linux/drivers/firewire/ohci.c
<<
>>
Prefs
   1/*
   2 * Driver for OHCI 1394 controllers
   3 *
   4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bitops.h>
  22#include <linux/bug.h>
  23#include <linux/compiler.h>
  24#include <linux/delay.h>
  25#include <linux/device.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/firewire.h>
  28#include <linux/firewire-constants.h>
  29#include <linux/init.h>
  30#include <linux/interrupt.h>
  31#include <linux/io.h>
  32#include <linux/kernel.h>
  33#include <linux/list.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/mutex.h>
  38#include <linux/pci.h>
  39#include <linux/pci_ids.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/time.h>
  44#include <linux/vmalloc.h>
  45#include <linux/workqueue.h>
  46
  47#include <asm/byteorder.h>
  48#include <asm/page.h>
  49
  50#ifdef CONFIG_PPC_PMAC
  51#include <asm/pmac_feature.h>
  52#endif
  53
  54#include "core.h"
  55#include "ohci.h"
  56
  57#define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
  58#define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
  59#define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
  60
  61#define DESCRIPTOR_OUTPUT_MORE          0
  62#define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
  63#define DESCRIPTOR_INPUT_MORE           (2 << 12)
  64#define DESCRIPTOR_INPUT_LAST           (3 << 12)
  65#define DESCRIPTOR_STATUS               (1 << 11)
  66#define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
  67#define DESCRIPTOR_PING                 (1 << 7)
  68#define DESCRIPTOR_YY                   (1 << 6)
  69#define DESCRIPTOR_NO_IRQ               (0 << 4)
  70#define DESCRIPTOR_IRQ_ERROR            (1 << 4)
  71#define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
  72#define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
  73#define DESCRIPTOR_WAIT                 (3 << 0)
  74
  75#define DESCRIPTOR_CMD                  (0xf << 12)
  76
  77struct descriptor {
  78        __le16 req_count;
  79        __le16 control;
  80        __le32 data_address;
  81        __le32 branch_address;
  82        __le16 res_count;
  83        __le16 transfer_status;
  84} __attribute__((aligned(16)));
  85
  86#define CONTROL_SET(regs)       (regs)
  87#define CONTROL_CLEAR(regs)     ((regs) + 4)
  88#define COMMAND_PTR(regs)       ((regs) + 12)
  89#define CONTEXT_MATCH(regs)     ((regs) + 16)
  90
  91#define AR_BUFFER_SIZE  (32*1024)
  92#define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  93/* we need at least two pages for proper list management */
  94#define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  95
  96#define MAX_ASYNC_PAYLOAD       4096
  97#define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
  98#define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  99
 100struct ar_context {
 101        struct fw_ohci *ohci;
 102        struct page *pages[AR_BUFFERS];
 103        void *buffer;
 104        struct descriptor *descriptors;
 105        dma_addr_t descriptors_bus;
 106        void *pointer;
 107        unsigned int last_buffer_index;
 108        u32 regs;
 109        struct tasklet_struct tasklet;
 110};
 111
 112struct context;
 113
 114typedef int (*descriptor_callback_t)(struct context *ctx,
 115                                     struct descriptor *d,
 116                                     struct descriptor *last);
 117
 118/*
 119 * A buffer that contains a block of DMA-able coherent memory used for
 120 * storing a portion of a DMA descriptor program.
 121 */
 122struct descriptor_buffer {
 123        struct list_head list;
 124        dma_addr_t buffer_bus;
 125        size_t buffer_size;
 126        size_t used;
 127        struct descriptor buffer[0];
 128};
 129
 130struct context {
 131        struct fw_ohci *ohci;
 132        u32 regs;
 133        int total_allocation;
 134        u32 current_bus;
 135        bool running;
 136        bool flushing;
 137
 138        /*
 139         * List of page-sized buffers for storing DMA descriptors.
 140         * Head of list contains buffers in use and tail of list contains
 141         * free buffers.
 142         */
 143        struct list_head buffer_list;
 144
 145        /*
 146         * Pointer to a buffer inside buffer_list that contains the tail
 147         * end of the current DMA program.
 148         */
 149        struct descriptor_buffer *buffer_tail;
 150
 151        /*
 152         * The descriptor containing the branch address of the first
 153         * descriptor that has not yet been filled by the device.
 154         */
 155        struct descriptor *last;
 156
 157        /*
 158         * The last descriptor block in the DMA program. It contains the branch
 159         * address that must be updated upon appending a new descriptor.
 160         */
 161        struct descriptor *prev;
 162        int prev_z;
 163
 164        descriptor_callback_t callback;
 165
 166        struct tasklet_struct tasklet;
 167};
 168
 169#define IT_HEADER_SY(v)          ((v) <<  0)
 170#define IT_HEADER_TCODE(v)       ((v) <<  4)
 171#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
 172#define IT_HEADER_TAG(v)         ((v) << 14)
 173#define IT_HEADER_SPEED(v)       ((v) << 16)
 174#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
 175
 176struct iso_context {
 177        struct fw_iso_context base;
 178        struct context context;
 179        void *header;
 180        size_t header_length;
 181        unsigned long flushing_completions;
 182        u32 mc_buffer_bus;
 183        u16 mc_completed;
 184        u16 last_timestamp;
 185        u8 sync;
 186        u8 tags;
 187};
 188
 189#define CONFIG_ROM_SIZE 1024
 190
 191struct fw_ohci {
 192        struct fw_card card;
 193
 194        __iomem char *registers;
 195        int node_id;
 196        int generation;
 197        int request_generation; /* for timestamping incoming requests */
 198        unsigned quirks;
 199        unsigned int pri_req_max;
 200        u32 bus_time;
 201        bool bus_time_running;
 202        bool is_root;
 203        bool csr_state_setclear_abdicate;
 204        int n_ir;
 205        int n_it;
 206        /*
 207         * Spinlock for accessing fw_ohci data.  Never call out of
 208         * this driver with this lock held.
 209         */
 210        spinlock_t lock;
 211
 212        struct mutex phy_reg_mutex;
 213
 214        void *misc_buffer;
 215        dma_addr_t misc_buffer_bus;
 216
 217        struct ar_context ar_request_ctx;
 218        struct ar_context ar_response_ctx;
 219        struct context at_request_ctx;
 220        struct context at_response_ctx;
 221
 222        u32 it_context_support;
 223        u32 it_context_mask;     /* unoccupied IT contexts */
 224        struct iso_context *it_context_list;
 225        u64 ir_context_channels; /* unoccupied channels */
 226        u32 ir_context_support;
 227        u32 ir_context_mask;     /* unoccupied IR contexts */
 228        struct iso_context *ir_context_list;
 229        u64 mc_channels; /* channels in use by the multichannel IR context */
 230        bool mc_allocated;
 231
 232        __be32    *config_rom;
 233        dma_addr_t config_rom_bus;
 234        __be32    *next_config_rom;
 235        dma_addr_t next_config_rom_bus;
 236        __be32     next_header;
 237
 238        __le32    *self_id;
 239        dma_addr_t self_id_bus;
 240        struct work_struct bus_reset_work;
 241
 242        u32 self_id_buffer[512];
 243};
 244
 245static struct workqueue_struct *selfid_workqueue;
 246
 247static inline struct fw_ohci *fw_ohci(struct fw_card *card)
 248{
 249        return container_of(card, struct fw_ohci, card);
 250}
 251
 252#define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
 253#define IR_CONTEXT_BUFFER_FILL          0x80000000
 254#define IR_CONTEXT_ISOCH_HEADER         0x40000000
 255#define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
 256#define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
 257#define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
 258
 259#define CONTEXT_RUN     0x8000
 260#define CONTEXT_WAKE    0x1000
 261#define CONTEXT_DEAD    0x0800
 262#define CONTEXT_ACTIVE  0x0400
 263
 264#define OHCI1394_MAX_AT_REQ_RETRIES     0xf
 265#define OHCI1394_MAX_AT_RESP_RETRIES    0x2
 266#define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
 267
 268#define OHCI1394_REGISTER_SIZE          0x800
 269#define OHCI1394_PCI_HCI_Control        0x40
 270#define SELF_ID_BUF_SIZE                0x800
 271#define OHCI_TCODE_PHY_PACKET           0x0e
 272#define OHCI_VERSION_1_1                0x010010
 273
 274static char ohci_driver_name[] = KBUILD_MODNAME;
 275
 276#define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
 277#define PCI_DEVICE_ID_AGERE_FW643       0x5901
 278#define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
 279#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
 280#define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
 281#define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
 282#define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
 283#define PCI_DEVICE_ID_VIA_VT630X        0x3044
 284#define PCI_REV_ID_VIA_VT6306           0x46
 285#define PCI_DEVICE_ID_VIA_VT6315        0x3403
 286
 287#define QUIRK_CYCLE_TIMER               0x1
 288#define QUIRK_RESET_PACKET              0x2
 289#define QUIRK_BE_HEADERS                0x4
 290#define QUIRK_NO_1394A                  0x8
 291#define QUIRK_NO_MSI                    0x10
 292#define QUIRK_TI_SLLZ059                0x20
 293#define QUIRK_IR_WAKE                   0x40
 294
 295/* In case of multiple matches in ohci_quirks[], only the first one is used. */
 296static const struct {
 297        unsigned short vendor, device, revision, flags;
 298} ohci_quirks[] = {
 299        {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
 300                QUIRK_CYCLE_TIMER},
 301
 302        {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
 303                QUIRK_BE_HEADERS},
 304
 305        {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
 306                QUIRK_NO_MSI},
 307
 308        {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
 309                QUIRK_RESET_PACKET},
 310
 311        {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
 312                QUIRK_NO_MSI},
 313
 314        {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
 315                QUIRK_CYCLE_TIMER},
 316
 317        {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
 318                QUIRK_NO_MSI},
 319
 320        {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
 321                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 322
 323        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
 324                QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
 325
 326        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
 327                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 328
 329        {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
 330                QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
 331
 332        {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
 333                QUIRK_RESET_PACKET},
 334
 335        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
 336                QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
 337
 338        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
 339                QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
 340
 341        {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
 342                QUIRK_NO_MSI},
 343
 344        {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
 345                QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
 346};
 347
 348/* This overrides anything that was found in ohci_quirks[]. */
 349static int param_quirks;
 350module_param_named(quirks, param_quirks, int, 0644);
 351MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
 352        ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
 353        ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
 354        ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
 355        ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
 356        ", disable MSI = "              __stringify(QUIRK_NO_MSI)
 357        ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
 358        ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
 359        ")");
 360
 361#define OHCI_PARAM_DEBUG_AT_AR          1
 362#define OHCI_PARAM_DEBUG_SELFIDS        2
 363#define OHCI_PARAM_DEBUG_IRQS           4
 364#define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
 365
 366static int param_debug;
 367module_param_named(debug, param_debug, int, 0644);
 368MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
 369        ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
 370        ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
 371        ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
 372        ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
 373        ", or a combination, or all = -1)");
 374
 375static bool param_remote_dma;
 376module_param_named(remote_dma, param_remote_dma, bool, 0444);
 377MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
 378
 379static void log_irqs(struct fw_ohci *ohci, u32 evt)
 380{
 381        if (likely(!(param_debug &
 382                        (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
 383                return;
 384
 385        if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
 386            !(evt & OHCI1394_busReset))
 387                return;
 388
 389        ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
 390            evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
 391            evt & OHCI1394_RQPkt                ? " AR_req"             : "",
 392            evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
 393            evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
 394            evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
 395            evt & OHCI1394_isochRx              ? " IR"                 : "",
 396            evt & OHCI1394_isochTx              ? " IT"                 : "",
 397            evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
 398            evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
 399            evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
 400            evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
 401            evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
 402            evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
 403            evt & OHCI1394_busReset             ? " busReset"           : "",
 404            evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
 405                    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
 406                    OHCI1394_respTxComplete | OHCI1394_isochRx |
 407                    OHCI1394_isochTx | OHCI1394_postedWriteErr |
 408                    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
 409                    OHCI1394_cycleInconsistent |
 410                    OHCI1394_regAccessFail | OHCI1394_busReset)
 411                                                ? " ?"                  : "");
 412}
 413
 414static const char *speed[] = {
 415        [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
 416};
 417static const char *power[] = {
 418        [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
 419        [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
 420};
 421static const char port[] = { '.', '-', 'p', 'c', };
 422
 423static char _p(u32 *s, int shift)
 424{
 425        return port[*s >> shift & 3];
 426}
 427
 428static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
 429{
 430        u32 *s;
 431
 432        if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
 433                return;
 434
 435        ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
 436                    self_id_count, generation, ohci->node_id);
 437
 438        for (s = ohci->self_id_buffer; self_id_count--; ++s)
 439                if ((*s & 1 << 23) == 0)
 440                        ohci_notice(ohci,
 441                            "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
 442                            *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
 443                            speed[*s >> 14 & 3], *s >> 16 & 63,
 444                            power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
 445                            *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
 446                else
 447                        ohci_notice(ohci,
 448                            "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
 449                            *s, *s >> 24 & 63,
 450                            _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
 451                            _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
 452}
 453
 454static const char *evts[] = {
 455        [0x00] = "evt_no_status",       [0x01] = "-reserved-",
 456        [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
 457        [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
 458        [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
 459        [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
 460        [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
 461        [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
 462        [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
 463        [0x10] = "-reserved-",          [0x11] = "ack_complete",
 464        [0x12] = "ack_pending ",        [0x13] = "-reserved-",
 465        [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
 466        [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
 467        [0x18] = "-reserved-",          [0x19] = "-reserved-",
 468        [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
 469        [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
 470        [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
 471        [0x20] = "pending/cancelled",
 472};
 473static const char *tcodes[] = {
 474        [0x0] = "QW req",               [0x1] = "BW req",
 475        [0x2] = "W resp",               [0x3] = "-reserved-",
 476        [0x4] = "QR req",               [0x5] = "BR req",
 477        [0x6] = "QR resp",              [0x7] = "BR resp",
 478        [0x8] = "cycle start",          [0x9] = "Lk req",
 479        [0xa] = "async stream packet",  [0xb] = "Lk resp",
 480        [0xc] = "-reserved-",           [0xd] = "-reserved-",
 481        [0xe] = "link internal",        [0xf] = "-reserved-",
 482};
 483
 484static void log_ar_at_event(struct fw_ohci *ohci,
 485                            char dir, int speed, u32 *header, int evt)
 486{
 487        int tcode = header[0] >> 4 & 0xf;
 488        char specific[12];
 489
 490        if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
 491                return;
 492
 493        if (unlikely(evt >= ARRAY_SIZE(evts)))
 494                        evt = 0x1f;
 495
 496        if (evt == OHCI1394_evt_bus_reset) {
 497                ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
 498                            dir, (header[2] >> 16) & 0xff);
 499                return;
 500        }
 501
 502        switch (tcode) {
 503        case 0x0: case 0x6: case 0x8:
 504                snprintf(specific, sizeof(specific), " = %08x",
 505                         be32_to_cpu((__force __be32)header[3]));
 506                break;
 507        case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
 508                snprintf(specific, sizeof(specific), " %x,%x",
 509                         header[3] >> 16, header[3] & 0xffff);
 510                break;
 511        default:
 512                specific[0] = '\0';
 513        }
 514
 515        switch (tcode) {
 516        case 0xa:
 517                ohci_notice(ohci, "A%c %s, %s\n",
 518                            dir, evts[evt], tcodes[tcode]);
 519                break;
 520        case 0xe:
 521                ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
 522                            dir, evts[evt], header[1], header[2]);
 523                break;
 524        case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
 525                ohci_notice(ohci,
 526                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
 527                            dir, speed, header[0] >> 10 & 0x3f,
 528                            header[1] >> 16, header[0] >> 16, evts[evt],
 529                            tcodes[tcode], header[1] & 0xffff, header[2], specific);
 530                break;
 531        default:
 532                ohci_notice(ohci,
 533                            "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
 534                            dir, speed, header[0] >> 10 & 0x3f,
 535                            header[1] >> 16, header[0] >> 16, evts[evt],
 536                            tcodes[tcode], specific);
 537        }
 538}
 539
 540static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
 541{
 542        writel(data, ohci->registers + offset);
 543}
 544
 545static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
 546{
 547        return readl(ohci->registers + offset);
 548}
 549
 550static inline void flush_writes(const struct fw_ohci *ohci)
 551{
 552        /* Do a dummy read to flush writes. */
 553        reg_read(ohci, OHCI1394_Version);
 554}
 555
 556/*
 557 * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
 558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
 559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
 560 * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
 561 */
 562static int read_phy_reg(struct fw_ohci *ohci, int addr)
 563{
 564        u32 val;
 565        int i;
 566
 567        reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
 568        for (i = 0; i < 3 + 100; i++) {
 569                val = reg_read(ohci, OHCI1394_PhyControl);
 570                if (!~val)
 571                        return -ENODEV; /* Card was ejected. */
 572
 573                if (val & OHCI1394_PhyControl_ReadDone)
 574                        return OHCI1394_PhyControl_ReadData(val);
 575
 576                /*
 577                 * Try a few times without waiting.  Sleeping is necessary
 578                 * only when the link/PHY interface is busy.
 579                 */
 580                if (i >= 3)
 581                        msleep(1);
 582        }
 583        ohci_err(ohci, "failed to read phy reg %d\n", addr);
 584        dump_stack();
 585
 586        return -EBUSY;
 587}
 588
 589static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
 590{
 591        int i;
 592
 593        reg_write(ohci, OHCI1394_PhyControl,
 594                  OHCI1394_PhyControl_Write(addr, val));
 595        for (i = 0; i < 3 + 100; i++) {
 596                val = reg_read(ohci, OHCI1394_PhyControl);
 597                if (!~val)
 598                        return -ENODEV; /* Card was ejected. */
 599
 600                if (!(val & OHCI1394_PhyControl_WritePending))
 601                        return 0;
 602
 603                if (i >= 3)
 604                        msleep(1);
 605        }
 606        ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
 607        dump_stack();
 608
 609        return -EBUSY;
 610}
 611
 612static int update_phy_reg(struct fw_ohci *ohci, int addr,
 613                          int clear_bits, int set_bits)
 614{
 615        int ret = read_phy_reg(ohci, addr);
 616        if (ret < 0)
 617                return ret;
 618
 619        /*
 620         * The interrupt status bits are cleared by writing a one bit.
 621         * Avoid clearing them unless explicitly requested in set_bits.
 622         */
 623        if (addr == 5)
 624                clear_bits |= PHY_INT_STATUS_BITS;
 625
 626        return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
 627}
 628
 629static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
 630{
 631        int ret;
 632
 633        ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
 634        if (ret < 0)
 635                return ret;
 636
 637        return read_phy_reg(ohci, addr);
 638}
 639
 640static int ohci_read_phy_reg(struct fw_card *card, int addr)
 641{
 642        struct fw_ohci *ohci = fw_ohci(card);
 643        int ret;
 644
 645        mutex_lock(&ohci->phy_reg_mutex);
 646        ret = read_phy_reg(ohci, addr);
 647        mutex_unlock(&ohci->phy_reg_mutex);
 648
 649        return ret;
 650}
 651
 652static int ohci_update_phy_reg(struct fw_card *card, int addr,
 653                               int clear_bits, int set_bits)
 654{
 655        struct fw_ohci *ohci = fw_ohci(card);
 656        int ret;
 657
 658        mutex_lock(&ohci->phy_reg_mutex);
 659        ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
 660        mutex_unlock(&ohci->phy_reg_mutex);
 661
 662        return ret;
 663}
 664
 665static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
 666{
 667        return page_private(ctx->pages[i]);
 668}
 669
 670static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
 671{
 672        struct descriptor *d;
 673
 674        d = &ctx->descriptors[index];
 675        d->branch_address  &= cpu_to_le32(~0xf);
 676        d->res_count       =  cpu_to_le16(PAGE_SIZE);
 677        d->transfer_status =  0;
 678
 679        wmb(); /* finish init of new descriptors before branch_address update */
 680        d = &ctx->descriptors[ctx->last_buffer_index];
 681        d->branch_address  |= cpu_to_le32(1);
 682
 683        ctx->last_buffer_index = index;
 684
 685        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
 686}
 687
 688static void ar_context_release(struct ar_context *ctx)
 689{
 690        unsigned int i;
 691
 692        if (ctx->buffer)
 693                vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
 694
 695        for (i = 0; i < AR_BUFFERS; i++)
 696                if (ctx->pages[i]) {
 697                        dma_unmap_page(ctx->ohci->card.device,
 698                                       ar_buffer_bus(ctx, i),
 699                                       PAGE_SIZE, DMA_FROM_DEVICE);
 700                        __free_page(ctx->pages[i]);
 701                }
 702}
 703
 704static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
 705{
 706        struct fw_ohci *ohci = ctx->ohci;
 707
 708        if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
 709                reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
 710                flush_writes(ohci);
 711
 712                ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
 713        }
 714        /* FIXME: restart? */
 715}
 716
 717static inline unsigned int ar_next_buffer_index(unsigned int index)
 718{
 719        return (index + 1) % AR_BUFFERS;
 720}
 721
 722static inline unsigned int ar_prev_buffer_index(unsigned int index)
 723{
 724        return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
 725}
 726
 727static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
 728{
 729        return ar_next_buffer_index(ctx->last_buffer_index);
 730}
 731
 732/*
 733 * We search for the buffer that contains the last AR packet DMA data written
 734 * by the controller.
 735 */
 736static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
 737                                                 unsigned int *buffer_offset)
 738{
 739        unsigned int i, next_i, last = ctx->last_buffer_index;
 740        __le16 res_count, next_res_count;
 741
 742        i = ar_first_buffer_index(ctx);
 743        res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
 744
 745        /* A buffer that is not yet completely filled must be the last one. */
 746        while (i != last && res_count == 0) {
 747
 748                /* Peek at the next descriptor. */
 749                next_i = ar_next_buffer_index(i);
 750                rmb(); /* read descriptors in order */
 751                next_res_count = ACCESS_ONCE(
 752                                ctx->descriptors[next_i].res_count);
 753                /*
 754                 * If the next descriptor is still empty, we must stop at this
 755                 * descriptor.
 756                 */
 757                if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
 758                        /*
 759                         * The exception is when the DMA data for one packet is
 760                         * split over three buffers; in this case, the middle
 761                         * buffer's descriptor might be never updated by the
 762                         * controller and look still empty, and we have to peek
 763                         * at the third one.
 764                         */
 765                        if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
 766                                next_i = ar_next_buffer_index(next_i);
 767                                rmb();
 768                                next_res_count = ACCESS_ONCE(
 769                                        ctx->descriptors[next_i].res_count);
 770                                if (next_res_count != cpu_to_le16(PAGE_SIZE))
 771                                        goto next_buffer_is_active;
 772                        }
 773
 774                        break;
 775                }
 776
 777next_buffer_is_active:
 778                i = next_i;
 779                res_count = next_res_count;
 780        }
 781
 782        rmb(); /* read res_count before the DMA data */
 783
 784        *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
 785        if (*buffer_offset > PAGE_SIZE) {
 786                *buffer_offset = 0;
 787                ar_context_abort(ctx, "corrupted descriptor");
 788        }
 789
 790        return i;
 791}
 792
 793static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
 794                                    unsigned int end_buffer_index,
 795                                    unsigned int end_buffer_offset)
 796{
 797        unsigned int i;
 798
 799        i = ar_first_buffer_index(ctx);
 800        while (i != end_buffer_index) {
 801                dma_sync_single_for_cpu(ctx->ohci->card.device,
 802                                        ar_buffer_bus(ctx, i),
 803                                        PAGE_SIZE, DMA_FROM_DEVICE);
 804                i = ar_next_buffer_index(i);
 805        }
 806        if (end_buffer_offset > 0)
 807                dma_sync_single_for_cpu(ctx->ohci->card.device,
 808                                        ar_buffer_bus(ctx, i),
 809                                        end_buffer_offset, DMA_FROM_DEVICE);
 810}
 811
 812#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
 813#define cond_le32_to_cpu(v) \
 814        (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
 815#else
 816#define cond_le32_to_cpu(v) le32_to_cpu(v)
 817#endif
 818
 819static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
 820{
 821        struct fw_ohci *ohci = ctx->ohci;
 822        struct fw_packet p;
 823        u32 status, length, tcode;
 824        int evt;
 825
 826        p.header[0] = cond_le32_to_cpu(buffer[0]);
 827        p.header[1] = cond_le32_to_cpu(buffer[1]);
 828        p.header[2] = cond_le32_to_cpu(buffer[2]);
 829
 830        tcode = (p.header[0] >> 4) & 0x0f;
 831        switch (tcode) {
 832        case TCODE_WRITE_QUADLET_REQUEST:
 833        case TCODE_READ_QUADLET_RESPONSE:
 834                p.header[3] = (__force __u32) buffer[3];
 835                p.header_length = 16;
 836                p.payload_length = 0;
 837                break;
 838
 839        case TCODE_READ_BLOCK_REQUEST :
 840                p.header[3] = cond_le32_to_cpu(buffer[3]);
 841                p.header_length = 16;
 842                p.payload_length = 0;
 843                break;
 844
 845        case TCODE_WRITE_BLOCK_REQUEST:
 846        case TCODE_READ_BLOCK_RESPONSE:
 847        case TCODE_LOCK_REQUEST:
 848        case TCODE_LOCK_RESPONSE:
 849                p.header[3] = cond_le32_to_cpu(buffer[3]);
 850                p.header_length = 16;
 851                p.payload_length = p.header[3] >> 16;
 852                if (p.payload_length > MAX_ASYNC_PAYLOAD) {
 853                        ar_context_abort(ctx, "invalid packet length");
 854                        return NULL;
 855                }
 856                break;
 857
 858        case TCODE_WRITE_RESPONSE:
 859        case TCODE_READ_QUADLET_REQUEST:
 860        case OHCI_TCODE_PHY_PACKET:
 861                p.header_length = 12;
 862                p.payload_length = 0;
 863                break;
 864
 865        default:
 866                ar_context_abort(ctx, "invalid tcode");
 867                return NULL;
 868        }
 869
 870        p.payload = (void *) buffer + p.header_length;
 871
 872        /* FIXME: What to do about evt_* errors? */
 873        length = (p.header_length + p.payload_length + 3) / 4;
 874        status = cond_le32_to_cpu(buffer[length]);
 875        evt    = (status >> 16) & 0x1f;
 876
 877        p.ack        = evt - 16;
 878        p.speed      = (status >> 21) & 0x7;
 879        p.timestamp  = status & 0xffff;
 880        p.generation = ohci->request_generation;
 881
 882        log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
 883
 884        /*
 885         * Several controllers, notably from NEC and VIA, forget to
 886         * write ack_complete status at PHY packet reception.
 887         */
 888        if (evt == OHCI1394_evt_no_status &&
 889            (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
 890                p.ack = ACK_COMPLETE;
 891
 892        /*
 893         * The OHCI bus reset handler synthesizes a PHY packet with
 894         * the new generation number when a bus reset happens (see
 895         * section 8.4.2.3).  This helps us determine when a request
 896         * was received and make sure we send the response in the same
 897         * generation.  We only need this for requests; for responses
 898         * we use the unique tlabel for finding the matching
 899         * request.
 900         *
 901         * Alas some chips sometimes emit bus reset packets with a
 902         * wrong generation.  We set the correct generation for these
 903         * at a slightly incorrect time (in bus_reset_work).
 904         */
 905        if (evt == OHCI1394_evt_bus_reset) {
 906                if (!(ohci->quirks & QUIRK_RESET_PACKET))
 907                        ohci->request_generation = (p.header[2] >> 16) & 0xff;
 908        } else if (ctx == &ohci->ar_request_ctx) {
 909                fw_core_handle_request(&ohci->card, &p);
 910        } else {
 911                fw_core_handle_response(&ohci->card, &p);
 912        }
 913
 914        return buffer + length + 1;
 915}
 916
 917static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
 918{
 919        void *next;
 920
 921        while (p < end) {
 922                next = handle_ar_packet(ctx, p);
 923                if (!next)
 924                        return p;
 925                p = next;
 926        }
 927
 928        return p;
 929}
 930
 931static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
 932{
 933        unsigned int i;
 934
 935        i = ar_first_buffer_index(ctx);
 936        while (i != end_buffer) {
 937                dma_sync_single_for_device(ctx->ohci->card.device,
 938                                           ar_buffer_bus(ctx, i),
 939                                           PAGE_SIZE, DMA_FROM_DEVICE);
 940                ar_context_link_page(ctx, i);
 941                i = ar_next_buffer_index(i);
 942        }
 943}
 944
 945static void ar_context_tasklet(unsigned long data)
 946{
 947        struct ar_context *ctx = (struct ar_context *)data;
 948        unsigned int end_buffer_index, end_buffer_offset;
 949        void *p, *end;
 950
 951        p = ctx->pointer;
 952        if (!p)
 953                return;
 954
 955        end_buffer_index = ar_search_last_active_buffer(ctx,
 956                                                        &end_buffer_offset);
 957        ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
 958        end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
 959
 960        if (end_buffer_index < ar_first_buffer_index(ctx)) {
 961                /*
 962                 * The filled part of the overall buffer wraps around; handle
 963                 * all packets up to the buffer end here.  If the last packet
 964                 * wraps around, its tail will be visible after the buffer end
 965                 * because the buffer start pages are mapped there again.
 966                 */
 967                void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
 968                p = handle_ar_packets(ctx, p, buffer_end);
 969                if (p < buffer_end)
 970                        goto error;
 971                /* adjust p to point back into the actual buffer */
 972                p -= AR_BUFFERS * PAGE_SIZE;
 973        }
 974
 975        p = handle_ar_packets(ctx, p, end);
 976        if (p != end) {
 977                if (p > end)
 978                        ar_context_abort(ctx, "inconsistent descriptor");
 979                goto error;
 980        }
 981
 982        ctx->pointer = p;
 983        ar_recycle_buffers(ctx, end_buffer_index);
 984
 985        return;
 986
 987error:
 988        ctx->pointer = NULL;
 989}
 990
 991static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
 992                           unsigned int descriptors_offset, u32 regs)
 993{
 994        unsigned int i;
 995        dma_addr_t dma_addr;
 996        struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
 997        struct descriptor *d;
 998
 999        ctx->regs        = regs;
1000        ctx->ohci        = ohci;
1001        tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1002
1003        for (i = 0; i < AR_BUFFERS; i++) {
1004                ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
1005                if (!ctx->pages[i])
1006                        goto out_of_memory;
1007                dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1008                                        0, PAGE_SIZE, DMA_FROM_DEVICE);
1009                if (dma_mapping_error(ohci->card.device, dma_addr)) {
1010                        __free_page(ctx->pages[i]);
1011                        ctx->pages[i] = NULL;
1012                        goto out_of_memory;
1013                }
1014                set_page_private(ctx->pages[i], dma_addr);
1015        }
1016
1017        for (i = 0; i < AR_BUFFERS; i++)
1018                pages[i]              = ctx->pages[i];
1019        for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1020                pages[AR_BUFFERS + i] = ctx->pages[i];
1021        ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1022                                 -1, PAGE_KERNEL);
1023        if (!ctx->buffer)
1024                goto out_of_memory;
1025
1026        ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1027        ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1028
1029        for (i = 0; i < AR_BUFFERS; i++) {
1030                d = &ctx->descriptors[i];
1031                d->req_count      = cpu_to_le16(PAGE_SIZE);
1032                d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1033                                                DESCRIPTOR_STATUS |
1034                                                DESCRIPTOR_BRANCH_ALWAYS);
1035                d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1036                d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1037                        ar_next_buffer_index(i) * sizeof(struct descriptor));
1038        }
1039
1040        return 0;
1041
1042out_of_memory:
1043        ar_context_release(ctx);
1044
1045        return -ENOMEM;
1046}
1047
1048static void ar_context_run(struct ar_context *ctx)
1049{
1050        unsigned int i;
1051
1052        for (i = 0; i < AR_BUFFERS; i++)
1053                ar_context_link_page(ctx, i);
1054
1055        ctx->pointer = ctx->buffer;
1056
1057        reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1058        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1059}
1060
1061static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1062{
1063        __le16 branch;
1064
1065        branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1066
1067        /* figure out which descriptor the branch address goes in */
1068        if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1069                return d;
1070        else
1071                return d + z - 1;
1072}
1073
1074static void context_tasklet(unsigned long data)
1075{
1076        struct context *ctx = (struct context *) data;
1077        struct descriptor *d, *last;
1078        u32 address;
1079        int z;
1080        struct descriptor_buffer *desc;
1081
1082        desc = list_entry(ctx->buffer_list.next,
1083                        struct descriptor_buffer, list);
1084        last = ctx->last;
1085        while (last->branch_address != 0) {
1086                struct descriptor_buffer *old_desc = desc;
1087                address = le32_to_cpu(last->branch_address);
1088                z = address & 0xf;
1089                address &= ~0xf;
1090                ctx->current_bus = address;
1091
1092                /* If the branch address points to a buffer outside of the
1093                 * current buffer, advance to the next buffer. */
1094                if (address < desc->buffer_bus ||
1095                                address >= desc->buffer_bus + desc->used)
1096                        desc = list_entry(desc->list.next,
1097                                        struct descriptor_buffer, list);
1098                d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1099                last = find_branch_descriptor(d, z);
1100
1101                if (!ctx->callback(ctx, d, last))
1102                        break;
1103
1104                if (old_desc != desc) {
1105                        /* If we've advanced to the next buffer, move the
1106                         * previous buffer to the free list. */
1107                        unsigned long flags;
1108                        old_desc->used = 0;
1109                        spin_lock_irqsave(&ctx->ohci->lock, flags);
1110                        list_move_tail(&old_desc->list, &ctx->buffer_list);
1111                        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1112                }
1113                ctx->last = last;
1114        }
1115}
1116
1117/*
1118 * Allocate a new buffer and add it to the list of free buffers for this
1119 * context.  Must be called with ohci->lock held.
1120 */
1121static int context_add_buffer(struct context *ctx)
1122{
1123        struct descriptor_buffer *desc;
1124        dma_addr_t uninitialized_var(bus_addr);
1125        int offset;
1126
1127        /*
1128         * 16MB of descriptors should be far more than enough for any DMA
1129         * program.  This will catch run-away userspace or DoS attacks.
1130         */
1131        if (ctx->total_allocation >= 16*1024*1024)
1132                return -ENOMEM;
1133
1134        desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1135                        &bus_addr, GFP_ATOMIC);
1136        if (!desc)
1137                return -ENOMEM;
1138
1139        offset = (void *)&desc->buffer - (void *)desc;
1140        desc->buffer_size = PAGE_SIZE - offset;
1141        desc->buffer_bus = bus_addr + offset;
1142        desc->used = 0;
1143
1144        list_add_tail(&desc->list, &ctx->buffer_list);
1145        ctx->total_allocation += PAGE_SIZE;
1146
1147        return 0;
1148}
1149
1150static int context_init(struct context *ctx, struct fw_ohci *ohci,
1151                        u32 regs, descriptor_callback_t callback)
1152{
1153        ctx->ohci = ohci;
1154        ctx->regs = regs;
1155        ctx->total_allocation = 0;
1156
1157        INIT_LIST_HEAD(&ctx->buffer_list);
1158        if (context_add_buffer(ctx) < 0)
1159                return -ENOMEM;
1160
1161        ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1162                        struct descriptor_buffer, list);
1163
1164        tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1165        ctx->callback = callback;
1166
1167        /*
1168         * We put a dummy descriptor in the buffer that has a NULL
1169         * branch address and looks like it's been sent.  That way we
1170         * have a descriptor to append DMA programs to.
1171         */
1172        memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1173        ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1174        ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1175        ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1176        ctx->last = ctx->buffer_tail->buffer;
1177        ctx->prev = ctx->buffer_tail->buffer;
1178        ctx->prev_z = 1;
1179
1180        return 0;
1181}
1182
1183static void context_release(struct context *ctx)
1184{
1185        struct fw_card *card = &ctx->ohci->card;
1186        struct descriptor_buffer *desc, *tmp;
1187
1188        list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1189                dma_free_coherent(card->device, PAGE_SIZE, desc,
1190                        desc->buffer_bus -
1191                        ((void *)&desc->buffer - (void *)desc));
1192}
1193
1194/* Must be called with ohci->lock held */
1195static struct descriptor *context_get_descriptors(struct context *ctx,
1196                                                  int z, dma_addr_t *d_bus)
1197{
1198        struct descriptor *d = NULL;
1199        struct descriptor_buffer *desc = ctx->buffer_tail;
1200
1201        if (z * sizeof(*d) > desc->buffer_size)
1202                return NULL;
1203
1204        if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1205                /* No room for the descriptor in this buffer, so advance to the
1206                 * next one. */
1207
1208                if (desc->list.next == &ctx->buffer_list) {
1209                        /* If there is no free buffer next in the list,
1210                         * allocate one. */
1211                        if (context_add_buffer(ctx) < 0)
1212                                return NULL;
1213                }
1214                desc = list_entry(desc->list.next,
1215                                struct descriptor_buffer, list);
1216                ctx->buffer_tail = desc;
1217        }
1218
1219        d = desc->buffer + desc->used / sizeof(*d);
1220        memset(d, 0, z * sizeof(*d));
1221        *d_bus = desc->buffer_bus + desc->used;
1222
1223        return d;
1224}
1225
1226static void context_run(struct context *ctx, u32 extra)
1227{
1228        struct fw_ohci *ohci = ctx->ohci;
1229
1230        reg_write(ohci, COMMAND_PTR(ctx->regs),
1231                  le32_to_cpu(ctx->last->branch_address));
1232        reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1233        reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1234        ctx->running = true;
1235        flush_writes(ohci);
1236}
1237
1238static void context_append(struct context *ctx,
1239                           struct descriptor *d, int z, int extra)
1240{
1241        dma_addr_t d_bus;
1242        struct descriptor_buffer *desc = ctx->buffer_tail;
1243        struct descriptor *d_branch;
1244
1245        d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1246
1247        desc->used += (z + extra) * sizeof(*d);
1248
1249        wmb(); /* finish init of new descriptors before branch_address update */
1250
1251        d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1252        d_branch->branch_address = cpu_to_le32(d_bus | z);
1253
1254        /*
1255         * VT6306 incorrectly checks only the single descriptor at the
1256         * CommandPtr when the wake bit is written, so if it's a
1257         * multi-descriptor block starting with an INPUT_MORE, put a copy of
1258         * the branch address in the first descriptor.
1259         *
1260         * Not doing this for transmit contexts since not sure how it interacts
1261         * with skip addresses.
1262         */
1263        if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1264            d_branch != ctx->prev &&
1265            (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1266             cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1267                ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1268        }
1269
1270        ctx->prev = d;
1271        ctx->prev_z = z;
1272}
1273
1274static void context_stop(struct context *ctx)
1275{
1276        struct fw_ohci *ohci = ctx->ohci;
1277        u32 reg;
1278        int i;
1279
1280        reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1281        ctx->running = false;
1282
1283        for (i = 0; i < 1000; i++) {
1284                reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1285                if ((reg & CONTEXT_ACTIVE) == 0)
1286                        return;
1287
1288                if (i)
1289                        udelay(10);
1290        }
1291        ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1292}
1293
1294struct driver_data {
1295        u8 inline_data[8];
1296        struct fw_packet *packet;
1297};
1298
1299/*
1300 * This function apppends a packet to the DMA queue for transmission.
1301 * Must always be called with the ochi->lock held to ensure proper
1302 * generation handling and locking around packet queue manipulation.
1303 */
1304static int at_context_queue_packet(struct context *ctx,
1305                                   struct fw_packet *packet)
1306{
1307        struct fw_ohci *ohci = ctx->ohci;
1308        dma_addr_t d_bus, uninitialized_var(payload_bus);
1309        struct driver_data *driver_data;
1310        struct descriptor *d, *last;
1311        __le32 *header;
1312        int z, tcode;
1313
1314        d = context_get_descriptors(ctx, 4, &d_bus);
1315        if (d == NULL) {
1316                packet->ack = RCODE_SEND_ERROR;
1317                return -1;
1318        }
1319
1320        d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1321        d[0].res_count = cpu_to_le16(packet->timestamp);
1322
1323        /*
1324         * The DMA format for asynchronous link packets is different
1325         * from the IEEE1394 layout, so shift the fields around
1326         * accordingly.
1327         */
1328
1329        tcode = (packet->header[0] >> 4) & 0x0f;
1330        header = (__le32 *) &d[1];
1331        switch (tcode) {
1332        case TCODE_WRITE_QUADLET_REQUEST:
1333        case TCODE_WRITE_BLOCK_REQUEST:
1334        case TCODE_WRITE_RESPONSE:
1335        case TCODE_READ_QUADLET_REQUEST:
1336        case TCODE_READ_BLOCK_REQUEST:
1337        case TCODE_READ_QUADLET_RESPONSE:
1338        case TCODE_READ_BLOCK_RESPONSE:
1339        case TCODE_LOCK_REQUEST:
1340        case TCODE_LOCK_RESPONSE:
1341                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1342                                        (packet->speed << 16));
1343                header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1344                                        (packet->header[0] & 0xffff0000));
1345                header[2] = cpu_to_le32(packet->header[2]);
1346
1347                if (TCODE_IS_BLOCK_PACKET(tcode))
1348                        header[3] = cpu_to_le32(packet->header[3]);
1349                else
1350                        header[3] = (__force __le32) packet->header[3];
1351
1352                d[0].req_count = cpu_to_le16(packet->header_length);
1353                break;
1354
1355        case TCODE_LINK_INTERNAL:
1356                header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1357                                        (packet->speed << 16));
1358                header[1] = cpu_to_le32(packet->header[1]);
1359                header[2] = cpu_to_le32(packet->header[2]);
1360                d[0].req_count = cpu_to_le16(12);
1361
1362                if (is_ping_packet(&packet->header[1]))
1363                        d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1364                break;
1365
1366        case TCODE_STREAM_DATA:
1367                header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1368                                        (packet->speed << 16));
1369                header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1370                d[0].req_count = cpu_to_le16(8);
1371                break;
1372
1373        default:
1374                /* BUG(); */
1375                packet->ack = RCODE_SEND_ERROR;
1376                return -1;
1377        }
1378
1379        BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1380        driver_data = (struct driver_data *) &d[3];
1381        driver_data->packet = packet;
1382        packet->driver_data = driver_data;
1383
1384        if (packet->payload_length > 0) {
1385                if (packet->payload_length > sizeof(driver_data->inline_data)) {
1386                        payload_bus = dma_map_single(ohci->card.device,
1387                                                     packet->payload,
1388                                                     packet->payload_length,
1389                                                     DMA_TO_DEVICE);
1390                        if (dma_mapping_error(ohci->card.device, payload_bus)) {
1391                                packet->ack = RCODE_SEND_ERROR;
1392                                return -1;
1393                        }
1394                        packet->payload_bus     = payload_bus;
1395                        packet->payload_mapped  = true;
1396                } else {
1397                        memcpy(driver_data->inline_data, packet->payload,
1398                               packet->payload_length);
1399                        payload_bus = d_bus + 3 * sizeof(*d);
1400                }
1401
1402                d[2].req_count    = cpu_to_le16(packet->payload_length);
1403                d[2].data_address = cpu_to_le32(payload_bus);
1404                last = &d[2];
1405                z = 3;
1406        } else {
1407                last = &d[0];
1408                z = 2;
1409        }
1410
1411        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1412                                     DESCRIPTOR_IRQ_ALWAYS |
1413                                     DESCRIPTOR_BRANCH_ALWAYS);
1414
1415        /* FIXME: Document how the locking works. */
1416        if (ohci->generation != packet->generation) {
1417                if (packet->payload_mapped)
1418                        dma_unmap_single(ohci->card.device, payload_bus,
1419                                         packet->payload_length, DMA_TO_DEVICE);
1420                packet->ack = RCODE_GENERATION;
1421                return -1;
1422        }
1423
1424        context_append(ctx, d, z, 4 - z);
1425
1426        if (ctx->running)
1427                reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1428        else
1429                context_run(ctx, 0);
1430
1431        return 0;
1432}
1433
1434static void at_context_flush(struct context *ctx)
1435{
1436        tasklet_disable(&ctx->tasklet);
1437
1438        ctx->flushing = true;
1439        context_tasklet((unsigned long)ctx);
1440        ctx->flushing = false;
1441
1442        tasklet_enable(&ctx->tasklet);
1443}
1444
1445static int handle_at_packet(struct context *context,
1446                            struct descriptor *d,
1447                            struct descriptor *last)
1448{
1449        struct driver_data *driver_data;
1450        struct fw_packet *packet;
1451        struct fw_ohci *ohci = context->ohci;
1452        int evt;
1453
1454        if (last->transfer_status == 0 && !context->flushing)
1455                /* This descriptor isn't done yet, stop iteration. */
1456                return 0;
1457
1458        driver_data = (struct driver_data *) &d[3];
1459        packet = driver_data->packet;
1460        if (packet == NULL)
1461                /* This packet was cancelled, just continue. */
1462                return 1;
1463
1464        if (packet->payload_mapped)
1465                dma_unmap_single(ohci->card.device, packet->payload_bus,
1466                                 packet->payload_length, DMA_TO_DEVICE);
1467
1468        evt = le16_to_cpu(last->transfer_status) & 0x1f;
1469        packet->timestamp = le16_to_cpu(last->res_count);
1470
1471        log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1472
1473        switch (evt) {
1474        case OHCI1394_evt_timeout:
1475                /* Async response transmit timed out. */
1476                packet->ack = RCODE_CANCELLED;
1477                break;
1478
1479        case OHCI1394_evt_flushed:
1480                /*
1481                 * The packet was flushed should give same error as
1482                 * when we try to use a stale generation count.
1483                 */
1484                packet->ack = RCODE_GENERATION;
1485                break;
1486
1487        case OHCI1394_evt_missing_ack:
1488                if (context->flushing)
1489                        packet->ack = RCODE_GENERATION;
1490                else {
1491                        /*
1492                         * Using a valid (current) generation count, but the
1493                         * node is not on the bus or not sending acks.
1494                         */
1495                        packet->ack = RCODE_NO_ACK;
1496                }
1497                break;
1498
1499        case ACK_COMPLETE + 0x10:
1500        case ACK_PENDING + 0x10:
1501        case ACK_BUSY_X + 0x10:
1502        case ACK_BUSY_A + 0x10:
1503        case ACK_BUSY_B + 0x10:
1504        case ACK_DATA_ERROR + 0x10:
1505        case ACK_TYPE_ERROR + 0x10:
1506                packet->ack = evt - 0x10;
1507                break;
1508
1509        case OHCI1394_evt_no_status:
1510                if (context->flushing) {
1511                        packet->ack = RCODE_GENERATION;
1512                        break;
1513                }
1514                /* fall through */
1515
1516        default:
1517                packet->ack = RCODE_SEND_ERROR;
1518                break;
1519        }
1520
1521        packet->callback(packet, &ohci->card, packet->ack);
1522
1523        return 1;
1524}
1525
1526#define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1527#define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1528#define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1529#define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1530#define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1531
1532static void handle_local_rom(struct fw_ohci *ohci,
1533                             struct fw_packet *packet, u32 csr)
1534{
1535        struct fw_packet response;
1536        int tcode, length, i;
1537
1538        tcode = HEADER_GET_TCODE(packet->header[0]);
1539        if (TCODE_IS_BLOCK_PACKET(tcode))
1540                length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1541        else
1542                length = 4;
1543
1544        i = csr - CSR_CONFIG_ROM;
1545        if (i + length > CONFIG_ROM_SIZE) {
1546                fw_fill_response(&response, packet->header,
1547                                 RCODE_ADDRESS_ERROR, NULL, 0);
1548        } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1549                fw_fill_response(&response, packet->header,
1550                                 RCODE_TYPE_ERROR, NULL, 0);
1551        } else {
1552                fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1553                                 (void *) ohci->config_rom + i, length);
1554        }
1555
1556        fw_core_handle_response(&ohci->card, &response);
1557}
1558
1559static void handle_local_lock(struct fw_ohci *ohci,
1560                              struct fw_packet *packet, u32 csr)
1561{
1562        struct fw_packet response;
1563        int tcode, length, ext_tcode, sel, try;
1564        __be32 *payload, lock_old;
1565        u32 lock_arg, lock_data;
1566
1567        tcode = HEADER_GET_TCODE(packet->header[0]);
1568        length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1569        payload = packet->payload;
1570        ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1571
1572        if (tcode == TCODE_LOCK_REQUEST &&
1573            ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1574                lock_arg = be32_to_cpu(payload[0]);
1575                lock_data = be32_to_cpu(payload[1]);
1576        } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1577                lock_arg = 0;
1578                lock_data = 0;
1579        } else {
1580                fw_fill_response(&response, packet->header,
1581                                 RCODE_TYPE_ERROR, NULL, 0);
1582                goto out;
1583        }
1584
1585        sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1586        reg_write(ohci, OHCI1394_CSRData, lock_data);
1587        reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1588        reg_write(ohci, OHCI1394_CSRControl, sel);
1589
1590        for (try = 0; try < 20; try++)
1591                if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1592                        lock_old = cpu_to_be32(reg_read(ohci,
1593                                                        OHCI1394_CSRData));
1594                        fw_fill_response(&response, packet->header,
1595                                         RCODE_COMPLETE,
1596                                         &lock_old, sizeof(lock_old));
1597                        goto out;
1598                }
1599
1600        ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1601        fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1602
1603 out:
1604        fw_core_handle_response(&ohci->card, &response);
1605}
1606
1607static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1608{
1609        u64 offset, csr;
1610
1611        if (ctx == &ctx->ohci->at_request_ctx) {
1612                packet->ack = ACK_PENDING;
1613                packet->callback(packet, &ctx->ohci->card, packet->ack);
1614        }
1615
1616        offset =
1617                ((unsigned long long)
1618                 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1619                packet->header[2];
1620        csr = offset - CSR_REGISTER_BASE;
1621
1622        /* Handle config rom reads. */
1623        if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1624                handle_local_rom(ctx->ohci, packet, csr);
1625        else switch (csr) {
1626        case CSR_BUS_MANAGER_ID:
1627        case CSR_BANDWIDTH_AVAILABLE:
1628        case CSR_CHANNELS_AVAILABLE_HI:
1629        case CSR_CHANNELS_AVAILABLE_LO:
1630                handle_local_lock(ctx->ohci, packet, csr);
1631                break;
1632        default:
1633                if (ctx == &ctx->ohci->at_request_ctx)
1634                        fw_core_handle_request(&ctx->ohci->card, packet);
1635                else
1636                        fw_core_handle_response(&ctx->ohci->card, packet);
1637                break;
1638        }
1639
1640        if (ctx == &ctx->ohci->at_response_ctx) {
1641                packet->ack = ACK_COMPLETE;
1642                packet->callback(packet, &ctx->ohci->card, packet->ack);
1643        }
1644}
1645
1646static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1647{
1648        unsigned long flags;
1649        int ret;
1650
1651        spin_lock_irqsave(&ctx->ohci->lock, flags);
1652
1653        if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1654            ctx->ohci->generation == packet->generation) {
1655                spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1656                handle_local_request(ctx, packet);
1657                return;
1658        }
1659
1660        ret = at_context_queue_packet(ctx, packet);
1661        spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1662
1663        if (ret < 0)
1664                packet->callback(packet, &ctx->ohci->card, packet->ack);
1665
1666}
1667
1668static void detect_dead_context(struct fw_ohci *ohci,
1669                                const char *name, unsigned int regs)
1670{
1671        u32 ctl;
1672
1673        ctl = reg_read(ohci, CONTROL_SET(regs));
1674        if (ctl & CONTEXT_DEAD)
1675                ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1676                        name, evts[ctl & 0x1f]);
1677}
1678
1679static void handle_dead_contexts(struct fw_ohci *ohci)
1680{
1681        unsigned int i;
1682        char name[8];
1683
1684        detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1685        detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1686        detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1687        detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1688        for (i = 0; i < 32; ++i) {
1689                if (!(ohci->it_context_support & (1 << i)))
1690                        continue;
1691                sprintf(name, "IT%u", i);
1692                detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1693        }
1694        for (i = 0; i < 32; ++i) {
1695                if (!(ohci->ir_context_support & (1 << i)))
1696                        continue;
1697                sprintf(name, "IR%u", i);
1698                detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1699        }
1700        /* TODO: maybe try to flush and restart the dead contexts */
1701}
1702
1703static u32 cycle_timer_ticks(u32 cycle_timer)
1704{
1705        u32 ticks;
1706
1707        ticks = cycle_timer & 0xfff;
1708        ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1709        ticks += (3072 * 8000) * (cycle_timer >> 25);
1710
1711        return ticks;
1712}
1713
1714/*
1715 * Some controllers exhibit one or more of the following bugs when updating the
1716 * iso cycle timer register:
1717 *  - When the lowest six bits are wrapping around to zero, a read that happens
1718 *    at the same time will return garbage in the lowest ten bits.
1719 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1720 *    not incremented for about 60 ns.
1721 *  - Occasionally, the entire register reads zero.
1722 *
1723 * To catch these, we read the register three times and ensure that the
1724 * difference between each two consecutive reads is approximately the same, i.e.
1725 * less than twice the other.  Furthermore, any negative difference indicates an
1726 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1727 * execute, so we have enough precision to compute the ratio of the differences.)
1728 */
1729static u32 get_cycle_time(struct fw_ohci *ohci)
1730{
1731        u32 c0, c1, c2;
1732        u32 t0, t1, t2;
1733        s32 diff01, diff12;
1734        int i;
1735
1736        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1737
1738        if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1739                i = 0;
1740                c1 = c2;
1741                c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1742                do {
1743                        c0 = c1;
1744                        c1 = c2;
1745                        c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1746                        t0 = cycle_timer_ticks(c0);
1747                        t1 = cycle_timer_ticks(c1);
1748                        t2 = cycle_timer_ticks(c2);
1749                        diff01 = t1 - t0;
1750                        diff12 = t2 - t1;
1751                } while ((diff01 <= 0 || diff12 <= 0 ||
1752                          diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1753                         && i++ < 20);
1754        }
1755
1756        return c2;
1757}
1758
1759/*
1760 * This function has to be called at least every 64 seconds.  The bus_time
1761 * field stores not only the upper 25 bits of the BUS_TIME register but also
1762 * the most significant bit of the cycle timer in bit 6 so that we can detect
1763 * changes in this bit.
1764 */
1765static u32 update_bus_time(struct fw_ohci *ohci)
1766{
1767        u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1768
1769        if (unlikely(!ohci->bus_time_running)) {
1770                reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1771                ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1772                                 (cycle_time_seconds & 0x40);
1773                ohci->bus_time_running = true;
1774        }
1775
1776        if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1777                ohci->bus_time += 0x40;
1778
1779        return ohci->bus_time | cycle_time_seconds;
1780}
1781
1782static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1783{
1784        int reg;
1785
1786        mutex_lock(&ohci->phy_reg_mutex);
1787        reg = write_phy_reg(ohci, 7, port_index);
1788        if (reg >= 0)
1789                reg = read_phy_reg(ohci, 8);
1790        mutex_unlock(&ohci->phy_reg_mutex);
1791        if (reg < 0)
1792                return reg;
1793
1794        switch (reg & 0x0f) {
1795        case 0x06:
1796                return 2;       /* is child node (connected to parent node) */
1797        case 0x0e:
1798                return 3;       /* is parent node (connected to child node) */
1799        }
1800        return 1;               /* not connected */
1801}
1802
1803static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1804        int self_id_count)
1805{
1806        int i;
1807        u32 entry;
1808
1809        for (i = 0; i < self_id_count; i++) {
1810                entry = ohci->self_id_buffer[i];
1811                if ((self_id & 0xff000000) == (entry & 0xff000000))
1812                        return -1;
1813                if ((self_id & 0xff000000) < (entry & 0xff000000))
1814                        return i;
1815        }
1816        return i;
1817}
1818
1819static int initiated_reset(struct fw_ohci *ohci)
1820{
1821        int reg;
1822        int ret = 0;
1823
1824        mutex_lock(&ohci->phy_reg_mutex);
1825        reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1826        if (reg >= 0) {
1827                reg = read_phy_reg(ohci, 8);
1828                reg |= 0x40;
1829                reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1830                if (reg >= 0) {
1831                        reg = read_phy_reg(ohci, 12); /* read register 12 */
1832                        if (reg >= 0) {
1833                                if ((reg & 0x08) == 0x08) {
1834                                        /* bit 3 indicates "initiated reset" */
1835                                        ret = 0x2;
1836                                }
1837                        }
1838                }
1839        }
1840        mutex_unlock(&ohci->phy_reg_mutex);
1841        return ret;
1842}
1843
1844/*
1845 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1846 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1847 * Construct the selfID from phy register contents.
1848 */
1849static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1850{
1851        int reg, i, pos, status;
1852        /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1853        u32 self_id = 0x8040c800;
1854
1855        reg = reg_read(ohci, OHCI1394_NodeID);
1856        if (!(reg & OHCI1394_NodeID_idValid)) {
1857                ohci_notice(ohci,
1858                            "node ID not valid, new bus reset in progress\n");
1859                return -EBUSY;
1860        }
1861        self_id |= ((reg & 0x3f) << 24); /* phy ID */
1862
1863        reg = ohci_read_phy_reg(&ohci->card, 4);
1864        if (reg < 0)
1865                return reg;
1866        self_id |= ((reg & 0x07) << 8); /* power class */
1867
1868        reg = ohci_read_phy_reg(&ohci->card, 1);
1869        if (reg < 0)
1870                return reg;
1871        self_id |= ((reg & 0x3f) << 16); /* gap count */
1872
1873        for (i = 0; i < 3; i++) {
1874                status = get_status_for_port(ohci, i);
1875                if (status < 0)
1876                        return status;
1877                self_id |= ((status & 0x3) << (6 - (i * 2)));
1878        }
1879
1880        self_id |= initiated_reset(ohci);
1881
1882        pos = get_self_id_pos(ohci, self_id, self_id_count);
1883        if (pos >= 0) {
1884                memmove(&(ohci->self_id_buffer[pos+1]),
1885                        &(ohci->self_id_buffer[pos]),
1886                        (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1887                ohci->self_id_buffer[pos] = self_id;
1888                self_id_count++;
1889        }
1890        return self_id_count;
1891}
1892
1893static void bus_reset_work(struct work_struct *work)
1894{
1895        struct fw_ohci *ohci =
1896                container_of(work, struct fw_ohci, bus_reset_work);
1897        int self_id_count, generation, new_generation, i, j;
1898        u32 reg;
1899        void *free_rom = NULL;
1900        dma_addr_t free_rom_bus = 0;
1901        bool is_new_root;
1902
1903        reg = reg_read(ohci, OHCI1394_NodeID);
1904        if (!(reg & OHCI1394_NodeID_idValid)) {
1905                ohci_notice(ohci,
1906                            "node ID not valid, new bus reset in progress\n");
1907                return;
1908        }
1909        if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1910                ohci_notice(ohci, "malconfigured bus\n");
1911                return;
1912        }
1913        ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1914                               OHCI1394_NodeID_nodeNumber);
1915
1916        is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1917        if (!(ohci->is_root && is_new_root))
1918                reg_write(ohci, OHCI1394_LinkControlSet,
1919                          OHCI1394_LinkControl_cycleMaster);
1920        ohci->is_root = is_new_root;
1921
1922        reg = reg_read(ohci, OHCI1394_SelfIDCount);
1923        if (reg & OHCI1394_SelfIDCount_selfIDError) {
1924                ohci_notice(ohci, "self ID receive error\n");
1925                return;
1926        }
1927        /*
1928         * The count in the SelfIDCount register is the number of
1929         * bytes in the self ID receive buffer.  Since we also receive
1930         * the inverted quadlets and a header quadlet, we shift one
1931         * bit extra to get the actual number of self IDs.
1932         */
1933        self_id_count = (reg >> 3) & 0xff;
1934
1935        if (self_id_count > 252) {
1936                ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1937                return;
1938        }
1939
1940        generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1941        rmb();
1942
1943        for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1944                u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1945                u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1946
1947                if (id != ~id2) {
1948                        /*
1949                         * If the invalid data looks like a cycle start packet,
1950                         * it's likely to be the result of the cycle master
1951                         * having a wrong gap count.  In this case, the self IDs
1952                         * so far are valid and should be processed so that the
1953                         * bus manager can then correct the gap count.
1954                         */
1955                        if (id == 0xffff008f) {
1956                                ohci_notice(ohci, "ignoring spurious self IDs\n");
1957                                self_id_count = j;
1958                                break;
1959                        }
1960
1961                        ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1962                                    j, self_id_count, id, id2);
1963                        return;
1964                }
1965                ohci->self_id_buffer[j] = id;
1966        }
1967
1968        if (ohci->quirks & QUIRK_TI_SLLZ059) {
1969                self_id_count = find_and_insert_self_id(ohci, self_id_count);
1970                if (self_id_count < 0) {
1971                        ohci_notice(ohci,
1972                                    "could not construct local self ID\n");
1973                        return;
1974                }
1975        }
1976
1977        if (self_id_count == 0) {
1978                ohci_notice(ohci, "no self IDs\n");
1979                return;
1980        }
1981        rmb();
1982
1983        /*
1984         * Check the consistency of the self IDs we just read.  The
1985         * problem we face is that a new bus reset can start while we
1986         * read out the self IDs from the DMA buffer. If this happens,
1987         * the DMA buffer will be overwritten with new self IDs and we
1988         * will read out inconsistent data.  The OHCI specification
1989         * (section 11.2) recommends a technique similar to
1990         * linux/seqlock.h, where we remember the generation of the
1991         * self IDs in the buffer before reading them out and compare
1992         * it to the current generation after reading them out.  If
1993         * the two generations match we know we have a consistent set
1994         * of self IDs.
1995         */
1996
1997        new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1998        if (new_generation != generation) {
1999                ohci_notice(ohci, "new bus reset, discarding self ids\n");
2000                return;
2001        }
2002
2003        /* FIXME: Document how the locking works. */
2004        spin_lock_irq(&ohci->lock);
2005
2006        ohci->generation = -1; /* prevent AT packet queueing */
2007        context_stop(&ohci->at_request_ctx);
2008        context_stop(&ohci->at_response_ctx);
2009
2010        spin_unlock_irq(&ohci->lock);
2011
2012        /*
2013         * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2014         * packets in the AT queues and software needs to drain them.
2015         * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2016         */
2017        at_context_flush(&ohci->at_request_ctx);
2018        at_context_flush(&ohci->at_response_ctx);
2019
2020        spin_lock_irq(&ohci->lock);
2021
2022        ohci->generation = generation;
2023        reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2024
2025        if (ohci->quirks & QUIRK_RESET_PACKET)
2026                ohci->request_generation = generation;
2027
2028        /*
2029         * This next bit is unrelated to the AT context stuff but we
2030         * have to do it under the spinlock also.  If a new config rom
2031         * was set up before this reset, the old one is now no longer
2032         * in use and we can free it. Update the config rom pointers
2033         * to point to the current config rom and clear the
2034         * next_config_rom pointer so a new update can take place.
2035         */
2036
2037        if (ohci->next_config_rom != NULL) {
2038                if (ohci->next_config_rom != ohci->config_rom) {
2039                        free_rom      = ohci->config_rom;
2040                        free_rom_bus  = ohci->config_rom_bus;
2041                }
2042                ohci->config_rom      = ohci->next_config_rom;
2043                ohci->config_rom_bus  = ohci->next_config_rom_bus;
2044                ohci->next_config_rom = NULL;
2045
2046                /*
2047                 * Restore config_rom image and manually update
2048                 * config_rom registers.  Writing the header quadlet
2049                 * will indicate that the config rom is ready, so we
2050                 * do that last.
2051                 */
2052                reg_write(ohci, OHCI1394_BusOptions,
2053                          be32_to_cpu(ohci->config_rom[2]));
2054                ohci->config_rom[0] = ohci->next_header;
2055                reg_write(ohci, OHCI1394_ConfigROMhdr,
2056                          be32_to_cpu(ohci->next_header));
2057        }
2058
2059        if (param_remote_dma) {
2060                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2061                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2062        }
2063
2064        spin_unlock_irq(&ohci->lock);
2065
2066        if (free_rom)
2067                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2068                                  free_rom, free_rom_bus);
2069
2070        log_selfids(ohci, generation, self_id_count);
2071
2072        fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2073                                 self_id_count, ohci->self_id_buffer,
2074                                 ohci->csr_state_setclear_abdicate);
2075        ohci->csr_state_setclear_abdicate = false;
2076}
2077
2078static irqreturn_t irq_handler(int irq, void *data)
2079{
2080        struct fw_ohci *ohci = data;
2081        u32 event, iso_event;
2082        int i;
2083
2084        event = reg_read(ohci, OHCI1394_IntEventClear);
2085
2086        if (!event || !~event)
2087                return IRQ_NONE;
2088
2089        /*
2090         * busReset and postedWriteErr must not be cleared yet
2091         * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2092         */
2093        reg_write(ohci, OHCI1394_IntEventClear,
2094                  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2095        log_irqs(ohci, event);
2096
2097        if (event & OHCI1394_selfIDComplete)
2098                queue_work(selfid_workqueue, &ohci->bus_reset_work);
2099
2100        if (event & OHCI1394_RQPkt)
2101                tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2102
2103        if (event & OHCI1394_RSPkt)
2104                tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2105
2106        if (event & OHCI1394_reqTxComplete)
2107                tasklet_schedule(&ohci->at_request_ctx.tasklet);
2108
2109        if (event & OHCI1394_respTxComplete)
2110                tasklet_schedule(&ohci->at_response_ctx.tasklet);
2111
2112        if (event & OHCI1394_isochRx) {
2113                iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2114                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2115
2116                while (iso_event) {
2117                        i = ffs(iso_event) - 1;
2118                        tasklet_schedule(
2119                                &ohci->ir_context_list[i].context.tasklet);
2120                        iso_event &= ~(1 << i);
2121                }
2122        }
2123
2124        if (event & OHCI1394_isochTx) {
2125                iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2126                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2127
2128                while (iso_event) {
2129                        i = ffs(iso_event) - 1;
2130                        tasklet_schedule(
2131                                &ohci->it_context_list[i].context.tasklet);
2132                        iso_event &= ~(1 << i);
2133                }
2134        }
2135
2136        if (unlikely(event & OHCI1394_regAccessFail))
2137                ohci_err(ohci, "register access failure\n");
2138
2139        if (unlikely(event & OHCI1394_postedWriteErr)) {
2140                reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2141                reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2142                reg_write(ohci, OHCI1394_IntEventClear,
2143                          OHCI1394_postedWriteErr);
2144                if (printk_ratelimit())
2145                        ohci_err(ohci, "PCI posted write error\n");
2146        }
2147
2148        if (unlikely(event & OHCI1394_cycleTooLong)) {
2149                if (printk_ratelimit())
2150                        ohci_notice(ohci, "isochronous cycle too long\n");
2151                reg_write(ohci, OHCI1394_LinkControlSet,
2152                          OHCI1394_LinkControl_cycleMaster);
2153        }
2154
2155        if (unlikely(event & OHCI1394_cycleInconsistent)) {
2156                /*
2157                 * We need to clear this event bit in order to make
2158                 * cycleMatch isochronous I/O work.  In theory we should
2159                 * stop active cycleMatch iso contexts now and restart
2160                 * them at least two cycles later.  (FIXME?)
2161                 */
2162                if (printk_ratelimit())
2163                        ohci_notice(ohci, "isochronous cycle inconsistent\n");
2164        }
2165
2166        if (unlikely(event & OHCI1394_unrecoverableError))
2167                handle_dead_contexts(ohci);
2168
2169        if (event & OHCI1394_cycle64Seconds) {
2170                spin_lock(&ohci->lock);
2171                update_bus_time(ohci);
2172                spin_unlock(&ohci->lock);
2173        } else
2174                flush_writes(ohci);
2175
2176        return IRQ_HANDLED;
2177}
2178
2179static int software_reset(struct fw_ohci *ohci)
2180{
2181        u32 val;
2182        int i;
2183
2184        reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2185        for (i = 0; i < 500; i++) {
2186                val = reg_read(ohci, OHCI1394_HCControlSet);
2187                if (!~val)
2188                        return -ENODEV; /* Card was ejected. */
2189
2190                if (!(val & OHCI1394_HCControl_softReset))
2191                        return 0;
2192
2193                msleep(1);
2194        }
2195
2196        return -EBUSY;
2197}
2198
2199static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2200{
2201        size_t size = length * 4;
2202
2203        memcpy(dest, src, size);
2204        if (size < CONFIG_ROM_SIZE)
2205                memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2206}
2207
2208static int configure_1394a_enhancements(struct fw_ohci *ohci)
2209{
2210        bool enable_1394a;
2211        int ret, clear, set, offset;
2212
2213        /* Check if the driver should configure link and PHY. */
2214        if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2215              OHCI1394_HCControl_programPhyEnable))
2216                return 0;
2217
2218        /* Paranoia: check whether the PHY supports 1394a, too. */
2219        enable_1394a = false;
2220        ret = read_phy_reg(ohci, 2);
2221        if (ret < 0)
2222                return ret;
2223        if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2224                ret = read_paged_phy_reg(ohci, 1, 8);
2225                if (ret < 0)
2226                        return ret;
2227                if (ret >= 1)
2228                        enable_1394a = true;
2229        }
2230
2231        if (ohci->quirks & QUIRK_NO_1394A)
2232                enable_1394a = false;
2233
2234        /* Configure PHY and link consistently. */
2235        if (enable_1394a) {
2236                clear = 0;
2237                set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2238        } else {
2239                clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2240                set = 0;
2241        }
2242        ret = update_phy_reg(ohci, 5, clear, set);
2243        if (ret < 0)
2244                return ret;
2245
2246        if (enable_1394a)
2247                offset = OHCI1394_HCControlSet;
2248        else
2249                offset = OHCI1394_HCControlClear;
2250        reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2251
2252        /* Clean up: configuration has been taken care of. */
2253        reg_write(ohci, OHCI1394_HCControlClear,
2254                  OHCI1394_HCControl_programPhyEnable);
2255
2256        return 0;
2257}
2258
2259static int probe_tsb41ba3d(struct fw_ohci *ohci)
2260{
2261        /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2262        static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2263        int reg, i;
2264
2265        reg = read_phy_reg(ohci, 2);
2266        if (reg < 0)
2267                return reg;
2268        if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2269                return 0;
2270
2271        for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2272                reg = read_paged_phy_reg(ohci, 1, i + 10);
2273                if (reg < 0)
2274                        return reg;
2275                if (reg != id[i])
2276                        return 0;
2277        }
2278        return 1;
2279}
2280
2281static int ohci_enable(struct fw_card *card,
2282                       const __be32 *config_rom, size_t length)
2283{
2284        struct fw_ohci *ohci = fw_ohci(card);
2285        u32 lps, version, irqs;
2286        int i, ret;
2287
2288        if (software_reset(ohci)) {
2289                ohci_err(ohci, "failed to reset ohci card\n");
2290                return -EBUSY;
2291        }
2292
2293        /*
2294         * Now enable LPS, which we need in order to start accessing
2295         * most of the registers.  In fact, on some cards (ALI M5251),
2296         * accessing registers in the SClk domain without LPS enabled
2297         * will lock up the machine.  Wait 50msec to make sure we have
2298         * full link enabled.  However, with some cards (well, at least
2299         * a JMicron PCIe card), we have to try again sometimes.
2300         *
2301         * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2302         * cannot actually use the phy at that time.  These need tens of
2303         * millisecods pause between LPS write and first phy access too.
2304         */
2305
2306        reg_write(ohci, OHCI1394_HCControlSet,
2307                  OHCI1394_HCControl_LPS |
2308                  OHCI1394_HCControl_postedWriteEnable);
2309        flush_writes(ohci);
2310
2311        for (lps = 0, i = 0; !lps && i < 3; i++) {
2312                msleep(50);
2313                lps = reg_read(ohci, OHCI1394_HCControlSet) &
2314                      OHCI1394_HCControl_LPS;
2315        }
2316
2317        if (!lps) {
2318                ohci_err(ohci, "failed to set Link Power Status\n");
2319                return -EIO;
2320        }
2321
2322        if (ohci->quirks & QUIRK_TI_SLLZ059) {
2323                ret = probe_tsb41ba3d(ohci);
2324                if (ret < 0)
2325                        return ret;
2326                if (ret)
2327                        ohci_notice(ohci, "local TSB41BA3D phy\n");
2328                else
2329                        ohci->quirks &= ~QUIRK_TI_SLLZ059;
2330        }
2331
2332        reg_write(ohci, OHCI1394_HCControlClear,
2333                  OHCI1394_HCControl_noByteSwapData);
2334
2335        reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2336        reg_write(ohci, OHCI1394_LinkControlSet,
2337                  OHCI1394_LinkControl_cycleTimerEnable |
2338                  OHCI1394_LinkControl_cycleMaster);
2339
2340        reg_write(ohci, OHCI1394_ATRetries,
2341                  OHCI1394_MAX_AT_REQ_RETRIES |
2342                  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2343                  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2344                  (200 << 16));
2345
2346        ohci->bus_time_running = false;
2347
2348        for (i = 0; i < 32; i++)
2349                if (ohci->ir_context_support & (1 << i))
2350                        reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2351                                  IR_CONTEXT_MULTI_CHANNEL_MODE);
2352
2353        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2354        if (version >= OHCI_VERSION_1_1) {
2355                reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2356                          0xfffffffe);
2357                card->broadcast_channel_auto_allocated = true;
2358        }
2359
2360        /* Get implemented bits of the priority arbitration request counter. */
2361        reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2362        ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2363        reg_write(ohci, OHCI1394_FairnessControl, 0);
2364        card->priority_budget_implemented = ohci->pri_req_max != 0;
2365
2366        reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2367        reg_write(ohci, OHCI1394_IntEventClear, ~0);
2368        reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2369
2370        ret = configure_1394a_enhancements(ohci);
2371        if (ret < 0)
2372                return ret;
2373
2374        /* Activate link_on bit and contender bit in our self ID packets.*/
2375        ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2376        if (ret < 0)
2377                return ret;
2378
2379        /*
2380         * When the link is not yet enabled, the atomic config rom
2381         * update mechanism described below in ohci_set_config_rom()
2382         * is not active.  We have to update ConfigRomHeader and
2383         * BusOptions manually, and the write to ConfigROMmap takes
2384         * effect immediately.  We tie this to the enabling of the
2385         * link, so we have a valid config rom before enabling - the
2386         * OHCI requires that ConfigROMhdr and BusOptions have valid
2387         * values before enabling.
2388         *
2389         * However, when the ConfigROMmap is written, some controllers
2390         * always read back quadlets 0 and 2 from the config rom to
2391         * the ConfigRomHeader and BusOptions registers on bus reset.
2392         * They shouldn't do that in this initial case where the link
2393         * isn't enabled.  This means we have to use the same
2394         * workaround here, setting the bus header to 0 and then write
2395         * the right values in the bus reset tasklet.
2396         */
2397
2398        if (config_rom) {
2399                ohci->next_config_rom =
2400                        dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2401                                           &ohci->next_config_rom_bus,
2402                                           GFP_KERNEL);
2403                if (ohci->next_config_rom == NULL)
2404                        return -ENOMEM;
2405
2406                copy_config_rom(ohci->next_config_rom, config_rom, length);
2407        } else {
2408                /*
2409                 * In the suspend case, config_rom is NULL, which
2410                 * means that we just reuse the old config rom.
2411                 */
2412                ohci->next_config_rom = ohci->config_rom;
2413                ohci->next_config_rom_bus = ohci->config_rom_bus;
2414        }
2415
2416        ohci->next_header = ohci->next_config_rom[0];
2417        ohci->next_config_rom[0] = 0;
2418        reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2419        reg_write(ohci, OHCI1394_BusOptions,
2420                  be32_to_cpu(ohci->next_config_rom[2]));
2421        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2422
2423        reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2424
2425        irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2426                OHCI1394_RQPkt | OHCI1394_RSPkt |
2427                OHCI1394_isochTx | OHCI1394_isochRx |
2428                OHCI1394_postedWriteErr |
2429                OHCI1394_selfIDComplete |
2430                OHCI1394_regAccessFail |
2431                OHCI1394_cycleInconsistent |
2432                OHCI1394_unrecoverableError |
2433                OHCI1394_cycleTooLong |
2434                OHCI1394_masterIntEnable;
2435        if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2436                irqs |= OHCI1394_busReset;
2437        reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2438
2439        reg_write(ohci, OHCI1394_HCControlSet,
2440                  OHCI1394_HCControl_linkEnable |
2441                  OHCI1394_HCControl_BIBimageValid);
2442
2443        reg_write(ohci, OHCI1394_LinkControlSet,
2444                  OHCI1394_LinkControl_rcvSelfID |
2445                  OHCI1394_LinkControl_rcvPhyPkt);
2446
2447        ar_context_run(&ohci->ar_request_ctx);
2448        ar_context_run(&ohci->ar_response_ctx);
2449
2450        flush_writes(ohci);
2451
2452        /* We are ready to go, reset bus to finish initialization. */
2453        fw_schedule_bus_reset(&ohci->card, false, true);
2454
2455        return 0;
2456}
2457
2458static int ohci_set_config_rom(struct fw_card *card,
2459                               const __be32 *config_rom, size_t length)
2460{
2461        struct fw_ohci *ohci;
2462        __be32 *next_config_rom;
2463        dma_addr_t uninitialized_var(next_config_rom_bus);
2464
2465        ohci = fw_ohci(card);
2466
2467        /*
2468         * When the OHCI controller is enabled, the config rom update
2469         * mechanism is a bit tricky, but easy enough to use.  See
2470         * section 5.5.6 in the OHCI specification.
2471         *
2472         * The OHCI controller caches the new config rom address in a
2473         * shadow register (ConfigROMmapNext) and needs a bus reset
2474         * for the changes to take place.  When the bus reset is
2475         * detected, the controller loads the new values for the
2476         * ConfigRomHeader and BusOptions registers from the specified
2477         * config rom and loads ConfigROMmap from the ConfigROMmapNext
2478         * shadow register. All automatically and atomically.
2479         *
2480         * Now, there's a twist to this story.  The automatic load of
2481         * ConfigRomHeader and BusOptions doesn't honor the
2482         * noByteSwapData bit, so with a be32 config rom, the
2483         * controller will load be32 values in to these registers
2484         * during the atomic update, even on litte endian
2485         * architectures.  The workaround we use is to put a 0 in the
2486         * header quadlet; 0 is endian agnostic and means that the
2487         * config rom isn't ready yet.  In the bus reset tasklet we
2488         * then set up the real values for the two registers.
2489         *
2490         * We use ohci->lock to avoid racing with the code that sets
2491         * ohci->next_config_rom to NULL (see bus_reset_work).
2492         */
2493
2494        next_config_rom =
2495                dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2496                                   &next_config_rom_bus, GFP_KERNEL);
2497        if (next_config_rom == NULL)
2498                return -ENOMEM;
2499
2500        spin_lock_irq(&ohci->lock);
2501
2502        /*
2503         * If there is not an already pending config_rom update,
2504         * push our new allocation into the ohci->next_config_rom
2505         * and then mark the local variable as null so that we
2506         * won't deallocate the new buffer.
2507         *
2508         * OTOH, if there is a pending config_rom update, just
2509         * use that buffer with the new config_rom data, and
2510         * let this routine free the unused DMA allocation.
2511         */
2512
2513        if (ohci->next_config_rom == NULL) {
2514                ohci->next_config_rom = next_config_rom;
2515                ohci->next_config_rom_bus = next_config_rom_bus;
2516                next_config_rom = NULL;
2517        }
2518
2519        copy_config_rom(ohci->next_config_rom, config_rom, length);
2520
2521        ohci->next_header = config_rom[0];
2522        ohci->next_config_rom[0] = 0;
2523
2524        reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2525
2526        spin_unlock_irq(&ohci->lock);
2527
2528        /* If we didn't use the DMA allocation, delete it. */
2529        if (next_config_rom != NULL)
2530                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2531                                  next_config_rom, next_config_rom_bus);
2532
2533        /*
2534         * Now initiate a bus reset to have the changes take
2535         * effect. We clean up the old config rom memory and DMA
2536         * mappings in the bus reset tasklet, since the OHCI
2537         * controller could need to access it before the bus reset
2538         * takes effect.
2539         */
2540
2541        fw_schedule_bus_reset(&ohci->card, true, true);
2542
2543        return 0;
2544}
2545
2546static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2547{
2548        struct fw_ohci *ohci = fw_ohci(card);
2549
2550        at_context_transmit(&ohci->at_request_ctx, packet);
2551}
2552
2553static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2554{
2555        struct fw_ohci *ohci = fw_ohci(card);
2556
2557        at_context_transmit(&ohci->at_response_ctx, packet);
2558}
2559
2560static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2561{
2562        struct fw_ohci *ohci = fw_ohci(card);
2563        struct context *ctx = &ohci->at_request_ctx;
2564        struct driver_data *driver_data = packet->driver_data;
2565        int ret = -ENOENT;
2566
2567        tasklet_disable(&ctx->tasklet);
2568
2569        if (packet->ack != 0)
2570                goto out;
2571
2572        if (packet->payload_mapped)
2573                dma_unmap_single(ohci->card.device, packet->payload_bus,
2574                                 packet->payload_length, DMA_TO_DEVICE);
2575
2576        log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2577        driver_data->packet = NULL;
2578        packet->ack = RCODE_CANCELLED;
2579        packet->callback(packet, &ohci->card, packet->ack);
2580        ret = 0;
2581 out:
2582        tasklet_enable(&ctx->tasklet);
2583
2584        return ret;
2585}
2586
2587static int ohci_enable_phys_dma(struct fw_card *card,
2588                                int node_id, int generation)
2589{
2590        struct fw_ohci *ohci = fw_ohci(card);
2591        unsigned long flags;
2592        int n, ret = 0;
2593
2594        if (param_remote_dma)
2595                return 0;
2596
2597        /*
2598         * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2599         * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2600         */
2601
2602        spin_lock_irqsave(&ohci->lock, flags);
2603
2604        if (ohci->generation != generation) {
2605                ret = -ESTALE;
2606                goto out;
2607        }
2608
2609        /*
2610         * Note, if the node ID contains a non-local bus ID, physical DMA is
2611         * enabled for _all_ nodes on remote buses.
2612         */
2613
2614        n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2615        if (n < 32)
2616                reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2617        else
2618                reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2619
2620        flush_writes(ohci);
2621 out:
2622        spin_unlock_irqrestore(&ohci->lock, flags);
2623
2624        return ret;
2625}
2626
2627static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2628{
2629        struct fw_ohci *ohci = fw_ohci(card);
2630        unsigned long flags;
2631        u32 value;
2632
2633        switch (csr_offset) {
2634        case CSR_STATE_CLEAR:
2635        case CSR_STATE_SET:
2636                if (ohci->is_root &&
2637                    (reg_read(ohci, OHCI1394_LinkControlSet) &
2638                     OHCI1394_LinkControl_cycleMaster))
2639                        value = CSR_STATE_BIT_CMSTR;
2640                else
2641                        value = 0;
2642                if (ohci->csr_state_setclear_abdicate)
2643                        value |= CSR_STATE_BIT_ABDICATE;
2644
2645                return value;
2646
2647        case CSR_NODE_IDS:
2648                return reg_read(ohci, OHCI1394_NodeID) << 16;
2649
2650        case CSR_CYCLE_TIME:
2651                return get_cycle_time(ohci);
2652
2653        case CSR_BUS_TIME:
2654                /*
2655                 * We might be called just after the cycle timer has wrapped
2656                 * around but just before the cycle64Seconds handler, so we
2657                 * better check here, too, if the bus time needs to be updated.
2658                 */
2659                spin_lock_irqsave(&ohci->lock, flags);
2660                value = update_bus_time(ohci);
2661                spin_unlock_irqrestore(&ohci->lock, flags);
2662                return value;
2663
2664        case CSR_BUSY_TIMEOUT:
2665                value = reg_read(ohci, OHCI1394_ATRetries);
2666                return (value >> 4) & 0x0ffff00f;
2667
2668        case CSR_PRIORITY_BUDGET:
2669                return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2670                        (ohci->pri_req_max << 8);
2671
2672        default:
2673                WARN_ON(1);
2674                return 0;
2675        }
2676}
2677
2678static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2679{
2680        struct fw_ohci *ohci = fw_ohci(card);
2681        unsigned long flags;
2682
2683        switch (csr_offset) {
2684        case CSR_STATE_CLEAR:
2685                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2686                        reg_write(ohci, OHCI1394_LinkControlClear,
2687                                  OHCI1394_LinkControl_cycleMaster);
2688                        flush_writes(ohci);
2689                }
2690                if (value & CSR_STATE_BIT_ABDICATE)
2691                        ohci->csr_state_setclear_abdicate = false;
2692                break;
2693
2694        case CSR_STATE_SET:
2695                if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2696                        reg_write(ohci, OHCI1394_LinkControlSet,
2697                                  OHCI1394_LinkControl_cycleMaster);
2698                        flush_writes(ohci);
2699                }
2700                if (value & CSR_STATE_BIT_ABDICATE)
2701                        ohci->csr_state_setclear_abdicate = true;
2702                break;
2703
2704        case CSR_NODE_IDS:
2705                reg_write(ohci, OHCI1394_NodeID, value >> 16);
2706                flush_writes(ohci);
2707                break;
2708
2709        case CSR_CYCLE_TIME:
2710                reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2711                reg_write(ohci, OHCI1394_IntEventSet,
2712                          OHCI1394_cycleInconsistent);
2713                flush_writes(ohci);
2714                break;
2715
2716        case CSR_BUS_TIME:
2717                spin_lock_irqsave(&ohci->lock, flags);
2718                ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2719                                 (value & ~0x7f);
2720                spin_unlock_irqrestore(&ohci->lock, flags);
2721                break;
2722
2723        case CSR_BUSY_TIMEOUT:
2724                value = (value & 0xf) | ((value & 0xf) << 4) |
2725                        ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2726                reg_write(ohci, OHCI1394_ATRetries, value);
2727                flush_writes(ohci);
2728                break;
2729
2730        case CSR_PRIORITY_BUDGET:
2731                reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2732                flush_writes(ohci);
2733                break;
2734
2735        default:
2736                WARN_ON(1);
2737                break;
2738        }
2739}
2740
2741static void flush_iso_completions(struct iso_context *ctx)
2742{
2743        ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2744                              ctx->header_length, ctx->header,
2745                              ctx->base.callback_data);
2746        ctx->header_length = 0;
2747}
2748
2749static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2750{
2751        u32 *ctx_hdr;
2752
2753        if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2754                if (ctx->base.drop_overflow_headers)
2755                        return;
2756                flush_iso_completions(ctx);
2757        }
2758
2759        ctx_hdr = ctx->header + ctx->header_length;
2760        ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2761
2762        /*
2763         * The two iso header quadlets are byteswapped to little
2764         * endian by the controller, but we want to present them
2765         * as big endian for consistency with the bus endianness.
2766         */
2767        if (ctx->base.header_size > 0)
2768                ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2769        if (ctx->base.header_size > 4)
2770                ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2771        if (ctx->base.header_size > 8)
2772                memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2773        ctx->header_length += ctx->base.header_size;
2774}
2775
2776static int handle_ir_packet_per_buffer(struct context *context,
2777                                       struct descriptor *d,
2778                                       struct descriptor *last)
2779{
2780        struct iso_context *ctx =
2781                container_of(context, struct iso_context, context);
2782        struct descriptor *pd;
2783        u32 buffer_dma;
2784
2785        for (pd = d; pd <= last; pd++)
2786                if (pd->transfer_status)
2787                        break;
2788        if (pd > last)
2789                /* Descriptor(s) not done yet, stop iteration */
2790                return 0;
2791
2792        while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2793                d++;
2794                buffer_dma = le32_to_cpu(d->data_address);
2795                dma_sync_single_range_for_cpu(context->ohci->card.device,
2796                                              buffer_dma & PAGE_MASK,
2797                                              buffer_dma & ~PAGE_MASK,
2798                                              le16_to_cpu(d->req_count),
2799                                              DMA_FROM_DEVICE);
2800        }
2801
2802        copy_iso_headers(ctx, (u32 *) (last + 1));
2803
2804        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2805                flush_iso_completions(ctx);
2806
2807        return 1;
2808}
2809
2810/* d == last because each descriptor block is only a single descriptor. */
2811static int handle_ir_buffer_fill(struct context *context,
2812                                 struct descriptor *d,
2813                                 struct descriptor *last)
2814{
2815        struct iso_context *ctx =
2816                container_of(context, struct iso_context, context);
2817        unsigned int req_count, res_count, completed;
2818        u32 buffer_dma;
2819
2820        req_count = le16_to_cpu(last->req_count);
2821        res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2822        completed = req_count - res_count;
2823        buffer_dma = le32_to_cpu(last->data_address);
2824
2825        if (completed > 0) {
2826                ctx->mc_buffer_bus = buffer_dma;
2827                ctx->mc_completed = completed;
2828        }
2829
2830        if (res_count != 0)
2831                /* Descriptor(s) not done yet, stop iteration */
2832                return 0;
2833
2834        dma_sync_single_range_for_cpu(context->ohci->card.device,
2835                                      buffer_dma & PAGE_MASK,
2836                                      buffer_dma & ~PAGE_MASK,
2837                                      completed, DMA_FROM_DEVICE);
2838
2839        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2840                ctx->base.callback.mc(&ctx->base,
2841                                      buffer_dma + completed,
2842                                      ctx->base.callback_data);
2843                ctx->mc_completed = 0;
2844        }
2845
2846        return 1;
2847}
2848
2849static void flush_ir_buffer_fill(struct iso_context *ctx)
2850{
2851        dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2852                                      ctx->mc_buffer_bus & PAGE_MASK,
2853                                      ctx->mc_buffer_bus & ~PAGE_MASK,
2854                                      ctx->mc_completed, DMA_FROM_DEVICE);
2855
2856        ctx->base.callback.mc(&ctx->base,
2857                              ctx->mc_buffer_bus + ctx->mc_completed,
2858                              ctx->base.callback_data);
2859        ctx->mc_completed = 0;
2860}
2861
2862static inline void sync_it_packet_for_cpu(struct context *context,
2863                                          struct descriptor *pd)
2864{
2865        __le16 control;
2866        u32 buffer_dma;
2867
2868        /* only packets beginning with OUTPUT_MORE* have data buffers */
2869        if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2870                return;
2871
2872        /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2873        pd += 2;
2874
2875        /*
2876         * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2877         * data buffer is in the context program's coherent page and must not
2878         * be synced.
2879         */
2880        if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2881            (context->current_bus          & PAGE_MASK)) {
2882                if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2883                        return;
2884                pd++;
2885        }
2886
2887        do {
2888                buffer_dma = le32_to_cpu(pd->data_address);
2889                dma_sync_single_range_for_cpu(context->ohci->card.device,
2890                                              buffer_dma & PAGE_MASK,
2891                                              buffer_dma & ~PAGE_MASK,
2892                                              le16_to_cpu(pd->req_count),
2893                                              DMA_TO_DEVICE);
2894                control = pd->control;
2895                pd++;
2896        } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2897}
2898
2899static int handle_it_packet(struct context *context,
2900                            struct descriptor *d,
2901                            struct descriptor *last)
2902{
2903        struct iso_context *ctx =
2904                container_of(context, struct iso_context, context);
2905        struct descriptor *pd;
2906        __be32 *ctx_hdr;
2907
2908        for (pd = d; pd <= last; pd++)
2909                if (pd->transfer_status)
2910                        break;
2911        if (pd > last)
2912                /* Descriptor(s) not done yet, stop iteration */
2913                return 0;
2914
2915        sync_it_packet_for_cpu(context, d);
2916
2917        if (ctx->header_length + 4 > PAGE_SIZE) {
2918                if (ctx->base.drop_overflow_headers)
2919                        return 1;
2920                flush_iso_completions(ctx);
2921        }
2922
2923        ctx_hdr = ctx->header + ctx->header_length;
2924        ctx->last_timestamp = le16_to_cpu(last->res_count);
2925        /* Present this value as big-endian to match the receive code */
2926        *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2927                               le16_to_cpu(pd->res_count));
2928        ctx->header_length += 4;
2929
2930        if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2931                flush_iso_completions(ctx);
2932
2933        return 1;
2934}
2935
2936static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2937{
2938        u32 hi = channels >> 32, lo = channels;
2939
2940        reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2941        reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2942        reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2943        reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2944        mmiowb();
2945        ohci->mc_channels = channels;
2946}
2947
2948static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2949                                int type, int channel, size_t header_size)
2950{
2951        struct fw_ohci *ohci = fw_ohci(card);
2952        struct iso_context *uninitialized_var(ctx);
2953        descriptor_callback_t uninitialized_var(callback);
2954        u64 *uninitialized_var(channels);
2955        u32 *uninitialized_var(mask), uninitialized_var(regs);
2956        int index, ret = -EBUSY;
2957
2958        spin_lock_irq(&ohci->lock);
2959
2960        switch (type) {
2961        case FW_ISO_CONTEXT_TRANSMIT:
2962                mask     = &ohci->it_context_mask;
2963                callback = handle_it_packet;
2964                index    = ffs(*mask) - 1;
2965                if (index >= 0) {
2966                        *mask &= ~(1 << index);
2967                        regs = OHCI1394_IsoXmitContextBase(index);
2968                        ctx  = &ohci->it_context_list[index];
2969                }
2970                break;
2971
2972        case FW_ISO_CONTEXT_RECEIVE:
2973                channels = &ohci->ir_context_channels;
2974                mask     = &ohci->ir_context_mask;
2975                callback = handle_ir_packet_per_buffer;
2976                index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2977                if (index >= 0) {
2978                        *channels &= ~(1ULL << channel);
2979                        *mask     &= ~(1 << index);
2980                        regs = OHCI1394_IsoRcvContextBase(index);
2981                        ctx  = &ohci->ir_context_list[index];
2982                }
2983                break;
2984
2985        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2986                mask     = &ohci->ir_context_mask;
2987                callback = handle_ir_buffer_fill;
2988                index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2989                if (index >= 0) {
2990                        ohci->mc_allocated = true;
2991                        *mask &= ~(1 << index);
2992                        regs = OHCI1394_IsoRcvContextBase(index);
2993                        ctx  = &ohci->ir_context_list[index];
2994                }
2995                break;
2996
2997        default:
2998                index = -1;
2999                ret = -ENOSYS;
3000        }
3001
3002        spin_unlock_irq(&ohci->lock);
3003
3004        if (index < 0)
3005                return ERR_PTR(ret);
3006
3007        memset(ctx, 0, sizeof(*ctx));
3008        ctx->header_length = 0;
3009        ctx->header = (void *) __get_free_page(GFP_KERNEL);
3010        if (ctx->header == NULL) {
3011                ret = -ENOMEM;
3012                goto out;
3013        }
3014        ret = context_init(&ctx->context, ohci, regs, callback);
3015        if (ret < 0)
3016                goto out_with_header;
3017
3018        if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3019                set_multichannel_mask(ohci, 0);
3020                ctx->mc_completed = 0;
3021        }
3022
3023        return &ctx->base;
3024
3025 out_with_header:
3026        free_page((unsigned long)ctx->header);
3027 out:
3028        spin_lock_irq(&ohci->lock);
3029
3030        switch (type) {
3031        case FW_ISO_CONTEXT_RECEIVE:
3032                *channels |= 1ULL << channel;
3033                break;
3034
3035        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3036                ohci->mc_allocated = false;
3037                break;
3038        }
3039        *mask |= 1 << index;
3040
3041        spin_unlock_irq(&ohci->lock);
3042
3043        return ERR_PTR(ret);
3044}
3045
3046static int ohci_start_iso(struct fw_iso_context *base,
3047                          s32 cycle, u32 sync, u32 tags)
3048{
3049        struct iso_context *ctx = container_of(base, struct iso_context, base);
3050        struct fw_ohci *ohci = ctx->context.ohci;
3051        u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3052        int index;
3053
3054        /* the controller cannot start without any queued packets */
3055        if (ctx->context.last->branch_address == 0)
3056                return -ENODATA;
3057
3058        switch (ctx->base.type) {
3059        case FW_ISO_CONTEXT_TRANSMIT:
3060                index = ctx - ohci->it_context_list;
3061                match = 0;
3062                if (cycle >= 0)
3063                        match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3064                                (cycle & 0x7fff) << 16;
3065
3066                reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3067                reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3068                context_run(&ctx->context, match);
3069                break;
3070
3071        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3072                control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3073                /* fall through */
3074        case FW_ISO_CONTEXT_RECEIVE:
3075                index = ctx - ohci->ir_context_list;
3076                match = (tags << 28) | (sync << 8) | ctx->base.channel;
3077                if (cycle >= 0) {
3078                        match |= (cycle & 0x07fff) << 12;
3079                        control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3080                }
3081
3082                reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3083                reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3084                reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3085                context_run(&ctx->context, control);
3086
3087                ctx->sync = sync;
3088                ctx->tags = tags;
3089
3090                break;
3091        }
3092
3093        return 0;
3094}
3095
3096static int ohci_stop_iso(struct fw_iso_context *base)
3097{
3098        struct fw_ohci *ohci = fw_ohci(base->card);
3099        struct iso_context *ctx = container_of(base, struct iso_context, base);
3100        int index;
3101
3102        switch (ctx->base.type) {
3103        case FW_ISO_CONTEXT_TRANSMIT:
3104                index = ctx - ohci->it_context_list;
3105                reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3106                break;
3107
3108        case FW_ISO_CONTEXT_RECEIVE:
3109        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3110                index = ctx - ohci->ir_context_list;
3111                reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3112                break;
3113        }
3114        flush_writes(ohci);
3115        context_stop(&ctx->context);
3116        tasklet_kill(&ctx->context.tasklet);
3117
3118        return 0;
3119}
3120
3121static void ohci_free_iso_context(struct fw_iso_context *base)
3122{
3123        struct fw_ohci *ohci = fw_ohci(base->card);
3124        struct iso_context *ctx = container_of(base, struct iso_context, base);
3125        unsigned long flags;
3126        int index;
3127
3128        ohci_stop_iso(base);
3129        context_release(&ctx->context);
3130        free_page((unsigned long)ctx->header);
3131
3132        spin_lock_irqsave(&ohci->lock, flags);
3133
3134        switch (base->type) {
3135        case FW_ISO_CONTEXT_TRANSMIT:
3136                index = ctx - ohci->it_context_list;
3137                ohci->it_context_mask |= 1 << index;
3138                break;
3139
3140        case FW_ISO_CONTEXT_RECEIVE:
3141                index = ctx - ohci->ir_context_list;
3142                ohci->ir_context_mask |= 1 << index;
3143                ohci->ir_context_channels |= 1ULL << base->channel;
3144                break;
3145
3146        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3147                index = ctx - ohci->ir_context_list;
3148                ohci->ir_context_mask |= 1 << index;
3149                ohci->ir_context_channels |= ohci->mc_channels;
3150                ohci->mc_channels = 0;
3151                ohci->mc_allocated = false;
3152                break;
3153        }
3154
3155        spin_unlock_irqrestore(&ohci->lock, flags);
3156}
3157
3158static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3159{
3160        struct fw_ohci *ohci = fw_ohci(base->card);
3161        unsigned long flags;
3162        int ret;
3163
3164        switch (base->type) {
3165        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3166
3167                spin_lock_irqsave(&ohci->lock, flags);
3168
3169                /* Don't allow multichannel to grab other contexts' channels. */
3170                if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3171                        *channels = ohci->ir_context_channels;
3172                        ret = -EBUSY;
3173                } else {
3174                        set_multichannel_mask(ohci, *channels);
3175                        ret = 0;
3176                }
3177
3178                spin_unlock_irqrestore(&ohci->lock, flags);
3179
3180                break;
3181        default:
3182                ret = -EINVAL;
3183        }
3184
3185        return ret;
3186}
3187
3188#ifdef CONFIG_PM
3189static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3190{
3191        int i;
3192        struct iso_context *ctx;
3193
3194        for (i = 0 ; i < ohci->n_ir ; i++) {
3195                ctx = &ohci->ir_context_list[i];
3196                if (ctx->context.running)
3197                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3198        }
3199
3200        for (i = 0 ; i < ohci->n_it ; i++) {
3201                ctx = &ohci->it_context_list[i];
3202                if (ctx->context.running)
3203                        ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3204        }
3205}
3206#endif
3207
3208static int queue_iso_transmit(struct iso_context *ctx,
3209                              struct fw_iso_packet *packet,
3210                              struct fw_iso_buffer *buffer,
3211                              unsigned long payload)
3212{
3213        struct descriptor *d, *last, *pd;
3214        struct fw_iso_packet *p;
3215        __le32 *header;
3216        dma_addr_t d_bus, page_bus;
3217        u32 z, header_z, payload_z, irq;
3218        u32 payload_index, payload_end_index, next_page_index;
3219        int page, end_page, i, length, offset;
3220
3221        p = packet;
3222        payload_index = payload;
3223
3224        if (p->skip)
3225                z = 1;
3226        else
3227                z = 2;
3228        if (p->header_length > 0)
3229                z++;
3230
3231        /* Determine the first page the payload isn't contained in. */
3232        end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3233        if (p->payload_length > 0)
3234                payload_z = end_page - (payload_index >> PAGE_SHIFT);
3235        else
3236                payload_z = 0;
3237
3238        z += payload_z;
3239
3240        /* Get header size in number of descriptors. */
3241        header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3242
3243        d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3244        if (d == NULL)
3245                return -ENOMEM;
3246
3247        if (!p->skip) {
3248                d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3249                d[0].req_count = cpu_to_le16(8);
3250                /*
3251                 * Link the skip address to this descriptor itself.  This causes
3252                 * a context to skip a cycle whenever lost cycles or FIFO
3253                 * overruns occur, without dropping the data.  The application
3254                 * should then decide whether this is an error condition or not.
3255                 * FIXME:  Make the context's cycle-lost behaviour configurable?
3256                 */
3257                d[0].branch_address = cpu_to_le32(d_bus | z);
3258
3259                header = (__le32 *) &d[1];
3260                header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3261                                        IT_HEADER_TAG(p->tag) |
3262                                        IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3263                                        IT_HEADER_CHANNEL(ctx->base.channel) |
3264                                        IT_HEADER_SPEED(ctx->base.speed));
3265                header[1] =
3266                        cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3267                                                          p->payload_length));
3268        }
3269
3270        if (p->header_length > 0) {
3271                d[2].req_count    = cpu_to_le16(p->header_length);
3272                d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3273                memcpy(&d[z], p->header, p->header_length);
3274        }
3275
3276        pd = d + z - payload_z;
3277        payload_end_index = payload_index + p->payload_length;
3278        for (i = 0; i < payload_z; i++) {
3279                page               = payload_index >> PAGE_SHIFT;
3280                offset             = payload_index & ~PAGE_MASK;
3281                next_page_index    = (page + 1) << PAGE_SHIFT;
3282                length             =
3283                        min(next_page_index, payload_end_index) - payload_index;
3284                pd[i].req_count    = cpu_to_le16(length);
3285
3286                page_bus = page_private(buffer->pages[page]);
3287                pd[i].data_address = cpu_to_le32(page_bus + offset);
3288
3289                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3290                                                 page_bus, offset, length,
3291                                                 DMA_TO_DEVICE);
3292
3293                payload_index += length;
3294        }
3295
3296        if (p->interrupt)
3297                irq = DESCRIPTOR_IRQ_ALWAYS;
3298        else
3299                irq = DESCRIPTOR_NO_IRQ;
3300
3301        last = z == 2 ? d : d + z - 1;
3302        last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3303                                     DESCRIPTOR_STATUS |
3304                                     DESCRIPTOR_BRANCH_ALWAYS |
3305                                     irq);
3306
3307        context_append(&ctx->context, d, z, header_z);
3308
3309        return 0;
3310}
3311
3312static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3313                                       struct fw_iso_packet *packet,
3314                                       struct fw_iso_buffer *buffer,
3315                                       unsigned long payload)
3316{
3317        struct device *device = ctx->context.ohci->card.device;
3318        struct descriptor *d, *pd;
3319        dma_addr_t d_bus, page_bus;
3320        u32 z, header_z, rest;
3321        int i, j, length;
3322        int page, offset, packet_count, header_size, payload_per_buffer;
3323
3324        /*
3325         * The OHCI controller puts the isochronous header and trailer in the
3326         * buffer, so we need at least 8 bytes.
3327         */
3328        packet_count = packet->header_length / ctx->base.header_size;
3329        header_size  = max(ctx->base.header_size, (size_t)8);
3330
3331        /* Get header size in number of descriptors. */
3332        header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3333        page     = payload >> PAGE_SHIFT;
3334        offset   = payload & ~PAGE_MASK;
3335        payload_per_buffer = packet->payload_length / packet_count;
3336
3337        for (i = 0; i < packet_count; i++) {
3338                /* d points to the header descriptor */
3339                z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3340                d = context_get_descriptors(&ctx->context,
3341                                z + header_z, &d_bus);
3342                if (d == NULL)
3343                        return -ENOMEM;
3344
3345                d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3346                                              DESCRIPTOR_INPUT_MORE);
3347                if (packet->skip && i == 0)
3348                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3349                d->req_count    = cpu_to_le16(header_size);
3350                d->res_count    = d->req_count;
3351                d->transfer_status = 0;
3352                d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3353
3354                rest = payload_per_buffer;
3355                pd = d;
3356                for (j = 1; j < z; j++) {
3357                        pd++;
3358                        pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3359                                                  DESCRIPTOR_INPUT_MORE);
3360
3361                        if (offset + rest < PAGE_SIZE)
3362                                length = rest;
3363                        else
3364                                length = PAGE_SIZE - offset;
3365                        pd->req_count = cpu_to_le16(length);
3366                        pd->res_count = pd->req_count;
3367                        pd->transfer_status = 0;
3368
3369                        page_bus = page_private(buffer->pages[page]);
3370                        pd->data_address = cpu_to_le32(page_bus + offset);
3371
3372                        dma_sync_single_range_for_device(device, page_bus,
3373                                                         offset, length,
3374                                                         DMA_FROM_DEVICE);
3375
3376                        offset = (offset + length) & ~PAGE_MASK;
3377                        rest -= length;
3378                        if (offset == 0)
3379                                page++;
3380                }
3381                pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3382                                          DESCRIPTOR_INPUT_LAST |
3383                                          DESCRIPTOR_BRANCH_ALWAYS);
3384                if (packet->interrupt && i == packet_count - 1)
3385                        pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3386
3387                context_append(&ctx->context, d, z, header_z);
3388        }
3389
3390        return 0;
3391}
3392
3393static int queue_iso_buffer_fill(struct iso_context *ctx,
3394                                 struct fw_iso_packet *packet,
3395                                 struct fw_iso_buffer *buffer,
3396                                 unsigned long payload)
3397{
3398        struct descriptor *d;
3399        dma_addr_t d_bus, page_bus;
3400        int page, offset, rest, z, i, length;
3401
3402        page   = payload >> PAGE_SHIFT;
3403        offset = payload & ~PAGE_MASK;
3404        rest   = packet->payload_length;
3405
3406        /* We need one descriptor for each page in the buffer. */
3407        z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3408
3409        if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3410                return -EFAULT;
3411
3412        for (i = 0; i < z; i++) {
3413                d = context_get_descriptors(&ctx->context, 1, &d_bus);
3414                if (d == NULL)
3415                        return -ENOMEM;
3416
3417                d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3418                                         DESCRIPTOR_BRANCH_ALWAYS);
3419                if (packet->skip && i == 0)
3420                        d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3421                if (packet->interrupt && i == z - 1)
3422                        d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3423
3424                if (offset + rest < PAGE_SIZE)
3425                        length = rest;
3426                else
3427                        length = PAGE_SIZE - offset;
3428                d->req_count = cpu_to_le16(length);
3429                d->res_count = d->req_count;
3430                d->transfer_status = 0;
3431
3432                page_bus = page_private(buffer->pages[page]);
3433                d->data_address = cpu_to_le32(page_bus + offset);
3434
3435                dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3436                                                 page_bus, offset, length,
3437                                                 DMA_FROM_DEVICE);
3438
3439                rest -= length;
3440                offset = 0;
3441                page++;
3442
3443                context_append(&ctx->context, d, 1, 0);
3444        }
3445
3446        return 0;
3447}
3448
3449static int ohci_queue_iso(struct fw_iso_context *base,
3450                          struct fw_iso_packet *packet,
3451                          struct fw_iso_buffer *buffer,
3452                          unsigned long payload)
3453{
3454        struct iso_context *ctx = container_of(base, struct iso_context, base);
3455        unsigned long flags;
3456        int ret = -ENOSYS;
3457
3458        spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3459        switch (base->type) {
3460        case FW_ISO_CONTEXT_TRANSMIT:
3461                ret = queue_iso_transmit(ctx, packet, buffer, payload);
3462                break;
3463        case FW_ISO_CONTEXT_RECEIVE:
3464                ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3465                break;
3466        case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3467                ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3468                break;
3469        }
3470        spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3471
3472        return ret;
3473}
3474
3475static void ohci_flush_queue_iso(struct fw_iso_context *base)
3476{
3477        struct context *ctx =
3478                        &container_of(base, struct iso_context, base)->context;
3479
3480        reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3481}
3482
3483static int ohci_flush_iso_completions(struct fw_iso_context *base)
3484{
3485        struct iso_context *ctx = container_of(base, struct iso_context, base);
3486        int ret = 0;
3487
3488        tasklet_disable(&ctx->context.tasklet);
3489
3490        if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3491                context_tasklet((unsigned long)&ctx->context);
3492
3493                switch (base->type) {
3494                case FW_ISO_CONTEXT_TRANSMIT:
3495                case FW_ISO_CONTEXT_RECEIVE:
3496                        if (ctx->header_length != 0)
3497                                flush_iso_completions(ctx);
3498                        break;
3499                case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3500                        if (ctx->mc_completed != 0)
3501                                flush_ir_buffer_fill(ctx);
3502                        break;
3503                default:
3504                        ret = -ENOSYS;
3505                }
3506
3507                clear_bit_unlock(0, &ctx->flushing_completions);
3508                smp_mb__after_atomic();
3509        }
3510
3511        tasklet_enable(&ctx->context.tasklet);
3512
3513        return ret;
3514}
3515
3516static const struct fw_card_driver ohci_driver = {
3517        .enable                 = ohci_enable,
3518        .read_phy_reg           = ohci_read_phy_reg,
3519        .update_phy_reg         = ohci_update_phy_reg,
3520        .set_config_rom         = ohci_set_config_rom,
3521        .send_request           = ohci_send_request,
3522        .send_response          = ohci_send_response,
3523        .cancel_packet          = ohci_cancel_packet,
3524        .enable_phys_dma        = ohci_enable_phys_dma,
3525        .read_csr               = ohci_read_csr,
3526        .write_csr              = ohci_write_csr,
3527
3528        .allocate_iso_context   = ohci_allocate_iso_context,
3529        .free_iso_context       = ohci_free_iso_context,
3530        .set_iso_channels       = ohci_set_iso_channels,
3531        .queue_iso              = ohci_queue_iso,
3532        .flush_queue_iso        = ohci_flush_queue_iso,
3533        .flush_iso_completions  = ohci_flush_iso_completions,
3534        .start_iso              = ohci_start_iso,
3535        .stop_iso               = ohci_stop_iso,
3536};
3537
3538#ifdef CONFIG_PPC_PMAC
3539static void pmac_ohci_on(struct pci_dev *dev)
3540{
3541        if (machine_is(powermac)) {
3542                struct device_node *ofn = pci_device_to_OF_node(dev);
3543
3544                if (ofn) {
3545                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3546                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3547                }
3548        }
3549}
3550
3551static void pmac_ohci_off(struct pci_dev *dev)
3552{
3553        if (machine_is(powermac)) {
3554                struct device_node *ofn = pci_device_to_OF_node(dev);
3555
3556                if (ofn) {
3557                        pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3558                        pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3559                }
3560        }
3561}
3562#else
3563static inline void pmac_ohci_on(struct pci_dev *dev) {}
3564static inline void pmac_ohci_off(struct pci_dev *dev) {}
3565#endif /* CONFIG_PPC_PMAC */
3566
3567static int pci_probe(struct pci_dev *dev,
3568                               const struct pci_device_id *ent)
3569{
3570        struct fw_ohci *ohci;
3571        u32 bus_options, max_receive, link_speed, version;
3572        u64 guid;
3573        int i, err;
3574        size_t size;
3575
3576        if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3577                dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3578                return -ENOSYS;
3579        }
3580
3581        ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3582        if (ohci == NULL) {
3583                err = -ENOMEM;
3584                goto fail;
3585        }
3586
3587        fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3588
3589        pmac_ohci_on(dev);
3590
3591        err = pci_enable_device(dev);
3592        if (err) {
3593                dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3594                goto fail_free;
3595        }
3596
3597        pci_set_master(dev);
3598        pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3599        pci_set_drvdata(dev, ohci);
3600
3601        spin_lock_init(&ohci->lock);
3602        mutex_init(&ohci->phy_reg_mutex);
3603
3604        INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3605
3606        if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3607            pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3608                ohci_err(ohci, "invalid MMIO resource\n");
3609                err = -ENXIO;
3610                goto fail_disable;
3611        }
3612
3613        err = pci_request_region(dev, 0, ohci_driver_name);
3614        if (err) {
3615                ohci_err(ohci, "MMIO resource unavailable\n");
3616                goto fail_disable;
3617        }
3618
3619        ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3620        if (ohci->registers == NULL) {
3621                ohci_err(ohci, "failed to remap registers\n");
3622                err = -ENXIO;
3623                goto fail_iomem;
3624        }
3625
3626        for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3627                if ((ohci_quirks[i].vendor == dev->vendor) &&
3628                    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3629                     ohci_quirks[i].device == dev->device) &&
3630                    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3631                     ohci_quirks[i].revision >= dev->revision)) {
3632                        ohci->quirks = ohci_quirks[i].flags;
3633                        break;
3634                }
3635        if (param_quirks)
3636                ohci->quirks = param_quirks;
3637
3638        /*
3639         * Because dma_alloc_coherent() allocates at least one page,
3640         * we save space by using a common buffer for the AR request/
3641         * response descriptors and the self IDs buffer.
3642         */
3643        BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3644        BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3645        ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3646                                               PAGE_SIZE,
3647                                               &ohci->misc_buffer_bus,
3648                                               GFP_KERNEL);
3649        if (!ohci->misc_buffer) {
3650                err = -ENOMEM;
3651                goto fail_iounmap;
3652        }
3653
3654        err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3655                              OHCI1394_AsReqRcvContextControlSet);
3656        if (err < 0)
3657                goto fail_misc_buf;
3658
3659        err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3660                              OHCI1394_AsRspRcvContextControlSet);
3661        if (err < 0)
3662                goto fail_arreq_ctx;
3663
3664        err = context_init(&ohci->at_request_ctx, ohci,
3665                           OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3666        if (err < 0)
3667                goto fail_arrsp_ctx;
3668
3669        err = context_init(&ohci->at_response_ctx, ohci,
3670                           OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3671        if (err < 0)
3672                goto fail_atreq_ctx;
3673
3674        reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3675        ohci->ir_context_channels = ~0ULL;
3676        ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3677        reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3678        ohci->ir_context_mask = ohci->ir_context_support;
3679        ohci->n_ir = hweight32(ohci->ir_context_mask);
3680        size = sizeof(struct iso_context) * ohci->n_ir;
3681        ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3682
3683        reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3684        ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3685        reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3686        ohci->it_context_mask = ohci->it_context_support;
3687        ohci->n_it = hweight32(ohci->it_context_mask);
3688        size = sizeof(struct iso_context) * ohci->n_it;
3689        ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3690
3691        if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3692                err = -ENOMEM;
3693                goto fail_contexts;
3694        }
3695
3696        ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3697        ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3698
3699        bus_options = reg_read(ohci, OHCI1394_BusOptions);
3700        max_receive = (bus_options >> 12) & 0xf;
3701        link_speed = bus_options & 0x7;
3702        guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3703                reg_read(ohci, OHCI1394_GUIDLo);
3704
3705        if (!(ohci->quirks & QUIRK_NO_MSI))
3706                pci_enable_msi(dev);
3707        if (request_irq(dev->irq, irq_handler,
3708                        pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3709                        ohci_driver_name, ohci)) {
3710                ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3711                err = -EIO;
3712                goto fail_msi;
3713        }
3714
3715        err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3716        if (err)
3717                goto fail_irq;
3718
3719        version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3720        ohci_notice(ohci,
3721                    "added OHCI v%x.%x device as card %d, "
3722                    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3723                    version >> 16, version & 0xff, ohci->card.index,
3724                    ohci->n_ir, ohci->n_it, ohci->quirks,
3725                    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3726                        ", physUB" : "");
3727
3728        return 0;
3729
3730 fail_irq:
3731        free_irq(dev->irq, ohci);
3732 fail_msi:
3733        pci_disable_msi(dev);
3734 fail_contexts:
3735        kfree(ohci->ir_context_list);
3736        kfree(ohci->it_context_list);
3737        context_release(&ohci->at_response_ctx);
3738 fail_atreq_ctx:
3739        context_release(&ohci->at_request_ctx);
3740 fail_arrsp_ctx:
3741        ar_context_release(&ohci->ar_response_ctx);
3742 fail_arreq_ctx:
3743        ar_context_release(&ohci->ar_request_ctx);
3744 fail_misc_buf:
3745        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3746                          ohci->misc_buffer, ohci->misc_buffer_bus);
3747 fail_iounmap:
3748        pci_iounmap(dev, ohci->registers);
3749 fail_iomem:
3750        pci_release_region(dev, 0);
3751 fail_disable:
3752        pci_disable_device(dev);
3753 fail_free:
3754        kfree(ohci);
3755        pmac_ohci_off(dev);
3756 fail:
3757        return err;
3758}
3759
3760static void pci_remove(struct pci_dev *dev)
3761{
3762        struct fw_ohci *ohci = pci_get_drvdata(dev);
3763
3764        /*
3765         * If the removal is happening from the suspend state, LPS won't be
3766         * enabled and host registers (eg., IntMaskClear) won't be accessible.
3767         */
3768        if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3769                reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3770                flush_writes(ohci);
3771        }
3772        cancel_work_sync(&ohci->bus_reset_work);
3773        fw_core_remove_card(&ohci->card);
3774
3775        /*
3776         * FIXME: Fail all pending packets here, now that the upper
3777         * layers can't queue any more.
3778         */
3779
3780        software_reset(ohci);
3781        free_irq(dev->irq, ohci);
3782
3783        if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3784                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3785                                  ohci->next_config_rom, ohci->next_config_rom_bus);
3786        if (ohci->config_rom)
3787                dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3788                                  ohci->config_rom, ohci->config_rom_bus);
3789        ar_context_release(&ohci->ar_request_ctx);
3790        ar_context_release(&ohci->ar_response_ctx);
3791        dma_free_coherent(ohci->card.device, PAGE_SIZE,
3792                          ohci->misc_buffer, ohci->misc_buffer_bus);
3793        context_release(&ohci->at_request_ctx);
3794        context_release(&ohci->at_response_ctx);
3795        kfree(ohci->it_context_list);
3796        kfree(ohci->ir_context_list);
3797        pci_disable_msi(dev);
3798        pci_iounmap(dev, ohci->registers);
3799        pci_release_region(dev, 0);
3800        pci_disable_device(dev);
3801        kfree(ohci);
3802        pmac_ohci_off(dev);
3803
3804        dev_notice(&dev->dev, "removed fw-ohci device\n");
3805}
3806
3807#ifdef CONFIG_PM
3808static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3809{
3810        struct fw_ohci *ohci = pci_get_drvdata(dev);
3811        int err;
3812
3813        software_reset(ohci);
3814        err = pci_save_state(dev);
3815        if (err) {
3816                ohci_err(ohci, "pci_save_state failed\n");
3817                return err;
3818        }
3819        err = pci_set_power_state(dev, pci_choose_state(dev, state));
3820        if (err)
3821                ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3822        pmac_ohci_off(dev);
3823
3824        return 0;
3825}
3826
3827static int pci_resume(struct pci_dev *dev)
3828{
3829        struct fw_ohci *ohci = pci_get_drvdata(dev);
3830        int err;
3831
3832        pmac_ohci_on(dev);
3833        pci_set_power_state(dev, PCI_D0);
3834        pci_restore_state(dev);
3835        err = pci_enable_device(dev);
3836        if (err) {
3837                ohci_err(ohci, "pci_enable_device failed\n");
3838                return err;
3839        }
3840
3841        /* Some systems don't setup GUID register on resume from ram  */
3842        if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3843                                        !reg_read(ohci, OHCI1394_GUIDHi)) {
3844                reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3845                reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3846        }
3847
3848        err = ohci_enable(&ohci->card, NULL, 0);
3849        if (err)
3850                return err;
3851
3852        ohci_resume_iso_dma(ohci);
3853
3854        return 0;
3855}
3856#endif
3857
3858static const struct pci_device_id pci_table[] = {
3859        { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3860        { }
3861};
3862
3863MODULE_DEVICE_TABLE(pci, pci_table);
3864
3865static struct pci_driver fw_ohci_pci_driver = {
3866        .name           = ohci_driver_name,
3867        .id_table       = pci_table,
3868        .probe          = pci_probe,
3869        .remove         = pci_remove,
3870#ifdef CONFIG_PM
3871        .resume         = pci_resume,
3872        .suspend        = pci_suspend,
3873#endif
3874};
3875
3876static int __init fw_ohci_init(void)
3877{
3878        selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3879        if (!selfid_workqueue)
3880                return -ENOMEM;
3881
3882        return pci_register_driver(&fw_ohci_pci_driver);
3883}
3884
3885static void __exit fw_ohci_cleanup(void)
3886{
3887        pci_unregister_driver(&fw_ohci_pci_driver);
3888        destroy_workqueue(selfid_workqueue);
3889}
3890
3891module_init(fw_ohci_init);
3892module_exit(fw_ohci_cleanup);
3893
3894MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3895MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3896MODULE_LICENSE("GPL");
3897
3898/* Provide a module alias so root-on-sbp2 initrds don't break. */
3899MODULE_ALIAS("ohci1394");
3900