linux/drivers/mtd/nand/nandsim.c
<<
>>
Prefs
   1/*
   2 * NAND flash simulator.
   3 *
   4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
   5 *
   6 * Copyright (C) 2004 Nokia Corporation
   7 *
   8 * Note: NS means "NAND Simulator".
   9 * Note: Input means input TO flash chip, output means output FROM chip.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2, or (at your option) any later
  14 * version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19 * Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/types.h>
  28#include <linux/module.h>
  29#include <linux/moduleparam.h>
  30#include <linux/vmalloc.h>
  31#include <linux/math64.h>
  32#include <linux/slab.h>
  33#include <linux/errno.h>
  34#include <linux/string.h>
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/nand.h>
  37#include <linux/mtd/nand_bch.h>
  38#include <linux/mtd/partitions.h>
  39#include <linux/delay.h>
  40#include <linux/list.h>
  41#include <linux/random.h>
  42#include <linux/sched.h>
  43#include <linux/fs.h>
  44#include <linux/pagemap.h>
  45#include <linux/seq_file.h>
  46#include <linux/debugfs.h>
  47
  48/* Default simulator parameters values */
  49#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
  50    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  51    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
  52    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  53#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
  54#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  55#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
  56#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  57#endif
  58
  59#ifndef CONFIG_NANDSIM_ACCESS_DELAY
  60#define CONFIG_NANDSIM_ACCESS_DELAY 25
  61#endif
  62#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  63#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  64#endif
  65#ifndef CONFIG_NANDSIM_ERASE_DELAY
  66#define CONFIG_NANDSIM_ERASE_DELAY 2
  67#endif
  68#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  69#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  70#endif
  71#ifndef CONFIG_NANDSIM_INPUT_CYCLE
  72#define CONFIG_NANDSIM_INPUT_CYCLE  50
  73#endif
  74#ifndef CONFIG_NANDSIM_BUS_WIDTH
  75#define CONFIG_NANDSIM_BUS_WIDTH  8
  76#endif
  77#ifndef CONFIG_NANDSIM_DO_DELAYS
  78#define CONFIG_NANDSIM_DO_DELAYS  0
  79#endif
  80#ifndef CONFIG_NANDSIM_LOG
  81#define CONFIG_NANDSIM_LOG        0
  82#endif
  83#ifndef CONFIG_NANDSIM_DBG
  84#define CONFIG_NANDSIM_DBG        0
  85#endif
  86#ifndef CONFIG_NANDSIM_MAX_PARTS
  87#define CONFIG_NANDSIM_MAX_PARTS  32
  88#endif
  89
  90static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
  91static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
  92static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
  93static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
  94static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
  95static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  96static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
  97static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
  98static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
  99static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
 100static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
 101static uint log            = CONFIG_NANDSIM_LOG;
 102static uint dbg            = CONFIG_NANDSIM_DBG;
 103static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
 104static unsigned int parts_num;
 105static char *badblocks = NULL;
 106static char *weakblocks = NULL;
 107static char *weakpages = NULL;
 108static unsigned int bitflips = 0;
 109static char *gravepages = NULL;
 110static unsigned int overridesize = 0;
 111static char *cache_file = NULL;
 112static unsigned int bbt;
 113static unsigned int bch;
 114
 115module_param(first_id_byte,  uint, 0400);
 116module_param(second_id_byte, uint, 0400);
 117module_param(third_id_byte,  uint, 0400);
 118module_param(fourth_id_byte, uint, 0400);
 119module_param(access_delay,   uint, 0400);
 120module_param(programm_delay, uint, 0400);
 121module_param(erase_delay,    uint, 0400);
 122module_param(output_cycle,   uint, 0400);
 123module_param(input_cycle,    uint, 0400);
 124module_param(bus_width,      uint, 0400);
 125module_param(do_delays,      uint, 0400);
 126module_param(log,            uint, 0400);
 127module_param(dbg,            uint, 0400);
 128module_param_array(parts, ulong, &parts_num, 0400);
 129module_param(badblocks,      charp, 0400);
 130module_param(weakblocks,     charp, 0400);
 131module_param(weakpages,      charp, 0400);
 132module_param(bitflips,       uint, 0400);
 133module_param(gravepages,     charp, 0400);
 134module_param(overridesize,   uint, 0400);
 135module_param(cache_file,     charp, 0400);
 136module_param(bbt,            uint, 0400);
 137module_param(bch,            uint, 0400);
 138
 139MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
 140MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
 141MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
 142MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
 143MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
 144MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
 145MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
 146MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
 147MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
 148MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
 149MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
 150MODULE_PARM_DESC(log,            "Perform logging if not zero");
 151MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
 152MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
 153/* Page and erase block positions for the following parameters are independent of any partitions */
 154MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
 155MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
 156                                 " separated by commas e.g. 113:2 means eb 113"
 157                                 " can be erased only twice before failing");
 158MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
 159                                 " separated by commas e.g. 1401:2 means page 1401"
 160                                 " can be written only twice before failing");
 161MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
 162MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
 163                                 " separated by commas e.g. 1401:2 means page 1401"
 164                                 " can be read only twice before failing");
 165MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
 166                                 "The size is specified in erase blocks and as the exponent of a power of two"
 167                                 " e.g. 5 means a size of 32 erase blocks");
 168MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
 169MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
 170MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
 171                                 "be correctable in 512-byte blocks");
 172
 173/* The largest possible page size */
 174#define NS_LARGEST_PAGE_SIZE    4096
 175
 176/* The prefix for simulator output */
 177#define NS_OUTPUT_PREFIX "[nandsim]"
 178
 179/* Simulator's output macros (logging, debugging, warning, error) */
 180#define NS_LOG(args...) \
 181        do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
 182#define NS_DBG(args...) \
 183        do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
 184#define NS_WARN(args...) \
 185        do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
 186#define NS_ERR(args...) \
 187        do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
 188#define NS_INFO(args...) \
 189        do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
 190
 191/* Busy-wait delay macros (microseconds, milliseconds) */
 192#define NS_UDELAY(us) \
 193        do { if (do_delays) udelay(us); } while(0)
 194#define NS_MDELAY(us) \
 195        do { if (do_delays) mdelay(us); } while(0)
 196
 197/* Is the nandsim structure initialized ? */
 198#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
 199
 200/* Good operation completion status */
 201#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
 202
 203/* Operation failed completion status */
 204#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
 205
 206/* Calculate the page offset in flash RAM image by (row, column) address */
 207#define NS_RAW_OFFSET(ns) \
 208        (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
 209
 210/* Calculate the OOB offset in flash RAM image by (row, column) address */
 211#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
 212
 213/* After a command is input, the simulator goes to one of the following states */
 214#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
 215#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
 216#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
 217#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
 218#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
 219#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
 220#define STATE_CMD_STATUS       0x00000007 /* read status */
 221#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
 222#define STATE_CMD_READID       0x0000000A /* read ID */
 223#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
 224#define STATE_CMD_RESET        0x0000000C /* reset */
 225#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
 226#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
 227#define STATE_CMD_MASK         0x0000000F /* command states mask */
 228
 229/* After an address is input, the simulator goes to one of these states */
 230#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
 231#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
 232#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
 233#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
 234#define STATE_ADDR_MASK        0x00000070 /* address states mask */
 235
 236/* During data input/output the simulator is in these states */
 237#define STATE_DATAIN           0x00000100 /* waiting for data input */
 238#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
 239
 240#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
 241#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
 242#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
 243#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
 244#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
 245
 246/* Previous operation is done, ready to accept new requests */
 247#define STATE_READY            0x00000000
 248
 249/* This state is used to mark that the next state isn't known yet */
 250#define STATE_UNKNOWN          0x10000000
 251
 252/* Simulator's actions bit masks */
 253#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
 254#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
 255#define ACTION_SECERASE  0x00300000 /* erase sector */
 256#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
 257#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
 258#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
 259#define ACTION_MASK      0x00700000 /* action mask */
 260
 261#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
 262#define NS_OPER_STATES   6  /* Maximum number of states in operation */
 263
 264#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
 265#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
 266#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
 267#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
 268#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
 269#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
 270#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
 271#define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
 272
 273/* Remove action bits from state */
 274#define NS_STATE(x) ((x) & ~ACTION_MASK)
 275
 276/*
 277 * Maximum previous states which need to be saved. Currently saving is
 278 * only needed for page program operation with preceded read command
 279 * (which is only valid for 512-byte pages).
 280 */
 281#define NS_MAX_PREVSTATES 1
 282
 283/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
 284#define NS_MAX_HELD_PAGES 16
 285
 286struct nandsim_debug_info {
 287        struct dentry *dfs_root;
 288        struct dentry *dfs_wear_report;
 289};
 290
 291/*
 292 * A union to represent flash memory contents and flash buffer.
 293 */
 294union ns_mem {
 295        u_char *byte;    /* for byte access */
 296        uint16_t *word;  /* for 16-bit word access */
 297};
 298
 299/*
 300 * The structure which describes all the internal simulator data.
 301 */
 302struct nandsim {
 303        struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
 304        unsigned int nbparts;
 305
 306        uint busw;              /* flash chip bus width (8 or 16) */
 307        u_char ids[4];          /* chip's ID bytes */
 308        uint32_t options;       /* chip's characteristic bits */
 309        uint32_t state;         /* current chip state */
 310        uint32_t nxstate;       /* next expected state */
 311
 312        uint32_t *op;           /* current operation, NULL operations isn't known yet  */
 313        uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
 314        uint16_t npstates;      /* number of previous states saved */
 315        uint16_t stateidx;      /* current state index */
 316
 317        /* The simulated NAND flash pages array */
 318        union ns_mem *pages;
 319
 320        /* Slab allocator for nand pages */
 321        struct kmem_cache *nand_pages_slab;
 322
 323        /* Internal buffer of page + OOB size bytes */
 324        union ns_mem buf;
 325
 326        /* NAND flash "geometry" */
 327        struct {
 328                uint64_t totsz;     /* total flash size, bytes */
 329                uint32_t secsz;     /* flash sector (erase block) size, bytes */
 330                uint pgsz;          /* NAND flash page size, bytes */
 331                uint oobsz;         /* page OOB area size, bytes */
 332                uint64_t totszoob;  /* total flash size including OOB, bytes */
 333                uint pgszoob;       /* page size including OOB , bytes*/
 334                uint secszoob;      /* sector size including OOB, bytes */
 335                uint pgnum;         /* total number of pages */
 336                uint pgsec;         /* number of pages per sector */
 337                uint secshift;      /* bits number in sector size */
 338                uint pgshift;       /* bits number in page size */
 339                uint pgaddrbytes;   /* bytes per page address */
 340                uint secaddrbytes;  /* bytes per sector address */
 341                uint idbytes;       /* the number ID bytes that this chip outputs */
 342        } geom;
 343
 344        /* NAND flash internal registers */
 345        struct {
 346                unsigned command; /* the command register */
 347                u_char   status;  /* the status register */
 348                uint     row;     /* the page number */
 349                uint     column;  /* the offset within page */
 350                uint     count;   /* internal counter */
 351                uint     num;     /* number of bytes which must be processed */
 352                uint     off;     /* fixed page offset */
 353        } regs;
 354
 355        /* NAND flash lines state */
 356        struct {
 357                int ce;  /* chip Enable */
 358                int cle; /* command Latch Enable */
 359                int ale; /* address Latch Enable */
 360                int wp;  /* write Protect */
 361        } lines;
 362
 363        /* Fields needed when using a cache file */
 364        struct file *cfile; /* Open file */
 365        unsigned long *pages_written; /* Which pages have been written */
 366        void *file_buf;
 367        struct page *held_pages[NS_MAX_HELD_PAGES];
 368        int held_cnt;
 369
 370        struct nandsim_debug_info dbg;
 371};
 372
 373/*
 374 * Operations array. To perform any operation the simulator must pass
 375 * through the correspondent states chain.
 376 */
 377static struct nandsim_operations {
 378        uint32_t reqopts;  /* options which are required to perform the operation */
 379        uint32_t states[NS_OPER_STATES]; /* operation's states */
 380} ops[NS_OPER_NUM] = {
 381        /* Read page + OOB from the beginning */
 382        {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
 383                        STATE_DATAOUT, STATE_READY}},
 384        /* Read page + OOB from the second half */
 385        {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
 386                        STATE_DATAOUT, STATE_READY}},
 387        /* Read OOB */
 388        {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
 389                        STATE_DATAOUT, STATE_READY}},
 390        /* Program page starting from the beginning */
 391        {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
 392                        STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 393        /* Program page starting from the beginning */
 394        {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
 395                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 396        /* Program page starting from the second half */
 397        {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
 398                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 399        /* Program OOB */
 400        {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
 401                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 402        /* Erase sector */
 403        {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
 404        /* Read status */
 405        {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
 406        /* Read ID */
 407        {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
 408        /* Large page devices read page */
 409        {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
 410                               STATE_DATAOUT, STATE_READY}},
 411        /* Large page devices random page read */
 412        {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
 413                               STATE_DATAOUT, STATE_READY}},
 414};
 415
 416struct weak_block {
 417        struct list_head list;
 418        unsigned int erase_block_no;
 419        unsigned int max_erases;
 420        unsigned int erases_done;
 421};
 422
 423static LIST_HEAD(weak_blocks);
 424
 425struct weak_page {
 426        struct list_head list;
 427        unsigned int page_no;
 428        unsigned int max_writes;
 429        unsigned int writes_done;
 430};
 431
 432static LIST_HEAD(weak_pages);
 433
 434struct grave_page {
 435        struct list_head list;
 436        unsigned int page_no;
 437        unsigned int max_reads;
 438        unsigned int reads_done;
 439};
 440
 441static LIST_HEAD(grave_pages);
 442
 443static unsigned long *erase_block_wear = NULL;
 444static unsigned int wear_eb_count = 0;
 445static unsigned long total_wear = 0;
 446
 447/* MTD structure for NAND controller */
 448static struct mtd_info *nsmtd;
 449
 450static int nandsim_debugfs_show(struct seq_file *m, void *private)
 451{
 452        unsigned long wmin = -1, wmax = 0, avg;
 453        unsigned long deciles[10], decile_max[10], tot = 0;
 454        unsigned int i;
 455
 456        /* Calc wear stats */
 457        for (i = 0; i < wear_eb_count; ++i) {
 458                unsigned long wear = erase_block_wear[i];
 459                if (wear < wmin)
 460                        wmin = wear;
 461                if (wear > wmax)
 462                        wmax = wear;
 463                tot += wear;
 464        }
 465
 466        for (i = 0; i < 9; ++i) {
 467                deciles[i] = 0;
 468                decile_max[i] = (wmax * (i + 1) + 5) / 10;
 469        }
 470        deciles[9] = 0;
 471        decile_max[9] = wmax;
 472        for (i = 0; i < wear_eb_count; ++i) {
 473                int d;
 474                unsigned long wear = erase_block_wear[i];
 475                for (d = 0; d < 10; ++d)
 476                        if (wear <= decile_max[d]) {
 477                                deciles[d] += 1;
 478                                break;
 479                        }
 480        }
 481        avg = tot / wear_eb_count;
 482
 483        /* Output wear report */
 484        seq_printf(m, "Total numbers of erases:  %lu\n", tot);
 485        seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
 486        seq_printf(m, "Average number of erases: %lu\n", avg);
 487        seq_printf(m, "Maximum number of erases: %lu\n", wmax);
 488        seq_printf(m, "Minimum number of erases: %lu\n", wmin);
 489        for (i = 0; i < 10; ++i) {
 490                unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
 491                if (from > decile_max[i])
 492                        continue;
 493                seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
 494                        from,
 495                        decile_max[i],
 496                        deciles[i]);
 497        }
 498
 499        return 0;
 500}
 501
 502static int nandsim_debugfs_open(struct inode *inode, struct file *file)
 503{
 504        return single_open(file, nandsim_debugfs_show, inode->i_private);
 505}
 506
 507static const struct file_operations dfs_fops = {
 508        .open           = nandsim_debugfs_open,
 509        .read           = seq_read,
 510        .llseek         = seq_lseek,
 511        .release        = single_release,
 512};
 513
 514/**
 515 * nandsim_debugfs_create - initialize debugfs
 516 * @dev: nandsim device description object
 517 *
 518 * This function creates all debugfs files for UBI device @ubi. Returns zero in
 519 * case of success and a negative error code in case of failure.
 520 */
 521static int nandsim_debugfs_create(struct nandsim *dev)
 522{
 523        struct nandsim_debug_info *dbg = &dev->dbg;
 524        struct dentry *dent;
 525        int err;
 526
 527        if (!IS_ENABLED(CONFIG_DEBUG_FS))
 528                return 0;
 529
 530        dent = debugfs_create_dir("nandsim", NULL);
 531        if (IS_ERR_OR_NULL(dent)) {
 532                int err = dent ? -ENODEV : PTR_ERR(dent);
 533
 534                NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
 535                        err);
 536                return err;
 537        }
 538        dbg->dfs_root = dent;
 539
 540        dent = debugfs_create_file("wear_report", S_IRUSR,
 541                                   dbg->dfs_root, dev, &dfs_fops);
 542        if (IS_ERR_OR_NULL(dent))
 543                goto out_remove;
 544        dbg->dfs_wear_report = dent;
 545
 546        return 0;
 547
 548out_remove:
 549        debugfs_remove_recursive(dbg->dfs_root);
 550        err = dent ? PTR_ERR(dent) : -ENODEV;
 551        return err;
 552}
 553
 554/**
 555 * nandsim_debugfs_remove - destroy all debugfs files
 556 */
 557static void nandsim_debugfs_remove(struct nandsim *ns)
 558{
 559        if (IS_ENABLED(CONFIG_DEBUG_FS))
 560                debugfs_remove_recursive(ns->dbg.dfs_root);
 561}
 562
 563/*
 564 * Allocate array of page pointers, create slab allocation for an array
 565 * and initialize the array by NULL pointers.
 566 *
 567 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 568 */
 569static int alloc_device(struct nandsim *ns)
 570{
 571        struct file *cfile;
 572        int i, err;
 573
 574        if (cache_file) {
 575                cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
 576                if (IS_ERR(cfile))
 577                        return PTR_ERR(cfile);
 578                if (!(cfile->f_mode & FMODE_CAN_READ)) {
 579                        NS_ERR("alloc_device: cache file not readable\n");
 580                        err = -EINVAL;
 581                        goto err_close;
 582                }
 583                if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
 584                        NS_ERR("alloc_device: cache file not writeable\n");
 585                        err = -EINVAL;
 586                        goto err_close;
 587                }
 588                ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
 589                                            sizeof(unsigned long));
 590                if (!ns->pages_written) {
 591                        NS_ERR("alloc_device: unable to allocate pages written array\n");
 592                        err = -ENOMEM;
 593                        goto err_close;
 594                }
 595                ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 596                if (!ns->file_buf) {
 597                        NS_ERR("alloc_device: unable to allocate file buf\n");
 598                        err = -ENOMEM;
 599                        goto err_free;
 600                }
 601                ns->cfile = cfile;
 602                return 0;
 603        }
 604
 605        ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
 606        if (!ns->pages) {
 607                NS_ERR("alloc_device: unable to allocate page array\n");
 608                return -ENOMEM;
 609        }
 610        for (i = 0; i < ns->geom.pgnum; i++) {
 611                ns->pages[i].byte = NULL;
 612        }
 613        ns->nand_pages_slab = kmem_cache_create("nandsim",
 614                                                ns->geom.pgszoob, 0, 0, NULL);
 615        if (!ns->nand_pages_slab) {
 616                NS_ERR("cache_create: unable to create kmem_cache\n");
 617                return -ENOMEM;
 618        }
 619
 620        return 0;
 621
 622err_free:
 623        vfree(ns->pages_written);
 624err_close:
 625        filp_close(cfile, NULL);
 626        return err;
 627}
 628
 629/*
 630 * Free any allocated pages, and free the array of page pointers.
 631 */
 632static void free_device(struct nandsim *ns)
 633{
 634        int i;
 635
 636        if (ns->cfile) {
 637                kfree(ns->file_buf);
 638                vfree(ns->pages_written);
 639                filp_close(ns->cfile, NULL);
 640                return;
 641        }
 642
 643        if (ns->pages) {
 644                for (i = 0; i < ns->geom.pgnum; i++) {
 645                        if (ns->pages[i].byte)
 646                                kmem_cache_free(ns->nand_pages_slab,
 647                                                ns->pages[i].byte);
 648                }
 649                kmem_cache_destroy(ns->nand_pages_slab);
 650                vfree(ns->pages);
 651        }
 652}
 653
 654static char *get_partition_name(int i)
 655{
 656        return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
 657}
 658
 659/*
 660 * Initialize the nandsim structure.
 661 *
 662 * RETURNS: 0 if success, -ERRNO if failure.
 663 */
 664static int init_nandsim(struct mtd_info *mtd)
 665{
 666        struct nand_chip *chip = mtd->priv;
 667        struct nandsim   *ns   = chip->priv;
 668        int i, ret = 0;
 669        uint64_t remains;
 670        uint64_t next_offset;
 671
 672        if (NS_IS_INITIALIZED(ns)) {
 673                NS_ERR("init_nandsim: nandsim is already initialized\n");
 674                return -EIO;
 675        }
 676
 677        /* Force mtd to not do delays */
 678        chip->chip_delay = 0;
 679
 680        /* Initialize the NAND flash parameters */
 681        ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 682        ns->geom.totsz    = mtd->size;
 683        ns->geom.pgsz     = mtd->writesize;
 684        ns->geom.oobsz    = mtd->oobsize;
 685        ns->geom.secsz    = mtd->erasesize;
 686        ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
 687        ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
 688        ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
 689        ns->geom.secshift = ffs(ns->geom.secsz) - 1;
 690        ns->geom.pgshift  = chip->page_shift;
 691        ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
 692        ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
 693        ns->options = 0;
 694
 695        if (ns->geom.pgsz == 512) {
 696                ns->options |= OPT_PAGE512;
 697                if (ns->busw == 8)
 698                        ns->options |= OPT_PAGE512_8BIT;
 699        } else if (ns->geom.pgsz == 2048) {
 700                ns->options |= OPT_PAGE2048;
 701        } else if (ns->geom.pgsz == 4096) {
 702                ns->options |= OPT_PAGE4096;
 703        } else {
 704                NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
 705                return -EIO;
 706        }
 707
 708        if (ns->options & OPT_SMALLPAGE) {
 709                if (ns->geom.totsz <= (32 << 20)) {
 710                        ns->geom.pgaddrbytes  = 3;
 711                        ns->geom.secaddrbytes = 2;
 712                } else {
 713                        ns->geom.pgaddrbytes  = 4;
 714                        ns->geom.secaddrbytes = 3;
 715                }
 716        } else {
 717                if (ns->geom.totsz <= (128 << 20)) {
 718                        ns->geom.pgaddrbytes  = 4;
 719                        ns->geom.secaddrbytes = 2;
 720                } else {
 721                        ns->geom.pgaddrbytes  = 5;
 722                        ns->geom.secaddrbytes = 3;
 723                }
 724        }
 725
 726        /* Fill the partition_info structure */
 727        if (parts_num > ARRAY_SIZE(ns->partitions)) {
 728                NS_ERR("too many partitions.\n");
 729                ret = -EINVAL;
 730                goto error;
 731        }
 732        remains = ns->geom.totsz;
 733        next_offset = 0;
 734        for (i = 0; i < parts_num; ++i) {
 735                uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
 736
 737                if (!part_sz || part_sz > remains) {
 738                        NS_ERR("bad partition size.\n");
 739                        ret = -EINVAL;
 740                        goto error;
 741                }
 742                ns->partitions[i].name   = get_partition_name(i);
 743                ns->partitions[i].offset = next_offset;
 744                ns->partitions[i].size   = part_sz;
 745                next_offset += ns->partitions[i].size;
 746                remains -= ns->partitions[i].size;
 747        }
 748        ns->nbparts = parts_num;
 749        if (remains) {
 750                if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
 751                        NS_ERR("too many partitions.\n");
 752                        ret = -EINVAL;
 753                        goto error;
 754                }
 755                ns->partitions[i].name   = get_partition_name(i);
 756                ns->partitions[i].offset = next_offset;
 757                ns->partitions[i].size   = remains;
 758                ns->nbparts += 1;
 759        }
 760
 761        if (ns->busw == 16)
 762                NS_WARN("16-bit flashes support wasn't tested\n");
 763
 764        printk("flash size: %llu MiB\n",
 765                        (unsigned long long)ns->geom.totsz >> 20);
 766        printk("page size: %u bytes\n",         ns->geom.pgsz);
 767        printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
 768        printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
 769        printk("pages number: %u\n",            ns->geom.pgnum);
 770        printk("pages per sector: %u\n",        ns->geom.pgsec);
 771        printk("bus width: %u\n",               ns->busw);
 772        printk("bits in sector size: %u\n",     ns->geom.secshift);
 773        printk("bits in page size: %u\n",       ns->geom.pgshift);
 774        printk("bits in OOB size: %u\n",        ffs(ns->geom.oobsz) - 1);
 775        printk("flash size with OOB: %llu KiB\n",
 776                        (unsigned long long)ns->geom.totszoob >> 10);
 777        printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
 778        printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
 779        printk("options: %#x\n",                ns->options);
 780
 781        if ((ret = alloc_device(ns)) != 0)
 782                goto error;
 783
 784        /* Allocate / initialize the internal buffer */
 785        ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 786        if (!ns->buf.byte) {
 787                NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
 788                        ns->geom.pgszoob);
 789                ret = -ENOMEM;
 790                goto error;
 791        }
 792        memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
 793
 794        return 0;
 795
 796error:
 797        free_device(ns);
 798
 799        return ret;
 800}
 801
 802/*
 803 * Free the nandsim structure.
 804 */
 805static void free_nandsim(struct nandsim *ns)
 806{
 807        kfree(ns->buf.byte);
 808        free_device(ns);
 809
 810        return;
 811}
 812
 813static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
 814{
 815        char *w;
 816        int zero_ok;
 817        unsigned int erase_block_no;
 818        loff_t offset;
 819
 820        if (!badblocks)
 821                return 0;
 822        w = badblocks;
 823        do {
 824                zero_ok = (*w == '0' ? 1 : 0);
 825                erase_block_no = simple_strtoul(w, &w, 0);
 826                if (!zero_ok && !erase_block_no) {
 827                        NS_ERR("invalid badblocks.\n");
 828                        return -EINVAL;
 829                }
 830                offset = erase_block_no * ns->geom.secsz;
 831                if (mtd_block_markbad(mtd, offset)) {
 832                        NS_ERR("invalid badblocks.\n");
 833                        return -EINVAL;
 834                }
 835                if (*w == ',')
 836                        w += 1;
 837        } while (*w);
 838        return 0;
 839}
 840
 841static int parse_weakblocks(void)
 842{
 843        char *w;
 844        int zero_ok;
 845        unsigned int erase_block_no;
 846        unsigned int max_erases;
 847        struct weak_block *wb;
 848
 849        if (!weakblocks)
 850                return 0;
 851        w = weakblocks;
 852        do {
 853                zero_ok = (*w == '0' ? 1 : 0);
 854                erase_block_no = simple_strtoul(w, &w, 0);
 855                if (!zero_ok && !erase_block_no) {
 856                        NS_ERR("invalid weakblocks.\n");
 857                        return -EINVAL;
 858                }
 859                max_erases = 3;
 860                if (*w == ':') {
 861                        w += 1;
 862                        max_erases = simple_strtoul(w, &w, 0);
 863                }
 864                if (*w == ',')
 865                        w += 1;
 866                wb = kzalloc(sizeof(*wb), GFP_KERNEL);
 867                if (!wb) {
 868                        NS_ERR("unable to allocate memory.\n");
 869                        return -ENOMEM;
 870                }
 871                wb->erase_block_no = erase_block_no;
 872                wb->max_erases = max_erases;
 873                list_add(&wb->list, &weak_blocks);
 874        } while (*w);
 875        return 0;
 876}
 877
 878static int erase_error(unsigned int erase_block_no)
 879{
 880        struct weak_block *wb;
 881
 882        list_for_each_entry(wb, &weak_blocks, list)
 883                if (wb->erase_block_no == erase_block_no) {
 884                        if (wb->erases_done >= wb->max_erases)
 885                                return 1;
 886                        wb->erases_done += 1;
 887                        return 0;
 888                }
 889        return 0;
 890}
 891
 892static int parse_weakpages(void)
 893{
 894        char *w;
 895        int zero_ok;
 896        unsigned int page_no;
 897        unsigned int max_writes;
 898        struct weak_page *wp;
 899
 900        if (!weakpages)
 901                return 0;
 902        w = weakpages;
 903        do {
 904                zero_ok = (*w == '0' ? 1 : 0);
 905                page_no = simple_strtoul(w, &w, 0);
 906                if (!zero_ok && !page_no) {
 907                        NS_ERR("invalid weakpagess.\n");
 908                        return -EINVAL;
 909                }
 910                max_writes = 3;
 911                if (*w == ':') {
 912                        w += 1;
 913                        max_writes = simple_strtoul(w, &w, 0);
 914                }
 915                if (*w == ',')
 916                        w += 1;
 917                wp = kzalloc(sizeof(*wp), GFP_KERNEL);
 918                if (!wp) {
 919                        NS_ERR("unable to allocate memory.\n");
 920                        return -ENOMEM;
 921                }
 922                wp->page_no = page_no;
 923                wp->max_writes = max_writes;
 924                list_add(&wp->list, &weak_pages);
 925        } while (*w);
 926        return 0;
 927}
 928
 929static int write_error(unsigned int page_no)
 930{
 931        struct weak_page *wp;
 932
 933        list_for_each_entry(wp, &weak_pages, list)
 934                if (wp->page_no == page_no) {
 935                        if (wp->writes_done >= wp->max_writes)
 936                                return 1;
 937                        wp->writes_done += 1;
 938                        return 0;
 939                }
 940        return 0;
 941}
 942
 943static int parse_gravepages(void)
 944{
 945        char *g;
 946        int zero_ok;
 947        unsigned int page_no;
 948        unsigned int max_reads;
 949        struct grave_page *gp;
 950
 951        if (!gravepages)
 952                return 0;
 953        g = gravepages;
 954        do {
 955                zero_ok = (*g == '0' ? 1 : 0);
 956                page_no = simple_strtoul(g, &g, 0);
 957                if (!zero_ok && !page_no) {
 958                        NS_ERR("invalid gravepagess.\n");
 959                        return -EINVAL;
 960                }
 961                max_reads = 3;
 962                if (*g == ':') {
 963                        g += 1;
 964                        max_reads = simple_strtoul(g, &g, 0);
 965                }
 966                if (*g == ',')
 967                        g += 1;
 968                gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 969                if (!gp) {
 970                        NS_ERR("unable to allocate memory.\n");
 971                        return -ENOMEM;
 972                }
 973                gp->page_no = page_no;
 974                gp->max_reads = max_reads;
 975                list_add(&gp->list, &grave_pages);
 976        } while (*g);
 977        return 0;
 978}
 979
 980static int read_error(unsigned int page_no)
 981{
 982        struct grave_page *gp;
 983
 984        list_for_each_entry(gp, &grave_pages, list)
 985                if (gp->page_no == page_no) {
 986                        if (gp->reads_done >= gp->max_reads)
 987                                return 1;
 988                        gp->reads_done += 1;
 989                        return 0;
 990                }
 991        return 0;
 992}
 993
 994static void free_lists(void)
 995{
 996        struct list_head *pos, *n;
 997        list_for_each_safe(pos, n, &weak_blocks) {
 998                list_del(pos);
 999                kfree(list_entry(pos, struct weak_block, list));
1000        }
1001        list_for_each_safe(pos, n, &weak_pages) {
1002                list_del(pos);
1003                kfree(list_entry(pos, struct weak_page, list));
1004        }
1005        list_for_each_safe(pos, n, &grave_pages) {
1006                list_del(pos);
1007                kfree(list_entry(pos, struct grave_page, list));
1008        }
1009        kfree(erase_block_wear);
1010}
1011
1012static int setup_wear_reporting(struct mtd_info *mtd)
1013{
1014        size_t mem;
1015
1016        wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1017        mem = wear_eb_count * sizeof(unsigned long);
1018        if (mem / sizeof(unsigned long) != wear_eb_count) {
1019                NS_ERR("Too many erase blocks for wear reporting\n");
1020                return -ENOMEM;
1021        }
1022        erase_block_wear = kzalloc(mem, GFP_KERNEL);
1023        if (!erase_block_wear) {
1024                NS_ERR("Too many erase blocks for wear reporting\n");
1025                return -ENOMEM;
1026        }
1027        return 0;
1028}
1029
1030static void update_wear(unsigned int erase_block_no)
1031{
1032        if (!erase_block_wear)
1033                return;
1034        total_wear += 1;
1035        /*
1036         * TODO: Notify this through a debugfs entry,
1037         * instead of showing an error message.
1038         */
1039        if (total_wear == 0)
1040                NS_ERR("Erase counter total overflow\n");
1041        erase_block_wear[erase_block_no] += 1;
1042        if (erase_block_wear[erase_block_no] == 0)
1043                NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1044}
1045
1046/*
1047 * Returns the string representation of 'state' state.
1048 */
1049static char *get_state_name(uint32_t state)
1050{
1051        switch (NS_STATE(state)) {
1052                case STATE_CMD_READ0:
1053                        return "STATE_CMD_READ0";
1054                case STATE_CMD_READ1:
1055                        return "STATE_CMD_READ1";
1056                case STATE_CMD_PAGEPROG:
1057                        return "STATE_CMD_PAGEPROG";
1058                case STATE_CMD_READOOB:
1059                        return "STATE_CMD_READOOB";
1060                case STATE_CMD_READSTART:
1061                        return "STATE_CMD_READSTART";
1062                case STATE_CMD_ERASE1:
1063                        return "STATE_CMD_ERASE1";
1064                case STATE_CMD_STATUS:
1065                        return "STATE_CMD_STATUS";
1066                case STATE_CMD_SEQIN:
1067                        return "STATE_CMD_SEQIN";
1068                case STATE_CMD_READID:
1069                        return "STATE_CMD_READID";
1070                case STATE_CMD_ERASE2:
1071                        return "STATE_CMD_ERASE2";
1072                case STATE_CMD_RESET:
1073                        return "STATE_CMD_RESET";
1074                case STATE_CMD_RNDOUT:
1075                        return "STATE_CMD_RNDOUT";
1076                case STATE_CMD_RNDOUTSTART:
1077                        return "STATE_CMD_RNDOUTSTART";
1078                case STATE_ADDR_PAGE:
1079                        return "STATE_ADDR_PAGE";
1080                case STATE_ADDR_SEC:
1081                        return "STATE_ADDR_SEC";
1082                case STATE_ADDR_ZERO:
1083                        return "STATE_ADDR_ZERO";
1084                case STATE_ADDR_COLUMN:
1085                        return "STATE_ADDR_COLUMN";
1086                case STATE_DATAIN:
1087                        return "STATE_DATAIN";
1088                case STATE_DATAOUT:
1089                        return "STATE_DATAOUT";
1090                case STATE_DATAOUT_ID:
1091                        return "STATE_DATAOUT_ID";
1092                case STATE_DATAOUT_STATUS:
1093                        return "STATE_DATAOUT_STATUS";
1094                case STATE_DATAOUT_STATUS_M:
1095                        return "STATE_DATAOUT_STATUS_M";
1096                case STATE_READY:
1097                        return "STATE_READY";
1098                case STATE_UNKNOWN:
1099                        return "STATE_UNKNOWN";
1100        }
1101
1102        NS_ERR("get_state_name: unknown state, BUG\n");
1103        return NULL;
1104}
1105
1106/*
1107 * Check if command is valid.
1108 *
1109 * RETURNS: 1 if wrong command, 0 if right.
1110 */
1111static int check_command(int cmd)
1112{
1113        switch (cmd) {
1114
1115        case NAND_CMD_READ0:
1116        case NAND_CMD_READ1:
1117        case NAND_CMD_READSTART:
1118        case NAND_CMD_PAGEPROG:
1119        case NAND_CMD_READOOB:
1120        case NAND_CMD_ERASE1:
1121        case NAND_CMD_STATUS:
1122        case NAND_CMD_SEQIN:
1123        case NAND_CMD_READID:
1124        case NAND_CMD_ERASE2:
1125        case NAND_CMD_RESET:
1126        case NAND_CMD_RNDOUT:
1127        case NAND_CMD_RNDOUTSTART:
1128                return 0;
1129
1130        default:
1131                return 1;
1132        }
1133}
1134
1135/*
1136 * Returns state after command is accepted by command number.
1137 */
1138static uint32_t get_state_by_command(unsigned command)
1139{
1140        switch (command) {
1141                case NAND_CMD_READ0:
1142                        return STATE_CMD_READ0;
1143                case NAND_CMD_READ1:
1144                        return STATE_CMD_READ1;
1145                case NAND_CMD_PAGEPROG:
1146                        return STATE_CMD_PAGEPROG;
1147                case NAND_CMD_READSTART:
1148                        return STATE_CMD_READSTART;
1149                case NAND_CMD_READOOB:
1150                        return STATE_CMD_READOOB;
1151                case NAND_CMD_ERASE1:
1152                        return STATE_CMD_ERASE1;
1153                case NAND_CMD_STATUS:
1154                        return STATE_CMD_STATUS;
1155                case NAND_CMD_SEQIN:
1156                        return STATE_CMD_SEQIN;
1157                case NAND_CMD_READID:
1158                        return STATE_CMD_READID;
1159                case NAND_CMD_ERASE2:
1160                        return STATE_CMD_ERASE2;
1161                case NAND_CMD_RESET:
1162                        return STATE_CMD_RESET;
1163                case NAND_CMD_RNDOUT:
1164                        return STATE_CMD_RNDOUT;
1165                case NAND_CMD_RNDOUTSTART:
1166                        return STATE_CMD_RNDOUTSTART;
1167        }
1168
1169        NS_ERR("get_state_by_command: unknown command, BUG\n");
1170        return 0;
1171}
1172
1173/*
1174 * Move an address byte to the correspondent internal register.
1175 */
1176static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1177{
1178        uint byte = (uint)bt;
1179
1180        if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1181                ns->regs.column |= (byte << 8 * ns->regs.count);
1182        else {
1183                ns->regs.row |= (byte << 8 * (ns->regs.count -
1184                                                ns->geom.pgaddrbytes +
1185                                                ns->geom.secaddrbytes));
1186        }
1187
1188        return;
1189}
1190
1191/*
1192 * Switch to STATE_READY state.
1193 */
1194static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1195{
1196        NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1197
1198        ns->state       = STATE_READY;
1199        ns->nxstate     = STATE_UNKNOWN;
1200        ns->op          = NULL;
1201        ns->npstates    = 0;
1202        ns->stateidx    = 0;
1203        ns->regs.num    = 0;
1204        ns->regs.count  = 0;
1205        ns->regs.off    = 0;
1206        ns->regs.row    = 0;
1207        ns->regs.column = 0;
1208        ns->regs.status = status;
1209}
1210
1211/*
1212 * If the operation isn't known yet, try to find it in the global array
1213 * of supported operations.
1214 *
1215 * Operation can be unknown because of the following.
1216 *   1. New command was accepted and this is the first call to find the
1217 *      correspondent states chain. In this case ns->npstates = 0;
1218 *   2. There are several operations which begin with the same command(s)
1219 *      (for example program from the second half and read from the
1220 *      second half operations both begin with the READ1 command). In this
1221 *      case the ns->pstates[] array contains previous states.
1222 *
1223 * Thus, the function tries to find operation containing the following
1224 * states (if the 'flag' parameter is 0):
1225 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1226 *
1227 * If (one and only one) matching operation is found, it is accepted (
1228 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1229 * zeroed).
1230 *
1231 * If there are several matches, the current state is pushed to the
1232 * ns->pstates.
1233 *
1234 * The operation can be unknown only while commands are input to the chip.
1235 * As soon as address command is accepted, the operation must be known.
1236 * In such situation the function is called with 'flag' != 0, and the
1237 * operation is searched using the following pattern:
1238 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1239 *
1240 * It is supposed that this pattern must either match one operation or
1241 * none. There can't be ambiguity in that case.
1242 *
1243 * If no matches found, the function does the following:
1244 *   1. if there are saved states present, try to ignore them and search
1245 *      again only using the last command. If nothing was found, switch
1246 *      to the STATE_READY state.
1247 *   2. if there are no saved states, switch to the STATE_READY state.
1248 *
1249 * RETURNS: -2 - no matched operations found.
1250 *          -1 - several matches.
1251 *           0 - operation is found.
1252 */
1253static int find_operation(struct nandsim *ns, uint32_t flag)
1254{
1255        int opsfound = 0;
1256        int i, j, idx = 0;
1257
1258        for (i = 0; i < NS_OPER_NUM; i++) {
1259
1260                int found = 1;
1261
1262                if (!(ns->options & ops[i].reqopts))
1263                        /* Ignore operations we can't perform */
1264                        continue;
1265
1266                if (flag) {
1267                        if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1268                                continue;
1269                } else {
1270                        if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1271                                continue;
1272                }
1273
1274                for (j = 0; j < ns->npstates; j++)
1275                        if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1276                                && (ns->options & ops[idx].reqopts)) {
1277                                found = 0;
1278                                break;
1279                        }
1280
1281                if (found) {
1282                        idx = i;
1283                        opsfound += 1;
1284                }
1285        }
1286
1287        if (opsfound == 1) {
1288                /* Exact match */
1289                ns->op = &ops[idx].states[0];
1290                if (flag) {
1291                        /*
1292                         * In this case the find_operation function was
1293                         * called when address has just began input. But it isn't
1294                         * yet fully input and the current state must
1295                         * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1296                         * state must be the next state (ns->nxstate).
1297                         */
1298                        ns->stateidx = ns->npstates - 1;
1299                } else {
1300                        ns->stateidx = ns->npstates;
1301                }
1302                ns->npstates = 0;
1303                ns->state = ns->op[ns->stateidx];
1304                ns->nxstate = ns->op[ns->stateidx + 1];
1305                NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1306                                idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1307                return 0;
1308        }
1309
1310        if (opsfound == 0) {
1311                /* Nothing was found. Try to ignore previous commands (if any) and search again */
1312                if (ns->npstates != 0) {
1313                        NS_DBG("find_operation: no operation found, try again with state %s\n",
1314                                        get_state_name(ns->state));
1315                        ns->npstates = 0;
1316                        return find_operation(ns, 0);
1317
1318                }
1319                NS_DBG("find_operation: no operations found\n");
1320                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1321                return -2;
1322        }
1323
1324        if (flag) {
1325                /* This shouldn't happen */
1326                NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1327                return -2;
1328        }
1329
1330        NS_DBG("find_operation: there is still ambiguity\n");
1331
1332        ns->pstates[ns->npstates++] = ns->state;
1333
1334        return -1;
1335}
1336
1337static void put_pages(struct nandsim *ns)
1338{
1339        int i;
1340
1341        for (i = 0; i < ns->held_cnt; i++)
1342                page_cache_release(ns->held_pages[i]);
1343}
1344
1345/* Get page cache pages in advance to provide NOFS memory allocation */
1346static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1347{
1348        pgoff_t index, start_index, end_index;
1349        struct page *page;
1350        struct address_space *mapping = file->f_mapping;
1351
1352        start_index = pos >> PAGE_CACHE_SHIFT;
1353        end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1354        if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1355                return -EINVAL;
1356        ns->held_cnt = 0;
1357        for (index = start_index; index <= end_index; index++) {
1358                page = find_get_page(mapping, index);
1359                if (page == NULL) {
1360                        page = find_or_create_page(mapping, index, GFP_NOFS);
1361                        if (page == NULL) {
1362                                write_inode_now(mapping->host, 1);
1363                                page = find_or_create_page(mapping, index, GFP_NOFS);
1364                        }
1365                        if (page == NULL) {
1366                                put_pages(ns);
1367                                return -ENOMEM;
1368                        }
1369                        unlock_page(page);
1370                }
1371                ns->held_pages[ns->held_cnt++] = page;
1372        }
1373        return 0;
1374}
1375
1376static int set_memalloc(void)
1377{
1378        if (current->flags & PF_MEMALLOC)
1379                return 0;
1380        current->flags |= PF_MEMALLOC;
1381        return 1;
1382}
1383
1384static void clear_memalloc(int memalloc)
1385{
1386        if (memalloc)
1387                current->flags &= ~PF_MEMALLOC;
1388}
1389
1390static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1391{
1392        ssize_t tx;
1393        int err, memalloc;
1394
1395        err = get_pages(ns, file, count, pos);
1396        if (err)
1397                return err;
1398        memalloc = set_memalloc();
1399        tx = kernel_read(file, pos, buf, count);
1400        clear_memalloc(memalloc);
1401        put_pages(ns);
1402        return tx;
1403}
1404
1405static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1406{
1407        ssize_t tx;
1408        int err, memalloc;
1409
1410        err = get_pages(ns, file, count, pos);
1411        if (err)
1412                return err;
1413        memalloc = set_memalloc();
1414        tx = kernel_write(file, buf, count, pos);
1415        clear_memalloc(memalloc);
1416        put_pages(ns);
1417        return tx;
1418}
1419
1420/*
1421 * Returns a pointer to the current page.
1422 */
1423static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1424{
1425        return &(ns->pages[ns->regs.row]);
1426}
1427
1428/*
1429 * Retuns a pointer to the current byte, within the current page.
1430 */
1431static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1432{
1433        return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1434}
1435
1436static int do_read_error(struct nandsim *ns, int num)
1437{
1438        unsigned int page_no = ns->regs.row;
1439
1440        if (read_error(page_no)) {
1441                prandom_bytes(ns->buf.byte, num);
1442                NS_WARN("simulating read error in page %u\n", page_no);
1443                return 1;
1444        }
1445        return 0;
1446}
1447
1448static void do_bit_flips(struct nandsim *ns, int num)
1449{
1450        if (bitflips && prandom_u32() < (1 << 22)) {
1451                int flips = 1;
1452                if (bitflips > 1)
1453                        flips = (prandom_u32() % (int) bitflips) + 1;
1454                while (flips--) {
1455                        int pos = prandom_u32() % (num * 8);
1456                        ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1457                        NS_WARN("read_page: flipping bit %d in page %d "
1458                                "reading from %d ecc: corrected=%u failed=%u\n",
1459                                pos, ns->regs.row, ns->regs.column + ns->regs.off,
1460                                nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1461                }
1462        }
1463}
1464
1465/*
1466 * Fill the NAND buffer with data read from the specified page.
1467 */
1468static void read_page(struct nandsim *ns, int num)
1469{
1470        union ns_mem *mypage;
1471
1472        if (ns->cfile) {
1473                if (!test_bit(ns->regs.row, ns->pages_written)) {
1474                        NS_DBG("read_page: page %d not written\n", ns->regs.row);
1475                        memset(ns->buf.byte, 0xFF, num);
1476                } else {
1477                        loff_t pos;
1478                        ssize_t tx;
1479
1480                        NS_DBG("read_page: page %d written, reading from %d\n",
1481                                ns->regs.row, ns->regs.column + ns->regs.off);
1482                        if (do_read_error(ns, num))
1483                                return;
1484                        pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1485                        tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1486                        if (tx != num) {
1487                                NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1488                                return;
1489                        }
1490                        do_bit_flips(ns, num);
1491                }
1492                return;
1493        }
1494
1495        mypage = NS_GET_PAGE(ns);
1496        if (mypage->byte == NULL) {
1497                NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1498                memset(ns->buf.byte, 0xFF, num);
1499        } else {
1500                NS_DBG("read_page: page %d allocated, reading from %d\n",
1501                        ns->regs.row, ns->regs.column + ns->regs.off);
1502                if (do_read_error(ns, num))
1503                        return;
1504                memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1505                do_bit_flips(ns, num);
1506        }
1507}
1508
1509/*
1510 * Erase all pages in the specified sector.
1511 */
1512static void erase_sector(struct nandsim *ns)
1513{
1514        union ns_mem *mypage;
1515        int i;
1516
1517        if (ns->cfile) {
1518                for (i = 0; i < ns->geom.pgsec; i++)
1519                        if (__test_and_clear_bit(ns->regs.row + i,
1520                                                 ns->pages_written)) {
1521                                NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1522                        }
1523                return;
1524        }
1525
1526        mypage = NS_GET_PAGE(ns);
1527        for (i = 0; i < ns->geom.pgsec; i++) {
1528                if (mypage->byte != NULL) {
1529                        NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1530                        kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1531                        mypage->byte = NULL;
1532                }
1533                mypage++;
1534        }
1535}
1536
1537/*
1538 * Program the specified page with the contents from the NAND buffer.
1539 */
1540static int prog_page(struct nandsim *ns, int num)
1541{
1542        int i;
1543        union ns_mem *mypage;
1544        u_char *pg_off;
1545
1546        if (ns->cfile) {
1547                loff_t off;
1548                ssize_t tx;
1549                int all;
1550
1551                NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1552                pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1553                off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1554                if (!test_bit(ns->regs.row, ns->pages_written)) {
1555                        all = 1;
1556                        memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1557                } else {
1558                        all = 0;
1559                        tx = read_file(ns, ns->cfile, pg_off, num, off);
1560                        if (tx != num) {
1561                                NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1562                                return -1;
1563                        }
1564                }
1565                for (i = 0; i < num; i++)
1566                        pg_off[i] &= ns->buf.byte[i];
1567                if (all) {
1568                        loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1569                        tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1570                        if (tx != ns->geom.pgszoob) {
1571                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1572                                return -1;
1573                        }
1574                        __set_bit(ns->regs.row, ns->pages_written);
1575                } else {
1576                        tx = write_file(ns, ns->cfile, pg_off, num, off);
1577                        if (tx != num) {
1578                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1579                                return -1;
1580                        }
1581                }
1582                return 0;
1583        }
1584
1585        mypage = NS_GET_PAGE(ns);
1586        if (mypage->byte == NULL) {
1587                NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1588                /*
1589                 * We allocate memory with GFP_NOFS because a flash FS may
1590                 * utilize this. If it is holding an FS lock, then gets here,
1591                 * then kernel memory alloc runs writeback which goes to the FS
1592                 * again and deadlocks. This was seen in practice.
1593                 */
1594                mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1595                if (mypage->byte == NULL) {
1596                        NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1597                        return -1;
1598                }
1599                memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1600        }
1601
1602        pg_off = NS_PAGE_BYTE_OFF(ns);
1603        for (i = 0; i < num; i++)
1604                pg_off[i] &= ns->buf.byte[i];
1605
1606        return 0;
1607}
1608
1609/*
1610 * If state has any action bit, perform this action.
1611 *
1612 * RETURNS: 0 if success, -1 if error.
1613 */
1614static int do_state_action(struct nandsim *ns, uint32_t action)
1615{
1616        int num;
1617        int busdiv = ns->busw == 8 ? 1 : 2;
1618        unsigned int erase_block_no, page_no;
1619
1620        action &= ACTION_MASK;
1621
1622        /* Check that page address input is correct */
1623        if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1624                NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1625                return -1;
1626        }
1627
1628        switch (action) {
1629
1630        case ACTION_CPY:
1631                /*
1632                 * Copy page data to the internal buffer.
1633                 */
1634
1635                /* Column shouldn't be very large */
1636                if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1637                        NS_ERR("do_state_action: column number is too large\n");
1638                        break;
1639                }
1640                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1641                read_page(ns, num);
1642
1643                NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1644                        num, NS_RAW_OFFSET(ns) + ns->regs.off);
1645
1646                if (ns->regs.off == 0)
1647                        NS_LOG("read page %d\n", ns->regs.row);
1648                else if (ns->regs.off < ns->geom.pgsz)
1649                        NS_LOG("read page %d (second half)\n", ns->regs.row);
1650                else
1651                        NS_LOG("read OOB of page %d\n", ns->regs.row);
1652
1653                NS_UDELAY(access_delay);
1654                NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1655
1656                break;
1657
1658        case ACTION_SECERASE:
1659                /*
1660                 * Erase sector.
1661                 */
1662
1663                if (ns->lines.wp) {
1664                        NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1665                        return -1;
1666                }
1667
1668                if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1669                        || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1670                        NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1671                        return -1;
1672                }
1673
1674                ns->regs.row = (ns->regs.row <<
1675                                8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1676                ns->regs.column = 0;
1677
1678                erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1679
1680                NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1681                                ns->regs.row, NS_RAW_OFFSET(ns));
1682                NS_LOG("erase sector %u\n", erase_block_no);
1683
1684                erase_sector(ns);
1685
1686                NS_MDELAY(erase_delay);
1687
1688                if (erase_block_wear)
1689                        update_wear(erase_block_no);
1690
1691                if (erase_error(erase_block_no)) {
1692                        NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1693                        return -1;
1694                }
1695
1696                break;
1697
1698        case ACTION_PRGPAGE:
1699                /*
1700                 * Program page - move internal buffer data to the page.
1701                 */
1702
1703                if (ns->lines.wp) {
1704                        NS_WARN("do_state_action: device is write-protected, programm\n");
1705                        return -1;
1706                }
1707
1708                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1709                if (num != ns->regs.count) {
1710                        NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1711                                        ns->regs.count, num);
1712                        return -1;
1713                }
1714
1715                if (prog_page(ns, num) == -1)
1716                        return -1;
1717
1718                page_no = ns->regs.row;
1719
1720                NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1721                        num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1722                NS_LOG("programm page %d\n", ns->regs.row);
1723
1724                NS_UDELAY(programm_delay);
1725                NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1726
1727                if (write_error(page_no)) {
1728                        NS_WARN("simulating write failure in page %u\n", page_no);
1729                        return -1;
1730                }
1731
1732                break;
1733
1734        case ACTION_ZEROOFF:
1735                NS_DBG("do_state_action: set internal offset to 0\n");
1736                ns->regs.off = 0;
1737                break;
1738
1739        case ACTION_HALFOFF:
1740                if (!(ns->options & OPT_PAGE512_8BIT)) {
1741                        NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1742                                "byte page size 8x chips\n");
1743                        return -1;
1744                }
1745                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1746                ns->regs.off = ns->geom.pgsz/2;
1747                break;
1748
1749        case ACTION_OOBOFF:
1750                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1751                ns->regs.off = ns->geom.pgsz;
1752                break;
1753
1754        default:
1755                NS_DBG("do_state_action: BUG! unknown action\n");
1756        }
1757
1758        return 0;
1759}
1760
1761/*
1762 * Switch simulator's state.
1763 */
1764static void switch_state(struct nandsim *ns)
1765{
1766        if (ns->op) {
1767                /*
1768                 * The current operation have already been identified.
1769                 * Just follow the states chain.
1770                 */
1771
1772                ns->stateidx += 1;
1773                ns->state = ns->nxstate;
1774                ns->nxstate = ns->op[ns->stateidx + 1];
1775
1776                NS_DBG("switch_state: operation is known, switch to the next state, "
1777                        "state: %s, nxstate: %s\n",
1778                        get_state_name(ns->state), get_state_name(ns->nxstate));
1779
1780                /* See, whether we need to do some action */
1781                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1782                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1783                        return;
1784                }
1785
1786        } else {
1787                /*
1788                 * We don't yet know which operation we perform.
1789                 * Try to identify it.
1790                 */
1791
1792                /*
1793                 *  The only event causing the switch_state function to
1794                 *  be called with yet unknown operation is new command.
1795                 */
1796                ns->state = get_state_by_command(ns->regs.command);
1797
1798                NS_DBG("switch_state: operation is unknown, try to find it\n");
1799
1800                if (find_operation(ns, 0) != 0)
1801                        return;
1802
1803                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1804                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1805                        return;
1806                }
1807        }
1808
1809        /* For 16x devices column means the page offset in words */
1810        if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1811                NS_DBG("switch_state: double the column number for 16x device\n");
1812                ns->regs.column <<= 1;
1813        }
1814
1815        if (NS_STATE(ns->nxstate) == STATE_READY) {
1816                /*
1817                 * The current state is the last. Return to STATE_READY
1818                 */
1819
1820                u_char status = NS_STATUS_OK(ns);
1821
1822                /* In case of data states, see if all bytes were input/output */
1823                if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1824                        && ns->regs.count != ns->regs.num) {
1825                        NS_WARN("switch_state: not all bytes were processed, %d left\n",
1826                                        ns->regs.num - ns->regs.count);
1827                        status = NS_STATUS_FAILED(ns);
1828                }
1829
1830                NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1831
1832                switch_to_ready_state(ns, status);
1833
1834                return;
1835        } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1836                /*
1837                 * If the next state is data input/output, switch to it now
1838                 */
1839
1840                ns->state      = ns->nxstate;
1841                ns->nxstate    = ns->op[++ns->stateidx + 1];
1842                ns->regs.num   = ns->regs.count = 0;
1843
1844                NS_DBG("switch_state: the next state is data I/O, switch, "
1845                        "state: %s, nxstate: %s\n",
1846                        get_state_name(ns->state), get_state_name(ns->nxstate));
1847
1848                /*
1849                 * Set the internal register to the count of bytes which
1850                 * are expected to be input or output
1851                 */
1852                switch (NS_STATE(ns->state)) {
1853                        case STATE_DATAIN:
1854                        case STATE_DATAOUT:
1855                                ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1856                                break;
1857
1858                        case STATE_DATAOUT_ID:
1859                                ns->regs.num = ns->geom.idbytes;
1860                                break;
1861
1862                        case STATE_DATAOUT_STATUS:
1863                        case STATE_DATAOUT_STATUS_M:
1864                                ns->regs.count = ns->regs.num = 0;
1865                                break;
1866
1867                        default:
1868                                NS_ERR("switch_state: BUG! unknown data state\n");
1869                }
1870
1871        } else if (ns->nxstate & STATE_ADDR_MASK) {
1872                /*
1873                 * If the next state is address input, set the internal
1874                 * register to the number of expected address bytes
1875                 */
1876
1877                ns->regs.count = 0;
1878
1879                switch (NS_STATE(ns->nxstate)) {
1880                        case STATE_ADDR_PAGE:
1881                                ns->regs.num = ns->geom.pgaddrbytes;
1882
1883                                break;
1884                        case STATE_ADDR_SEC:
1885                                ns->regs.num = ns->geom.secaddrbytes;
1886                                break;
1887
1888                        case STATE_ADDR_ZERO:
1889                                ns->regs.num = 1;
1890                                break;
1891
1892                        case STATE_ADDR_COLUMN:
1893                                /* Column address is always 2 bytes */
1894                                ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1895                                break;
1896
1897                        default:
1898                                NS_ERR("switch_state: BUG! unknown address state\n");
1899                }
1900        } else {
1901                /*
1902                 * Just reset internal counters.
1903                 */
1904
1905                ns->regs.num = 0;
1906                ns->regs.count = 0;
1907        }
1908}
1909
1910static u_char ns_nand_read_byte(struct mtd_info *mtd)
1911{
1912        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1913        u_char outb = 0x00;
1914
1915        /* Sanity and correctness checks */
1916        if (!ns->lines.ce) {
1917                NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1918                return outb;
1919        }
1920        if (ns->lines.ale || ns->lines.cle) {
1921                NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1922                return outb;
1923        }
1924        if (!(ns->state & STATE_DATAOUT_MASK)) {
1925                NS_WARN("read_byte: unexpected data output cycle, state is %s "
1926                        "return %#x\n", get_state_name(ns->state), (uint)outb);
1927                return outb;
1928        }
1929
1930        /* Status register may be read as many times as it is wanted */
1931        if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1932                NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1933                return ns->regs.status;
1934        }
1935
1936        /* Check if there is any data in the internal buffer which may be read */
1937        if (ns->regs.count == ns->regs.num) {
1938                NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1939                return outb;
1940        }
1941
1942        switch (NS_STATE(ns->state)) {
1943                case STATE_DATAOUT:
1944                        if (ns->busw == 8) {
1945                                outb = ns->buf.byte[ns->regs.count];
1946                                ns->regs.count += 1;
1947                        } else {
1948                                outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1949                                ns->regs.count += 2;
1950                        }
1951                        break;
1952                case STATE_DATAOUT_ID:
1953                        NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1954                        outb = ns->ids[ns->regs.count];
1955                        ns->regs.count += 1;
1956                        break;
1957                default:
1958                        BUG();
1959        }
1960
1961        if (ns->regs.count == ns->regs.num) {
1962                NS_DBG("read_byte: all bytes were read\n");
1963
1964                if (NS_STATE(ns->nxstate) == STATE_READY)
1965                        switch_state(ns);
1966        }
1967
1968        return outb;
1969}
1970
1971static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1972{
1973        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1974
1975        /* Sanity and correctness checks */
1976        if (!ns->lines.ce) {
1977                NS_ERR("write_byte: chip is disabled, ignore write\n");
1978                return;
1979        }
1980        if (ns->lines.ale && ns->lines.cle) {
1981                NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1982                return;
1983        }
1984
1985        if (ns->lines.cle == 1) {
1986                /*
1987                 * The byte written is a command.
1988                 */
1989
1990                if (byte == NAND_CMD_RESET) {
1991                        NS_LOG("reset chip\n");
1992                        switch_to_ready_state(ns, NS_STATUS_OK(ns));
1993                        return;
1994                }
1995
1996                /* Check that the command byte is correct */
1997                if (check_command(byte)) {
1998                        NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1999                        return;
2000                }
2001
2002                if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2003                        || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
2004                        || NS_STATE(ns->state) == STATE_DATAOUT) {
2005                        int row = ns->regs.row;
2006
2007                        switch_state(ns);
2008                        if (byte == NAND_CMD_RNDOUT)
2009                                ns->regs.row = row;
2010                }
2011
2012                /* Check if chip is expecting command */
2013                if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2014                        /* Do not warn if only 2 id bytes are read */
2015                        if (!(ns->regs.command == NAND_CMD_READID &&
2016                            NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2017                                /*
2018                                 * We are in situation when something else (not command)
2019                                 * was expected but command was input. In this case ignore
2020                                 * previous command(s)/state(s) and accept the last one.
2021                                 */
2022                                NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2023                                        "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2024                        }
2025                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2026                }
2027
2028                NS_DBG("command byte corresponding to %s state accepted\n",
2029                        get_state_name(get_state_by_command(byte)));
2030                ns->regs.command = byte;
2031                switch_state(ns);
2032
2033        } else if (ns->lines.ale == 1) {
2034                /*
2035                 * The byte written is an address.
2036                 */
2037
2038                if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2039
2040                        NS_DBG("write_byte: operation isn't known yet, identify it\n");
2041
2042                        if (find_operation(ns, 1) < 0)
2043                                return;
2044
2045                        if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2046                                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2047                                return;
2048                        }
2049
2050                        ns->regs.count = 0;
2051                        switch (NS_STATE(ns->nxstate)) {
2052                                case STATE_ADDR_PAGE:
2053                                        ns->regs.num = ns->geom.pgaddrbytes;
2054                                        break;
2055                                case STATE_ADDR_SEC:
2056                                        ns->regs.num = ns->geom.secaddrbytes;
2057                                        break;
2058                                case STATE_ADDR_ZERO:
2059                                        ns->regs.num = 1;
2060                                        break;
2061                                default:
2062                                        BUG();
2063                        }
2064                }
2065
2066                /* Check that chip is expecting address */
2067                if (!(ns->nxstate & STATE_ADDR_MASK)) {
2068                        NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2069                                "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2070                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2071                        return;
2072                }
2073
2074                /* Check if this is expected byte */
2075                if (ns->regs.count == ns->regs.num) {
2076                        NS_ERR("write_byte: no more address bytes expected\n");
2077                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2078                        return;
2079                }
2080
2081                accept_addr_byte(ns, byte);
2082
2083                ns->regs.count += 1;
2084
2085                NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2086                                (uint)byte, ns->regs.count, ns->regs.num);
2087
2088                if (ns->regs.count == ns->regs.num) {
2089                        NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2090                        switch_state(ns);
2091                }
2092
2093        } else {
2094                /*
2095                 * The byte written is an input data.
2096                 */
2097
2098                /* Check that chip is expecting data input */
2099                if (!(ns->state & STATE_DATAIN_MASK)) {
2100                        NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2101                                "switch to %s\n", (uint)byte,
2102                                get_state_name(ns->state), get_state_name(STATE_READY));
2103                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2104                        return;
2105                }
2106
2107                /* Check if this is expected byte */
2108                if (ns->regs.count == ns->regs.num) {
2109                        NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2110                                        ns->regs.num);
2111                        return;
2112                }
2113
2114                if (ns->busw == 8) {
2115                        ns->buf.byte[ns->regs.count] = byte;
2116                        ns->regs.count += 1;
2117                } else {
2118                        ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2119                        ns->regs.count += 2;
2120                }
2121        }
2122
2123        return;
2124}
2125
2126static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2127{
2128        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2129
2130        ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2131        ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2132        ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2133
2134        if (cmd != NAND_CMD_NONE)
2135                ns_nand_write_byte(mtd, cmd);
2136}
2137
2138static int ns_device_ready(struct mtd_info *mtd)
2139{
2140        NS_DBG("device_ready\n");
2141        return 1;
2142}
2143
2144static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2145{
2146        struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2147
2148        NS_DBG("read_word\n");
2149
2150        return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2151}
2152
2153static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2154{
2155        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2156
2157        /* Check that chip is expecting data input */
2158        if (!(ns->state & STATE_DATAIN_MASK)) {
2159                NS_ERR("write_buf: data input isn't expected, state is %s, "
2160                        "switch to STATE_READY\n", get_state_name(ns->state));
2161                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2162                return;
2163        }
2164
2165        /* Check if these are expected bytes */
2166        if (ns->regs.count + len > ns->regs.num) {
2167                NS_ERR("write_buf: too many input bytes\n");
2168                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2169                return;
2170        }
2171
2172        memcpy(ns->buf.byte + ns->regs.count, buf, len);
2173        ns->regs.count += len;
2174
2175        if (ns->regs.count == ns->regs.num) {
2176                NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2177        }
2178}
2179
2180static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2181{
2182        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2183
2184        /* Sanity and correctness checks */
2185        if (!ns->lines.ce) {
2186                NS_ERR("read_buf: chip is disabled\n");
2187                return;
2188        }
2189        if (ns->lines.ale || ns->lines.cle) {
2190                NS_ERR("read_buf: ALE or CLE pin is high\n");
2191                return;
2192        }
2193        if (!(ns->state & STATE_DATAOUT_MASK)) {
2194                NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2195                        get_state_name(ns->state));
2196                return;
2197        }
2198
2199        if (NS_STATE(ns->state) != STATE_DATAOUT) {
2200                int i;
2201
2202                for (i = 0; i < len; i++)
2203                        buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2204
2205                return;
2206        }
2207
2208        /* Check if these are expected bytes */
2209        if (ns->regs.count + len > ns->regs.num) {
2210                NS_ERR("read_buf: too many bytes to read\n");
2211                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2212                return;
2213        }
2214
2215        memcpy(buf, ns->buf.byte + ns->regs.count, len);
2216        ns->regs.count += len;
2217
2218        if (ns->regs.count == ns->regs.num) {
2219                if (NS_STATE(ns->nxstate) == STATE_READY)
2220                        switch_state(ns);
2221        }
2222
2223        return;
2224}
2225
2226/*
2227 * Module initialization function
2228 */
2229static int __init ns_init_module(void)
2230{
2231        struct nand_chip *chip;
2232        struct nandsim *nand;
2233        int retval = -ENOMEM, i;
2234
2235        if (bus_width != 8 && bus_width != 16) {
2236                NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2237                return -EINVAL;
2238        }
2239
2240        /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2241        nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2242                                + sizeof(struct nandsim), GFP_KERNEL);
2243        if (!nsmtd) {
2244                NS_ERR("unable to allocate core structures.\n");
2245                return -ENOMEM;
2246        }
2247        chip        = (struct nand_chip *)(nsmtd + 1);
2248        nsmtd->priv = (void *)chip;
2249        nand        = (struct nandsim *)(chip + 1);
2250        chip->priv  = (void *)nand;
2251
2252        /*
2253         * Register simulator's callbacks.
2254         */
2255        chip->cmd_ctrl   = ns_hwcontrol;
2256        chip->read_byte  = ns_nand_read_byte;
2257        chip->dev_ready  = ns_device_ready;
2258        chip->write_buf  = ns_nand_write_buf;
2259        chip->read_buf   = ns_nand_read_buf;
2260        chip->read_word  = ns_nand_read_word;
2261        chip->ecc.mode   = NAND_ECC_SOFT;
2262        /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2263        /* and 'badblocks' parameters to work */
2264        chip->options   |= NAND_SKIP_BBTSCAN;
2265
2266        switch (bbt) {
2267        case 2:
2268                 chip->bbt_options |= NAND_BBT_NO_OOB;
2269        case 1:
2270                 chip->bbt_options |= NAND_BBT_USE_FLASH;
2271        case 0:
2272                break;
2273        default:
2274                NS_ERR("bbt has to be 0..2\n");
2275                retval = -EINVAL;
2276                goto error;
2277        }
2278        /*
2279         * Perform minimum nandsim structure initialization to handle
2280         * the initial ID read command correctly
2281         */
2282        if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2283                nand->geom.idbytes = 4;
2284        else
2285                nand->geom.idbytes = 2;
2286        nand->regs.status = NS_STATUS_OK(nand);
2287        nand->nxstate = STATE_UNKNOWN;
2288        nand->options |= OPT_PAGE512; /* temporary value */
2289        nand->ids[0] = first_id_byte;
2290        nand->ids[1] = second_id_byte;
2291        nand->ids[2] = third_id_byte;
2292        nand->ids[3] = fourth_id_byte;
2293        if (bus_width == 16) {
2294                nand->busw = 16;
2295                chip->options |= NAND_BUSWIDTH_16;
2296        }
2297
2298        nsmtd->owner = THIS_MODULE;
2299
2300        if ((retval = parse_weakblocks()) != 0)
2301                goto error;
2302
2303        if ((retval = parse_weakpages()) != 0)
2304                goto error;
2305
2306        if ((retval = parse_gravepages()) != 0)
2307                goto error;
2308
2309        retval = nand_scan_ident(nsmtd, 1, NULL);
2310        if (retval) {
2311                NS_ERR("cannot scan NAND Simulator device\n");
2312                if (retval > 0)
2313                        retval = -ENXIO;
2314                goto error;
2315        }
2316
2317        if (bch) {
2318                unsigned int eccsteps, eccbytes;
2319                if (!mtd_nand_has_bch()) {
2320                        NS_ERR("BCH ECC support is disabled\n");
2321                        retval = -EINVAL;
2322                        goto error;
2323                }
2324                /* use 512-byte ecc blocks */
2325                eccsteps = nsmtd->writesize/512;
2326                eccbytes = (bch*13+7)/8;
2327                /* do not bother supporting small page devices */
2328                if ((nsmtd->oobsize < 64) || !eccsteps) {
2329                        NS_ERR("bch not available on small page devices\n");
2330                        retval = -EINVAL;
2331                        goto error;
2332                }
2333                if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2334                        NS_ERR("invalid bch value %u\n", bch);
2335                        retval = -EINVAL;
2336                        goto error;
2337                }
2338                chip->ecc.mode = NAND_ECC_SOFT_BCH;
2339                chip->ecc.size = 512;
2340                chip->ecc.bytes = eccbytes;
2341                NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2342        }
2343
2344        retval = nand_scan_tail(nsmtd);
2345        if (retval) {
2346                NS_ERR("can't register NAND Simulator\n");
2347                if (retval > 0)
2348                        retval = -ENXIO;
2349                goto error;
2350        }
2351
2352        if (overridesize) {
2353                uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2354                if (new_size >> overridesize != nsmtd->erasesize) {
2355                        NS_ERR("overridesize is too big\n");
2356                        retval = -EINVAL;
2357                        goto err_exit;
2358                }
2359                /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2360                nsmtd->size = new_size;
2361                chip->chipsize = new_size;
2362                chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2363                chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2364        }
2365
2366        if ((retval = setup_wear_reporting(nsmtd)) != 0)
2367                goto err_exit;
2368
2369        if ((retval = nandsim_debugfs_create(nand)) != 0)
2370                goto err_exit;
2371
2372        if ((retval = init_nandsim(nsmtd)) != 0)
2373                goto err_exit;
2374
2375        if ((retval = chip->scan_bbt(nsmtd)) != 0)
2376                goto err_exit;
2377
2378        if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2379                goto err_exit;
2380
2381        /* Register NAND partitions */
2382        retval = mtd_device_register(nsmtd, &nand->partitions[0],
2383                                     nand->nbparts);
2384        if (retval != 0)
2385                goto err_exit;
2386
2387        return 0;
2388
2389err_exit:
2390        free_nandsim(nand);
2391        nand_release(nsmtd);
2392        for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2393                kfree(nand->partitions[i].name);
2394error:
2395        kfree(nsmtd);
2396        free_lists();
2397
2398        return retval;
2399}
2400
2401module_init(ns_init_module);
2402
2403/*
2404 * Module clean-up function
2405 */
2406static void __exit ns_cleanup_module(void)
2407{
2408        struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2409        int i;
2410
2411        nandsim_debugfs_remove(ns);
2412        free_nandsim(ns);    /* Free nandsim private resources */
2413        nand_release(nsmtd); /* Unregister driver */
2414        for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2415                kfree(ns->partitions[i].name);
2416        kfree(nsmtd);        /* Free other structures */
2417        free_lists();
2418}
2419
2420module_exit(ns_cleanup_module);
2421
2422MODULE_LICENSE ("GPL");
2423MODULE_AUTHOR ("Artem B. Bityuckiy");
2424MODULE_DESCRIPTION ("The NAND flash simulator");
2425