linux/drivers/mtd/devices/st_spi_fsm.c
<<
>>
Prefs
   1/*
   2 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
   3 *
   4 * Author: Angus Clark <angus.clark@st.com>
   5 *
   6 * Copyright (C) 2010-2014 STMicroelectronics Limited
   7 *
   8 * JEDEC probe based on drivers/mtd/devices/m25p80.c
   9 *
  10 * This code is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 *
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/regmap.h>
  18#include <linux/platform_device.h>
  19#include <linux/mfd/syscon.h>
  20#include <linux/mtd/mtd.h>
  21#include <linux/mtd/partitions.h>
  22#include <linux/mtd/spi-nor.h>
  23#include <linux/sched.h>
  24#include <linux/delay.h>
  25#include <linux/io.h>
  26#include <linux/of.h>
  27
  28#include "serial_flash_cmds.h"
  29
  30/*
  31 * FSM SPI Controller Registers
  32 */
  33#define SPI_CLOCKDIV                    0x0010
  34#define SPI_MODESELECT                  0x0018
  35#define SPI_CONFIGDATA                  0x0020
  36#define SPI_STA_MODE_CHANGE             0x0028
  37#define SPI_FAST_SEQ_TRANSFER_SIZE      0x0100
  38#define SPI_FAST_SEQ_ADD1               0x0104
  39#define SPI_FAST_SEQ_ADD2               0x0108
  40#define SPI_FAST_SEQ_ADD_CFG            0x010c
  41#define SPI_FAST_SEQ_OPC1               0x0110
  42#define SPI_FAST_SEQ_OPC2               0x0114
  43#define SPI_FAST_SEQ_OPC3               0x0118
  44#define SPI_FAST_SEQ_OPC4               0x011c
  45#define SPI_FAST_SEQ_OPC5               0x0120
  46#define SPI_MODE_BITS                   0x0124
  47#define SPI_DUMMY_BITS                  0x0128
  48#define SPI_FAST_SEQ_FLASH_STA_DATA     0x012c
  49#define SPI_FAST_SEQ_1                  0x0130
  50#define SPI_FAST_SEQ_2                  0x0134
  51#define SPI_FAST_SEQ_3                  0x0138
  52#define SPI_FAST_SEQ_4                  0x013c
  53#define SPI_FAST_SEQ_CFG                0x0140
  54#define SPI_FAST_SEQ_STA                0x0144
  55#define SPI_QUAD_BOOT_SEQ_INIT_1        0x0148
  56#define SPI_QUAD_BOOT_SEQ_INIT_2        0x014c
  57#define SPI_QUAD_BOOT_READ_SEQ_1        0x0150
  58#define SPI_QUAD_BOOT_READ_SEQ_2        0x0154
  59#define SPI_PROGRAM_ERASE_TIME          0x0158
  60#define SPI_MULT_PAGE_REPEAT_SEQ_1      0x015c
  61#define SPI_MULT_PAGE_REPEAT_SEQ_2      0x0160
  62#define SPI_STATUS_WR_TIME_REG          0x0164
  63#define SPI_FAST_SEQ_DATA_REG           0x0300
  64
  65/*
  66 * Register: SPI_MODESELECT
  67 */
  68#define SPI_MODESELECT_CONTIG           0x01
  69#define SPI_MODESELECT_FASTREAD         0x02
  70#define SPI_MODESELECT_DUALIO           0x04
  71#define SPI_MODESELECT_FSM              0x08
  72#define SPI_MODESELECT_QUADBOOT         0x10
  73
  74/*
  75 * Register: SPI_CONFIGDATA
  76 */
  77#define SPI_CFG_DEVICE_ST               0x1
  78#define SPI_CFG_DEVICE_ATMEL            0x4
  79#define SPI_CFG_MIN_CS_HIGH(x)          (((x) & 0xfff) << 4)
  80#define SPI_CFG_CS_SETUPHOLD(x)         (((x) & 0xff) << 16)
  81#define SPI_CFG_DATA_HOLD(x)            (((x) & 0xff) << 24)
  82
  83#define SPI_CFG_DEFAULT_MIN_CS_HIGH    SPI_CFG_MIN_CS_HIGH(0x0AA)
  84#define SPI_CFG_DEFAULT_CS_SETUPHOLD   SPI_CFG_CS_SETUPHOLD(0xA0)
  85#define SPI_CFG_DEFAULT_DATA_HOLD      SPI_CFG_DATA_HOLD(0x00)
  86
  87/*
  88 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
  89 */
  90#define TRANSFER_SIZE(x)                ((x) * 8)
  91
  92/*
  93 * Register: SPI_FAST_SEQ_ADD_CFG
  94 */
  95#define ADR_CFG_CYCLES_ADD1(x)          ((x) << 0)
  96#define ADR_CFG_PADS_1_ADD1             (0x0 << 6)
  97#define ADR_CFG_PADS_2_ADD1             (0x1 << 6)
  98#define ADR_CFG_PADS_4_ADD1             (0x3 << 6)
  99#define ADR_CFG_CSDEASSERT_ADD1         (1   << 8)
 100#define ADR_CFG_CYCLES_ADD2(x)          ((x) << (0+16))
 101#define ADR_CFG_PADS_1_ADD2             (0x0 << (6+16))
 102#define ADR_CFG_PADS_2_ADD2             (0x1 << (6+16))
 103#define ADR_CFG_PADS_4_ADD2             (0x3 << (6+16))
 104#define ADR_CFG_CSDEASSERT_ADD2         (1   << (8+16))
 105
 106/*
 107 * Register: SPI_FAST_SEQ_n
 108 */
 109#define SEQ_OPC_OPCODE(x)               ((x) << 0)
 110#define SEQ_OPC_CYCLES(x)               ((x) << 8)
 111#define SEQ_OPC_PADS_1                  (0x0 << 14)
 112#define SEQ_OPC_PADS_2                  (0x1 << 14)
 113#define SEQ_OPC_PADS_4                  (0x3 << 14)
 114#define SEQ_OPC_CSDEASSERT              (1   << 16)
 115
 116/*
 117 * Register: SPI_FAST_SEQ_CFG
 118 */
 119#define SEQ_CFG_STARTSEQ                (1 << 0)
 120#define SEQ_CFG_SWRESET                 (1 << 5)
 121#define SEQ_CFG_CSDEASSERT              (1 << 6)
 122#define SEQ_CFG_READNOTWRITE            (1 << 7)
 123#define SEQ_CFG_ERASE                   (1 << 8)
 124#define SEQ_CFG_PADS_1                  (0x0 << 16)
 125#define SEQ_CFG_PADS_2                  (0x1 << 16)
 126#define SEQ_CFG_PADS_4                  (0x3 << 16)
 127
 128/*
 129 * Register: SPI_MODE_BITS
 130 */
 131#define MODE_DATA(x)                    (x & 0xff)
 132#define MODE_CYCLES(x)                  ((x & 0x3f) << 16)
 133#define MODE_PADS_1                     (0x0 << 22)
 134#define MODE_PADS_2                     (0x1 << 22)
 135#define MODE_PADS_4                     (0x3 << 22)
 136#define DUMMY_CSDEASSERT                (1   << 24)
 137
 138/*
 139 * Register: SPI_DUMMY_BITS
 140 */
 141#define DUMMY_CYCLES(x)                 ((x & 0x3f) << 16)
 142#define DUMMY_PADS_1                    (0x0 << 22)
 143#define DUMMY_PADS_2                    (0x1 << 22)
 144#define DUMMY_PADS_4                    (0x3 << 22)
 145#define DUMMY_CSDEASSERT                (1   << 24)
 146
 147/*
 148 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
 149 */
 150#define STA_DATA_BYTE1(x)               ((x & 0xff) << 0)
 151#define STA_DATA_BYTE2(x)               ((x & 0xff) << 8)
 152#define STA_PADS_1                      (0x0 << 16)
 153#define STA_PADS_2                      (0x1 << 16)
 154#define STA_PADS_4                      (0x3 << 16)
 155#define STA_CSDEASSERT                  (0x1 << 20)
 156#define STA_RDNOTWR                     (0x1 << 21)
 157
 158/*
 159 * FSM SPI Instruction Opcodes
 160 */
 161#define STFSM_OPC_CMD                   0x1
 162#define STFSM_OPC_ADD                   0x2
 163#define STFSM_OPC_STA                   0x3
 164#define STFSM_OPC_MODE                  0x4
 165#define STFSM_OPC_DUMMY         0x5
 166#define STFSM_OPC_DATA                  0x6
 167#define STFSM_OPC_WAIT                  0x7
 168#define STFSM_OPC_JUMP                  0x8
 169#define STFSM_OPC_GOTO                  0x9
 170#define STFSM_OPC_STOP                  0xF
 171
 172/*
 173 * FSM SPI Instructions (== opcode + operand).
 174 */
 175#define STFSM_INSTR(cmd, op)            ((cmd) | ((op) << 4))
 176
 177#define STFSM_INST_CMD1                 STFSM_INSTR(STFSM_OPC_CMD,      1)
 178#define STFSM_INST_CMD2                 STFSM_INSTR(STFSM_OPC_CMD,      2)
 179#define STFSM_INST_CMD3                 STFSM_INSTR(STFSM_OPC_CMD,      3)
 180#define STFSM_INST_CMD4                 STFSM_INSTR(STFSM_OPC_CMD,      4)
 181#define STFSM_INST_CMD5                 STFSM_INSTR(STFSM_OPC_CMD,      5)
 182#define STFSM_INST_ADD1                 STFSM_INSTR(STFSM_OPC_ADD,      1)
 183#define STFSM_INST_ADD2                 STFSM_INSTR(STFSM_OPC_ADD,      2)
 184
 185#define STFSM_INST_DATA_WRITE           STFSM_INSTR(STFSM_OPC_DATA,     1)
 186#define STFSM_INST_DATA_READ            STFSM_INSTR(STFSM_OPC_DATA,     2)
 187
 188#define STFSM_INST_STA_RD1              STFSM_INSTR(STFSM_OPC_STA,      0x1)
 189#define STFSM_INST_STA_WR1              STFSM_INSTR(STFSM_OPC_STA,      0x1)
 190#define STFSM_INST_STA_RD2              STFSM_INSTR(STFSM_OPC_STA,      0x2)
 191#define STFSM_INST_STA_WR1_2            STFSM_INSTR(STFSM_OPC_STA,      0x3)
 192
 193#define STFSM_INST_MODE                 STFSM_INSTR(STFSM_OPC_MODE,     0)
 194#define STFSM_INST_DUMMY                STFSM_INSTR(STFSM_OPC_DUMMY,    0)
 195#define STFSM_INST_WAIT                 STFSM_INSTR(STFSM_OPC_WAIT,     0)
 196#define STFSM_INST_STOP                 STFSM_INSTR(STFSM_OPC_STOP,     0)
 197
 198#define STFSM_DEFAULT_EMI_FREQ 100000000UL                        /* 100 MHz */
 199#define STFSM_DEFAULT_WR_TIME  (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
 200
 201#define STFSM_FLASH_SAFE_FREQ  10000000UL                         /* 10 MHz */
 202
 203#define STFSM_MAX_WAIT_SEQ_MS  1000     /* FSM execution time */
 204
 205/* S25FLxxxS commands */
 206#define S25FL_CMD_WRITE4_1_1_4 0x34
 207#define S25FL_CMD_SE4          0xdc
 208#define S25FL_CMD_CLSR         0x30
 209#define S25FL_CMD_DYBWR                0xe1
 210#define S25FL_CMD_DYBRD                0xe0
 211#define S25FL_CMD_WRITE4       0x12    /* Note, opcode clashes with
 212                                        * 'SPINOR_OP_WRITE_1_4_4'
 213                                        * as found on N25Qxxx devices! */
 214
 215/* Status register */
 216#define FLASH_STATUS_BUSY      0x01
 217#define FLASH_STATUS_WEL       0x02
 218#define FLASH_STATUS_BP0       0x04
 219#define FLASH_STATUS_BP1       0x08
 220#define FLASH_STATUS_BP2       0x10
 221#define FLASH_STATUS_SRWP0     0x80
 222#define FLASH_STATUS_TIMEOUT   0xff
 223/* S25FL Error Flags */
 224#define S25FL_STATUS_E_ERR     0x20
 225#define S25FL_STATUS_P_ERR     0x40
 226
 227#define N25Q_CMD_WRVCR         0x81
 228#define N25Q_CMD_RDVCR         0x85
 229#define N25Q_CMD_RDVECR        0x65
 230#define N25Q_CMD_RDNVCR        0xb5
 231#define N25Q_CMD_WRNVCR        0xb1
 232
 233#define FLASH_PAGESIZE         256                      /* In Bytes    */
 234#define FLASH_PAGESIZE_32      (FLASH_PAGESIZE / 4)     /* In uint32_t */
 235#define FLASH_MAX_BUSY_WAIT    (300 * HZ)       /* Maximum 'CHIPERASE' time */
 236
 237/*
 238 * Flags to tweak operation of default read/write/erase routines
 239 */
 240#define CFG_READ_TOGGLE_32BIT_ADDR     0x00000001
 241#define CFG_WRITE_TOGGLE_32BIT_ADDR    0x00000002
 242#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
 243#define CFG_S25FL_CHECK_ERROR_FLAGS    0x00000010
 244
 245struct stfsm_seq {
 246        uint32_t data_size;
 247        uint32_t addr1;
 248        uint32_t addr2;
 249        uint32_t addr_cfg;
 250        uint32_t seq_opc[5];
 251        uint32_t mode;
 252        uint32_t dummy;
 253        uint32_t status;
 254        uint8_t  seq[16];
 255        uint32_t seq_cfg;
 256} __packed __aligned(4);
 257
 258struct stfsm {
 259        struct device           *dev;
 260        void __iomem            *base;
 261        struct resource         *region;
 262        struct mtd_info         mtd;
 263        struct mutex            lock;
 264        struct flash_info       *info;
 265
 266        uint32_t                configuration;
 267        uint32_t                fifo_dir_delay;
 268        bool                    booted_from_spi;
 269        bool                    reset_signal;
 270        bool                    reset_por;
 271
 272        struct stfsm_seq stfsm_seq_read;
 273        struct stfsm_seq stfsm_seq_write;
 274        struct stfsm_seq stfsm_seq_en_32bit_addr;
 275};
 276
 277/* Parameters to configure a READ or WRITE FSM sequence */
 278struct seq_rw_config {
 279        uint32_t        flags;          /* flags to support config */
 280        uint8_t         cmd;            /* FLASH command */
 281        int             write;          /* Write Sequence */
 282        uint8_t         addr_pads;      /* No. of addr pads (MODE & DUMMY) */
 283        uint8_t         data_pads;      /* No. of data pads */
 284        uint8_t         mode_data;      /* MODE data */
 285        uint8_t         mode_cycles;    /* No. of MODE cycles */
 286        uint8_t         dummy_cycles;   /* No. of DUMMY cycles */
 287};
 288
 289/* SPI Flash Device Table */
 290struct flash_info {
 291        char            *name;
 292        /*
 293         * JEDEC id zero means "no ID" (most older chips); otherwise it has
 294         * a high byte of zero plus three data bytes: the manufacturer id,
 295         * then a two byte device id.
 296         */
 297        u32             jedec_id;
 298        u16             ext_id;
 299        /*
 300         * The size listed here is what works with SPINOR_OP_SE, which isn't
 301         * necessarily called a "sector" by the vendor.
 302         */
 303        unsigned        sector_size;
 304        u16             n_sectors;
 305        u32             flags;
 306        /*
 307         * Note, where FAST_READ is supported, freq_max specifies the
 308         * FAST_READ frequency, not the READ frequency.
 309         */
 310        u32             max_freq;
 311        int             (*config)(struct stfsm *);
 312};
 313
 314static int stfsm_n25q_config(struct stfsm *fsm);
 315static int stfsm_mx25_config(struct stfsm *fsm);
 316static int stfsm_s25fl_config(struct stfsm *fsm);
 317static int stfsm_w25q_config(struct stfsm *fsm);
 318
 319static struct flash_info flash_types[] = {
 320        /*
 321         * ST Microelectronics/Numonyx --
 322         * (newer production versions may have feature updates
 323         * (eg faster operating frequency)
 324         */
 325#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
 326        { "m25p40",  0x202013, 0,  64 * 1024,   8, M25P_FLAG, 25, NULL },
 327        { "m25p80",  0x202014, 0,  64 * 1024,  16, M25P_FLAG, 25, NULL },
 328        { "m25p16",  0x202015, 0,  64 * 1024,  32, M25P_FLAG, 25, NULL },
 329        { "m25p32",  0x202016, 0,  64 * 1024,  64, M25P_FLAG, 50, NULL },
 330        { "m25p64",  0x202017, 0,  64 * 1024, 128, M25P_FLAG, 50, NULL },
 331        { "m25p128", 0x202018, 0, 256 * 1024,  64, M25P_FLAG, 50, NULL },
 332
 333#define M25PX_FLAG (FLASH_FLAG_READ_WRITE      |        \
 334                    FLASH_FLAG_READ_FAST        |       \
 335                    FLASH_FLAG_READ_1_1_2       |       \
 336                    FLASH_FLAG_WRITE_1_1_2)
 337        { "m25px32", 0x207116, 0,  64 * 1024,  64, M25PX_FLAG, 75, NULL },
 338        { "m25px64", 0x207117, 0,  64 * 1024, 128, M25PX_FLAG, 75, NULL },
 339
 340        /* Macronix MX25xxx
 341         *     - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
 342         *       where operating frequency must be reduced.
 343         */
 344#define MX25_FLAG (FLASH_FLAG_READ_WRITE       |        \
 345                   FLASH_FLAG_READ_FAST         |       \
 346                   FLASH_FLAG_READ_1_1_2        |       \
 347                   FLASH_FLAG_READ_1_2_2        |       \
 348                   FLASH_FLAG_READ_1_1_4        |       \
 349                   FLASH_FLAG_SE_4K             |       \
 350                   FLASH_FLAG_SE_32K)
 351        { "mx25l3255e",  0xc29e16, 0, 64 * 1024, 64,
 352          (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
 353          stfsm_mx25_config},
 354        { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
 355          (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
 356          stfsm_mx25_config },
 357        { "mx25l25655e", 0xc22619, 0, 64*1024, 512,
 358          (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
 359          stfsm_mx25_config},
 360
 361#define N25Q_FLAG (FLASH_FLAG_READ_WRITE       |        \
 362                   FLASH_FLAG_READ_FAST         |       \
 363                   FLASH_FLAG_READ_1_1_2        |       \
 364                   FLASH_FLAG_READ_1_2_2        |       \
 365                   FLASH_FLAG_READ_1_1_4        |       \
 366                   FLASH_FLAG_READ_1_4_4        |       \
 367                   FLASH_FLAG_WRITE_1_1_2       |       \
 368                   FLASH_FLAG_WRITE_1_2_2       |       \
 369                   FLASH_FLAG_WRITE_1_1_4       |       \
 370                   FLASH_FLAG_WRITE_1_4_4)
 371        { "n25q128", 0x20ba18, 0, 64 * 1024,  256, N25Q_FLAG, 108,
 372          stfsm_n25q_config },
 373        { "n25q256", 0x20ba19, 0, 64 * 1024,  512,
 374          N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
 375
 376        /*
 377         * Spansion S25FLxxxP
 378         *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
 379         */
 380#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE  |        \
 381                        FLASH_FLAG_READ_1_1_2   |       \
 382                        FLASH_FLAG_READ_1_2_2   |       \
 383                        FLASH_FLAG_READ_1_1_4   |       \
 384                        FLASH_FLAG_READ_1_4_4   |       \
 385                        FLASH_FLAG_WRITE_1_1_4  |       \
 386                        FLASH_FLAG_READ_FAST)
 387        { "s25fl032p",  0x010215, 0x4d00,  64 * 1024,  64, S25FLXXXP_FLAG, 80,
 388          stfsm_s25fl_config},
 389        { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024,  64, S25FLXXXP_FLAG, 80,
 390          stfsm_s25fl_config },
 391        { "s25fl129p1", 0x012018, 0x4d01,  64 * 1024, 256, S25FLXXXP_FLAG, 80,
 392          stfsm_s25fl_config },
 393
 394        /*
 395         * Spansion S25FLxxxS
 396         *     - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
 397         *     - RESET# signal supported by die but not bristled out on all
 398         *       package types.  The package type is a function of board design,
 399         *       so this information is captured in the board's flags.
 400         *     - Supports 'DYB' sector protection. Depending on variant, sectors
 401         *       may default to locked state on power-on.
 402         */
 403#define S25FLXXXS_FLAG (S25FLXXXP_FLAG         |        \
 404                        FLASH_FLAG_RESET        |       \
 405                        FLASH_FLAG_DYB_LOCKING)
 406        { "s25fl128s0", 0x012018, 0x0300,  256 * 1024, 64, S25FLXXXS_FLAG, 80,
 407          stfsm_s25fl_config },
 408        { "s25fl128s1", 0x012018, 0x0301,  64 * 1024, 256, S25FLXXXS_FLAG, 80,
 409          stfsm_s25fl_config },
 410        { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
 411          S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
 412        { "s25fl256s1", 0x010219, 0x4d01,  64 * 1024, 512,
 413          S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
 414
 415        /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
 416#define W25X_FLAG (FLASH_FLAG_READ_WRITE       |        \
 417                   FLASH_FLAG_READ_FAST         |       \
 418                   FLASH_FLAG_READ_1_1_2        |       \
 419                   FLASH_FLAG_WRITE_1_1_2)
 420        { "w25x40",  0xef3013, 0,  64 * 1024,   8, W25X_FLAG, 75, NULL },
 421        { "w25x80",  0xef3014, 0,  64 * 1024,  16, W25X_FLAG, 75, NULL },
 422        { "w25x16",  0xef3015, 0,  64 * 1024,  32, W25X_FLAG, 75, NULL },
 423        { "w25x32",  0xef3016, 0,  64 * 1024,  64, W25X_FLAG, 75, NULL },
 424        { "w25x64",  0xef3017, 0,  64 * 1024, 128, W25X_FLAG, 75, NULL },
 425
 426        /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
 427#define W25Q_FLAG (FLASH_FLAG_READ_WRITE       |        \
 428                   FLASH_FLAG_READ_FAST         |       \
 429                   FLASH_FLAG_READ_1_1_2        |       \
 430                   FLASH_FLAG_READ_1_2_2        |       \
 431                   FLASH_FLAG_READ_1_1_4        |       \
 432                   FLASH_FLAG_READ_1_4_4        |       \
 433                   FLASH_FLAG_WRITE_1_1_4)
 434        { "w25q80",  0xef4014, 0,  64 * 1024,  16, W25Q_FLAG, 80,
 435          stfsm_w25q_config },
 436        { "w25q16",  0xef4015, 0,  64 * 1024,  32, W25Q_FLAG, 80,
 437          stfsm_w25q_config },
 438        { "w25q32",  0xef4016, 0,  64 * 1024,  64, W25Q_FLAG, 80,
 439          stfsm_w25q_config },
 440        { "w25q64",  0xef4017, 0,  64 * 1024, 128, W25Q_FLAG, 80,
 441          stfsm_w25q_config },
 442
 443        /* Sentinel */
 444        { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
 445};
 446
 447/*
 448 * FSM message sequence configurations:
 449 *
 450 * All configs are presented in order of preference
 451 */
 452
 453/* Default READ configurations, in order of preference */
 454static struct seq_rw_config default_read_configs[] = {
 455        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,   0, 4, 4, 0x00, 2, 4},
 456        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,   0, 1, 4, 0x00, 4, 0},
 457        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,   0, 2, 2, 0x00, 4, 0},
 458        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,   0, 1, 2, 0x00, 0, 8},
 459        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST,    0, 1, 1, 0x00, 0, 8},
 460        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,         0, 1, 1, 0x00, 0, 0},
 461        {0x00,                  0,                      0, 0, 0, 0x00, 0, 0},
 462};
 463
 464/* Default WRITE configurations */
 465static struct seq_rw_config default_write_configs[] = {
 466        {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
 467        {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
 468        {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
 469        {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
 470        {FLASH_FLAG_READ_WRITE,  SPINOR_OP_WRITE,       1, 1, 1, 0x00, 0, 0},
 471        {0x00,                   0,                     0, 0, 0, 0x00, 0, 0},
 472};
 473
 474/*
 475 * [N25Qxxx] Configuration
 476 */
 477#define N25Q_VCR_DUMMY_CYCLES(x)        (((x) & 0xf) << 4)
 478#define N25Q_VCR_XIP_DISABLED           ((uint8_t)0x1 << 3)
 479#define N25Q_VCR_WRAP_CONT              0x3
 480
 481/* N25Q 3-byte Address READ configurations
 482 *      - 'FAST' variants configured for 8 dummy cycles.
 483 *
 484 * Note, the number of dummy cycles used for 'FAST' READ operations is
 485 * configurable and would normally be tuned according to the READ command and
 486 * operating frequency.  However, this applies universally to all 'FAST' READ
 487 * commands, including those used by the SPIBoot controller, and remains in
 488 * force until the device is power-cycled.  Since the SPIBoot controller is
 489 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
 490 * cycles.
 491 */
 492static struct seq_rw_config n25q_read3_configs[] = {
 493        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4,   0, 4, 4, 0x00, 0, 8},
 494        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4,   0, 1, 4, 0x00, 0, 8},
 495        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2,   0, 2, 2, 0x00, 0, 8},
 496        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2,   0, 1, 2, 0x00, 0, 8},
 497        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ_FAST,    0, 1, 1, 0x00, 0, 8},
 498        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ,         0, 1, 1, 0x00, 0, 0},
 499        {0x00,                  0,                      0, 0, 0, 0x00, 0, 0},
 500};
 501
 502/* N25Q 4-byte Address READ configurations
 503 *      - use special 4-byte address READ commands (reduces overheads, and
 504 *        reduces risk of hitting watchdog reset issues).
 505 *      - 'FAST' variants configured for 8 dummy cycles (see note above.)
 506 */
 507static struct seq_rw_config n25q_read4_configs[] = {
 508        {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4,  0, 4, 4, 0x00, 0, 8},
 509        {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4,  0, 1, 4, 0x00, 0, 8},
 510        {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2,  0, 2, 2, 0x00, 0, 8},
 511        {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2,  0, 1, 2, 0x00, 0, 8},
 512        {FLASH_FLAG_READ_FAST,  SPINOR_OP_READ4_FAST,   0, 1, 1, 0x00, 0, 8},
 513        {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4,        0, 1, 1, 0x00, 0, 0},
 514        {0x00,                  0,                      0, 0, 0, 0x00, 0, 0},
 515};
 516
 517/*
 518 * [MX25xxx] Configuration
 519 */
 520#define MX25_STATUS_QE                  (0x1 << 6)
 521
 522static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
 523{
 524        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 525                           SEQ_OPC_CYCLES(8) |
 526                           SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
 527                           SEQ_OPC_CSDEASSERT);
 528
 529        seq->seq[0] = STFSM_INST_CMD1;
 530        seq->seq[1] = STFSM_INST_WAIT;
 531        seq->seq[2] = STFSM_INST_STOP;
 532
 533        seq->seq_cfg = (SEQ_CFG_PADS_1 |
 534                        SEQ_CFG_ERASE |
 535                        SEQ_CFG_READNOTWRITE |
 536                        SEQ_CFG_CSDEASSERT |
 537                        SEQ_CFG_STARTSEQ);
 538
 539        return 0;
 540}
 541
 542/*
 543 * [S25FLxxx] Configuration
 544 */
 545#define STFSM_S25FL_CONFIG_QE           (0x1 << 1)
 546
 547/*
 548 * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
 549 * Register, Extended Address Modes, and a 32-bit address command set.  The
 550 * 32-bit address command set is used here, since it avoids any problems with
 551 * entering a state that is incompatible with the SPIBoot Controller.
 552 */
 553static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
 554        {FLASH_FLAG_READ_1_4_4,  SPINOR_OP_READ4_1_4_4,  0, 4, 4, 0x00, 2, 4},
 555        {FLASH_FLAG_READ_1_1_4,  SPINOR_OP_READ4_1_1_4,  0, 1, 4, 0x00, 0, 8},
 556        {FLASH_FLAG_READ_1_2_2,  SPINOR_OP_READ4_1_2_2,  0, 2, 2, 0x00, 4, 0},
 557        {FLASH_FLAG_READ_1_1_2,  SPINOR_OP_READ4_1_1_2,  0, 1, 2, 0x00, 0, 8},
 558        {FLASH_FLAG_READ_FAST,   SPINOR_OP_READ4_FAST,   0, 1, 1, 0x00, 0, 8},
 559        {FLASH_FLAG_READ_WRITE,  SPINOR_OP_READ4,        0, 1, 1, 0x00, 0, 0},
 560        {0x00,                   0,                      0, 0, 0, 0x00, 0, 0},
 561};
 562
 563static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
 564        {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
 565        {FLASH_FLAG_READ_WRITE,  S25FL_CMD_WRITE4,       1, 1, 1, 0x00, 0, 0},
 566        {0x00,                   0,                      0, 0, 0, 0x00, 0, 0},
 567};
 568
 569/*
 570 * [W25Qxxx] Configuration
 571 */
 572#define W25Q_STATUS_QE                  (0x1 << 1)
 573
 574static struct stfsm_seq stfsm_seq_read_jedec = {
 575        .data_size = TRANSFER_SIZE(8),
 576        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 577                       SEQ_OPC_CYCLES(8) |
 578                       SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
 579        .seq = {
 580                STFSM_INST_CMD1,
 581                STFSM_INST_DATA_READ,
 582                STFSM_INST_STOP,
 583        },
 584        .seq_cfg = (SEQ_CFG_PADS_1 |
 585                    SEQ_CFG_READNOTWRITE |
 586                    SEQ_CFG_CSDEASSERT |
 587                    SEQ_CFG_STARTSEQ),
 588};
 589
 590static struct stfsm_seq stfsm_seq_read_status_fifo = {
 591        .data_size = TRANSFER_SIZE(4),
 592        .seq_opc[0] = (SEQ_OPC_PADS_1 |
 593                       SEQ_OPC_CYCLES(8) |
 594                       SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
 595        .seq = {
 596                STFSM_INST_CMD1,
 597                STFSM_INST_DATA_READ,
 598                STFSM_INST_STOP,
 599        },
 600        .seq_cfg = (SEQ_CFG_PADS_1 |
 601                    SEQ_CFG_READNOTWRITE |
 602                    SEQ_CFG_CSDEASSERT |
 603                    SEQ_CFG_STARTSEQ),
 604};
 605
 606static struct stfsm_seq stfsm_seq_erase_sector = {
 607        /* 'addr_cfg' configured during initialisation */
 608        .seq_opc = {
 609                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 610                 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 611
 612                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 613                 SEQ_OPC_OPCODE(SPINOR_OP_SE)),
 614        },
 615        .seq = {
 616                STFSM_INST_CMD1,
 617                STFSM_INST_CMD2,
 618                STFSM_INST_ADD1,
 619                STFSM_INST_ADD2,
 620                STFSM_INST_STOP,
 621        },
 622        .seq_cfg = (SEQ_CFG_PADS_1 |
 623                    SEQ_CFG_READNOTWRITE |
 624                    SEQ_CFG_CSDEASSERT |
 625                    SEQ_CFG_STARTSEQ),
 626};
 627
 628static struct stfsm_seq stfsm_seq_erase_chip = {
 629        .seq_opc = {
 630                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 631                 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 632
 633                (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 634                 SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
 635        },
 636        .seq = {
 637                STFSM_INST_CMD1,
 638                STFSM_INST_CMD2,
 639                STFSM_INST_WAIT,
 640                STFSM_INST_STOP,
 641        },
 642        .seq_cfg = (SEQ_CFG_PADS_1 |
 643                    SEQ_CFG_ERASE |
 644                    SEQ_CFG_READNOTWRITE |
 645                    SEQ_CFG_CSDEASSERT |
 646                    SEQ_CFG_STARTSEQ),
 647};
 648
 649static struct stfsm_seq stfsm_seq_write_status = {
 650        .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 651                       SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
 652        .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 653                       SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
 654        .seq = {
 655                STFSM_INST_CMD1,
 656                STFSM_INST_CMD2,
 657                STFSM_INST_STA_WR1,
 658                STFSM_INST_STOP,
 659        },
 660        .seq_cfg = (SEQ_CFG_PADS_1 |
 661                    SEQ_CFG_READNOTWRITE |
 662                    SEQ_CFG_CSDEASSERT |
 663                    SEQ_CFG_STARTSEQ),
 664};
 665
 666static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
 667{
 668        seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 669                           SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
 670        seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 671                           SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
 672                           SEQ_OPC_CSDEASSERT);
 673
 674        seq->seq[0] = STFSM_INST_CMD2;
 675        seq->seq[1] = STFSM_INST_CMD1;
 676        seq->seq[2] = STFSM_INST_WAIT;
 677        seq->seq[3] = STFSM_INST_STOP;
 678
 679        seq->seq_cfg = (SEQ_CFG_PADS_1 |
 680                        SEQ_CFG_ERASE |
 681                        SEQ_CFG_READNOTWRITE |
 682                        SEQ_CFG_CSDEASSERT |
 683                        SEQ_CFG_STARTSEQ);
 684
 685        return 0;
 686}
 687
 688static inline int stfsm_is_idle(struct stfsm *fsm)
 689{
 690        return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
 691}
 692
 693static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
 694{
 695        return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
 696}
 697
 698static void stfsm_clear_fifo(struct stfsm *fsm)
 699{
 700        uint32_t avail;
 701
 702        for (;;) {
 703                avail = stfsm_fifo_available(fsm);
 704                if (!avail)
 705                        break;
 706
 707                while (avail) {
 708                        readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
 709                        avail--;
 710                }
 711        }
 712}
 713
 714static inline void stfsm_load_seq(struct stfsm *fsm,
 715                                  const struct stfsm_seq *seq)
 716{
 717        void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
 718        const uint32_t *src = (const uint32_t *)seq;
 719        int words = sizeof(*seq) / sizeof(*src);
 720
 721        BUG_ON(!stfsm_is_idle(fsm));
 722
 723        while (words--) {
 724                writel(*src, dst);
 725                src++;
 726                dst += 4;
 727        }
 728}
 729
 730static void stfsm_wait_seq(struct stfsm *fsm)
 731{
 732        unsigned long deadline;
 733        int timeout = 0;
 734
 735        deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
 736
 737        while (!timeout) {
 738                if (time_after_eq(jiffies, deadline))
 739                        timeout = 1;
 740
 741                if (stfsm_is_idle(fsm))
 742                        return;
 743
 744                cond_resched();
 745        }
 746
 747        dev_err(fsm->dev, "timeout on sequence completion\n");
 748}
 749
 750static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
 751{
 752        uint32_t remaining = size >> 2;
 753        uint32_t avail;
 754        uint32_t words;
 755
 756        dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
 757
 758        BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
 759
 760        while (remaining) {
 761                for (;;) {
 762                        avail = stfsm_fifo_available(fsm);
 763                        if (avail)
 764                                break;
 765                        udelay(1);
 766                }
 767                words = min(avail, remaining);
 768                remaining -= words;
 769
 770                readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
 771                buf += words;
 772        }
 773}
 774
 775static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
 776                            uint32_t size)
 777{
 778        uint32_t words = size >> 2;
 779
 780        dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
 781
 782        BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
 783
 784        writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
 785
 786        return size;
 787}
 788
 789static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
 790{
 791        struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
 792        uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
 793
 794        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 795                           SEQ_OPC_CYCLES(8) |
 796                           SEQ_OPC_OPCODE(cmd) |
 797                           SEQ_OPC_CSDEASSERT);
 798
 799        stfsm_load_seq(fsm, seq);
 800
 801        stfsm_wait_seq(fsm);
 802
 803        return 0;
 804}
 805
 806static uint8_t stfsm_wait_busy(struct stfsm *fsm)
 807{
 808        struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
 809        unsigned long deadline;
 810        uint32_t status;
 811        int timeout = 0;
 812
 813        /* Use RDRS1 */
 814        seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
 815                           SEQ_OPC_CYCLES(8) |
 816                           SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
 817
 818        /* Load read_status sequence */
 819        stfsm_load_seq(fsm, seq);
 820
 821        /*
 822         * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
 823         */
 824        deadline = jiffies + FLASH_MAX_BUSY_WAIT;
 825        while (!timeout) {
 826                if (time_after_eq(jiffies, deadline))
 827                        timeout = 1;
 828
 829                stfsm_wait_seq(fsm);
 830
 831                stfsm_read_fifo(fsm, &status, 4);
 832
 833                if ((status & FLASH_STATUS_BUSY) == 0)
 834                        return 0;
 835
 836                if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
 837                    ((status & S25FL_STATUS_P_ERR) ||
 838                     (status & S25FL_STATUS_E_ERR)))
 839                        return (uint8_t)(status & 0xff);
 840
 841                if (!timeout)
 842                        /* Restart */
 843                        writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
 844
 845                cond_resched();
 846        }
 847
 848        dev_err(fsm->dev, "timeout on wait_busy\n");
 849
 850        return FLASH_STATUS_TIMEOUT;
 851}
 852
 853static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
 854                             uint8_t *data, int bytes)
 855{
 856        struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
 857        uint32_t tmp;
 858        uint8_t *t = (uint8_t *)&tmp;
 859        int i;
 860
 861        dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
 862                cmd, bytes);
 863
 864        BUG_ON(bytes != 1 && bytes != 2);
 865
 866        seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 867                           SEQ_OPC_OPCODE(cmd)),
 868
 869        stfsm_load_seq(fsm, seq);
 870
 871        stfsm_read_fifo(fsm, &tmp, 4);
 872
 873        for (i = 0; i < bytes; i++)
 874                data[i] = t[i];
 875
 876        stfsm_wait_seq(fsm);
 877
 878        return 0;
 879}
 880
 881static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
 882                            uint16_t data, int bytes, int wait_busy)
 883{
 884        struct stfsm_seq *seq = &stfsm_seq_write_status;
 885
 886        dev_dbg(fsm->dev,
 887                "write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
 888                " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
 889
 890        BUG_ON(bytes != 1 && bytes != 2);
 891
 892        seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
 893                           SEQ_OPC_OPCODE(cmd));
 894
 895        seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
 896        seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
 897
 898        stfsm_load_seq(fsm, seq);
 899
 900        stfsm_wait_seq(fsm);
 901
 902        if (wait_busy)
 903                stfsm_wait_busy(fsm);
 904
 905        return 0;
 906}
 907
 908/*
 909 * SoC reset on 'boot-from-spi' systems
 910 *
 911 * Certain modes of operation cause the Flash device to enter a particular state
 912 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
 913 * Addr' commands).  On boot-from-spi systems, it is important to consider what
 914 * happens if a warm reset occurs during this period.  The SPIBoot controller
 915 * assumes that Flash device is in its default reset state, 24-bit address mode,
 916 * and ready to accept commands.  This can be achieved using some form of
 917 * on-board logic/controller to force a device POR in response to a SoC-level
 918 * reset or by making use of the device reset signal if available (limited
 919 * number of devices only).
 920 *
 921 * Failure to take such precautions can cause problems following a warm reset.
 922 * For some operations (e.g. ERASE), there is little that can be done.  For
 923 * other modes of operation (e.g. 32-bit addressing), options are often
 924 * available that can help minimise the window in which a reset could cause a
 925 * problem.
 926 *
 927 */
 928static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
 929{
 930        /* Reset signal is available on the board and supported by the device */
 931        if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
 932                return true;
 933
 934        /* Board-level logic forces a power-on-reset */
 935        if (fsm->reset_por)
 936                return true;
 937
 938        /* Reset is not properly handled and may result in failure to reboot */
 939        return false;
 940}
 941
 942/* Configure 'addr_cfg' according to addressing mode */
 943static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
 944                                       struct stfsm_seq *seq)
 945{
 946        int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
 947
 948        seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
 949                         ADR_CFG_PADS_1_ADD1 |
 950                         ADR_CFG_CYCLES_ADD2(16) |
 951                         ADR_CFG_PADS_1_ADD2 |
 952                         ADR_CFG_CSDEASSERT_ADD2);
 953}
 954
 955/* Search for preferred configuration based on available flags */
 956static struct seq_rw_config *
 957stfsm_search_seq_rw_configs(struct stfsm *fsm,
 958                            struct seq_rw_config cfgs[])
 959{
 960        struct seq_rw_config *config;
 961        int flags = fsm->info->flags;
 962
 963        for (config = cfgs; config->cmd != 0; config++)
 964                if ((config->flags & flags) == config->flags)
 965                        return config;
 966
 967        return NULL;
 968}
 969
 970/* Prepare a READ/WRITE sequence according to configuration parameters */
 971static void stfsm_prepare_rw_seq(struct stfsm *fsm,
 972                                 struct stfsm_seq *seq,
 973                                 struct seq_rw_config *cfg)
 974{
 975        int addr1_cycles, addr2_cycles;
 976        int i = 0;
 977
 978        memset(seq, 0, sizeof(*seq));
 979
 980        /* Add READ/WRITE OPC  */
 981        seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
 982                             SEQ_OPC_CYCLES(8) |
 983                             SEQ_OPC_OPCODE(cfg->cmd));
 984
 985        /* Add WREN OPC for a WRITE sequence */
 986        if (cfg->write)
 987                seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
 988                                     SEQ_OPC_CYCLES(8) |
 989                                     SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
 990                                     SEQ_OPC_CSDEASSERT);
 991
 992        /* Address configuration (24 or 32-bit addresses) */
 993        addr1_cycles  = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
 994        addr1_cycles /= cfg->addr_pads;
 995        addr2_cycles  = 16 / cfg->addr_pads;
 996        seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 |   /* ADD1 cycles */
 997                         (cfg->addr_pads - 1) << 6 |    /* ADD1 pads */
 998                         (addr2_cycles & 0x3f) << 16 |  /* ADD2 cycles */
 999                         ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
1000
1001        /* Data/Sequence configuration */
1002        seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
1003                        SEQ_CFG_STARTSEQ |
1004                        SEQ_CFG_CSDEASSERT);
1005        if (!cfg->write)
1006                seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
1007
1008        /* Mode configuration (no. of pads taken from addr cfg) */
1009        seq->mode = ((cfg->mode_data & 0xff) << 0 |     /* data */
1010                     (cfg->mode_cycles & 0x3f) << 16 |  /* cycles */
1011                     (cfg->addr_pads - 1) << 22);       /* pads */
1012
1013        /* Dummy configuration (no. of pads taken from addr cfg) */
1014        seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 |        /* cycles */
1015                      (cfg->addr_pads - 1) << 22);              /* pads */
1016
1017
1018        /* Instruction sequence */
1019        i = 0;
1020        if (cfg->write)
1021                seq->seq[i++] = STFSM_INST_CMD2;
1022
1023        seq->seq[i++] = STFSM_INST_CMD1;
1024
1025        seq->seq[i++] = STFSM_INST_ADD1;
1026        seq->seq[i++] = STFSM_INST_ADD2;
1027
1028        if (cfg->mode_cycles)
1029                seq->seq[i++] = STFSM_INST_MODE;
1030
1031        if (cfg->dummy_cycles)
1032                seq->seq[i++] = STFSM_INST_DUMMY;
1033
1034        seq->seq[i++] =
1035                cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
1036        seq->seq[i++] = STFSM_INST_STOP;
1037}
1038
1039static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
1040                                       struct stfsm_seq *seq,
1041                                       struct seq_rw_config *cfgs)
1042{
1043        struct seq_rw_config *config;
1044
1045        config = stfsm_search_seq_rw_configs(fsm, cfgs);
1046        if (!config) {
1047                dev_err(fsm->dev, "failed to find suitable config\n");
1048                return -EINVAL;
1049        }
1050
1051        stfsm_prepare_rw_seq(fsm, seq, config);
1052
1053        return 0;
1054}
1055
1056/* Prepare a READ/WRITE/ERASE 'default' sequences */
1057static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
1058{
1059        uint32_t flags = fsm->info->flags;
1060        int ret;
1061
1062        /* Configure 'READ' sequence */
1063        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1064                                          default_read_configs);
1065        if (ret) {
1066                dev_err(fsm->dev,
1067                        "failed to prep READ sequence with flags [0x%08x]\n",
1068                        flags);
1069                return ret;
1070        }
1071
1072        /* Configure 'WRITE' sequence */
1073        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1074                                          default_write_configs);
1075        if (ret) {
1076                dev_err(fsm->dev,
1077                        "failed to prep WRITE sequence with flags [0x%08x]\n",
1078                        flags);
1079                return ret;
1080        }
1081
1082        /* Configure 'ERASE_SECTOR' sequence */
1083        stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1084
1085        return 0;
1086}
1087
1088static int stfsm_mx25_config(struct stfsm *fsm)
1089{
1090        uint32_t flags = fsm->info->flags;
1091        uint32_t data_pads;
1092        uint8_t sta;
1093        int ret;
1094        bool soc_reset;
1095
1096        /*
1097         * Use default READ/WRITE sequences
1098         */
1099        ret = stfsm_prepare_rwe_seqs_default(fsm);
1100        if (ret)
1101                return ret;
1102
1103        /*
1104         * Configure 32-bit Address Support
1105         */
1106        if (flags & FLASH_FLAG_32BIT_ADDR) {
1107                /* Configure 'enter_32bitaddr' FSM sequence */
1108                stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1109
1110                soc_reset = stfsm_can_handle_soc_reset(fsm);
1111                if (soc_reset || !fsm->booted_from_spi)
1112                        /* If we can handle SoC resets, we enable 32-bit address
1113                         * mode pervasively */
1114                        stfsm_enter_32bit_addr(fsm, 1);
1115
1116                else
1117                        /* Else, enable/disable 32-bit addressing before/after
1118                         * each operation */
1119                        fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
1120                                              CFG_WRITE_TOGGLE_32BIT_ADDR |
1121                                              CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1122        }
1123
1124        /* Check status of 'QE' bit, update if required. */
1125        stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
1126        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1127        if (data_pads == 4) {
1128                if (!(sta & MX25_STATUS_QE)) {
1129                        /* Set 'QE' */
1130                        sta |= MX25_STATUS_QE;
1131
1132                        stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1133                }
1134        } else {
1135                if (sta & MX25_STATUS_QE) {
1136                        /* Clear 'QE' */
1137                        sta &= ~MX25_STATUS_QE;
1138
1139                        stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
1140                }
1141        }
1142
1143        return 0;
1144}
1145
1146static int stfsm_n25q_config(struct stfsm *fsm)
1147{
1148        uint32_t flags = fsm->info->flags;
1149        uint8_t vcr;
1150        int ret = 0;
1151        bool soc_reset;
1152
1153        /* Configure 'READ' sequence */
1154        if (flags & FLASH_FLAG_32BIT_ADDR)
1155                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1156                                                  n25q_read4_configs);
1157        else
1158                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1159                                                  n25q_read3_configs);
1160        if (ret) {
1161                dev_err(fsm->dev,
1162                        "failed to prepare READ sequence with flags [0x%08x]\n",
1163                        flags);
1164                return ret;
1165        }
1166
1167        /* Configure 'WRITE' sequence (default configs) */
1168        ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1169                                          default_write_configs);
1170        if (ret) {
1171                dev_err(fsm->dev,
1172                        "preparing WRITE sequence using flags [0x%08x] failed\n",
1173                        flags);
1174                return ret;
1175        }
1176
1177        /* * Configure 'ERASE_SECTOR' sequence */
1178        stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
1179
1180        /* Configure 32-bit address support */
1181        if (flags & FLASH_FLAG_32BIT_ADDR) {
1182                stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
1183
1184                soc_reset = stfsm_can_handle_soc_reset(fsm);
1185                if (soc_reset || !fsm->booted_from_spi) {
1186                        /*
1187                         * If we can handle SoC resets, we enable 32-bit
1188                         * address mode pervasively
1189                         */
1190                        stfsm_enter_32bit_addr(fsm, 1);
1191                } else {
1192                        /*
1193                         * If not, enable/disable for WRITE and ERASE
1194                         * operations (READ uses special commands)
1195                         */
1196                        fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
1197                                              CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1198                }
1199        }
1200
1201        /*
1202         * Configure device to use 8 dummy cycles
1203         */
1204        vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
1205               N25Q_VCR_WRAP_CONT);
1206        stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
1207
1208        return 0;
1209}
1210
1211static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
1212{
1213        seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
1214                           SEQ_OPC_CYCLES(8) |
1215                           SEQ_OPC_OPCODE(S25FL_CMD_SE4));
1216
1217        seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1218                         ADR_CFG_PADS_1_ADD1 |
1219                         ADR_CFG_CYCLES_ADD2(16) |
1220                         ADR_CFG_PADS_1_ADD2 |
1221                         ADR_CFG_CSDEASSERT_ADD2);
1222}
1223
1224static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
1225{
1226        uint32_t tmp;
1227        struct stfsm_seq seq = {
1228                .data_size = TRANSFER_SIZE(4),
1229                .seq_opc[0] = (SEQ_OPC_PADS_1 |
1230                               SEQ_OPC_CYCLES(8) |
1231                               SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
1232                .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1233                             ADR_CFG_PADS_1_ADD1 |
1234                             ADR_CFG_CYCLES_ADD2(16) |
1235                             ADR_CFG_PADS_1_ADD2),
1236                .addr1 = (offs >> 16) & 0xffff,
1237                .addr2 = offs & 0xffff,
1238                .seq = {
1239                        STFSM_INST_CMD1,
1240                        STFSM_INST_ADD1,
1241                        STFSM_INST_ADD2,
1242                        STFSM_INST_DATA_READ,
1243                        STFSM_INST_STOP,
1244                },
1245                .seq_cfg = (SEQ_CFG_PADS_1 |
1246                            SEQ_CFG_READNOTWRITE |
1247                            SEQ_CFG_CSDEASSERT |
1248                            SEQ_CFG_STARTSEQ),
1249        };
1250
1251        stfsm_load_seq(fsm, &seq);
1252
1253        stfsm_read_fifo(fsm, &tmp, 4);
1254
1255        *dby = (uint8_t)(tmp >> 24);
1256
1257        stfsm_wait_seq(fsm);
1258}
1259
1260static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
1261{
1262        struct stfsm_seq seq = {
1263                .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1264                               SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1265                               SEQ_OPC_CSDEASSERT),
1266                .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1267                               SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
1268                .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1269                             ADR_CFG_PADS_1_ADD1 |
1270                             ADR_CFG_CYCLES_ADD2(16) |
1271                             ADR_CFG_PADS_1_ADD2),
1272                .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
1273                .addr1 = (offs >> 16) & 0xffff,
1274                .addr2 = offs & 0xffff,
1275                .seq = {
1276                        STFSM_INST_CMD1,
1277                        STFSM_INST_CMD2,
1278                        STFSM_INST_ADD1,
1279                        STFSM_INST_ADD2,
1280                        STFSM_INST_STA_WR1,
1281                        STFSM_INST_STOP,
1282                },
1283                .seq_cfg = (SEQ_CFG_PADS_1 |
1284                            SEQ_CFG_READNOTWRITE |
1285                            SEQ_CFG_CSDEASSERT |
1286                            SEQ_CFG_STARTSEQ),
1287        };
1288
1289        stfsm_load_seq(fsm, &seq);
1290        stfsm_wait_seq(fsm);
1291
1292        stfsm_wait_busy(fsm);
1293}
1294
1295static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
1296{
1297        struct stfsm_seq seq = {
1298                .seq_opc[0] = (SEQ_OPC_PADS_1 |
1299                               SEQ_OPC_CYCLES(8) |
1300                               SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
1301                               SEQ_OPC_CSDEASSERT),
1302                .seq_opc[1] = (SEQ_OPC_PADS_1 |
1303                               SEQ_OPC_CYCLES(8) |
1304                               SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
1305                               SEQ_OPC_CSDEASSERT),
1306                .seq = {
1307                        STFSM_INST_CMD1,
1308                        STFSM_INST_CMD2,
1309                        STFSM_INST_WAIT,
1310                        STFSM_INST_STOP,
1311                },
1312                .seq_cfg = (SEQ_CFG_PADS_1 |
1313                            SEQ_CFG_ERASE |
1314                            SEQ_CFG_READNOTWRITE |
1315                            SEQ_CFG_CSDEASSERT |
1316                            SEQ_CFG_STARTSEQ),
1317        };
1318
1319        stfsm_load_seq(fsm, &seq);
1320
1321        stfsm_wait_seq(fsm);
1322
1323        return 0;
1324}
1325
1326static int stfsm_s25fl_config(struct stfsm *fsm)
1327{
1328        struct flash_info *info = fsm->info;
1329        uint32_t flags = info->flags;
1330        uint32_t data_pads;
1331        uint32_t offs;
1332        uint16_t sta_wr;
1333        uint8_t sr1, cr1, dyb;
1334        int update_sr = 0;
1335        int ret;
1336
1337        if (flags & FLASH_FLAG_32BIT_ADDR) {
1338                /*
1339                 * Prepare Read/Write/Erase sequences according to S25FLxxx
1340                 * 32-bit address command set
1341                 */
1342                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
1343                                                  stfsm_s25fl_read4_configs);
1344                if (ret)
1345                        return ret;
1346
1347                ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
1348                                                  stfsm_s25fl_write4_configs);
1349                if (ret)
1350                        return ret;
1351
1352                stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
1353
1354        } else {
1355                /* Use default configurations for 24-bit addressing */
1356                ret = stfsm_prepare_rwe_seqs_default(fsm);
1357                if (ret)
1358                        return ret;
1359        }
1360
1361        /*
1362         * For devices that support 'DYB' sector locking, check lock status and
1363         * unlock sectors if necessary (some variants power-on with sectors
1364         * locked by default)
1365         */
1366        if (flags & FLASH_FLAG_DYB_LOCKING) {
1367                offs = 0;
1368                for (offs = 0; offs < info->sector_size * info->n_sectors;) {
1369                        stfsm_s25fl_read_dyb(fsm, offs, &dyb);
1370                        if (dyb == 0x00)
1371                                stfsm_s25fl_write_dyb(fsm, offs, 0xff);
1372
1373                        /* Handle bottom/top 4KiB parameter sectors */
1374                        if ((offs < info->sector_size * 2) ||
1375                            (offs >= (info->sector_size - info->n_sectors * 4)))
1376                                offs += 0x1000;
1377                        else
1378                                offs += 0x10000;
1379                }
1380        }
1381
1382        /* Check status of 'QE' bit, update if required. */
1383        stfsm_read_status(fsm, SPINOR_OP_RDSR2, &cr1, 1);
1384        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1385        if (data_pads == 4) {
1386                if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
1387                        /* Set 'QE' */
1388                        cr1 |= STFSM_S25FL_CONFIG_QE;
1389
1390                        update_sr = 1;
1391                }
1392        } else {
1393                if (cr1 & STFSM_S25FL_CONFIG_QE) {
1394                        /* Clear 'QE' */
1395                        cr1 &= ~STFSM_S25FL_CONFIG_QE;
1396
1397                        update_sr = 1;
1398                }
1399        }
1400        if (update_sr) {
1401                stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1402                sta_wr = ((uint16_t)cr1  << 8) | sr1;
1403                stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
1404        }
1405
1406        /*
1407         * S25FLxxx devices support Program and Error error flags.
1408         * Configure driver to check flags and clear if necessary.
1409         */
1410        fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
1411
1412        return 0;
1413}
1414
1415static int stfsm_w25q_config(struct stfsm *fsm)
1416{
1417        uint32_t data_pads;
1418        uint8_t sr1, sr2;
1419        uint16_t sr_wr;
1420        int update_sr = 0;
1421        int ret;
1422
1423        ret = stfsm_prepare_rwe_seqs_default(fsm);
1424        if (ret)
1425                return ret;
1426
1427        /* Check status of 'QE' bit, update if required. */
1428        stfsm_read_status(fsm, SPINOR_OP_RDSR2, &sr2, 1);
1429        data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1430        if (data_pads == 4) {
1431                if (!(sr2 & W25Q_STATUS_QE)) {
1432                        /* Set 'QE' */
1433                        sr2 |= W25Q_STATUS_QE;
1434                        update_sr = 1;
1435                }
1436        } else {
1437                if (sr2 & W25Q_STATUS_QE) {
1438                        /* Clear 'QE' */
1439                        sr2 &= ~W25Q_STATUS_QE;
1440                        update_sr = 1;
1441                }
1442        }
1443        if (update_sr) {
1444                /* Write status register */
1445                stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
1446                sr_wr = ((uint16_t)sr2 << 8) | sr1;
1447                stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
1448        }
1449
1450        return 0;
1451}
1452
1453static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
1454                      uint32_t offset)
1455{
1456        struct stfsm_seq *seq = &fsm->stfsm_seq_read;
1457        uint32_t data_pads;
1458        uint32_t read_mask;
1459        uint32_t size_ub;
1460        uint32_t size_lb;
1461        uint32_t size_mop;
1462        uint32_t tmp[4];
1463        uint32_t page_buf[FLASH_PAGESIZE_32];
1464        uint8_t *p;
1465
1466        dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
1467
1468        /* Enter 32-bit address mode, if required */
1469        if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1470                stfsm_enter_32bit_addr(fsm, 1);
1471
1472        /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1473        data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1474        read_mask = (data_pads << 2) - 1;
1475
1476        /* Handle non-aligned buf */
1477        p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
1478
1479        /* Handle non-aligned size */
1480        size_ub = (size + read_mask) & ~read_mask;
1481        size_lb = size & ~read_mask;
1482        size_mop = size & read_mask;
1483
1484        seq->data_size = TRANSFER_SIZE(size_ub);
1485        seq->addr1 = (offset >> 16) & 0xffff;
1486        seq->addr2 = offset & 0xffff;
1487
1488        stfsm_load_seq(fsm, seq);
1489
1490        if (size_lb)
1491                stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
1492
1493        if (size_mop) {
1494                stfsm_read_fifo(fsm, tmp, read_mask + 1);
1495                memcpy(p + size_lb, &tmp, size_mop);
1496        }
1497
1498        /* Handle non-aligned buf */
1499        if ((uintptr_t)buf & 0x3)
1500                memcpy(buf, page_buf, size);
1501
1502        /* Wait for sequence to finish */
1503        stfsm_wait_seq(fsm);
1504
1505        stfsm_clear_fifo(fsm);
1506
1507        /* Exit 32-bit address mode, if required */
1508        if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1509                stfsm_enter_32bit_addr(fsm, 0);
1510
1511        return 0;
1512}
1513
1514static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
1515                       uint32_t size, uint32_t offset)
1516{
1517        struct stfsm_seq *seq = &fsm->stfsm_seq_write;
1518        uint32_t data_pads;
1519        uint32_t write_mask;
1520        uint32_t size_ub;
1521        uint32_t size_lb;
1522        uint32_t size_mop;
1523        uint32_t tmp[4];
1524        uint32_t page_buf[FLASH_PAGESIZE_32];
1525        uint8_t *t = (uint8_t *)&tmp;
1526        const uint8_t *p;
1527        int ret;
1528        int i;
1529
1530        dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
1531
1532        /* Enter 32-bit address mode, if required */
1533        if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1534                stfsm_enter_32bit_addr(fsm, 1);
1535
1536        /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1537        data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1538        write_mask = (data_pads << 2) - 1;
1539
1540        /* Handle non-aligned buf */
1541        if ((uintptr_t)buf & 0x3) {
1542                memcpy(page_buf, buf, size);
1543                p = (uint8_t *)page_buf;
1544        } else {
1545                p = buf;
1546        }
1547
1548        /* Handle non-aligned size */
1549        size_ub = (size + write_mask) & ~write_mask;
1550        size_lb = size & ~write_mask;
1551        size_mop = size & write_mask;
1552
1553        seq->data_size = TRANSFER_SIZE(size_ub);
1554        seq->addr1 = (offset >> 16) & 0xffff;
1555        seq->addr2 = offset & 0xffff;
1556
1557        /* Need to set FIFO to write mode, before writing data to FIFO (see
1558         * GNBvb79594)
1559         */
1560        writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
1561
1562        /*
1563         * Before writing data to the FIFO, apply a small delay to allow a
1564         * potential change of FIFO direction to complete.
1565         */
1566        if (fsm->fifo_dir_delay == 0)
1567                readl(fsm->base + SPI_FAST_SEQ_CFG);
1568        else
1569                udelay(fsm->fifo_dir_delay);
1570
1571
1572        /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1573        if (size_lb) {
1574                stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
1575                p += size_lb;
1576        }
1577
1578        /* Handle non-aligned size */
1579        if (size_mop) {
1580                memset(t, 0xff, write_mask + 1);        /* fill with 0xff's */
1581                for (i = 0; i < size_mop; i++)
1582                        t[i] = *p++;
1583
1584                stfsm_write_fifo(fsm, tmp, write_mask + 1);
1585        }
1586
1587        /* Start sequence */
1588        stfsm_load_seq(fsm, seq);
1589
1590        /* Wait for sequence to finish */
1591        stfsm_wait_seq(fsm);
1592
1593        /* Wait for completion */
1594        ret = stfsm_wait_busy(fsm);
1595        if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1596                stfsm_s25fl_clear_status_reg(fsm);
1597
1598        /* Exit 32-bit address mode, if required */
1599        if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1600                stfsm_enter_32bit_addr(fsm, 0);
1601
1602        return 0;
1603}
1604
1605/*
1606 * Read an address range from the flash chip. The address range
1607 * may be any size provided it is within the physical boundaries.
1608 */
1609static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
1610                          size_t *retlen, u_char *buf)
1611{
1612        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1613        uint32_t bytes;
1614
1615        dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
1616                __func__, (u32)from, len);
1617
1618        mutex_lock(&fsm->lock);
1619
1620        while (len > 0) {
1621                bytes = min_t(size_t, len, FLASH_PAGESIZE);
1622
1623                stfsm_read(fsm, buf, bytes, from);
1624
1625                buf += bytes;
1626                from += bytes;
1627                len -= bytes;
1628
1629                *retlen += bytes;
1630        }
1631
1632        mutex_unlock(&fsm->lock);
1633
1634        return 0;
1635}
1636
1637static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
1638{
1639        struct stfsm_seq *seq = &stfsm_seq_erase_sector;
1640        int ret;
1641
1642        dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
1643
1644        /* Enter 32-bit address mode, if required */
1645        if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1646                stfsm_enter_32bit_addr(fsm, 1);
1647
1648        seq->addr1 = (offset >> 16) & 0xffff;
1649        seq->addr2 = offset & 0xffff;
1650
1651        stfsm_load_seq(fsm, seq);
1652
1653        stfsm_wait_seq(fsm);
1654
1655        /* Wait for completion */
1656        ret = stfsm_wait_busy(fsm);
1657        if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1658                stfsm_s25fl_clear_status_reg(fsm);
1659
1660        /* Exit 32-bit address mode, if required */
1661        if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1662                stfsm_enter_32bit_addr(fsm, 0);
1663
1664        return ret;
1665}
1666
1667static int stfsm_erase_chip(struct stfsm *fsm)
1668{
1669        const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
1670
1671        dev_dbg(fsm->dev, "erasing chip\n");
1672
1673        stfsm_load_seq(fsm, seq);
1674
1675        stfsm_wait_seq(fsm);
1676
1677        return stfsm_wait_busy(fsm);
1678}
1679
1680/*
1681 * Write an address range to the flash chip.  Data must be written in
1682 * FLASH_PAGESIZE chunks.  The address range may be any size provided
1683 * it is within the physical boundaries.
1684 */
1685static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
1686                           size_t *retlen, const u_char *buf)
1687{
1688        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1689
1690        u32 page_offs;
1691        u32 bytes;
1692        uint8_t *b = (uint8_t *)buf;
1693        int ret = 0;
1694
1695        dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
1696
1697        /* Offset within page */
1698        page_offs = to % FLASH_PAGESIZE;
1699
1700        mutex_lock(&fsm->lock);
1701
1702        while (len) {
1703                /* Write up to page boundary */
1704                bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
1705
1706                ret = stfsm_write(fsm, b, bytes, to);
1707                if (ret)
1708                        goto out1;
1709
1710                b += bytes;
1711                len -= bytes;
1712                to += bytes;
1713
1714                /* We are now page-aligned */
1715                page_offs = 0;
1716
1717                *retlen += bytes;
1718
1719        }
1720
1721out1:
1722        mutex_unlock(&fsm->lock);
1723
1724        return ret;
1725}
1726
1727/*
1728 * Erase an address range on the flash chip. The address range may extend
1729 * one or more erase sectors.  Return an error is there is a problem erasing.
1730 */
1731static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1732{
1733        struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
1734        u32 addr, len;
1735        int ret;
1736
1737        dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
1738                (long long)instr->addr, (long long)instr->len);
1739
1740        addr = instr->addr;
1741        len = instr->len;
1742
1743        mutex_lock(&fsm->lock);
1744
1745        /* Whole-chip erase? */
1746        if (len == mtd->size) {
1747                ret = stfsm_erase_chip(fsm);
1748                if (ret)
1749                        goto out1;
1750        } else {
1751                while (len) {
1752                        ret = stfsm_erase_sector(fsm, addr);
1753                        if (ret)
1754                                goto out1;
1755
1756                        addr += mtd->erasesize;
1757                        len -= mtd->erasesize;
1758                }
1759        }
1760
1761        mutex_unlock(&fsm->lock);
1762
1763        instr->state = MTD_ERASE_DONE;
1764        mtd_erase_callback(instr);
1765
1766        return 0;
1767
1768out1:
1769        instr->state = MTD_ERASE_FAILED;
1770        mutex_unlock(&fsm->lock);
1771
1772        return ret;
1773}
1774
1775static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
1776{
1777        const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
1778        uint32_t tmp[2];
1779
1780        stfsm_load_seq(fsm, seq);
1781
1782        stfsm_read_fifo(fsm, tmp, 8);
1783
1784        memcpy(jedec, tmp, 5);
1785
1786        stfsm_wait_seq(fsm);
1787}
1788
1789static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
1790{
1791        struct flash_info       *info;
1792        u16                     ext_jedec;
1793        u32                     jedec;
1794        u8                      id[5];
1795
1796        stfsm_read_jedec(fsm, id);
1797
1798        jedec     = id[0] << 16 | id[1] << 8 | id[2];
1799        /*
1800         * JEDEC also defines an optional "extended device information"
1801         * string for after vendor-specific data, after the three bytes
1802         * we use here. Supporting some chips might require using it.
1803         */
1804        ext_jedec = id[3] << 8  | id[4];
1805
1806        dev_dbg(fsm->dev, "JEDEC =  0x%08x [%02x %02x %02x %02x %02x]\n",
1807                jedec, id[0], id[1], id[2], id[3], id[4]);
1808
1809        for (info = flash_types; info->name; info++) {
1810                if (info->jedec_id == jedec) {
1811                        if (info->ext_id && info->ext_id != ext_jedec)
1812                                continue;
1813                        return info;
1814                }
1815        }
1816        dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
1817
1818        return NULL;
1819}
1820
1821static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
1822{
1823        int ret, timeout = 10;
1824
1825        /* Wait for controller to accept mode change */
1826        while (--timeout) {
1827                ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
1828                if (ret & 0x1)
1829                        break;
1830                udelay(1);
1831        }
1832
1833        if (!timeout)
1834                return -EBUSY;
1835
1836        writel(mode, fsm->base + SPI_MODESELECT);
1837
1838        return 0;
1839}
1840
1841static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
1842{
1843        uint32_t emi_freq;
1844        uint32_t clk_div;
1845
1846        /* TODO: Make this dynamic */
1847        emi_freq = STFSM_DEFAULT_EMI_FREQ;
1848
1849        /*
1850         * Calculate clk_div - values between 2 and 128
1851         * Multiple of 2, rounded up
1852         */
1853        clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
1854        if (clk_div < 2)
1855                clk_div = 2;
1856        else if (clk_div > 128)
1857                clk_div = 128;
1858
1859        /*
1860         * Determine a suitable delay for the IP to complete a change of
1861         * direction of the FIFO. The required delay is related to the clock
1862         * divider used. The following heuristics are based on empirical tests,
1863         * using a 100MHz EMI clock.
1864         */
1865        if (clk_div <= 4)
1866                fsm->fifo_dir_delay = 0;
1867        else if (clk_div <= 10)
1868                fsm->fifo_dir_delay = 1;
1869        else
1870                fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
1871
1872        dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1873                emi_freq, spi_freq, clk_div);
1874
1875        writel(clk_div, fsm->base + SPI_CLOCKDIV);
1876}
1877
1878static int stfsm_init(struct stfsm *fsm)
1879{
1880        int ret;
1881
1882        /* Perform a soft reset of the FSM controller */
1883        writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
1884        udelay(1);
1885        writel(0, fsm->base + SPI_FAST_SEQ_CFG);
1886
1887        /* Set clock to 'safe' frequency initially */
1888        stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
1889
1890        /* Switch to FSM */
1891        ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
1892        if (ret)
1893                return ret;
1894
1895        /* Set timing parameters */
1896        writel(SPI_CFG_DEVICE_ST            |
1897               SPI_CFG_DEFAULT_MIN_CS_HIGH  |
1898               SPI_CFG_DEFAULT_CS_SETUPHOLD |
1899               SPI_CFG_DEFAULT_DATA_HOLD,
1900               fsm->base + SPI_CONFIGDATA);
1901        writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
1902
1903        /*
1904         * Set the FSM 'WAIT' delay to the minimum workable value.  Note, for
1905         * our purposes, the WAIT instruction is used purely to achieve
1906         * "sequence validity" rather than actually implement a delay.
1907         */
1908        writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
1909
1910        /* Clear FIFO, just in case */
1911        stfsm_clear_fifo(fsm);
1912
1913        return 0;
1914}
1915
1916static void stfsm_fetch_platform_configs(struct platform_device *pdev)
1917{
1918        struct stfsm *fsm = platform_get_drvdata(pdev);
1919        struct device_node *np = pdev->dev.of_node;
1920        struct regmap *regmap;
1921        uint32_t boot_device_reg;
1922        uint32_t boot_device_spi;
1923        uint32_t boot_device;     /* Value we read from *boot_device_reg */
1924        int ret;
1925
1926        /* Booting from SPI NOR Flash is the default */
1927        fsm->booted_from_spi = true;
1928
1929        regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1930        if (IS_ERR(regmap))
1931                goto boot_device_fail;
1932
1933        fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
1934
1935        fsm->reset_por = of_property_read_bool(np, "st,reset-por");
1936
1937        /* Where in the syscon the boot device information lives */
1938        ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
1939        if (ret)
1940                goto boot_device_fail;
1941
1942        /* Boot device value when booted from SPI NOR */
1943        ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
1944        if (ret)
1945                goto boot_device_fail;
1946
1947        ret = regmap_read(regmap, boot_device_reg, &boot_device);
1948        if (ret)
1949                goto boot_device_fail;
1950
1951        if (boot_device != boot_device_spi)
1952                fsm->booted_from_spi = false;
1953
1954        return;
1955
1956boot_device_fail:
1957        dev_warn(&pdev->dev,
1958                 "failed to fetch boot device, assuming boot from SPI\n");
1959}
1960
1961static int stfsm_probe(struct platform_device *pdev)
1962{
1963        struct device_node *np = pdev->dev.of_node;
1964        struct mtd_part_parser_data ppdata;
1965        struct flash_info *info;
1966        struct resource *res;
1967        struct stfsm *fsm;
1968        int ret;
1969
1970        if (!np) {
1971                dev_err(&pdev->dev, "No DT found\n");
1972                return -EINVAL;
1973        }
1974        ppdata.of_node = np;
1975
1976        fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
1977        if (!fsm)
1978                return -ENOMEM;
1979
1980        fsm->dev = &pdev->dev;
1981
1982        platform_set_drvdata(pdev, fsm);
1983
1984        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1985        if (!res) {
1986                dev_err(&pdev->dev, "Resource not found\n");
1987                return -ENODEV;
1988        }
1989
1990        fsm->base = devm_ioremap_resource(&pdev->dev, res);
1991        if (IS_ERR(fsm->base)) {
1992                dev_err(&pdev->dev,
1993                        "Failed to reserve memory region %pR\n", res);
1994                return PTR_ERR(fsm->base);
1995        }
1996
1997        mutex_init(&fsm->lock);
1998
1999        ret = stfsm_init(fsm);
2000        if (ret) {
2001                dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
2002                return ret;
2003        }
2004
2005        stfsm_fetch_platform_configs(pdev);
2006
2007        /* Detect SPI FLASH device */
2008        info = stfsm_jedec_probe(fsm);
2009        if (!info)
2010                return -ENODEV;
2011        fsm->info = info;
2012
2013        /* Use device size to determine address width */
2014        if (info->sector_size * info->n_sectors > 0x1000000)
2015                info->flags |= FLASH_FLAG_32BIT_ADDR;
2016
2017        /*
2018         * Configure READ/WRITE/ERASE sequences according to platform and
2019         * device flags.
2020         */
2021        if (info->config) {
2022                ret = info->config(fsm);
2023                if (ret)
2024                        return ret;
2025        } else {
2026                ret = stfsm_prepare_rwe_seqs_default(fsm);
2027                if (ret)
2028                        return ret;
2029        }
2030
2031        fsm->mtd.name           = info->name;
2032        fsm->mtd.dev.parent     = &pdev->dev;
2033        fsm->mtd.type           = MTD_NORFLASH;
2034        fsm->mtd.writesize      = 4;
2035        fsm->mtd.writebufsize   = fsm->mtd.writesize;
2036        fsm->mtd.flags          = MTD_CAP_NORFLASH;
2037        fsm->mtd.size           = info->sector_size * info->n_sectors;
2038        fsm->mtd.erasesize      = info->sector_size;
2039
2040        fsm->mtd._read  = stfsm_mtd_read;
2041        fsm->mtd._write = stfsm_mtd_write;
2042        fsm->mtd._erase = stfsm_mtd_erase;
2043
2044        dev_info(&pdev->dev,
2045                "Found serial flash device: %s\n"
2046                " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
2047                info->name,
2048                (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
2049                fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
2050
2051        return mtd_device_parse_register(&fsm->mtd, NULL, &ppdata, NULL, 0);
2052}
2053
2054static int stfsm_remove(struct platform_device *pdev)
2055{
2056        struct stfsm *fsm = platform_get_drvdata(pdev);
2057
2058        return mtd_device_unregister(&fsm->mtd);
2059}
2060
2061static const struct of_device_id stfsm_match[] = {
2062        { .compatible = "st,spi-fsm", },
2063        {},
2064};
2065MODULE_DEVICE_TABLE(of, stfsm_match);
2066
2067static struct platform_driver stfsm_driver = {
2068        .probe          = stfsm_probe,
2069        .remove         = stfsm_remove,
2070        .driver         = {
2071                .name   = "st-spi-fsm",
2072                .owner  = THIS_MODULE,
2073                .of_match_table = stfsm_match,
2074        },
2075};
2076module_platform_driver(stfsm_driver);
2077
2078MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
2079MODULE_DESCRIPTION("ST SPI FSM driver");
2080MODULE_LICENSE("GPL");
2081