while
8386 * L2 was running (and perhaps made some exits which were handled directly by L0
8387 * without going back to L1), and to reflect the exit reason.
8388 * Note that we do not have to copy here all VMCS fields, just those that
8389 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8390 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8391 * which already writes to vmcs12 directly.
8392 */
8393static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8394                           u32 exit_reason, u32 exit_intr_info,
8395                           unsigned long exit_qualification)
8396{
8397        /* update guest state fields: */
8398        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8399        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8400
8401        kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8402        vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8403        vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8404        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8405
8406        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8407        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8408        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8409        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8410        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8411        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8412        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8413        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8414        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8415        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8416        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8417        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8418        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8419        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8420        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8421        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8422        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8423        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8424        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8425        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8426        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8427        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8428        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8429        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8430        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8431        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8432        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8433        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8434        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8435        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8436        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8437        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8438        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8439        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8440        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8441        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8442
8443        vmcs12->guest_interruptibility_info =
8444                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8445        vmcs12->guest_pending_dbg_exceptions =
8446                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8447        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8448                vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8449        else
8450                vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8451
8452        if (nested_cpu_has_preemption_timer(vmcs12)) {
8453                if (vmcs12->vm_exit_controls &
8454                    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8455                        vmcs12->vmx_preemption_timer_value =
8456                                vmx_get_preemption_timer_value(vcpu);
8457                hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8458        }
8459
8460        /*
8461         * In some cases (usually, nested EPT), L2 is allowed to change its
8462         * own CR3 without exiting. If it has changed it, we must keep it.
8463         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8464         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8465         *
8466         * Additionally, restore L2's PDPTR to vmcs12.
8467         */
8468        if (enable_ept) {
8469                vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8470                vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8471                vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8472                vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8473                vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8474        }
8475
8476        vmcs12->vm_entry_controls =
8477                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8478                (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8479
8480        /* TODO: These cannot have changed unless we have MSR bitmaps and
8481         * the relevant bit asks not to trap the change */
8482        vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8483        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8484                vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8485        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8486                vmcs12->guest_ia32_efer = vcpu->arch.efer;
8487        vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8488        vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8489        vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8490        if (vmx_mpx_supported())
8491                vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8492
8493        /* update exit information fields: */
8494
8495        vmcs12->vm_exit_reason = exit_reason;
8496        vmcs12->exit_qualification = exit_qualification;
8497
8498        vmcs12->vm_exit_intr_info = exit_intr_info;
8499        if ((vmcs12->vm_exit_intr_info &
8500             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8501            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8502                vmcs12->vm_exit_intr_error_code =
8503                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8504        vmcs12->idt_vectoring_info_field = 0;
8505        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8506        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8507
8508        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8509                /* vm_entry_intr_info_field is cleared on exit. Emulate this
8510                 * instead of reading the real value. */
8511                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8512
8513                /*
8514                 * Transfer the event that L0 or L1 may wanted to inject into
8515                 * L2 to IDT_VECTORING_INFO_FIELD.
8516                 */
8517                vmcs12_save_pending_event(vcpu, vmcs12);
8518        }
8519
8520        /*
8521         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8522         * preserved above and would only end up incorrectly in L1.
8523         */
8524        vcpu->arch.nmi_injected = false;
8525        kvm_clear_exception_queue(vcpu);
8526        kvm_clear_interrupt_queue(vcpu);
8527}
8528
8529/*
8530 * A part of what we need to when the nested L2 guest exits and we want to
8531 * run its L1 parent, is to reset L1's guest state to the host state specified
8532 * in vmcs12.
8533 * This function is to be called not only on normal nested exit, but also on
8534 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8535 * Failures During or After Loading Guest State").
8536 * This function should be called when the active VMCS is L1's (vmcs01).
8537 */
8538static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8539                                   struct vmcs12 *vmcs12)
8540{
8541        struct kvm_segment seg;
8542
8543        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8544                vcpu->arch.efer = vmcs12->host_ia32_efer;
8545        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8546                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8547        else
8548                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8549        vmx_set_efer(vcpu, vcpu->arch.efer);
8550
8551        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8552        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8553        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8554        /*
8555         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8556         * actually changed, because it depends on the current state of
8557         * fpu_active (which may have changed).
8558         * Note that vmx_set_cr0 refers to efer set above.
8559         */
8560        vmx_set_cr0(vcpu, vmcs12->host_cr0);
8561        /*
8562         * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8563         * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8564         * but we also need to update cr0_guest_host_mask and exception_bitmap.
8565         */
8566        update_exception_bitmap(vcpu);
8567        vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8568        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8569
8570        /*
8571         * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8572         * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8573         */
8574        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8575        kvm_set_cr4(vcpu, vmcs12->host_cr4);
8576
8577        nested_ept_uninit_mmu_context(vcpu);
8578
8579        kvm_set_cr3(vcpu, vmcs12->host_cr3);
8580        kvm_mmu_reset_context(vcpu);
8581
8582        if (!enable_ept)
8583                vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8584
8585        if (enable_vpid) {
8586                /*
8587                 * Trivially support vpid by letting L2s share their parent
8588                 * L1's vpid. TODO: move to a more elaborate solution, giving
8589                 * each L2 its own vpid and exposing the vpid feature to L1.
8590                 */
8591                vmx_flush_tlb(vcpu);
8592        }
8593
8594
8595        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8596        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8597        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8598        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8599        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8600
8601        /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
8602        if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8603                vmcs_write64(GUEST_BNDCFGS, 0);
8604
8605        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8606                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8607                vcpu->arch.pat = vmcs12->host_ia32_pat;
8608        }
8609        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8610                vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8611                        vmcs12->host_ia32_perf_global_ctrl);
8612
8613        /* Set L1 segment info according to Intel SDM
8614            27.5.2 Loading Host Segment and Descriptor-Table Registers */
8615        seg = (struct kvm_segment) {
8616                .base = 0,
8617                .limit = 0xFFFFFFFF,
8618                .selector = vmcs12->host_cs_selector,
8619                .type = 11,
8620                .present = 1,
8621                .s = 1,
8622                .g = 1
8623        };
8624        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8625                seg.l = 1;
8626        else
8627                seg.db = 1;
8628        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8629        seg = (struct kvm_segment) {
8630                .base = 0,
8631                .limit = 0xFFFFFFFF,
8632                .type = 3,
8633                .present = 1,
8634                .s = 1,
8635                .db = 1,
8636                .g = 1
8637        };
8638        seg.selector = vmcs12->host_ds_selector;
8639        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8640        seg.selector = vmcs12->host_es_selector;
8641        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8642        seg.selector = vmcs12->host_ss_selector;
8643        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8644        seg.selector = vmcs12->host_fs_selector;
8645        seg.base = vmcs12->host_fs_base;
8646        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8647        seg.selector = vmcs12->host_gs_selector;
8648        seg.base = vmcs12->host_gs_base;
8649        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8650        seg = (struct kvm_segment) {
8651                .base = vmcs12->host_tr_base,
8652                .limit = 0x67,
8653                .selector = vmcs12->host_tr_selector,
8654                .type = 11,
8655                .present = 1
8656        };
8657        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8658
8659        kvm_set_dr(vcpu, 7, 0x400);
8660        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8661}
8662
8663/*
8664 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8665 * and modify vmcs12 to make it see what it would expect to see there if
8666 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8667 */
8668static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8669                              u32 exit_intr_info,
8670                              unsigned long exit_qualification)
8671{
8672        struct vcpu_vmx *vmx = to_vmx(vcpu);
8673        int cpu;
8674        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8675
8676        /* trying to cancel vmlaunch/vmresume is a bug */
8677        WARN_ON_ONCE(vmx->nested.nested_run_pending);
8678
8679        leave_guest_mode(vcpu);
8680        prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8681                       exit_qualification);
8682
8683        if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8684            && nested_exit_intr_ack_set(vcpu)) {
8685                int irq = kvm_cpu_get_interrupt(vcpu);
8686                WARN_ON(irq < 0);
8687                vmcs12->vm_exit_intr_info = irq |
8688                        INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8689        }
8690
8691        trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8692                                       vmcs12->exit_qualification,
8693                                       vmcs12->idt_vectoring_info_field,
8694                                       vmcs12->vm_exit_intr_info,
8695                                       vmcs12->vm_exit_intr_error_code,
8696                                       KVM_ISA_VMX);
8697
8698        cpu = get_cpu();
8699        vmx->loaded_vmcs = &vmx->vmcs01;
8700        vmx_vcpu_put(vcpu);
8701        vmx_vcpu_load(vcpu, cpu);
8702        vcpu->cpu = cpu;
8703        put_cpu();
8704
8705        vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8706        vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8707        vmx_segment_cache_clear(vmx);
8708
8709        /* if no vmcs02 cache requested, remove the one we used */
8710        if (VMCS02_POOL_SIZE == 0)
8711                nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8712
8713        load_vmcs12_host_state(vcpu, vmcs12);
8714
8715        /* Update TSC_OFFSET if TSC was changed while L2 ran */
8716        vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8717
8718        /* This is needed for same reason as it was needed in prepare_vmcs02 */
8719        vmx->host_rsp = 0;
8720
8721        /* Unpin physical memory we referred to in vmcs02 */
8722        if (vmx->nested.apic_access_page) {
8723                nested_release_page(vmx->nested.apic_access_page);
8724                vmx->nested.apic_access_page = 0;
8725        }
8726
8727        /*
8728         * Exiting from L2 to L1, we're now back to L1 which thinks it just
8729         * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8730         * success or failure flag accordingly.
8731         */
8732        if (unlikely(vmx->fail)) {
8733                vmx->fail = 0;
8734                nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8735        } else
8736                nested_vmx_succeed(vcpu);
8737        if (enable_shadow_vmcs)
8738                vmx->nested.sync_shadow_vmcs = true;
8739
8740        /* in case we halted in L2 */
8741        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8742}
8743
8744/*
8745 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
8746 */
8747static void vmx_leave_nested(struct kvm_vcpu *vcpu)
8748{
8749        if (is_guest_mode(vcpu))
8750                nested_vmx_vmexit(vcpu, -1, 0, 0);
8751        free_nested(to_vmx(vcpu));
8752}
8753
8754/*
8755 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8756 * 23.7 "VM-entry failures during or after loading guest state" (this also
8757 * lists the acceptable exit-reason and exit-qualification parameters).
8758 * It should only be called before L2 actually succeeded to run, and when
8759 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8760 */
8761static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8762                        struct vmcs12 *vmcs12,
8763                        u32 reason, unsigned long qualification)
8764{
8765        load_vmcs12_host_state(vcpu, vmcs12);
8766        vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8767        vmcs12->exit_qualification = qualification;
8768        nested_vmx_succeed(vcpu);
8769        if (enable_shadow_vmcs)
8770                to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8771}
8772
8773static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8774                               struct x86_instruction_info *info,
8775                               enum x86_intercept_stage stage)
8776{
8777        return X86EMUL_CONTINUE;
8778}
8779
8780static struct kvm_x86_ops vmx_x86_ops = {
8781        .cpu_has_kvm_support = cpu_has_kvm_support,
8782        .disabled_by_bios = vmx_disabled_by_bios,
8783        .hardware_setup = hardware_setup,
8784        .hardware_unsetup = hardware_unsetup,
8785        .check_processor_compatibility = vmx_check_processor_compat,
8786        .hardware_enable = hardware_enable,
8787        .hardware_disable = hardware_disable,
8788        .cpu_has_accelerated_tpr = report_flexpriority,
8789
8790        .vcpu_create = vmx_create_vcpu,
8791        .vcpu_free = vmx_free_vcpu,
8792        .vcpu_reset = vmx_vcpu_reset,
8793
8794        .prepare_guest_switch = vmx_save_host_state,
8795        .vcpu_load = vmx_vcpu_load,
8796        .vcpu_put = vmx_vcpu_put,
8797
8798        .update_db_bp_intercept = update_exception_bitmap,
8799        .get_msr = vmx_get_msr,
8800        .set_msr = vmx_set_msr,
8801        .get_segment_base = vmx_get_segment_base,
8802        .get_segment = vmx_get_segment,
8803        .set_segment = vmx_set_segment,
8804        .get_cpl = vmx_get_cpl,
8805        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8806        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8807        .decache_cr3 = vmx_decache_cr3,
8808        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8809        .set_cr0 = vmx_set_cr0,
8810        .set_cr3 = vmx_set_cr3,
8811        .set_cr4 = vmx_set_cr4,
8812        .set_efer = vmx_set_efer,
8813        .get_idt = vmx_get_idt,
8814        .set_idt = vmx_set_idt,
8815        .get_gdt = vmx_get_gdt,
8816        .set_gdt = vmx_set_gdt,
8817        .get_dr6 = vmx_get_dr6,
8818        .set_dr6 = vmx_set_dr6,
8819        .set_dr7 = vmx_set_dr7,
8820        .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8821        .cache_reg = vmx_cache_reg,
8822        .get_rflags = vmx_get_rflags,
8823        .set_rflags = vmx_set_rflags,
8824        .fpu_activate = vmx_fpu_activate,
8825        .fpu_deactivate = vmx_fpu_deactivate,
8826
8827        .tlb_flush = vmx_flush_tlb,
8828
8829        .run = vmx_vcpu_run,
8830        .handle_exit = vmx_handle_exit,
8831        .skip_emulated_instruction = skip_emulated_instruction,
8832        .set_interrupt_shadow = vmx_set_interrupt_shadow,
8833        .get_interrupt_shadow = vmx_get_interrupt_shadow,
8834        .patch_hypercall = vmx_patch_hypercall,
8835        .set_irq = vmx_inject_irq,
8836        .set_nmi = vmx_inject_nmi,
8837        .queue_exception = vmx_queue_exception,
8838        .cancel_injection = vmx_cancel_injection,
8839        .interrupt_allowed = vmx_interrupt_allowed,
8840        .nmi_allowed = vmx_nmi_allowed,
8841        .get_nmi_mask = vmx_get_nmi_mask,
8842        .set_nmi_mask = vmx_set_nmi_mask,
8843        .enable_nmi_window = enable_nmi_window,
8844        .enable_irq_window = enable_irq_window,
8845        .update_cr8_intercept = update_cr8_intercept,
8846        .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8847        .vm_has_apicv = vmx_vm_has_apicv,
8848        .load_eoi_exitmap = vmx_load_eoi_exitmap,
8849        .hwapic_irr_update = vmx_hwapic_irr_update,
8850        .hwapic_isr_update = vmx_hwapic_isr_update,
8851        .sync_pir_to_irr = vmx_sync_pir_to_irr,
8852        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8853
8854        .set_tss_addr = vmx_set_tss_addr,
8855        .get_tdp_level = get_ept_level,
8856        .get_mt_mask = vmx_get_mt_mask,
8857
8858        .get_exit_info = vmx_get_exit_info,
8859
8860        .get_lpage_level = vmx_get_lpage_level,
8861
8862        .cpuid_update = vmx_cpuid_update,
8863
8864        .rdtscp_supported = vmx_rdtscp_supported,
8865        .invpcid_supported = vmx_invpcid_supported,
8866
8867        .set_supported_cpuid = vmx_set_supported_cpuid,
8868
8869        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8870
8871        .set_tsc_khz = vmx_set_tsc_khz,
8872        .read_tsc_offset = vmx_read_tsc_offset,
8873        .write_tsc_offset = vmx_write_tsc_offset,
8874        .adjust_tsc_offset = vmx_adjust_tsc_offset,
8875        .compute_tsc_offset = vmx_compute_tsc_offset,
8876        .read_l1_tsc = vmx_read_l1_tsc,
8877
8878        .set_tdp_cr3 = vmx_set_cr3,
8879
8880        .check_intercept = vmx_check_intercept,
8881        .handle_external_intr = vmx_handle_external_intr,
8882        .mpx_supported = vmx_mpx_supported,
8883
8884        .check_nested_events = vmx_check_nested_events,
8885};
8886
8887static int __init vmx_init(void)
8888{
8889        int r, i, msr;
8890
8891        rdmsrl_safe(MSR_EFER, &host_efer);
8892
8893        for (i = 0; i < NR_VMX_MSR; ++i)
8894                kvm_define_shared_msr(i, vmx_msr_index[i]);
8895
8896        vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8897        if (!vmx_io_bitmap_a)
8898                return -ENOMEM;
8899
8900        r = -ENOMEM;
8901
8902        vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8903        if (!vmx_io_bitmap_b)
8904                goto out;
8905
8906        vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8907        if (!vmx_msr_bitmap_legacy)
8908                goto out1;
8909
8910        vmx_msr_bitmap_legacy_x2apic =
8911                                (unsigned long *)__get_free_page(GFP_KERNEL);
8912        if (!vmx_msr_bitmap_legacy_x2apic)
8913                goto out2;
8914
8915        vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8916        if (!vmx_msr_bitmap_longmode)
8917                goto out3;
8918
8919        vmx_msr_bitmap_longmode_x2apic =
8920                                (unsigned long *)__get_free_page(GFP_KERNEL);
8921        if (!vmx_msr_bitmap_longmode_x2apic)
8922                goto out4;
8923        vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8924        if (!vmx_vmread_bitmap)
8925                goto out5;
8926
8927        vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8928        if (!vmx_vmwrite_bitmap)
8929                goto out6;
8930
8931        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8932        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8933
8934        /*
8935         * Allow direct access to the PC debug port (it is often used for I/O
8936         * delays, but the vmexits simply slow things down).
8937         */
8938        memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8939        clear_bit(0x80, vmx_io_bitmap_a);
8940
8941        memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8942
8943        memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8944        memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8945
8946        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8947
8948        r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8949                     __alignof__(struct vcpu_vmx), THIS_MODULE);
8950        if (r)
8951                goto out7;
8952
8953#ifdef CONFIG_KEXEC
8954        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8955                           crash_vmclear_local_loaded_vmcss);
8956#endif
8957
8958        vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8959        vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8960        vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8961        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8962        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8963        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8964        vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
8965
8966        memcpy(vmx_msr_bitmap_legacy_x2apic,
8967                        vmx_msr_bitmap_legacy, PAGE_SIZE);
8968        memcpy(vmx_msr_bitmap_longmode_x2apic,
8969                        vmx_msr_bitmap_longmode, PAGE_SIZE);
8970
8971        if (enable_apicv) {
8972                for (msr = 0x800; msr <= 0x8ff; msr++)
8973                        vmx_disable_intercept_msr_read_x2apic(msr);
8974
8975                /* According SDM, in x2apic mode, the whole id reg is used.
8976                 * But in KVM, it only use the highest eight bits. Need to
8977                 * intercept it */
8978                vmx_enable_intercept_msr_read_x2apic(0x802);
8979                /* TMCCT */
8980                vmx_enable_intercept_msr_read_x2apic(0x839);
8981                /* TPR */
8982                vmx_disable_intercept_msr_write_x2apic(0x808);
8983                /* EOI */
8984                vmx_disable_intercept_msr_write_x2apic(0x80b);
8985                /* SELF-IPI */
8986                vmx_disable_intercept_msr_write_x2apic(0x83f);
8987        }
8988
8989        if (enable_ept) {
8990                kvm_mmu_set_mask_ptes(0ull,
8991                        (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8992                        (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8993                        0ull, VMX_EPT_EXECUTABLE_MASK);
8994                ept_set_mmio_spte_mask();
8995                kvm_enable_tdp();
8996        } else
8997                kvm_disable_tdp();
8998
8999        return 0;
9000
9001out7:
9002        free_page((unsigned long)vmx_vmwrite_bitmap);
9003out6:
9004        free_page((unsigned long)vmx_vmread_bitmap);
9005out5:
9006        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9007out4:
9008        free_page((unsigned long)vmx_msr_bitmap_longmode);
9009out3:
9010        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9011out2:
9012        free_page((unsigned long)vmx_msr_bitmap_legacy);
9013out1:
9014        free_page((unsigned long)vmx_io_bitmap_b);
9015out:
9016        free_page((unsigned long)vmx_io_bitmap_a);
9017        return r;
9018}
9019
9020static void __exit vmx_exit(void)
9021{
9022        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9023        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9024        free_page((unsigned long)vmx_msr_bitmap_legacy);
9025        free_page((unsigned long)vmx_msr_bitmap_longmode);
9026        free_page((unsigned long)vmx_io_bitmap_b);
9027        free_page((unsigned long)vmx_io_bitmap_a);
9028        free_page((unsigned long)vmx_vmwrite_bitmap);
9029        free_page((unsigned long)vmx_vmread_bitmap);
9030
9031#ifdef CONFIG_KEXEC
9032        rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
9033        synchronize_rcu();
9034#endif
9035
9036        kvm_exit();
9037}
9038
9039module_init(vmx_init)
9040module_exit(vmx_exit)
9041