linux/drivers/clocksource/sh_cmt.c
<<
>>
Prefs
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/platform_device.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/sh_timer.h>
  31#include <linux/slab.h>
  32#include <linux/spinlock.h>
  33
  34struct sh_cmt_device;
  35
  36/*
  37 * The CMT comes in 5 different identified flavours, depending not only on the
  38 * SoC but also on the particular instance. The following table lists the main
  39 * characteristics of those flavours.
  40 *
  41 *                      16B     32B     32B-F   48B     48B-2
  42 * -----------------------------------------------------------------------------
  43 * Channels             2       1/4     1       6       2/8
  44 * Control Width        16      16      16      16      32
  45 * Counter Width        16      32      32      32/48   32/48
  46 * Shared Start/Stop    Y       Y       Y       Y       N
  47 *
  48 * The 48-bit gen2 version has a per-channel start/stop register located in the
  49 * channel registers block. All other versions have a shared start/stop register
  50 * located in the global space.
  51 *
  52 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  53 * infers the start/stop bit position in the control register and the channel
  54 * registers block address. Some CMT instances have a subset of channels
  55 * available, in which case the index in the documentation doesn't match the
  56 * "real" index as implemented in hardware. This is for instance the case with
  57 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  58 * in the documentation but using start/stop bit 5 and having its registers
  59 * block at 0x60.
  60 *
  61 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  62 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  63 */
  64
  65enum sh_cmt_model {
  66        SH_CMT_16BIT,
  67        SH_CMT_32BIT,
  68        SH_CMT_32BIT_FAST,
  69        SH_CMT_48BIT,
  70        SH_CMT_48BIT_GEN2,
  71};
  72
  73struct sh_cmt_info {
  74        enum sh_cmt_model model;
  75
  76        unsigned long width; /* 16 or 32 bit version of hardware block */
  77        unsigned long overflow_bit;
  78        unsigned long clear_bits;
  79
  80        /* callbacks for CMSTR and CMCSR access */
  81        unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  82        void (*write_control)(void __iomem *base, unsigned long offs,
  83                              unsigned long value);
  84
  85        /* callbacks for CMCNT and CMCOR access */
  86        unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  87        void (*write_count)(void __iomem *base, unsigned long offs,
  88                            unsigned long value);
  89};
  90
  91struct sh_cmt_channel {
  92        struct sh_cmt_device *cmt;
  93
  94        unsigned int index;     /* Index in the documentation */
  95        unsigned int hwidx;     /* Real hardware index */
  96
  97        void __iomem *iostart;
  98        void __iomem *ioctrl;
  99
 100        unsigned int timer_bit;
 101        unsigned long flags;
 102        unsigned long match_value;
 103        unsigned long next_match_value;
 104        unsigned long max_match_value;
 105        unsigned long rate;
 106        raw_spinlock_t lock;
 107        struct clock_event_device ced;
 108        struct clocksource cs;
 109        unsigned long total_cycles;
 110        bool cs_enabled;
 111};
 112
 113struct sh_cmt_device {
 114        struct platform_device *pdev;
 115
 116        const struct sh_cmt_info *info;
 117        bool legacy;
 118
 119        void __iomem *mapbase_ch;
 120        void __iomem *mapbase;
 121        struct clk *clk;
 122
 123        struct sh_cmt_channel *channels;
 124        unsigned int num_channels;
 125
 126        bool has_clockevent;
 127        bool has_clocksource;
 128};
 129
 130#define SH_CMT16_CMCSR_CMF              (1 << 7)
 131#define SH_CMT16_CMCSR_CMIE             (1 << 6)
 132#define SH_CMT16_CMCSR_CKS8             (0 << 0)
 133#define SH_CMT16_CMCSR_CKS32            (1 << 0)
 134#define SH_CMT16_CMCSR_CKS128           (2 << 0)
 135#define SH_CMT16_CMCSR_CKS512           (3 << 0)
 136#define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
 137
 138#define SH_CMT32_CMCSR_CMF              (1 << 15)
 139#define SH_CMT32_CMCSR_OVF              (1 << 14)
 140#define SH_CMT32_CMCSR_WRFLG            (1 << 13)
 141#define SH_CMT32_CMCSR_STTF             (1 << 12)
 142#define SH_CMT32_CMCSR_STPF             (1 << 11)
 143#define SH_CMT32_CMCSR_SSIE             (1 << 10)
 144#define SH_CMT32_CMCSR_CMS              (1 << 9)
 145#define SH_CMT32_CMCSR_CMM              (1 << 8)
 146#define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
 147#define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
 148#define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
 149#define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
 150#define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
 151#define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
 152#define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
 153#define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
 156#define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
 157
 158static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 159{
 160        return ioread16(base + (offs << 1));
 161}
 162
 163static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 164{
 165        return ioread32(base + (offs << 2));
 166}
 167
 168static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 169                           unsigned long value)
 170{
 171        iowrite16(value, base + (offs << 1));
 172}
 173
 174static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 175                           unsigned long value)
 176{
 177        iowrite32(value, base + (offs << 2));
 178}
 179
 180static const struct sh_cmt_info sh_cmt_info[] = {
 181        [SH_CMT_16BIT] = {
 182                .model = SH_CMT_16BIT,
 183                .width = 16,
 184                .overflow_bit = SH_CMT16_CMCSR_CMF,
 185                .clear_bits = ~SH_CMT16_CMCSR_CMF,
 186                .read_control = sh_cmt_read16,
 187                .write_control = sh_cmt_write16,
 188                .read_count = sh_cmt_read16,
 189                .write_count = sh_cmt_write16,
 190        },
 191        [SH_CMT_32BIT] = {
 192                .model = SH_CMT_32BIT,
 193                .width = 32,
 194                .overflow_bit = SH_CMT32_CMCSR_CMF,
 195                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 196                .read_control = sh_cmt_read16,
 197                .write_control = sh_cmt_write16,
 198                .read_count = sh_cmt_read32,
 199                .write_count = sh_cmt_write32,
 200        },
 201        [SH_CMT_32BIT_FAST] = {
 202                .model = SH_CMT_32BIT_FAST,
 203                .width = 32,
 204                .overflow_bit = SH_CMT32_CMCSR_CMF,
 205                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 206                .read_control = sh_cmt_read16,
 207                .write_control = sh_cmt_write16,
 208                .read_count = sh_cmt_read32,
 209                .write_count = sh_cmt_write32,
 210        },
 211        [SH_CMT_48BIT] = {
 212                .model = SH_CMT_48BIT,
 213                .width = 32,
 214                .overflow_bit = SH_CMT32_CMCSR_CMF,
 215                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 216                .read_control = sh_cmt_read32,
 217                .write_control = sh_cmt_write32,
 218                .read_count = sh_cmt_read32,
 219                .write_count = sh_cmt_write32,
 220        },
 221        [SH_CMT_48BIT_GEN2] = {
 222                .model = SH_CMT_48BIT_GEN2,
 223                .width = 32,
 224                .overflow_bit = SH_CMT32_CMCSR_CMF,
 225                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 226                .read_control = sh_cmt_read32,
 227                .write_control = sh_cmt_write32,
 228                .read_count = sh_cmt_read32,
 229                .write_count = sh_cmt_write32,
 230        },
 231};
 232
 233#define CMCSR 0 /* channel register */
 234#define CMCNT 1 /* channel register */
 235#define CMCOR 2 /* channel register */
 236
 237static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 238{
 239        if (ch->iostart)
 240                return ch->cmt->info->read_control(ch->iostart, 0);
 241        else
 242                return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 243}
 244
 245static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 246                                      unsigned long value)
 247{
 248        if (ch->iostart)
 249                ch->cmt->info->write_control(ch->iostart, 0, value);
 250        else
 251                ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 252}
 253
 254static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 255{
 256        return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 257}
 258
 259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 260                                      unsigned long value)
 261{
 262        ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 263}
 264
 265static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 266{
 267        return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 268}
 269
 270static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 271                                      unsigned long value)
 272{
 273        ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 274}
 275
 276static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 277                                      unsigned long value)
 278{
 279        ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 280}
 281
 282static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 283                                        int *has_wrapped)
 284{
 285        unsigned long v1, v2, v3;
 286        int o1, o2;
 287
 288        o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 289
 290        /* Make sure the timer value is stable. Stolen from acpi_pm.c */
 291        do {
 292                o2 = o1;
 293                v1 = sh_cmt_read_cmcnt(ch);
 294                v2 = sh_cmt_read_cmcnt(ch);
 295                v3 = sh_cmt_read_cmcnt(ch);
 296                o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 297        } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 298                          || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 299
 300        *has_wrapped = o1;
 301        return v2;
 302}
 303
 304static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
 305
 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 307{
 308        unsigned long flags, value;
 309
 310        /* start stop register shared by multiple timer channels */
 311        raw_spin_lock_irqsave(&sh_cmt_lock, flags);
 312        value = sh_cmt_read_cmstr(ch);
 313
 314        if (start)
 315                value |= 1 << ch->timer_bit;
 316        else
 317                value &= ~(1 << ch->timer_bit);
 318
 319        sh_cmt_write_cmstr(ch, value);
 320        raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
 321}
 322
 323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
 324{
 325        int k, ret;
 326
 327        pm_runtime_get_sync(&ch->cmt->pdev->dev);
 328        dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 329
 330        /* enable clock */
 331        ret = clk_enable(ch->cmt->clk);
 332        if (ret) {
 333                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 334                        ch->index);
 335                goto err0;
 336        }
 337
 338        /* make sure channel is disabled */
 339        sh_cmt_start_stop_ch(ch, 0);
 340
 341        /* configure channel, periodic mode and maximum timeout */
 342        if (ch->cmt->info->width == 16) {
 343                *rate = clk_get_rate(ch->cmt->clk) / 512;
 344                sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 345                                   SH_CMT16_CMCSR_CKS512);
 346        } else {
 347                *rate = clk_get_rate(ch->cmt->clk) / 8;
 348                sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 349                                   SH_CMT32_CMCSR_CMTOUT_IE |
 350                                   SH_CMT32_CMCSR_CMR_IRQ |
 351                                   SH_CMT32_CMCSR_CKS_RCLK8);
 352        }
 353
 354        sh_cmt_write_cmcor(ch, 0xffffffff);
 355        sh_cmt_write_cmcnt(ch, 0);
 356
 357        /*
 358         * According to the sh73a0 user's manual, as CMCNT can be operated
 359         * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 360         * modifying CMCNT register; two RCLK cycles are necessary before
 361         * this register is either read or any modification of the value
 362         * it holds is reflected in the LSI's actual operation.
 363         *
 364         * While at it, we're supposed to clear out the CMCNT as of this
 365         * moment, so make sure it's processed properly here.  This will
 366         * take RCLKx2 at maximum.
 367         */
 368        for (k = 0; k < 100; k++) {
 369                if (!sh_cmt_read_cmcnt(ch))
 370                        break;
 371                udelay(1);
 372        }
 373
 374        if (sh_cmt_read_cmcnt(ch)) {
 375                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 376                        ch->index);
 377                ret = -ETIMEDOUT;
 378                goto err1;
 379        }
 380
 381        /* enable channel */
 382        sh_cmt_start_stop_ch(ch, 1);
 383        return 0;
 384 err1:
 385        /* stop clock */
 386        clk_disable(ch->cmt->clk);
 387
 388 err0:
 389        return ret;
 390}
 391
 392static void sh_cmt_disable(struct sh_cmt_channel *ch)
 393{
 394        /* disable channel */
 395        sh_cmt_start_stop_ch(ch, 0);
 396
 397        /* disable interrupts in CMT block */
 398        sh_cmt_write_cmcsr(ch, 0);
 399
 400        /* stop clock */
 401        clk_disable(ch->cmt->clk);
 402
 403        dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 404        pm_runtime_put(&ch->cmt->pdev->dev);
 405}
 406
 407/* private flags */
 408#define FLAG_CLOCKEVENT (1 << 0)
 409#define FLAG_CLOCKSOURCE (1 << 1)
 410#define FLAG_REPROGRAM (1 << 2)
 411#define FLAG_SKIPEVENT (1 << 3)
 412#define FLAG_IRQCONTEXT (1 << 4)
 413
 414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 415                                              int absolute)
 416{
 417        unsigned long new_match;
 418        unsigned long value = ch->next_match_value;
 419        unsigned long delay = 0;
 420        unsigned long now = 0;
 421        int has_wrapped;
 422
 423        now = sh_cmt_get_counter(ch, &has_wrapped);
 424        ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 425
 426        if (has_wrapped) {
 427                /* we're competing with the interrupt handler.
 428                 *  -> let the interrupt handler reprogram the timer.
 429                 *  -> interrupt number two handles the event.
 430                 */
 431                ch->flags |= FLAG_SKIPEVENT;
 432                return;
 433        }
 434
 435        if (absolute)
 436                now = 0;
 437
 438        do {
 439                /* reprogram the timer hardware,
 440                 * but don't save the new match value yet.
 441                 */
 442                new_match = now + value + delay;
 443                if (new_match > ch->max_match_value)
 444                        new_match = ch->max_match_value;
 445
 446                sh_cmt_write_cmcor(ch, new_match);
 447
 448                now = sh_cmt_get_counter(ch, &has_wrapped);
 449                if (has_wrapped && (new_match > ch->match_value)) {
 450                        /* we are changing to a greater match value,
 451                         * so this wrap must be caused by the counter
 452                         * matching the old value.
 453                         * -> first interrupt reprograms the timer.
 454                         * -> interrupt number two handles the event.
 455                         */
 456                        ch->flags |= FLAG_SKIPEVENT;
 457                        break;
 458                }
 459
 460                if (has_wrapped) {
 461                        /* we are changing to a smaller match value,
 462                         * so the wrap must be caused by the counter
 463                         * matching the new value.
 464                         * -> save programmed match value.
 465                         * -> let isr handle the event.
 466                         */
 467                        ch->match_value = new_match;
 468                        break;
 469                }
 470
 471                /* be safe: verify hardware settings */
 472                if (now < new_match) {
 473                        /* timer value is below match value, all good.
 474                         * this makes sure we won't miss any match events.
 475                         * -> save programmed match value.
 476                         * -> let isr handle the event.
 477                         */
 478                        ch->match_value = new_match;
 479                        break;
 480                }
 481
 482                /* the counter has reached a value greater
 483                 * than our new match value. and since the
 484                 * has_wrapped flag isn't set we must have
 485                 * programmed a too close event.
 486                 * -> increase delay and retry.
 487                 */
 488                if (delay)
 489                        delay <<= 1;
 490                else
 491                        delay = 1;
 492
 493                if (!delay)
 494                        dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 495                                 ch->index);
 496
 497        } while (delay);
 498}
 499
 500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 501{
 502        if (delta > ch->max_match_value)
 503                dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 504                         ch->index);
 505
 506        ch->next_match_value = delta;
 507        sh_cmt_clock_event_program_verify(ch, 0);
 508}
 509
 510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512        unsigned long flags;
 513
 514        raw_spin_lock_irqsave(&ch->lock, flags);
 515        __sh_cmt_set_next(ch, delta);
 516        raw_spin_unlock_irqrestore(&ch->lock, flags);
 517}
 518
 519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 520{
 521        struct sh_cmt_channel *ch = dev_id;
 522
 523        /* clear flags */
 524        sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 525                           ch->cmt->info->clear_bits);
 526
 527        /* update clock source counter to begin with if enabled
 528         * the wrap flag should be cleared by the timer specific
 529         * isr before we end up here.
 530         */
 531        if (ch->flags & FLAG_CLOCKSOURCE)
 532                ch->total_cycles += ch->match_value + 1;
 533
 534        if (!(ch->flags & FLAG_REPROGRAM))
 535                ch->next_match_value = ch->max_match_value;
 536
 537        ch->flags |= FLAG_IRQCONTEXT;
 538
 539        if (ch->flags & FLAG_CLOCKEVENT) {
 540                if (!(ch->flags & FLAG_SKIPEVENT)) {
 541                        if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
 542                                ch->next_match_value = ch->max_match_value;
 543                                ch->flags |= FLAG_REPROGRAM;
 544                        }
 545
 546                        ch->ced.event_handler(&ch->ced);
 547                }
 548        }
 549
 550        ch->flags &= ~FLAG_SKIPEVENT;
 551
 552        if (ch->flags & FLAG_REPROGRAM) {
 553                ch->flags &= ~FLAG_REPROGRAM;
 554                sh_cmt_clock_event_program_verify(ch, 1);
 555
 556                if (ch->flags & FLAG_CLOCKEVENT)
 557                        if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
 558                            || (ch->match_value == ch->next_match_value))
 559                                ch->flags &= ~FLAG_REPROGRAM;
 560        }
 561
 562        ch->flags &= ~FLAG_IRQCONTEXT;
 563
 564        return IRQ_HANDLED;
 565}
 566
 567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 568{
 569        int ret = 0;
 570        unsigned long flags;
 571
 572        raw_spin_lock_irqsave(&ch->lock, flags);
 573
 574        if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 575                ret = sh_cmt_enable(ch, &ch->rate);
 576
 577        if (ret)
 578                goto out;
 579        ch->flags |= flag;
 580
 581        /* setup timeout if no clockevent */
 582        if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 583                __sh_cmt_set_next(ch, ch->max_match_value);
 584 out:
 585        raw_spin_unlock_irqrestore(&ch->lock, flags);
 586
 587        return ret;
 588}
 589
 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 591{
 592        unsigned long flags;
 593        unsigned long f;
 594
 595        raw_spin_lock_irqsave(&ch->lock, flags);
 596
 597        f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 598        ch->flags &= ~flag;
 599
 600        if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 601                sh_cmt_disable(ch);
 602
 603        /* adjust the timeout to maximum if only clocksource left */
 604        if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 605                __sh_cmt_set_next(ch, ch->max_match_value);
 606
 607        raw_spin_unlock_irqrestore(&ch->lock, flags);
 608}
 609
 610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 611{
 612        return container_of(cs, struct sh_cmt_channel, cs);
 613}
 614
 615static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
 616{
 617        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 618        unsigned long flags, raw;
 619        unsigned long value;
 620        int has_wrapped;
 621
 622        raw_spin_lock_irqsave(&ch->lock, flags);
 623        value = ch->total_cycles;
 624        raw = sh_cmt_get_counter(ch, &has_wrapped);
 625
 626        if (unlikely(has_wrapped))
 627                raw += ch->match_value + 1;
 628        raw_spin_unlock_irqrestore(&ch->lock, flags);
 629
 630        return value + raw;
 631}
 632
 633static int sh_cmt_clocksource_enable(struct clocksource *cs)
 634{
 635        int ret;
 636        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 637
 638        WARN_ON(ch->cs_enabled);
 639
 640        ch->total_cycles = 0;
 641
 642        ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 643        if (!ret) {
 644                __clocksource_updatefreq_hz(cs, ch->rate);
 645                ch->cs_enabled = true;
 646        }
 647        return ret;
 648}
 649
 650static void sh_cmt_clocksource_disable(struct clocksource *cs)
 651{
 652        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 653
 654        WARN_ON(!ch->cs_enabled);
 655
 656        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657        ch->cs_enabled = false;
 658}
 659
 660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 661{
 662        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 665        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 666}
 667
 668static void sh_cmt_clocksource_resume(struct clocksource *cs)
 669{
 670        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 671
 672        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 673        sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 674}
 675
 676static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 677                                       const char *name)
 678{
 679        struct clocksource *cs = &ch->cs;
 680
 681        cs->name = name;
 682        cs->rating = 125;
 683        cs->read = sh_cmt_clocksource_read;
 684        cs->enable = sh_cmt_clocksource_enable;
 685        cs->disable = sh_cmt_clocksource_disable;
 686        cs->suspend = sh_cmt_clocksource_suspend;
 687        cs->resume = sh_cmt_clocksource_resume;
 688        cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 689        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 690
 691        dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 692                 ch->index);
 693
 694        /* Register with dummy 1 Hz value, gets updated in ->enable() */
 695        clocksource_register_hz(cs, 1);
 696        return 0;
 697}
 698
 699static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 700{
 701        return container_of(ced, struct sh_cmt_channel, ced);
 702}
 703
 704static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 705{
 706        struct clock_event_device *ced = &ch->ced;
 707
 708        sh_cmt_start(ch, FLAG_CLOCKEVENT);
 709
 710        /* TODO: calculate good shift from rate and counter bit width */
 711
 712        ced->shift = 32;
 713        ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
 714        ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 715        ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 716
 717        if (periodic)
 718                sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
 719        else
 720                sh_cmt_set_next(ch, ch->max_match_value);
 721}
 722
 723static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
 724                                    struct clock_event_device *ced)
 725{
 726        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 727
 728        /* deal with old setting first */
 729        switch (ced->mode) {
 730        case CLOCK_EVT_MODE_PERIODIC:
 731        case CLOCK_EVT_MODE_ONESHOT:
 732                sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 733                break;
 734        default:
 735                break;
 736        }
 737
 738        switch (mode) {
 739        case CLOCK_EVT_MODE_PERIODIC:
 740                dev_info(&ch->cmt->pdev->dev,
 741                         "ch%u: used for periodic clock events\n", ch->index);
 742                sh_cmt_clock_event_start(ch, 1);
 743                break;
 744        case CLOCK_EVT_MODE_ONESHOT:
 745                dev_info(&ch->cmt->pdev->dev,
 746                         "ch%u: used for oneshot clock events\n", ch->index);
 747                sh_cmt_clock_event_start(ch, 0);
 748                break;
 749        case CLOCK_EVT_MODE_SHUTDOWN:
 750        case CLOCK_EVT_MODE_UNUSED:
 751                sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 752                break;
 753        default:
 754                break;
 755        }
 756}
 757
 758static int sh_cmt_clock_event_next(unsigned long delta,
 759                                   struct clock_event_device *ced)
 760{
 761        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 762
 763        BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
 764        if (likely(ch->flags & FLAG_IRQCONTEXT))
 765                ch->next_match_value = delta - 1;
 766        else
 767                sh_cmt_set_next(ch, delta - 1);
 768
 769        return 0;
 770}
 771
 772static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 773{
 774        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 775
 776        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 777        clk_unprepare(ch->cmt->clk);
 778}
 779
 780static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 781{
 782        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 783
 784        clk_prepare(ch->cmt->clk);
 785        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 786}
 787
 788static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 789                                      const char *name)
 790{
 791        struct clock_event_device *ced = &ch->ced;
 792        int irq;
 793        int ret;
 794
 795        irq = platform_get_irq(ch->cmt->pdev, ch->cmt->legacy ? 0 : ch->index);
 796        if (irq < 0) {
 797                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 798                        ch->index);
 799                return irq;
 800        }
 801
 802        ret = request_irq(irq, sh_cmt_interrupt,
 803                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 804                          dev_name(&ch->cmt->pdev->dev), ch);
 805        if (ret) {
 806                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 807                        ch->index, irq);
 808                return ret;
 809        }
 810
 811        ced->name = name;
 812        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 813        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 814        ced->rating = 125;
 815        ced->cpumask = cpu_possible_mask;
 816        ced->set_next_event = sh_cmt_clock_event_next;
 817        ced->set_mode = sh_cmt_clock_event_mode;
 818        ced->suspend = sh_cmt_clock_event_suspend;
 819        ced->resume = sh_cmt_clock_event_resume;
 820
 821        dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 822                 ch->index);
 823        clockevents_register_device(ced);
 824
 825        return 0;
 826}
 827
 828static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 829                           bool clockevent, bool clocksource)
 830{
 831        int ret;
 832
 833        if (clockevent) {
 834                ch->cmt->has_clockevent = true;
 835                ret = sh_cmt_register_clockevent(ch, name);
 836                if (ret < 0)
 837                        return ret;
 838        }
 839
 840        if (clocksource) {
 841                ch->cmt->has_clocksource = true;
 842                sh_cmt_register_clocksource(ch, name);
 843        }
 844
 845        return 0;
 846}
 847
 848static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 849                                unsigned int hwidx, bool clockevent,
 850                                bool clocksource, struct sh_cmt_device *cmt)
 851{
 852        int ret;
 853
 854        /* Skip unused channels. */
 855        if (!clockevent && !clocksource)
 856                return 0;
 857
 858        ch->cmt = cmt;
 859        ch->index = index;
 860        ch->hwidx = hwidx;
 861
 862        /*
 863         * Compute the address of the channel control register block. For the
 864         * timers with a per-channel start/stop register, compute its address
 865         * as well.
 866         *
 867         * For legacy configuration the address has been mapped explicitly.
 868         */
 869        if (cmt->legacy) {
 870                ch->ioctrl = cmt->mapbase_ch;
 871        } else {
 872                switch (cmt->info->model) {
 873                case SH_CMT_16BIT:
 874                        ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 875                        break;
 876                case SH_CMT_32BIT:
 877                case SH_CMT_48BIT:
 878                        ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 879                        break;
 880                case SH_CMT_32BIT_FAST:
 881                        /*
 882                         * The 32-bit "fast" timer has a single channel at hwidx
 883                         * 5 but is located at offset 0x40 instead of 0x60 for
 884                         * some reason.
 885                         */
 886                        ch->ioctrl = cmt->mapbase + 0x40;
 887                        break;
 888                case SH_CMT_48BIT_GEN2:
 889                        ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 890                        ch->ioctrl = ch->iostart + 0x10;
 891                        break;
 892                }
 893        }
 894
 895        if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 896                ch->max_match_value = ~0;
 897        else
 898                ch->max_match_value = (1 << cmt->info->width) - 1;
 899
 900        ch->match_value = ch->max_match_value;
 901        raw_spin_lock_init(&ch->lock);
 902
 903        if (cmt->legacy) {
 904                ch->timer_bit = ch->hwidx;
 905        } else {
 906                ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2
 907                              ? 0 : ch->hwidx;
 908        }
 909
 910        ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 911                              clockevent, clocksource);
 912        if (ret) {
 913                dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 914                        ch->index);
 915                return ret;
 916        }
 917        ch->cs_enabled = false;
 918
 919        return 0;
 920}
 921
 922static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 923{
 924        struct resource *mem;
 925
 926        mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 927        if (!mem) {
 928                dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 929                return -ENXIO;
 930        }
 931
 932        cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 933        if (cmt->mapbase == NULL) {
 934                dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 935                return -ENXIO;
 936        }
 937
 938        return 0;
 939}
 940
 941static int sh_cmt_map_memory_legacy(struct sh_cmt_device *cmt)
 942{
 943        struct sh_timer_config *cfg = cmt->pdev->dev.platform_data;
 944        struct resource *res, *res2;
 945
 946        /* map memory, let mapbase_ch point to our channel */
 947        res = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 948        if (!res) {
 949                dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 950                return -ENXIO;
 951        }
 952
 953        cmt->mapbase_ch = ioremap_nocache(res->start, resource_size(res));
 954        if (cmt->mapbase_ch == NULL) {
 955                dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 956                return -ENXIO;
 957        }
 958
 959        /* optional resource for the shared timer start/stop register */
 960        res2 = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 1);
 961
 962        /* map second resource for CMSTR */
 963        cmt->mapbase = ioremap_nocache(res2 ? res2->start :
 964                                       res->start - cfg->channel_offset,
 965                                       res2 ? resource_size(res2) : 2);
 966        if (cmt->mapbase == NULL) {
 967                dev_err(&cmt->pdev->dev, "failed to remap I/O second memory\n");
 968                iounmap(cmt->mapbase_ch);
 969                return -ENXIO;
 970        }
 971
 972        /* identify the model based on the resources */
 973        if (resource_size(res) == 6)
 974                cmt->info = &sh_cmt_info[SH_CMT_16BIT];
 975        else if (res2 && (resource_size(res2) == 4))
 976                cmt->info = &sh_cmt_info[SH_CMT_48BIT_GEN2];
 977        else
 978                cmt->info = &sh_cmt_info[SH_CMT_32BIT];
 979
 980        return 0;
 981}
 982
 983static void sh_cmt_unmap_memory(struct sh_cmt_device *cmt)
 984{
 985        iounmap(cmt->mapbase);
 986        if (cmt->mapbase_ch)
 987                iounmap(cmt->mapbase_ch);
 988}
 989
 990static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 991{
 992        struct sh_timer_config *cfg = pdev->dev.platform_data;
 993        const struct platform_device_id *id = pdev->id_entry;
 994        unsigned int hw_channels;
 995        int ret;
 996
 997        memset(cmt, 0, sizeof(*cmt));
 998        cmt->pdev = pdev;
 999
1000        if (!cfg) {
1001                dev_err(&cmt->pdev->dev, "missing platform data\n");
1002                return -ENXIO;
1003        }
1004
1005        cmt->info = (const struct sh_cmt_info *)id->driver_data;
1006        cmt->legacy = cmt->info ? false : true;
1007
1008        /* Get hold of clock. */
1009        cmt->clk = clk_get(&cmt->pdev->dev, cmt->legacy ? "cmt_fck" : "fck");
1010        if (IS_ERR(cmt->clk)) {
1011                dev_err(&cmt->pdev->dev, "cannot get clock\n");
1012                return PTR_ERR(cmt->clk);
1013        }
1014
1015        ret = clk_prepare(cmt->clk);
1016        if (ret < 0)
1017                goto err_clk_put;
1018
1019        /*
1020         * Map the memory resource(s). We need to support both the legacy
1021         * platform device configuration (with one device per channel) and the
1022         * new version (with multiple channels per device).
1023         */
1024        if (cmt->legacy)
1025                ret = sh_cmt_map_memory_legacy(cmt);
1026        else
1027                ret = sh_cmt_map_memory(cmt);
1028
1029        if (ret < 0)
1030                goto err_clk_unprepare;
1031
1032        /* Allocate and setup the channels. */
1033        if (cmt->legacy) {
1034                cmt->num_channels = 1;
1035                hw_channels = 0;
1036        } else {
1037                cmt->num_channels = hweight8(cfg->channels_mask);
1038                hw_channels = cfg->channels_mask;
1039        }
1040
1041        cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1042                                GFP_KERNEL);
1043        if (cmt->channels == NULL) {
1044                ret = -ENOMEM;
1045                goto err_unmap;
1046        }
1047
1048        if (cmt->legacy) {
1049                ret = sh_cmt_setup_channel(&cmt->channels[0],
1050                                           cfg->timer_bit, cfg->timer_bit,
1051                                           cfg->clockevent_rating != 0,
1052                                           cfg->clocksource_rating != 0, cmt);
1053                if (ret < 0)
1054                        goto err_unmap;
1055        } else {
1056                unsigned int mask = hw_channels;
1057                unsigned int i;
1058
1059                /*
1060                 * Use the first channel as a clock event device and the second
1061                 * channel as a clock source. If only one channel is available
1062                 * use it for both.
1063                 */
1064                for (i = 0; i < cmt->num_channels; ++i) {
1065                        unsigned int hwidx = ffs(mask) - 1;
1066                        bool clocksource = i == 1 || cmt->num_channels == 1;
1067                        bool clockevent = i == 0;
1068
1069                        ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1070                                                   clockevent, clocksource,
1071                                                   cmt);
1072                        if (ret < 0)
1073                                goto err_unmap;
1074
1075                        mask &= ~(1 << hwidx);
1076                }
1077        }
1078
1079        platform_set_drvdata(pdev, cmt);
1080
1081        return 0;
1082
1083err_unmap:
1084        kfree(cmt->channels);
1085        sh_cmt_unmap_memory(cmt);
1086err_clk_unprepare:
1087        clk_unprepare(cmt->clk);
1088err_clk_put:
1089        clk_put(cmt->clk);
1090        return ret;
1091}
1092
1093static int sh_cmt_probe(struct platform_device *pdev)
1094{
1095        struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1096        int ret;
1097
1098        if (!is_early_platform_device(pdev)) {
1099                pm_runtime_set_active(&pdev->dev);
1100                pm_runtime_enable(&pdev->dev);
1101        }
1102
1103        if (cmt) {
1104                dev_info(&pdev->dev, "kept as earlytimer\n");
1105                goto out;
1106        }
1107
1108        cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1109        if (cmt == NULL)
1110                return -ENOMEM;
1111
1112        ret = sh_cmt_setup(cmt, pdev);
1113        if (ret) {
1114                kfree(cmt);
1115                pm_runtime_idle(&pdev->dev);
1116                return ret;
1117        }
1118        if (is_early_platform_device(pdev))
1119                return 0;
1120
1121 out:
1122        if (cmt->has_clockevent || cmt->has_clocksource)
1123                pm_runtime_irq_safe(&pdev->dev);
1124        else
1125                pm_runtime_idle(&pdev->dev);
1126
1127        return 0;
1128}
1129
1130static int sh_cmt_remove(struct platform_device *pdev)
1131{
1132        return -EBUSY; /* cannot unregister clockevent and clocksource */
1133}
1134
1135static const struct platform_device_id sh_cmt_id_table[] = {
1136        { "sh_cmt", 0 },
1137        { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
1138        { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1139        { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
1140        { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
1141        { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
1142        { }
1143};
1144MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
1145
1146static struct platform_driver sh_cmt_device_driver = {
1147        .probe          = sh_cmt_probe,
1148        .remove         = sh_cmt_remove,
1149        .driver         = {
1150                .name   = "sh_cmt",
1151        },
1152        .id_table       = sh_cmt_id_table,
1153};
1154
1155static int __init sh_cmt_init(void)
1156{
1157        return platform_driver_register(&sh_cmt_device_driver);
1158}
1159
1160static void __exit sh_cmt_exit(void)
1161{
1162        platform_driver_unregister(&sh_cmt_device_driver);
1163}
1164
1165early_platform_init("earlytimer", &sh_cmt_device_driver);
1166subsys_initcall(sh_cmt_init);
1167module_exit(sh_cmt_exit);
1168
1169MODULE_AUTHOR("Magnus Damm");
1170MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1171MODULE_LICENSE("GPL v2");
1172