linux/drivers/dma/amba-pl08x.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along with
  19 * this program; if not, write to the Free Software Foundation, Inc., 59
  20 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  21 *
  22 * The full GNU General Public License is in this distribution in the file
  23 * called COPYING.
  24 *
  25 * Documentation: ARM DDI 0196G == PL080
  26 * Documentation: ARM DDI 0218E == PL081
  27 * Documentation: S3C6410 User's Manual == PL080S
  28 *
  29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  30 * channel.
  31 *
  32 * The PL080 has 8 channels available for simultaneous use, and the PL081
  33 * has only two channels. So on these DMA controllers the number of channels
  34 * and the number of incoming DMA signals are two totally different things.
  35 * It is usually not possible to theoretically handle all physical signals,
  36 * so a multiplexing scheme with possible denial of use is necessary.
  37 *
  38 * The PL080 has a dual bus master, PL081 has a single master.
  39 *
  40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  41 * It differs in following aspects:
  42 * - CH_CONFIG register at different offset,
  43 * - separate CH_CONTROL2 register for transfer size,
  44 * - bigger maximum transfer size,
  45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  46 * - no support for peripheral flow control.
  47 *
  48 * Memory to peripheral transfer may be visualized as
  49 *      Get data from memory to DMAC
  50 *      Until no data left
  51 *              On burst request from peripheral
  52 *                      Destination burst from DMAC to peripheral
  53 *                      Clear burst request
  54 *      Raise terminal count interrupt
  55 *
  56 * For peripherals with a FIFO:
  57 * Source      burst size == half the depth of the peripheral FIFO
  58 * Destination burst size == the depth of the peripheral FIFO
  59 *
  60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  61 * signals, the DMA controller will simply facilitate its AHB master.)
  62 *
  63 * ASSUMES default (little) endianness for DMA transfers
  64 *
  65 * The PL08x has two flow control settings:
  66 *  - DMAC flow control: the transfer size defines the number of transfers
  67 *    which occur for the current LLI entry, and the DMAC raises TC at the
  68 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  69 *    to both the BREQ and SREQ signals (contrary to documented),
  70 *    transferring data if either is active.  The LBREQ and LSREQ signals
  71 *    are ignored.
  72 *
  73 *  - Peripheral flow control: the transfer size is ignored (and should be
  74 *    zero).  The data is transferred from the current LLI entry, until
  75 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  76 *    will then move to the next LLI entry. Unsupported by PL080S.
  77 */
  78#include <linux/amba/bus.h>
  79#include <linux/amba/pl08x.h>
  80#include <linux/debugfs.h>
  81#include <linux/delay.h>
  82#include <linux/device.h>
  83#include <linux/dmaengine.h>
  84#include <linux/dmapool.h>
  85#include <linux/dma-mapping.h>
  86#include <linux/export.h>
  87#include <linux/init.h>
  88#include <linux/interrupt.h>
  89#include <linux/module.h>
  90#include <linux/pm_runtime.h>
  91#include <linux/seq_file.h>
  92#include <linux/slab.h>
  93#include <linux/amba/pl080.h>
  94
  95#include "dmaengine.h"
  96#include "virt-dma.h"
  97
  98#define DRIVER_NAME     "pl08xdmac"
  99
 100static struct amba_driver pl08x_amba_driver;
 101struct pl08x_driver_data;
 102
 103/**
 104 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 105 * @channels: the number of channels available in this variant
 106 * @dualmaster: whether this version supports dual AHB masters or not.
 107 * @nomadik: whether the channels have Nomadik security extension bits
 108 *      that need to be checked for permission before use and some registers are
 109 *      missing
 110 * @pl080s: whether this version is a PL080S, which has separate register and
 111 *      LLI word for transfer size.
 112 */
 113struct vendor_data {
 114        u8 config_offset;
 115        u8 channels;
 116        bool dualmaster;
 117        bool nomadik;
 118        bool pl080s;
 119        u32 max_transfer_size;
 120};
 121
 122/**
 123 * struct pl08x_bus_data - information of source or destination
 124 * busses for a transfer
 125 * @addr: current address
 126 * @maxwidth: the maximum width of a transfer on this bus
 127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 128 */
 129struct pl08x_bus_data {
 130        dma_addr_t addr;
 131        u8 maxwidth;
 132        u8 buswidth;
 133};
 134
 135#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 136
 137/**
 138 * struct pl08x_phy_chan - holder for the physical channels
 139 * @id: physical index to this channel
 140 * @lock: a lock to use when altering an instance of this struct
 141 * @serving: the virtual channel currently being served by this physical
 142 * channel
 143 * @locked: channel unavailable for the system, e.g. dedicated to secure
 144 * world
 145 */
 146struct pl08x_phy_chan {
 147        unsigned int id;
 148        void __iomem *base;
 149        void __iomem *reg_config;
 150        spinlock_t lock;
 151        struct pl08x_dma_chan *serving;
 152        bool locked;
 153};
 154
 155/**
 156 * struct pl08x_sg - structure containing data per sg
 157 * @src_addr: src address of sg
 158 * @dst_addr: dst address of sg
 159 * @len: transfer len in bytes
 160 * @node: node for txd's dsg_list
 161 */
 162struct pl08x_sg {
 163        dma_addr_t src_addr;
 164        dma_addr_t dst_addr;
 165        size_t len;
 166        struct list_head node;
 167};
 168
 169/**
 170 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 171 * @vd: virtual DMA descriptor
 172 * @dsg_list: list of children sg's
 173 * @llis_bus: DMA memory address (physical) start for the LLIs
 174 * @llis_va: virtual memory address start for the LLIs
 175 * @cctl: control reg values for current txd
 176 * @ccfg: config reg values for current txd
 177 * @done: this marks completed descriptors, which should not have their
 178 *   mux released.
 179 * @cyclic: indicate cyclic transfers
 180 */
 181struct pl08x_txd {
 182        struct virt_dma_desc vd;
 183        struct list_head dsg_list;
 184        dma_addr_t llis_bus;
 185        u32 *llis_va;
 186        /* Default cctl value for LLIs */
 187        u32 cctl;
 188        /*
 189         * Settings to be put into the physical channel when we
 190         * trigger this txd.  Other registers are in llis_va[0].
 191         */
 192        u32 ccfg;
 193        bool done;
 194        bool cyclic;
 195};
 196
 197/**
 198 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 199 * states
 200 * @PL08X_CHAN_IDLE: the channel is idle
 201 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 202 * channel and is running a transfer on it
 203 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 204 * channel, but the transfer is currently paused
 205 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 206 * channel to become available (only pertains to memcpy channels)
 207 */
 208enum pl08x_dma_chan_state {
 209        PL08X_CHAN_IDLE,
 210        PL08X_CHAN_RUNNING,
 211        PL08X_CHAN_PAUSED,
 212        PL08X_CHAN_WAITING,
 213};
 214
 215/**
 216 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 217 * @vc: wrappped virtual channel
 218 * @phychan: the physical channel utilized by this channel, if there is one
 219 * @name: name of channel
 220 * @cd: channel platform data
 221 * @runtime_addr: address for RX/TX according to the runtime config
 222 * @at: active transaction on this channel
 223 * @lock: a lock for this channel data
 224 * @host: a pointer to the host (internal use)
 225 * @state: whether the channel is idle, paused, running etc
 226 * @slave: whether this channel is a device (slave) or for memcpy
 227 * @signal: the physical DMA request signal which this channel is using
 228 * @mux_use: count of descriptors using this DMA request signal setting
 229 */
 230struct pl08x_dma_chan {
 231        struct virt_dma_chan vc;
 232        struct pl08x_phy_chan *phychan;
 233        const char *name;
 234        const struct pl08x_channel_data *cd;
 235        struct dma_slave_config cfg;
 236        struct pl08x_txd *at;
 237        struct pl08x_driver_data *host;
 238        enum pl08x_dma_chan_state state;
 239        bool slave;
 240        int signal;
 241        unsigned mux_use;
 242};
 243
 244/**
 245 * struct pl08x_driver_data - the local state holder for the PL08x
 246 * @slave: slave engine for this instance
 247 * @memcpy: memcpy engine for this instance
 248 * @base: virtual memory base (remapped) for the PL08x
 249 * @adev: the corresponding AMBA (PrimeCell) bus entry
 250 * @vd: vendor data for this PL08x variant
 251 * @pd: platform data passed in from the platform/machine
 252 * @phy_chans: array of data for the physical channels
 253 * @pool: a pool for the LLI descriptors
 254 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 255 * fetches
 256 * @mem_buses: set to indicate memory transfers on AHB2.
 257 * @lock: a spinlock for this struct
 258 */
 259struct pl08x_driver_data {
 260        struct dma_device slave;
 261        struct dma_device memcpy;
 262        void __iomem *base;
 263        struct amba_device *adev;
 264        const struct vendor_data *vd;
 265        struct pl08x_platform_data *pd;
 266        struct pl08x_phy_chan *phy_chans;
 267        struct dma_pool *pool;
 268        u8 lli_buses;
 269        u8 mem_buses;
 270        u8 lli_words;
 271};
 272
 273/*
 274 * PL08X specific defines
 275 */
 276
 277/* The order of words in an LLI. */
 278#define PL080_LLI_SRC           0
 279#define PL080_LLI_DST           1
 280#define PL080_LLI_LLI           2
 281#define PL080_LLI_CCTL          3
 282#define PL080S_LLI_CCTL2        4
 283
 284/* Total words in an LLI. */
 285#define PL080_LLI_WORDS         4
 286#define PL080S_LLI_WORDS        8
 287
 288/*
 289 * Number of LLIs in each LLI buffer allocated for one transfer
 290 * (maximum times we call dma_pool_alloc on this pool without freeing)
 291 */
 292#define MAX_NUM_TSFR_LLIS       512
 293#define PL08X_ALIGN             8
 294
 295static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 296{
 297        return container_of(chan, struct pl08x_dma_chan, vc.chan);
 298}
 299
 300static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 301{
 302        return container_of(tx, struct pl08x_txd, vd.tx);
 303}
 304
 305/*
 306 * Mux handling.
 307 *
 308 * This gives us the DMA request input to the PL08x primecell which the
 309 * peripheral described by the channel data will be routed to, possibly
 310 * via a board/SoC specific external MUX.  One important point to note
 311 * here is that this does not depend on the physical channel.
 312 */
 313static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 314{
 315        const struct pl08x_platform_data *pd = plchan->host->pd;
 316        int ret;
 317
 318        if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 319                ret = pd->get_xfer_signal(plchan->cd);
 320                if (ret < 0) {
 321                        plchan->mux_use = 0;
 322                        return ret;
 323                }
 324
 325                plchan->signal = ret;
 326        }
 327        return 0;
 328}
 329
 330static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 331{
 332        const struct pl08x_platform_data *pd = plchan->host->pd;
 333
 334        if (plchan->signal >= 0) {
 335                WARN_ON(plchan->mux_use == 0);
 336
 337                if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 338                        pd->put_xfer_signal(plchan->cd, plchan->signal);
 339                        plchan->signal = -1;
 340                }
 341        }
 342}
 343
 344/*
 345 * Physical channel handling
 346 */
 347
 348/* Whether a certain channel is busy or not */
 349static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 350{
 351        unsigned int val;
 352
 353        val = readl(ch->reg_config);
 354        return val & PL080_CONFIG_ACTIVE;
 355}
 356
 357static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 358                struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 359{
 360        if (pl08x->vd->pl080s)
 361                dev_vdbg(&pl08x->adev->dev,
 362                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 363                        "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 364                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 365                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 366                        lli[PL080S_LLI_CCTL2], ccfg);
 367        else
 368                dev_vdbg(&pl08x->adev->dev,
 369                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 370                        "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 371                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 372                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 373
 374        writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
 375        writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
 376        writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
 377        writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
 378
 379        if (pl08x->vd->pl080s)
 380                writel_relaxed(lli[PL080S_LLI_CCTL2],
 381                                phychan->base + PL080S_CH_CONTROL2);
 382
 383        writel(ccfg, phychan->reg_config);
 384}
 385
 386/*
 387 * Set the initial DMA register values i.e. those for the first LLI
 388 * The next LLI pointer and the configuration interrupt bit have
 389 * been set when the LLIs were constructed.  Poke them into the hardware
 390 * and start the transfer.
 391 */
 392static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 393{
 394        struct pl08x_driver_data *pl08x = plchan->host;
 395        struct pl08x_phy_chan *phychan = plchan->phychan;
 396        struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 397        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 398        u32 val;
 399
 400        list_del(&txd->vd.node);
 401
 402        plchan->at = txd;
 403
 404        /* Wait for channel inactive */
 405        while (pl08x_phy_channel_busy(phychan))
 406                cpu_relax();
 407
 408        pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 409
 410        /* Enable the DMA channel */
 411        /* Do not access config register until channel shows as disabled */
 412        while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 413                cpu_relax();
 414
 415        /* Do not access config register until channel shows as inactive */
 416        val = readl(phychan->reg_config);
 417        while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 418                val = readl(phychan->reg_config);
 419
 420        writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 421}
 422
 423/*
 424 * Pause the channel by setting the HALT bit.
 425 *
 426 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 427 * the FIFO can only drain if the peripheral is still requesting data.
 428 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 429 *
 430 * For P->M transfers, disable the peripheral first to stop it filling
 431 * the DMAC FIFO, and then pause the DMAC.
 432 */
 433static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 434{
 435        u32 val;
 436        int timeout;
 437
 438        /* Set the HALT bit and wait for the FIFO to drain */
 439        val = readl(ch->reg_config);
 440        val |= PL080_CONFIG_HALT;
 441        writel(val, ch->reg_config);
 442
 443        /* Wait for channel inactive */
 444        for (timeout = 1000; timeout; timeout--) {
 445                if (!pl08x_phy_channel_busy(ch))
 446                        break;
 447                udelay(1);
 448        }
 449        if (pl08x_phy_channel_busy(ch))
 450                pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 451}
 452
 453static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 454{
 455        u32 val;
 456
 457        /* Clear the HALT bit */
 458        val = readl(ch->reg_config);
 459        val &= ~PL080_CONFIG_HALT;
 460        writel(val, ch->reg_config);
 461}
 462
 463/*
 464 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 465 * clears any pending interrupt status.  This should not be used for
 466 * an on-going transfer, but as a method of shutting down a channel
 467 * (eg, when it's no longer used) or terminating a transfer.
 468 */
 469static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 470        struct pl08x_phy_chan *ch)
 471{
 472        u32 val = readl(ch->reg_config);
 473
 474        val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 475                 PL080_CONFIG_TC_IRQ_MASK);
 476
 477        writel(val, ch->reg_config);
 478
 479        writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 480        writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 481}
 482
 483static inline u32 get_bytes_in_cctl(u32 cctl)
 484{
 485        /* The source width defines the number of bytes */
 486        u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 487
 488        cctl &= PL080_CONTROL_SWIDTH_MASK;
 489
 490        switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 491        case PL080_WIDTH_8BIT:
 492                break;
 493        case PL080_WIDTH_16BIT:
 494                bytes *= 2;
 495                break;
 496        case PL080_WIDTH_32BIT:
 497                bytes *= 4;
 498                break;
 499        }
 500        return bytes;
 501}
 502
 503static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
 504{
 505        /* The source width defines the number of bytes */
 506        u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 507
 508        cctl &= PL080_CONTROL_SWIDTH_MASK;
 509
 510        switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 511        case PL080_WIDTH_8BIT:
 512                break;
 513        case PL080_WIDTH_16BIT:
 514                bytes *= 2;
 515                break;
 516        case PL080_WIDTH_32BIT:
 517                bytes *= 4;
 518                break;
 519        }
 520        return bytes;
 521}
 522
 523/* The channel should be paused when calling this */
 524static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 525{
 526        struct pl08x_driver_data *pl08x = plchan->host;
 527        const u32 *llis_va, *llis_va_limit;
 528        struct pl08x_phy_chan *ch;
 529        dma_addr_t llis_bus;
 530        struct pl08x_txd *txd;
 531        u32 llis_max_words;
 532        size_t bytes;
 533        u32 clli;
 534
 535        ch = plchan->phychan;
 536        txd = plchan->at;
 537
 538        if (!ch || !txd)
 539                return 0;
 540
 541        /*
 542         * Follow the LLIs to get the number of remaining
 543         * bytes in the currently active transaction.
 544         */
 545        clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 546
 547        /* First get the remaining bytes in the active transfer */
 548        if (pl08x->vd->pl080s)
 549                bytes = get_bytes_in_cctl_pl080s(
 550                                readl(ch->base + PL080_CH_CONTROL),
 551                                readl(ch->base + PL080S_CH_CONTROL2));
 552        else
 553                bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 554
 555        if (!clli)
 556                return bytes;
 557
 558        llis_va = txd->llis_va;
 559        llis_bus = txd->llis_bus;
 560
 561        llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 562        BUG_ON(clli < llis_bus || clli >= llis_bus +
 563                                                sizeof(u32) * llis_max_words);
 564
 565        /*
 566         * Locate the next LLI - as this is an array,
 567         * it's simple maths to find.
 568         */
 569        llis_va += (clli - llis_bus) / sizeof(u32);
 570
 571        llis_va_limit = llis_va + llis_max_words;
 572
 573        for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 574                if (pl08x->vd->pl080s)
 575                        bytes += get_bytes_in_cctl_pl080s(
 576                                                llis_va[PL080_LLI_CCTL],
 577                                                llis_va[PL080S_LLI_CCTL2]);
 578                else
 579                        bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
 580
 581                /*
 582                 * A LLI pointer going backward terminates the LLI list
 583                 */
 584                if (llis_va[PL080_LLI_LLI] <= clli)
 585                        break;
 586        }
 587
 588        return bytes;
 589}
 590
 591/*
 592 * Allocate a physical channel for a virtual channel
 593 *
 594 * Try to locate a physical channel to be used for this transfer. If all
 595 * are taken return NULL and the requester will have to cope by using
 596 * some fallback PIO mode or retrying later.
 597 */
 598static struct pl08x_phy_chan *
 599pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 600                      struct pl08x_dma_chan *virt_chan)
 601{
 602        struct pl08x_phy_chan *ch = NULL;
 603        unsigned long flags;
 604        int i;
 605
 606        for (i = 0; i < pl08x->vd->channels; i++) {
 607                ch = &pl08x->phy_chans[i];
 608
 609                spin_lock_irqsave(&ch->lock, flags);
 610
 611                if (!ch->locked && !ch->serving) {
 612                        ch->serving = virt_chan;
 613                        spin_unlock_irqrestore(&ch->lock, flags);
 614                        break;
 615                }
 616
 617                spin_unlock_irqrestore(&ch->lock, flags);
 618        }
 619
 620        if (i == pl08x->vd->channels) {
 621                /* No physical channel available, cope with it */
 622                return NULL;
 623        }
 624
 625        return ch;
 626}
 627
 628/* Mark the physical channel as free.  Note, this write is atomic. */
 629static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 630                                         struct pl08x_phy_chan *ch)
 631{
 632        ch->serving = NULL;
 633}
 634
 635/*
 636 * Try to allocate a physical channel.  When successful, assign it to
 637 * this virtual channel, and initiate the next descriptor.  The
 638 * virtual channel lock must be held at this point.
 639 */
 640static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 641{
 642        struct pl08x_driver_data *pl08x = plchan->host;
 643        struct pl08x_phy_chan *ch;
 644
 645        ch = pl08x_get_phy_channel(pl08x, plchan);
 646        if (!ch) {
 647                dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 648                plchan->state = PL08X_CHAN_WAITING;
 649                return;
 650        }
 651
 652        dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 653                ch->id, plchan->name);
 654
 655        plchan->phychan = ch;
 656        plchan->state = PL08X_CHAN_RUNNING;
 657        pl08x_start_next_txd(plchan);
 658}
 659
 660static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 661        struct pl08x_dma_chan *plchan)
 662{
 663        struct pl08x_driver_data *pl08x = plchan->host;
 664
 665        dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 666                ch->id, plchan->name);
 667
 668        /*
 669         * We do this without taking the lock; we're really only concerned
 670         * about whether this pointer is NULL or not, and we're guaranteed
 671         * that this will only be called when it _already_ is non-NULL.
 672         */
 673        ch->serving = plchan;
 674        plchan->phychan = ch;
 675        plchan->state = PL08X_CHAN_RUNNING;
 676        pl08x_start_next_txd(plchan);
 677}
 678
 679/*
 680 * Free a physical DMA channel, potentially reallocating it to another
 681 * virtual channel if we have any pending.
 682 */
 683static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 684{
 685        struct pl08x_driver_data *pl08x = plchan->host;
 686        struct pl08x_dma_chan *p, *next;
 687
 688 retry:
 689        next = NULL;
 690
 691        /* Find a waiting virtual channel for the next transfer. */
 692        list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 693                if (p->state == PL08X_CHAN_WAITING) {
 694                        next = p;
 695                        break;
 696                }
 697
 698        if (!next) {
 699                list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 700                        if (p->state == PL08X_CHAN_WAITING) {
 701                                next = p;
 702                                break;
 703                        }
 704        }
 705
 706        /* Ensure that the physical channel is stopped */
 707        pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 708
 709        if (next) {
 710                bool success;
 711
 712                /*
 713                 * Eww.  We know this isn't going to deadlock
 714                 * but lockdep probably doesn't.
 715                 */
 716                spin_lock(&next->vc.lock);
 717                /* Re-check the state now that we have the lock */
 718                success = next->state == PL08X_CHAN_WAITING;
 719                if (success)
 720                        pl08x_phy_reassign_start(plchan->phychan, next);
 721                spin_unlock(&next->vc.lock);
 722
 723                /* If the state changed, try to find another channel */
 724                if (!success)
 725                        goto retry;
 726        } else {
 727                /* No more jobs, so free up the physical channel */
 728                pl08x_put_phy_channel(pl08x, plchan->phychan);
 729        }
 730
 731        plchan->phychan = NULL;
 732        plchan->state = PL08X_CHAN_IDLE;
 733}
 734
 735/*
 736 * LLI handling
 737 */
 738
 739static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 740{
 741        switch (coded) {
 742        case PL080_WIDTH_8BIT:
 743                return 1;
 744        case PL080_WIDTH_16BIT:
 745                return 2;
 746        case PL080_WIDTH_32BIT:
 747                return 4;
 748        default:
 749                break;
 750        }
 751        BUG();
 752        return 0;
 753}
 754
 755static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 756                                  size_t tsize)
 757{
 758        u32 retbits = cctl;
 759
 760        /* Remove all src, dst and transfer size bits */
 761        retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 762        retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 763        retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 764
 765        /* Then set the bits according to the parameters */
 766        switch (srcwidth) {
 767        case 1:
 768                retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 769                break;
 770        case 2:
 771                retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 772                break;
 773        case 4:
 774                retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 775                break;
 776        default:
 777                BUG();
 778                break;
 779        }
 780
 781        switch (dstwidth) {
 782        case 1:
 783                retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 784                break;
 785        case 2:
 786                retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 787                break;
 788        case 4:
 789                retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 790                break;
 791        default:
 792                BUG();
 793                break;
 794        }
 795
 796        tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
 797        retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 798        return retbits;
 799}
 800
 801struct pl08x_lli_build_data {
 802        struct pl08x_txd *txd;
 803        struct pl08x_bus_data srcbus;
 804        struct pl08x_bus_data dstbus;
 805        size_t remainder;
 806        u32 lli_bus;
 807};
 808
 809/*
 810 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 811 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 812 * masters address with width requirements of transfer (by sending few byte by
 813 * byte data), slave is still not aligned, then its width will be reduced to
 814 * BYTE.
 815 * - prefers the destination bus if both available
 816 * - prefers bus with fixed address (i.e. peripheral)
 817 */
 818static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 819        struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 820{
 821        if (!(cctl & PL080_CONTROL_DST_INCR)) {
 822                *mbus = &bd->dstbus;
 823                *sbus = &bd->srcbus;
 824        } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 825                *mbus = &bd->srcbus;
 826                *sbus = &bd->dstbus;
 827        } else {
 828                if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
 829                        *mbus = &bd->dstbus;
 830                        *sbus = &bd->srcbus;
 831                } else {
 832                        *mbus = &bd->srcbus;
 833                        *sbus = &bd->dstbus;
 834                }
 835        }
 836}
 837
 838/*
 839 * Fills in one LLI for a certain transfer descriptor and advance the counter
 840 */
 841static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
 842                                    struct pl08x_lli_build_data *bd,
 843                                    int num_llis, int len, u32 cctl, u32 cctl2)
 844{
 845        u32 offset = num_llis * pl08x->lli_words;
 846        u32 *llis_va = bd->txd->llis_va + offset;
 847        dma_addr_t llis_bus = bd->txd->llis_bus;
 848
 849        BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 850
 851        /* Advance the offset to next LLI. */
 852        offset += pl08x->lli_words;
 853
 854        llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
 855        llis_va[PL080_LLI_DST] = bd->dstbus.addr;
 856        llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
 857        llis_va[PL080_LLI_LLI] |= bd->lli_bus;
 858        llis_va[PL080_LLI_CCTL] = cctl;
 859        if (pl08x->vd->pl080s)
 860                llis_va[PL080S_LLI_CCTL2] = cctl2;
 861
 862        if (cctl & PL080_CONTROL_SRC_INCR)
 863                bd->srcbus.addr += len;
 864        if (cctl & PL080_CONTROL_DST_INCR)
 865                bd->dstbus.addr += len;
 866
 867        BUG_ON(bd->remainder < len);
 868
 869        bd->remainder -= len;
 870}
 871
 872static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
 873                        struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
 874                        int num_llis, size_t *total_bytes)
 875{
 876        *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
 877        pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
 878        (*total_bytes) += len;
 879}
 880
 881#ifdef VERBOSE_DEBUG
 882static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 883                           const u32 *llis_va, int num_llis)
 884{
 885        int i;
 886
 887        if (pl08x->vd->pl080s) {
 888                dev_vdbg(&pl08x->adev->dev,
 889                        "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
 890                        "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
 891                for (i = 0; i < num_llis; i++) {
 892                        dev_vdbg(&pl08x->adev->dev,
 893                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 894                                i, llis_va, llis_va[PL080_LLI_SRC],
 895                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 896                                llis_va[PL080_LLI_CCTL],
 897                                llis_va[PL080S_LLI_CCTL2]);
 898                        llis_va += pl08x->lli_words;
 899                }
 900        } else {
 901                dev_vdbg(&pl08x->adev->dev,
 902                        "%-3s %-9s  %-10s %-10s %-10s %s\n",
 903                        "lli", "", "csrc", "cdst", "clli", "cctl");
 904                for (i = 0; i < num_llis; i++) {
 905                        dev_vdbg(&pl08x->adev->dev,
 906                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 907                                i, llis_va, llis_va[PL080_LLI_SRC],
 908                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 909                                llis_va[PL080_LLI_CCTL]);
 910                        llis_va += pl08x->lli_words;
 911                }
 912        }
 913}
 914#else
 915static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 916                                  const u32 *llis_va, int num_llis) {}
 917#endif
 918
 919/*
 920 * This fills in the table of LLIs for the transfer descriptor
 921 * Note that we assume we never have to change the burst sizes
 922 * Return 0 for error
 923 */
 924static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 925                              struct pl08x_txd *txd)
 926{
 927        struct pl08x_bus_data *mbus, *sbus;
 928        struct pl08x_lli_build_data bd;
 929        int num_llis = 0;
 930        u32 cctl, early_bytes = 0;
 931        size_t max_bytes_per_lli, total_bytes;
 932        u32 *llis_va, *last_lli;
 933        struct pl08x_sg *dsg;
 934
 935        txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 936        if (!txd->llis_va) {
 937                dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 938                return 0;
 939        }
 940
 941        bd.txd = txd;
 942        bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 943        cctl = txd->cctl;
 944
 945        /* Find maximum width of the source bus */
 946        bd.srcbus.maxwidth =
 947                pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 948                                       PL080_CONTROL_SWIDTH_SHIFT);
 949
 950        /* Find maximum width of the destination bus */
 951        bd.dstbus.maxwidth =
 952                pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 953                                       PL080_CONTROL_DWIDTH_SHIFT);
 954
 955        list_for_each_entry(dsg, &txd->dsg_list, node) {
 956                total_bytes = 0;
 957                cctl = txd->cctl;
 958
 959                bd.srcbus.addr = dsg->src_addr;
 960                bd.dstbus.addr = dsg->dst_addr;
 961                bd.remainder = dsg->len;
 962                bd.srcbus.buswidth = bd.srcbus.maxwidth;
 963                bd.dstbus.buswidth = bd.dstbus.maxwidth;
 964
 965                pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 966
 967                dev_vdbg(&pl08x->adev->dev,
 968                        "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
 969                        (u64)bd.srcbus.addr,
 970                        cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 971                        bd.srcbus.buswidth,
 972                        (u64)bd.dstbus.addr,
 973                        cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 974                        bd.dstbus.buswidth,
 975                        bd.remainder);
 976                dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 977                        mbus == &bd.srcbus ? "src" : "dst",
 978                        sbus == &bd.srcbus ? "src" : "dst");
 979
 980                /*
 981                 * Zero length is only allowed if all these requirements are
 982                 * met:
 983                 * - flow controller is peripheral.
 984                 * - src.addr is aligned to src.width
 985                 * - dst.addr is aligned to dst.width
 986                 *
 987                 * sg_len == 1 should be true, as there can be two cases here:
 988                 *
 989                 * - Memory addresses are contiguous and are not scattered.
 990                 *   Here, Only one sg will be passed by user driver, with
 991                 *   memory address and zero length. We pass this to controller
 992                 *   and after the transfer it will receive the last burst
 993                 *   request from peripheral and so transfer finishes.
 994                 *
 995                 * - Memory addresses are scattered and are not contiguous.
 996                 *   Here, Obviously as DMA controller doesn't know when a lli's
 997                 *   transfer gets over, it can't load next lli. So in this
 998                 *   case, there has to be an assumption that only one lli is
 999                 *   supported. Thus, we can't have scattered addresses.
1000                 */
1001                if (!bd.remainder) {
1002                        u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1003                                PL080_CONFIG_FLOW_CONTROL_SHIFT;
1004                        if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1005                                        (fc <= PL080_FLOW_SRC2DST_SRC))) {
1006                                dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1007                                        __func__);
1008                                return 0;
1009                        }
1010
1011                        if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1012                                !IS_BUS_ALIGNED(&bd.dstbus)) {
1013                                dev_err(&pl08x->adev->dev,
1014                                        "%s src & dst address must be aligned to src"
1015                                        " & dst width if peripheral is flow controller",
1016                                        __func__);
1017                                return 0;
1018                        }
1019
1020                        cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1021                                        bd.dstbus.buswidth, 0);
1022                        pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1023                                        0, cctl, 0);
1024                        break;
1025                }
1026
1027                /*
1028                 * Send byte by byte for following cases
1029                 * - Less than a bus width available
1030                 * - until master bus is aligned
1031                 */
1032                if (bd.remainder < mbus->buswidth)
1033                        early_bytes = bd.remainder;
1034                else if (!IS_BUS_ALIGNED(mbus)) {
1035                        early_bytes = mbus->buswidth -
1036                                (mbus->addr & (mbus->buswidth - 1));
1037                        if ((bd.remainder - early_bytes) < mbus->buswidth)
1038                                early_bytes = bd.remainder;
1039                }
1040
1041                if (early_bytes) {
1042                        dev_vdbg(&pl08x->adev->dev,
1043                                "%s byte width LLIs (remain 0x%08x)\n",
1044                                __func__, bd.remainder);
1045                        prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1046                                num_llis++, &total_bytes);
1047                }
1048
1049                if (bd.remainder) {
1050                        /*
1051                         * Master now aligned
1052                         * - if slave is not then we must set its width down
1053                         */
1054                        if (!IS_BUS_ALIGNED(sbus)) {
1055                                dev_dbg(&pl08x->adev->dev,
1056                                        "%s set down bus width to one byte\n",
1057                                        __func__);
1058
1059                                sbus->buswidth = 1;
1060                        }
1061
1062                        /*
1063                         * Bytes transferred = tsize * src width, not
1064                         * MIN(buswidths)
1065                         */
1066                        max_bytes_per_lli = bd.srcbus.buswidth *
1067                                                pl08x->vd->max_transfer_size;
1068                        dev_vdbg(&pl08x->adev->dev,
1069                                "%s max bytes per lli = %zu\n",
1070                                __func__, max_bytes_per_lli);
1071
1072                        /*
1073                         * Make largest possible LLIs until less than one bus
1074                         * width left
1075                         */
1076                        while (bd.remainder > (mbus->buswidth - 1)) {
1077                                size_t lli_len, tsize, width;
1078
1079                                /*
1080                                 * If enough left try to send max possible,
1081                                 * otherwise try to send the remainder
1082                                 */
1083                                lli_len = min(bd.remainder, max_bytes_per_lli);
1084
1085                                /*
1086                                 * Check against maximum bus alignment:
1087                                 * Calculate actual transfer size in relation to
1088                                 * bus width an get a maximum remainder of the
1089                                 * highest bus width - 1
1090                                 */
1091                                width = max(mbus->buswidth, sbus->buswidth);
1092                                lli_len = (lli_len / width) * width;
1093                                tsize = lli_len / bd.srcbus.buswidth;
1094
1095                                dev_vdbg(&pl08x->adev->dev,
1096                                        "%s fill lli with single lli chunk of "
1097                                        "size 0x%08zx (remainder 0x%08zx)\n",
1098                                        __func__, lli_len, bd.remainder);
1099
1100                                cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1101                                        bd.dstbus.buswidth, tsize);
1102                                pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1103                                                lli_len, cctl, tsize);
1104                                total_bytes += lli_len;
1105                        }
1106
1107                        /*
1108                         * Send any odd bytes
1109                         */
1110                        if (bd.remainder) {
1111                                dev_vdbg(&pl08x->adev->dev,
1112                                        "%s align with boundary, send odd bytes (remain %zu)\n",
1113                                        __func__, bd.remainder);
1114                                prep_byte_width_lli(pl08x, &bd, &cctl,
1115                                        bd.remainder, num_llis++, &total_bytes);
1116                        }
1117                }
1118
1119                if (total_bytes != dsg->len) {
1120                        dev_err(&pl08x->adev->dev,
1121                                "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1122                                __func__, total_bytes, dsg->len);
1123                        return 0;
1124                }
1125
1126                if (num_llis >= MAX_NUM_TSFR_LLIS) {
1127                        dev_err(&pl08x->adev->dev,
1128                                "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1129                                __func__, MAX_NUM_TSFR_LLIS);
1130                        return 0;
1131                }
1132        }
1133
1134        llis_va = txd->llis_va;
1135        last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1136
1137        if (txd->cyclic) {
1138                /* Link back to the first LLI. */
1139                last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1140        } else {
1141                /* The final LLI terminates the LLI. */
1142                last_lli[PL080_LLI_LLI] = 0;
1143                /* The final LLI element shall also fire an interrupt. */
1144                last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1145        }
1146
1147        pl08x_dump_lli(pl08x, llis_va, num_llis);
1148
1149        return num_llis;
1150}
1151
1152static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1153                           struct pl08x_txd *txd)
1154{
1155        struct pl08x_sg *dsg, *_dsg;
1156
1157        if (txd->llis_va)
1158                dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1159
1160        list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1161                list_del(&dsg->node);
1162                kfree(dsg);
1163        }
1164
1165        kfree(txd);
1166}
1167
1168static void pl08x_desc_free(struct virt_dma_desc *vd)
1169{
1170        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1171        struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1172
1173        dma_descriptor_unmap(&vd->tx);
1174        if (!txd->done)
1175                pl08x_release_mux(plchan);
1176
1177        pl08x_free_txd(plchan->host, txd);
1178}
1179
1180static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1181                                struct pl08x_dma_chan *plchan)
1182{
1183        LIST_HEAD(head);
1184
1185        vchan_get_all_descriptors(&plchan->vc, &head);
1186        vchan_dma_desc_free_list(&plchan->vc, &head);
1187}
1188
1189/*
1190 * The DMA ENGINE API
1191 */
1192static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1193{
1194        return 0;
1195}
1196
1197static void pl08x_free_chan_resources(struct dma_chan *chan)
1198{
1199        /* Ensure all queued descriptors are freed */
1200        vchan_free_chan_resources(to_virt_chan(chan));
1201}
1202
1203static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1204                struct dma_chan *chan, unsigned long flags)
1205{
1206        struct dma_async_tx_descriptor *retval = NULL;
1207
1208        return retval;
1209}
1210
1211/*
1212 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1213 * If slaves are relying on interrupts to signal completion this function
1214 * must not be called with interrupts disabled.
1215 */
1216static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1217                dma_cookie_t cookie, struct dma_tx_state *txstate)
1218{
1219        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1220        struct virt_dma_desc *vd;
1221        unsigned long flags;
1222        enum dma_status ret;
1223        size_t bytes = 0;
1224
1225        ret = dma_cookie_status(chan, cookie, txstate);
1226        if (ret == DMA_COMPLETE)
1227                return ret;
1228
1229        /*
1230         * There's no point calculating the residue if there's
1231         * no txstate to store the value.
1232         */
1233        if (!txstate) {
1234                if (plchan->state == PL08X_CHAN_PAUSED)
1235                        ret = DMA_PAUSED;
1236                return ret;
1237        }
1238
1239        spin_lock_irqsave(&plchan->vc.lock, flags);
1240        ret = dma_cookie_status(chan, cookie, txstate);
1241        if (ret != DMA_COMPLETE) {
1242                vd = vchan_find_desc(&plchan->vc, cookie);
1243                if (vd) {
1244                        /* On the issued list, so hasn't been processed yet */
1245                        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1246                        struct pl08x_sg *dsg;
1247
1248                        list_for_each_entry(dsg, &txd->dsg_list, node)
1249                                bytes += dsg->len;
1250                } else {
1251                        bytes = pl08x_getbytes_chan(plchan);
1252                }
1253        }
1254        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1255
1256        /*
1257         * This cookie not complete yet
1258         * Get number of bytes left in the active transactions and queue
1259         */
1260        dma_set_residue(txstate, bytes);
1261
1262        if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1263                ret = DMA_PAUSED;
1264
1265        /* Whether waiting or running, we're in progress */
1266        return ret;
1267}
1268
1269/* PrimeCell DMA extension */
1270struct burst_table {
1271        u32 burstwords;
1272        u32 reg;
1273};
1274
1275static const struct burst_table burst_sizes[] = {
1276        {
1277                .burstwords = 256,
1278                .reg = PL080_BSIZE_256,
1279        },
1280        {
1281                .burstwords = 128,
1282                .reg = PL080_BSIZE_128,
1283        },
1284        {
1285                .burstwords = 64,
1286                .reg = PL080_BSIZE_64,
1287        },
1288        {
1289                .burstwords = 32,
1290                .reg = PL080_BSIZE_32,
1291        },
1292        {
1293                .burstwords = 16,
1294                .reg = PL080_BSIZE_16,
1295        },
1296        {
1297                .burstwords = 8,
1298                .reg = PL080_BSIZE_8,
1299        },
1300        {
1301                .burstwords = 4,
1302                .reg = PL080_BSIZE_4,
1303        },
1304        {
1305                .burstwords = 0,
1306                .reg = PL080_BSIZE_1,
1307        },
1308};
1309
1310/*
1311 * Given the source and destination available bus masks, select which
1312 * will be routed to each port.  We try to have source and destination
1313 * on separate ports, but always respect the allowable settings.
1314 */
1315static u32 pl08x_select_bus(u8 src, u8 dst)
1316{
1317        u32 cctl = 0;
1318
1319        if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1320                cctl |= PL080_CONTROL_DST_AHB2;
1321        if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1322                cctl |= PL080_CONTROL_SRC_AHB2;
1323
1324        return cctl;
1325}
1326
1327static u32 pl08x_cctl(u32 cctl)
1328{
1329        cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1330                  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1331                  PL080_CONTROL_PROT_MASK);
1332
1333        /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1334        return cctl | PL080_CONTROL_PROT_SYS;
1335}
1336
1337static u32 pl08x_width(enum dma_slave_buswidth width)
1338{
1339        switch (width) {
1340        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1341                return PL080_WIDTH_8BIT;
1342        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1343                return PL080_WIDTH_16BIT;
1344        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1345                return PL080_WIDTH_32BIT;
1346        default:
1347                return ~0;
1348        }
1349}
1350
1351static u32 pl08x_burst(u32 maxburst)
1352{
1353        int i;
1354
1355        for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1356                if (burst_sizes[i].burstwords <= maxburst)
1357                        break;
1358
1359        return burst_sizes[i].reg;
1360}
1361
1362static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1363        enum dma_slave_buswidth addr_width, u32 maxburst)
1364{
1365        u32 width, burst, cctl = 0;
1366
1367        width = pl08x_width(addr_width);
1368        if (width == ~0)
1369                return ~0;
1370
1371        cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1372        cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1373
1374        /*
1375         * If this channel will only request single transfers, set this
1376         * down to ONE element.  Also select one element if no maxburst
1377         * is specified.
1378         */
1379        if (plchan->cd->single)
1380                maxburst = 1;
1381
1382        burst = pl08x_burst(maxburst);
1383        cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1384        cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1385
1386        return pl08x_cctl(cctl);
1387}
1388
1389static int dma_set_runtime_config(struct dma_chan *chan,
1390                                  struct dma_slave_config *config)
1391{
1392        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1393        struct pl08x_driver_data *pl08x = plchan->host;
1394
1395        if (!plchan->slave)
1396                return -EINVAL;
1397
1398        /* Reject definitely invalid configurations */
1399        if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1400            config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1401                return -EINVAL;
1402
1403        if (config->device_fc && pl08x->vd->pl080s) {
1404                dev_err(&pl08x->adev->dev,
1405                        "%s: PL080S does not support peripheral flow control\n",
1406                        __func__);
1407                return -EINVAL;
1408        }
1409
1410        plchan->cfg = *config;
1411
1412        return 0;
1413}
1414
1415/*
1416 * Slave transactions callback to the slave device to allow
1417 * synchronization of slave DMA signals with the DMAC enable
1418 */
1419static void pl08x_issue_pending(struct dma_chan *chan)
1420{
1421        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1422        unsigned long flags;
1423
1424        spin_lock_irqsave(&plchan->vc.lock, flags);
1425        if (vchan_issue_pending(&plchan->vc)) {
1426                if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1427                        pl08x_phy_alloc_and_start(plchan);
1428        }
1429        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1430}
1431
1432static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1433{
1434        struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1435
1436        if (txd) {
1437                INIT_LIST_HEAD(&txd->dsg_list);
1438
1439                /* Always enable error and terminal interrupts */
1440                txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1441                            PL080_CONFIG_TC_IRQ_MASK;
1442        }
1443        return txd;
1444}
1445
1446/*
1447 * Initialize a descriptor to be used by memcpy submit
1448 */
1449static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1450                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1451                size_t len, unsigned long flags)
1452{
1453        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1454        struct pl08x_driver_data *pl08x = plchan->host;
1455        struct pl08x_txd *txd;
1456        struct pl08x_sg *dsg;
1457        int ret;
1458
1459        txd = pl08x_get_txd(plchan);
1460        if (!txd) {
1461                dev_err(&pl08x->adev->dev,
1462                        "%s no memory for descriptor\n", __func__);
1463                return NULL;
1464        }
1465
1466        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1467        if (!dsg) {
1468                pl08x_free_txd(pl08x, txd);
1469                dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1470                                __func__);
1471                return NULL;
1472        }
1473        list_add_tail(&dsg->node, &txd->dsg_list);
1474
1475        dsg->src_addr = src;
1476        dsg->dst_addr = dest;
1477        dsg->len = len;
1478
1479        /* Set platform data for m2m */
1480        txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1481        txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1482                        ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1483
1484        /* Both to be incremented or the code will break */
1485        txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1486
1487        if (pl08x->vd->dualmaster)
1488                txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1489                                              pl08x->mem_buses);
1490
1491        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1492        if (!ret) {
1493                pl08x_free_txd(pl08x, txd);
1494                return NULL;
1495        }
1496
1497        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1498}
1499
1500static struct pl08x_txd *pl08x_init_txd(
1501                struct dma_chan *chan,
1502                enum dma_transfer_direction direction,
1503                dma_addr_t *slave_addr)
1504{
1505        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1506        struct pl08x_driver_data *pl08x = plchan->host;
1507        struct pl08x_txd *txd;
1508        enum dma_slave_buswidth addr_width;
1509        int ret, tmp;
1510        u8 src_buses, dst_buses;
1511        u32 maxburst, cctl;
1512
1513        txd = pl08x_get_txd(plchan);
1514        if (!txd) {
1515                dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1516                return NULL;
1517        }
1518
1519        /*
1520         * Set up addresses, the PrimeCell configured address
1521         * will take precedence since this may configure the
1522         * channel target address dynamically at runtime.
1523         */
1524        if (direction == DMA_MEM_TO_DEV) {
1525                cctl = PL080_CONTROL_SRC_INCR;
1526                *slave_addr = plchan->cfg.dst_addr;
1527                addr_width = plchan->cfg.dst_addr_width;
1528                maxburst = plchan->cfg.dst_maxburst;
1529                src_buses = pl08x->mem_buses;
1530                dst_buses = plchan->cd->periph_buses;
1531        } else if (direction == DMA_DEV_TO_MEM) {
1532                cctl = PL080_CONTROL_DST_INCR;
1533                *slave_addr = plchan->cfg.src_addr;
1534                addr_width = plchan->cfg.src_addr_width;
1535                maxburst = plchan->cfg.src_maxburst;
1536                src_buses = plchan->cd->periph_buses;
1537                dst_buses = pl08x->mem_buses;
1538        } else {
1539                pl08x_free_txd(pl08x, txd);
1540                dev_err(&pl08x->adev->dev,
1541                        "%s direction unsupported\n", __func__);
1542                return NULL;
1543        }
1544
1545        cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1546        if (cctl == ~0) {
1547                pl08x_free_txd(pl08x, txd);
1548                dev_err(&pl08x->adev->dev,
1549                        "DMA slave configuration botched?\n");
1550                return NULL;
1551        }
1552
1553        txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1554
1555        if (plchan->cfg.device_fc)
1556                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1557                        PL080_FLOW_PER2MEM_PER;
1558        else
1559                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1560                        PL080_FLOW_PER2MEM;
1561
1562        txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1563
1564        ret = pl08x_request_mux(plchan);
1565        if (ret < 0) {
1566                pl08x_free_txd(pl08x, txd);
1567                dev_dbg(&pl08x->adev->dev,
1568                        "unable to mux for transfer on %s due to platform restrictions\n",
1569                        plchan->name);
1570                return NULL;
1571        }
1572
1573        dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1574                 plchan->signal, plchan->name);
1575
1576        /* Assign the flow control signal to this channel */
1577        if (direction == DMA_MEM_TO_DEV)
1578                txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1579        else
1580                txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1581
1582        return txd;
1583}
1584
1585static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1586                           enum dma_transfer_direction direction,
1587                           dma_addr_t slave_addr,
1588                           dma_addr_t buf_addr,
1589                           unsigned int len)
1590{
1591        struct pl08x_sg *dsg;
1592
1593        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1594        if (!dsg)
1595                return -ENOMEM;
1596
1597        list_add_tail(&dsg->node, &txd->dsg_list);
1598
1599        dsg->len = len;
1600        if (direction == DMA_MEM_TO_DEV) {
1601                dsg->src_addr = buf_addr;
1602                dsg->dst_addr = slave_addr;
1603        } else {
1604                dsg->src_addr = slave_addr;
1605                dsg->dst_addr = buf_addr;
1606        }
1607
1608        return 0;
1609}
1610
1611static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1612                struct dma_chan *chan, struct scatterlist *sgl,
1613                unsigned int sg_len, enum dma_transfer_direction direction,
1614                unsigned long flags, void *context)
1615{
1616        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1617        struct pl08x_driver_data *pl08x = plchan->host;
1618        struct pl08x_txd *txd;
1619        struct scatterlist *sg;
1620        int ret, tmp;
1621        dma_addr_t slave_addr;
1622
1623        dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1624                        __func__, sg_dma_len(sgl), plchan->name);
1625
1626        txd = pl08x_init_txd(chan, direction, &slave_addr);
1627        if (!txd)
1628                return NULL;
1629
1630        for_each_sg(sgl, sg, sg_len, tmp) {
1631                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1632                                      sg_dma_address(sg),
1633                                      sg_dma_len(sg));
1634                if (ret) {
1635                        pl08x_release_mux(plchan);
1636                        pl08x_free_txd(pl08x, txd);
1637                        dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1638                                        __func__);
1639                        return NULL;
1640                }
1641        }
1642
1643        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1644        if (!ret) {
1645                pl08x_release_mux(plchan);
1646                pl08x_free_txd(pl08x, txd);
1647                return NULL;
1648        }
1649
1650        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1651}
1652
1653static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1654                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1655                size_t period_len, enum dma_transfer_direction direction,
1656                unsigned long flags, void *context)
1657{
1658        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1659        struct pl08x_driver_data *pl08x = plchan->host;
1660        struct pl08x_txd *txd;
1661        int ret, tmp;
1662        dma_addr_t slave_addr;
1663
1664        dev_dbg(&pl08x->adev->dev,
1665                "%s prepare cyclic transaction of %d/%d bytes %s %s\n",
1666                __func__, period_len, buf_len,
1667                direction == DMA_MEM_TO_DEV ? "to" : "from",
1668                plchan->name);
1669
1670        txd = pl08x_init_txd(chan, direction, &slave_addr);
1671        if (!txd)
1672                return NULL;
1673
1674        txd->cyclic = true;
1675        txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1676        for (tmp = 0; tmp < buf_len; tmp += period_len) {
1677                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1678                                      buf_addr + tmp, period_len);
1679                if (ret) {
1680                        pl08x_release_mux(plchan);
1681                        pl08x_free_txd(pl08x, txd);
1682                        return NULL;
1683                }
1684        }
1685
1686        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1687        if (!ret) {
1688                pl08x_release_mux(plchan);
1689                pl08x_free_txd(pl08x, txd);
1690                return NULL;
1691        }
1692
1693        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1694}
1695
1696static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1697                         unsigned long arg)
1698{
1699        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1700        struct pl08x_driver_data *pl08x = plchan->host;
1701        unsigned long flags;
1702        int ret = 0;
1703
1704        /* Controls applicable to inactive channels */
1705        if (cmd == DMA_SLAVE_CONFIG) {
1706                return dma_set_runtime_config(chan,
1707                                              (struct dma_slave_config *)arg);
1708        }
1709
1710        /*
1711         * Anything succeeds on channels with no physical allocation and
1712         * no queued transfers.
1713         */
1714        spin_lock_irqsave(&plchan->vc.lock, flags);
1715        if (!plchan->phychan && !plchan->at) {
1716                spin_unlock_irqrestore(&plchan->vc.lock, flags);
1717                return 0;
1718        }
1719
1720        switch (cmd) {
1721        case DMA_TERMINATE_ALL:
1722                plchan->state = PL08X_CHAN_IDLE;
1723
1724                if (plchan->phychan) {
1725                        /*
1726                         * Mark physical channel as free and free any slave
1727                         * signal
1728                         */
1729                        pl08x_phy_free(plchan);
1730                }
1731                /* Dequeue jobs and free LLIs */
1732                if (plchan->at) {
1733                        pl08x_desc_free(&plchan->at->vd);
1734                        plchan->at = NULL;
1735                }
1736                /* Dequeue jobs not yet fired as well */
1737                pl08x_free_txd_list(pl08x, plchan);
1738                break;
1739        case DMA_PAUSE:
1740                pl08x_pause_phy_chan(plchan->phychan);
1741                plchan->state = PL08X_CHAN_PAUSED;
1742                break;
1743        case DMA_RESUME:
1744                pl08x_resume_phy_chan(plchan->phychan);
1745                plchan->state = PL08X_CHAN_RUNNING;
1746                break;
1747        default:
1748                /* Unknown command */
1749                ret = -ENXIO;
1750                break;
1751        }
1752
1753        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1754
1755        return ret;
1756}
1757
1758bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1759{
1760        struct pl08x_dma_chan *plchan;
1761        char *name = chan_id;
1762
1763        /* Reject channels for devices not bound to this driver */
1764        if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1765                return false;
1766
1767        plchan = to_pl08x_chan(chan);
1768
1769        /* Check that the channel is not taken! */
1770        if (!strcmp(plchan->name, name))
1771                return true;
1772
1773        return false;
1774}
1775EXPORT_SYMBOL_GPL(pl08x_filter_id);
1776
1777/*
1778 * Just check that the device is there and active
1779 * TODO: turn this bit on/off depending on the number of physical channels
1780 * actually used, if it is zero... well shut it off. That will save some
1781 * power. Cut the clock at the same time.
1782 */
1783static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1784{
1785        /* The Nomadik variant does not have the config register */
1786        if (pl08x->vd->nomadik)
1787                return;
1788        writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1789}
1790
1791static irqreturn_t pl08x_irq(int irq, void *dev)
1792{
1793        struct pl08x_driver_data *pl08x = dev;
1794        u32 mask = 0, err, tc, i;
1795
1796        /* check & clear - ERR & TC interrupts */
1797        err = readl(pl08x->base + PL080_ERR_STATUS);
1798        if (err) {
1799                dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1800                        __func__, err);
1801                writel(err, pl08x->base + PL080_ERR_CLEAR);
1802        }
1803        tc = readl(pl08x->base + PL080_TC_STATUS);
1804        if (tc)
1805                writel(tc, pl08x->base + PL080_TC_CLEAR);
1806
1807        if (!err && !tc)
1808                return IRQ_NONE;
1809
1810        for (i = 0; i < pl08x->vd->channels; i++) {
1811                if (((1 << i) & err) || ((1 << i) & tc)) {
1812                        /* Locate physical channel */
1813                        struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1814                        struct pl08x_dma_chan *plchan = phychan->serving;
1815                        struct pl08x_txd *tx;
1816
1817                        if (!plchan) {
1818                                dev_err(&pl08x->adev->dev,
1819                                        "%s Error TC interrupt on unused channel: 0x%08x\n",
1820                                        __func__, i);
1821                                continue;
1822                        }
1823
1824                        spin_lock(&plchan->vc.lock);
1825                        tx = plchan->at;
1826                        if (tx && tx->cyclic) {
1827                                vchan_cyclic_callback(&tx->vd);
1828                        } else if (tx) {
1829                                plchan->at = NULL;
1830                                /*
1831                                 * This descriptor is done, release its mux
1832                                 * reservation.
1833                                 */
1834                                pl08x_release_mux(plchan);
1835                                tx->done = true;
1836                                vchan_cookie_complete(&tx->vd);
1837
1838                                /*
1839                                 * And start the next descriptor (if any),
1840                                 * otherwise free this channel.
1841                                 */
1842                                if (vchan_next_desc(&plchan->vc))
1843                                        pl08x_start_next_txd(plchan);
1844                                else
1845                                        pl08x_phy_free(plchan);
1846                        }
1847                        spin_unlock(&plchan->vc.lock);
1848
1849                        mask |= (1 << i);
1850                }
1851        }
1852
1853        return mask ? IRQ_HANDLED : IRQ_NONE;
1854}
1855
1856static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1857{
1858        chan->slave = true;
1859        chan->name = chan->cd->bus_id;
1860        chan->cfg.src_addr = chan->cd->addr;
1861        chan->cfg.dst_addr = chan->cd->addr;
1862}
1863
1864/*
1865 * Initialise the DMAC memcpy/slave channels.
1866 * Make a local wrapper to hold required data
1867 */
1868static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1869                struct dma_device *dmadev, unsigned int channels, bool slave)
1870{
1871        struct pl08x_dma_chan *chan;
1872        int i;
1873
1874        INIT_LIST_HEAD(&dmadev->channels);
1875
1876        /*
1877         * Register as many many memcpy as we have physical channels,
1878         * we won't always be able to use all but the code will have
1879         * to cope with that situation.
1880         */
1881        for (i = 0; i < channels; i++) {
1882                chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1883                if (!chan) {
1884                        dev_err(&pl08x->adev->dev,
1885                                "%s no memory for channel\n", __func__);
1886                        return -ENOMEM;
1887                }
1888
1889                chan->host = pl08x;
1890                chan->state = PL08X_CHAN_IDLE;
1891                chan->signal = -1;
1892
1893                if (slave) {
1894                        chan->cd = &pl08x->pd->slave_channels[i];
1895                        pl08x_dma_slave_init(chan);
1896                } else {
1897                        chan->cd = &pl08x->pd->memcpy_channel;
1898                        chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1899                        if (!chan->name) {
1900                                kfree(chan);
1901                                return -ENOMEM;
1902                        }
1903                }
1904                dev_dbg(&pl08x->adev->dev,
1905                         "initialize virtual channel \"%s\"\n",
1906                         chan->name);
1907
1908                chan->vc.desc_free = pl08x_desc_free;
1909                vchan_init(&chan->vc, dmadev);
1910        }
1911        dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1912                 i, slave ? "slave" : "memcpy");
1913        return i;
1914}
1915
1916static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1917{
1918        struct pl08x_dma_chan *chan = NULL;
1919        struct pl08x_dma_chan *next;
1920
1921        list_for_each_entry_safe(chan,
1922                                 next, &dmadev->channels, vc.chan.device_node) {
1923                list_del(&chan->vc.chan.device_node);
1924                kfree(chan);
1925        }
1926}
1927
1928#ifdef CONFIG_DEBUG_FS
1929static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1930{
1931        switch (state) {
1932        case PL08X_CHAN_IDLE:
1933                return "idle";
1934        case PL08X_CHAN_RUNNING:
1935                return "running";
1936        case PL08X_CHAN_PAUSED:
1937                return "paused";
1938        case PL08X_CHAN_WAITING:
1939                return "waiting";
1940        default:
1941                break;
1942        }
1943        return "UNKNOWN STATE";
1944}
1945
1946static int pl08x_debugfs_show(struct seq_file *s, void *data)
1947{
1948        struct pl08x_driver_data *pl08x = s->private;
1949        struct pl08x_dma_chan *chan;
1950        struct pl08x_phy_chan *ch;
1951        unsigned long flags;
1952        int i;
1953
1954        seq_printf(s, "PL08x physical channels:\n");
1955        seq_printf(s, "CHANNEL:\tUSER:\n");
1956        seq_printf(s, "--------\t-----\n");
1957        for (i = 0; i < pl08x->vd->channels; i++) {
1958                struct pl08x_dma_chan *virt_chan;
1959
1960                ch = &pl08x->phy_chans[i];
1961
1962                spin_lock_irqsave(&ch->lock, flags);
1963                virt_chan = ch->serving;
1964
1965                seq_printf(s, "%d\t\t%s%s\n",
1966                           ch->id,
1967                           virt_chan ? virt_chan->name : "(none)",
1968                           ch->locked ? " LOCKED" : "");
1969
1970                spin_unlock_irqrestore(&ch->lock, flags);
1971        }
1972
1973        seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1974        seq_printf(s, "CHANNEL:\tSTATE:\n");
1975        seq_printf(s, "--------\t------\n");
1976        list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1977                seq_printf(s, "%s\t\t%s\n", chan->name,
1978                           pl08x_state_str(chan->state));
1979        }
1980
1981        seq_printf(s, "\nPL08x virtual slave channels:\n");
1982        seq_printf(s, "CHANNEL:\tSTATE:\n");
1983        seq_printf(s, "--------\t------\n");
1984        list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1985                seq_printf(s, "%s\t\t%s\n", chan->name,
1986                           pl08x_state_str(chan->state));
1987        }
1988
1989        return 0;
1990}
1991
1992static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1993{
1994        return single_open(file, pl08x_debugfs_show, inode->i_private);
1995}
1996
1997static const struct file_operations pl08x_debugfs_operations = {
1998        .open           = pl08x_debugfs_open,
1999        .read           = seq_read,
2000        .llseek         = seq_lseek,
2001        .release        = single_release,
2002};
2003
2004static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2005{
2006        /* Expose a simple debugfs interface to view all clocks */
2007        (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2008                        S_IFREG | S_IRUGO, NULL, pl08x,
2009                        &pl08x_debugfs_operations);
2010}
2011
2012#else
2013static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2014{
2015}
2016#endif
2017
2018static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2019{
2020        struct pl08x_driver_data *pl08x;
2021        const struct vendor_data *vd = id->data;
2022        u32 tsfr_size;
2023        int ret = 0;
2024        int i;
2025
2026        ret = amba_request_regions(adev, NULL);
2027        if (ret)
2028                return ret;
2029
2030        /* Ensure that we can do DMA */
2031        ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2032        if (ret)
2033                goto out_no_pl08x;
2034
2035        /* Create the driver state holder */
2036        pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2037        if (!pl08x) {
2038                ret = -ENOMEM;
2039                goto out_no_pl08x;
2040        }
2041
2042        /* Initialize memcpy engine */
2043        dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2044        pl08x->memcpy.dev = &adev->dev;
2045        pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2046        pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2047        pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2048        pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2049        pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2050        pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2051        pl08x->memcpy.device_control = pl08x_control;
2052
2053        /* Initialize slave engine */
2054        dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2055        dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2056        pl08x->slave.dev = &adev->dev;
2057        pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2058        pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2059        pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2060        pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2061        pl08x->slave.device_issue_pending = pl08x_issue_pending;
2062        pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2063        pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2064        pl08x->slave.device_control = pl08x_control;
2065
2066        /* Get the platform data */
2067        pl08x->pd = dev_get_platdata(&adev->dev);
2068        if (!pl08x->pd) {
2069                dev_err(&adev->dev, "no platform data supplied\n");
2070                ret = -EINVAL;
2071                goto out_no_platdata;
2072        }
2073
2074        /* Assign useful pointers to the driver state */
2075        pl08x->adev = adev;
2076        pl08x->vd = vd;
2077
2078        /* By default, AHB1 only.  If dualmaster, from platform */
2079        pl08x->lli_buses = PL08X_AHB1;
2080        pl08x->mem_buses = PL08X_AHB1;
2081        if (pl08x->vd->dualmaster) {
2082                pl08x->lli_buses = pl08x->pd->lli_buses;
2083                pl08x->mem_buses = pl08x->pd->mem_buses;
2084        }
2085
2086        if (vd->pl080s)
2087                pl08x->lli_words = PL080S_LLI_WORDS;
2088        else
2089                pl08x->lli_words = PL080_LLI_WORDS;
2090        tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2091
2092        /* A DMA memory pool for LLIs, align on 1-byte boundary */
2093        pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2094                                                tsfr_size, PL08X_ALIGN, 0);
2095        if (!pl08x->pool) {
2096                ret = -ENOMEM;
2097                goto out_no_lli_pool;
2098        }
2099
2100        pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2101        if (!pl08x->base) {
2102                ret = -ENOMEM;
2103                goto out_no_ioremap;
2104        }
2105
2106        /* Turn on the PL08x */
2107        pl08x_ensure_on(pl08x);
2108
2109        /* Attach the interrupt handler */
2110        writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2111        writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2112
2113        ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2114        if (ret) {
2115                dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2116                        __func__, adev->irq[0]);
2117                goto out_no_irq;
2118        }
2119
2120        /* Initialize physical channels */
2121        pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2122                        GFP_KERNEL);
2123        if (!pl08x->phy_chans) {
2124                dev_err(&adev->dev, "%s failed to allocate "
2125                        "physical channel holders\n",
2126                        __func__);
2127                ret = -ENOMEM;
2128                goto out_no_phychans;
2129        }
2130
2131        for (i = 0; i < vd->channels; i++) {
2132                struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2133
2134                ch->id = i;
2135                ch->base = pl08x->base + PL080_Cx_BASE(i);
2136                ch->reg_config = ch->base + vd->config_offset;
2137                spin_lock_init(&ch->lock);
2138
2139                /*
2140                 * Nomadik variants can have channels that are locked
2141                 * down for the secure world only. Lock up these channels
2142                 * by perpetually serving a dummy virtual channel.
2143                 */
2144                if (vd->nomadik) {
2145                        u32 val;
2146
2147                        val = readl(ch->reg_config);
2148                        if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2149                                dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2150                                ch->locked = true;
2151                        }
2152                }
2153
2154                dev_dbg(&adev->dev, "physical channel %d is %s\n",
2155                        i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2156        }
2157
2158        /* Register as many memcpy channels as there are physical channels */
2159        ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2160                                              pl08x->vd->channels, false);
2161        if (ret <= 0) {
2162                dev_warn(&pl08x->adev->dev,
2163                         "%s failed to enumerate memcpy channels - %d\n",
2164                         __func__, ret);
2165                goto out_no_memcpy;
2166        }
2167        pl08x->memcpy.chancnt = ret;
2168
2169        /* Register slave channels */
2170        ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2171                        pl08x->pd->num_slave_channels, true);
2172        if (ret < 0) {
2173                dev_warn(&pl08x->adev->dev,
2174                        "%s failed to enumerate slave channels - %d\n",
2175                                __func__, ret);
2176                goto out_no_slave;
2177        }
2178        pl08x->slave.chancnt = ret;
2179
2180        ret = dma_async_device_register(&pl08x->memcpy);
2181        if (ret) {
2182                dev_warn(&pl08x->adev->dev,
2183                        "%s failed to register memcpy as an async device - %d\n",
2184                        __func__, ret);
2185                goto out_no_memcpy_reg;
2186        }
2187
2188        ret = dma_async_device_register(&pl08x->slave);
2189        if (ret) {
2190                dev_warn(&pl08x->adev->dev,
2191                        "%s failed to register slave as an async device - %d\n",
2192                        __func__, ret);
2193                goto out_no_slave_reg;
2194        }
2195
2196        amba_set_drvdata(adev, pl08x);
2197        init_pl08x_debugfs(pl08x);
2198        dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2199                 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2200                 (unsigned long long)adev->res.start, adev->irq[0]);
2201
2202        return 0;
2203
2204out_no_slave_reg:
2205        dma_async_device_unregister(&pl08x->memcpy);
2206out_no_memcpy_reg:
2207        pl08x_free_virtual_channels(&pl08x->slave);
2208out_no_slave:
2209        pl08x_free_virtual_channels(&pl08x->memcpy);
2210out_no_memcpy:
2211        kfree(pl08x->phy_chans);
2212out_no_phychans:
2213        free_irq(adev->irq[0], pl08x);
2214out_no_irq:
2215        iounmap(pl08x->base);
2216out_no_ioremap:
2217        dma_pool_destroy(pl08x->pool);
2218out_no_lli_pool:
2219out_no_platdata:
2220        kfree(pl08x);
2221out_no_pl08x:
2222        amba_release_regions(adev);
2223        return ret;
2224}
2225
2226/* PL080 has 8 channels and the PL080 have just 2 */
2227static struct vendor_data vendor_pl080 = {
2228        .config_offset = PL080_CH_CONFIG,
2229        .channels = 8,
2230        .dualmaster = true,
2231        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2232};
2233
2234static struct vendor_data vendor_nomadik = {
2235        .config_offset = PL080_CH_CONFIG,
2236        .channels = 8,
2237        .dualmaster = true,
2238        .nomadik = true,
2239        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2240};
2241
2242static struct vendor_data vendor_pl080s = {
2243        .config_offset = PL080S_CH_CONFIG,
2244        .channels = 8,
2245        .pl080s = true,
2246        .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2247};
2248
2249static struct vendor_data vendor_pl081 = {
2250        .config_offset = PL080_CH_CONFIG,
2251        .channels = 2,
2252        .dualmaster = false,
2253        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2254};
2255
2256static struct amba_id pl08x_ids[] = {
2257        /* Samsung PL080S variant */
2258        {
2259                .id     = 0x0a141080,
2260                .mask   = 0xffffffff,
2261                .data   = &vendor_pl080s,
2262        },
2263        /* PL080 */
2264        {
2265                .id     = 0x00041080,
2266                .mask   = 0x000fffff,
2267                .data   = &vendor_pl080,
2268        },
2269        /* PL081 */
2270        {
2271                .id     = 0x00041081,
2272                .mask   = 0x000fffff,
2273                .data   = &vendor_pl081,
2274        },
2275        /* Nomadik 8815 PL080 variant */
2276        {
2277                .id     = 0x00280080,
2278                .mask   = 0x00ffffff,
2279                .data   = &vendor_nomadik,
2280        },
2281        { 0, 0 },
2282};
2283
2284MODULE_DEVICE_TABLE(amba, pl08x_ids);
2285
2286static struct amba_driver pl08x_amba_driver = {
2287        .drv.name       = DRIVER_NAME,
2288        .id_table       = pl08x_ids,
2289        .probe          = pl08x_probe,
2290};
2291
2292static int __init pl08x_init(void)
2293{
2294        int retval;
2295        retval = amba_driver_register(&pl08x_amba_driver);
2296        if (retval)
2297                printk(KERN_WARNING DRIVER_NAME
2298                       "failed to register as an AMBA device (%d)\n",
2299                       retval);
2300        return retval;
2301}
2302subsys_initcall(pl08x_init);
2303