linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/sched.h>
  32#include <linux/netdevice.h>
  33
  34#include "ixgbe.h"
  35#include "ixgbe_common.h"
  36#include "ixgbe_phy.h"
  37
  38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  44                                        u16 count);
  45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  49
  50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  53                                             u16 words, u16 *data);
  54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55                                             u16 words, u16 *data);
  56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  57                                                 u16 offset);
  58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  59
  60/**
  61 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  62 *  control
  63 *  @hw: pointer to hardware structure
  64 *
  65 *  There are several phys that do not support autoneg flow control. This
  66 *  function check the device id to see if the associated phy supports
  67 *  autoneg flow control.
  68 **/
  69bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  70{
  71        bool supported = false;
  72        ixgbe_link_speed speed;
  73        bool link_up;
  74
  75        switch (hw->phy.media_type) {
  76        case ixgbe_media_type_fiber:
  77                hw->mac.ops.check_link(hw, &speed, &link_up, false);
  78                /* if link is down, assume supported */
  79                if (link_up)
  80                        supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  81                                true : false;
  82                else
  83                        supported = true;
  84                break;
  85        case ixgbe_media_type_backplane:
  86                supported = true;
  87                break;
  88        case ixgbe_media_type_copper:
  89                /* only some copper devices support flow control autoneg */
  90                switch (hw->device_id) {
  91                case IXGBE_DEV_ID_82599_T3_LOM:
  92                case IXGBE_DEV_ID_X540T:
  93                case IXGBE_DEV_ID_X540T1:
  94                        supported = true;
  95                        break;
  96                default:
  97                        break;
  98                }
  99        default:
 100                break;
 101        }
 102
 103        return supported;
 104}
 105
 106/**
 107 *  ixgbe_setup_fc - Set up flow control
 108 *  @hw: pointer to hardware structure
 109 *
 110 *  Called at init time to set up flow control.
 111 **/
 112static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
 113{
 114        s32 ret_val = 0;
 115        u32 reg = 0, reg_bp = 0;
 116        u16 reg_cu = 0;
 117        bool locked = false;
 118
 119        /*
 120         * Validate the requested mode.  Strict IEEE mode does not allow
 121         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 122         */
 123        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 124                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 125                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 126                goto out;
 127        }
 128
 129        /*
 130         * 10gig parts do not have a word in the EEPROM to determine the
 131         * default flow control setting, so we explicitly set it to full.
 132         */
 133        if (hw->fc.requested_mode == ixgbe_fc_default)
 134                hw->fc.requested_mode = ixgbe_fc_full;
 135
 136        /*
 137         * Set up the 1G and 10G flow control advertisement registers so the
 138         * HW will be able to do fc autoneg once the cable is plugged in.  If
 139         * we link at 10G, the 1G advertisement is harmless and vice versa.
 140         */
 141        switch (hw->phy.media_type) {
 142        case ixgbe_media_type_backplane:
 143                /* some MAC's need RMW protection on AUTOC */
 144                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 145                if (ret_val)
 146                        goto out;
 147
 148                /* only backplane uses autoc so fall though */
 149        case ixgbe_media_type_fiber:
 150                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 151
 152                break;
 153        case ixgbe_media_type_copper:
 154                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 155                                        MDIO_MMD_AN, &reg_cu);
 156                break;
 157        default:
 158                break;
 159        }
 160
 161        /*
 162         * The possible values of fc.requested_mode are:
 163         * 0: Flow control is completely disabled
 164         * 1: Rx flow control is enabled (we can receive pause frames,
 165         *    but not send pause frames).
 166         * 2: Tx flow control is enabled (we can send pause frames but
 167         *    we do not support receiving pause frames).
 168         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 169         * other: Invalid.
 170         */
 171        switch (hw->fc.requested_mode) {
 172        case ixgbe_fc_none:
 173                /* Flow control completely disabled by software override. */
 174                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 175                if (hw->phy.media_type == ixgbe_media_type_backplane)
 176                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 177                                    IXGBE_AUTOC_ASM_PAUSE);
 178                else if (hw->phy.media_type == ixgbe_media_type_copper)
 179                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 180                break;
 181        case ixgbe_fc_tx_pause:
 182                /*
 183                 * Tx Flow control is enabled, and Rx Flow control is
 184                 * disabled by software override.
 185                 */
 186                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 187                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 188                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 189                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 190                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 191                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 192                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 193                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 194                }
 195                break;
 196        case ixgbe_fc_rx_pause:
 197                /*
 198                 * Rx Flow control is enabled and Tx Flow control is
 199                 * disabled by software override. Since there really
 200                 * isn't a way to advertise that we are capable of RX
 201                 * Pause ONLY, we will advertise that we support both
 202                 * symmetric and asymmetric Rx PAUSE, as such we fall
 203                 * through to the fc_full statement.  Later, we will
 204                 * disable the adapter's ability to send PAUSE frames.
 205                 */
 206        case ixgbe_fc_full:
 207                /* Flow control (both Rx and Tx) is enabled by SW override. */
 208                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 209                if (hw->phy.media_type == ixgbe_media_type_backplane)
 210                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 211                                  IXGBE_AUTOC_ASM_PAUSE;
 212                else if (hw->phy.media_type == ixgbe_media_type_copper)
 213                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 214                break;
 215        default:
 216                hw_dbg(hw, "Flow control param set incorrectly\n");
 217                ret_val = IXGBE_ERR_CONFIG;
 218                goto out;
 219                break;
 220        }
 221
 222        if (hw->mac.type != ixgbe_mac_X540) {
 223                /*
 224                 * Enable auto-negotiation between the MAC & PHY;
 225                 * the MAC will advertise clause 37 flow control.
 226                 */
 227                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 228                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 229
 230                /* Disable AN timeout */
 231                if (hw->fc.strict_ieee)
 232                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 233
 234                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 235                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 236        }
 237
 238        /*
 239         * AUTOC restart handles negotiation of 1G and 10G on backplane
 240         * and copper. There is no need to set the PCS1GCTL register.
 241         *
 242         */
 243        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 244                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
 245                 * LESM is on, likewise reset_pipeline requries the lock as
 246                 * it also writes AUTOC.
 247                 */
 248                ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 249                if (ret_val)
 250                        goto out;
 251
 252        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 253                   ixgbe_device_supports_autoneg_fc(hw)) {
 254                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 255                                      MDIO_MMD_AN, reg_cu);
 256        }
 257
 258        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 259out:
 260        return ret_val;
 261}
 262
 263/**
 264 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 265 *  @hw: pointer to hardware structure
 266 *
 267 *  Starts the hardware by filling the bus info structure and media type, clears
 268 *  all on chip counters, initializes receive address registers, multicast
 269 *  table, VLAN filter table, calls routine to set up link and flow control
 270 *  settings, and leaves transmit and receive units disabled and uninitialized
 271 **/
 272s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 273{
 274        s32 ret_val;
 275        u32 ctrl_ext;
 276
 277        /* Set the media type */
 278        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 279
 280        /* Identify the PHY */
 281        hw->phy.ops.identify(hw);
 282
 283        /* Clear the VLAN filter table */
 284        hw->mac.ops.clear_vfta(hw);
 285
 286        /* Clear statistics registers */
 287        hw->mac.ops.clear_hw_cntrs(hw);
 288
 289        /* Set No Snoop Disable */
 290        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 291        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 292        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 293        IXGBE_WRITE_FLUSH(hw);
 294
 295        /* Setup flow control */
 296        ret_val = ixgbe_setup_fc(hw);
 297        if (!ret_val)
 298                goto out;
 299
 300        /* Clear adapter stopped flag */
 301        hw->adapter_stopped = false;
 302
 303out:
 304        return ret_val;
 305}
 306
 307/**
 308 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 309 *  @hw: pointer to hw structure
 310 *
 311 * Performs the init sequence common to the second generation
 312 * of 10 GbE devices.
 313 * Devices in the second generation:
 314 *     82599
 315 *     X540
 316 **/
 317s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 318{
 319        u32 i;
 320        u32 regval;
 321
 322        /* Clear the rate limiters */
 323        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 324                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 325                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 326        }
 327        IXGBE_WRITE_FLUSH(hw);
 328
 329        /* Disable relaxed ordering */
 330        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 331                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 332                regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 333                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 334        }
 335
 336        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 337                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 338                regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 339                            IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 340                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 341        }
 342
 343        return 0;
 344}
 345
 346/**
 347 *  ixgbe_init_hw_generic - Generic hardware initialization
 348 *  @hw: pointer to hardware structure
 349 *
 350 *  Initialize the hardware by resetting the hardware, filling the bus info
 351 *  structure and media type, clears all on chip counters, initializes receive
 352 *  address registers, multicast table, VLAN filter table, calls routine to set
 353 *  up link and flow control settings, and leaves transmit and receive units
 354 *  disabled and uninitialized
 355 **/
 356s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 357{
 358        s32 status;
 359
 360        /* Reset the hardware */
 361        status = hw->mac.ops.reset_hw(hw);
 362
 363        if (status == 0) {
 364                /* Start the HW */
 365                status = hw->mac.ops.start_hw(hw);
 366        }
 367
 368        return status;
 369}
 370
 371/**
 372 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 373 *  @hw: pointer to hardware structure
 374 *
 375 *  Clears all hardware statistics counters by reading them from the hardware
 376 *  Statistics counters are clear on read.
 377 **/
 378s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 379{
 380        u16 i = 0;
 381
 382        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 383        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 384        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 385        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 386        for (i = 0; i < 8; i++)
 387                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 388
 389        IXGBE_READ_REG(hw, IXGBE_MLFC);
 390        IXGBE_READ_REG(hw, IXGBE_MRFC);
 391        IXGBE_READ_REG(hw, IXGBE_RLEC);
 392        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 393        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 394        if (hw->mac.type >= ixgbe_mac_82599EB) {
 395                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 396                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 397        } else {
 398                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 399                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 400        }
 401
 402        for (i = 0; i < 8; i++) {
 403                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 404                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 405                if (hw->mac.type >= ixgbe_mac_82599EB) {
 406                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 407                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 408                } else {
 409                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 410                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 411                }
 412        }
 413        if (hw->mac.type >= ixgbe_mac_82599EB)
 414                for (i = 0; i < 8; i++)
 415                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 416        IXGBE_READ_REG(hw, IXGBE_PRC64);
 417        IXGBE_READ_REG(hw, IXGBE_PRC127);
 418        IXGBE_READ_REG(hw, IXGBE_PRC255);
 419        IXGBE_READ_REG(hw, IXGBE_PRC511);
 420        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 421        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 422        IXGBE_READ_REG(hw, IXGBE_GPRC);
 423        IXGBE_READ_REG(hw, IXGBE_BPRC);
 424        IXGBE_READ_REG(hw, IXGBE_MPRC);
 425        IXGBE_READ_REG(hw, IXGBE_GPTC);
 426        IXGBE_READ_REG(hw, IXGBE_GORCL);
 427        IXGBE_READ_REG(hw, IXGBE_GORCH);
 428        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 429        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 430        if (hw->mac.type == ixgbe_mac_82598EB)
 431                for (i = 0; i < 8; i++)
 432                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 433        IXGBE_READ_REG(hw, IXGBE_RUC);
 434        IXGBE_READ_REG(hw, IXGBE_RFC);
 435        IXGBE_READ_REG(hw, IXGBE_ROC);
 436        IXGBE_READ_REG(hw, IXGBE_RJC);
 437        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 438        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 439        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 440        IXGBE_READ_REG(hw, IXGBE_TORL);
 441        IXGBE_READ_REG(hw, IXGBE_TORH);
 442        IXGBE_READ_REG(hw, IXGBE_TPR);
 443        IXGBE_READ_REG(hw, IXGBE_TPT);
 444        IXGBE_READ_REG(hw, IXGBE_PTC64);
 445        IXGBE_READ_REG(hw, IXGBE_PTC127);
 446        IXGBE_READ_REG(hw, IXGBE_PTC255);
 447        IXGBE_READ_REG(hw, IXGBE_PTC511);
 448        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 449        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 450        IXGBE_READ_REG(hw, IXGBE_MPTC);
 451        IXGBE_READ_REG(hw, IXGBE_BPTC);
 452        for (i = 0; i < 16; i++) {
 453                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 454                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 455                if (hw->mac.type >= ixgbe_mac_82599EB) {
 456                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 457                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 458                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 459                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 460                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 461                } else {
 462                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 463                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 464                }
 465        }
 466
 467        if (hw->mac.type == ixgbe_mac_X540) {
 468                if (hw->phy.id == 0)
 469                        hw->phy.ops.identify(hw);
 470                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 471                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 472                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 473                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 474        }
 475
 476        return 0;
 477}
 478
 479/**
 480 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 481 *  @hw: pointer to hardware structure
 482 *  @pba_num: stores the part number string from the EEPROM
 483 *  @pba_num_size: part number string buffer length
 484 *
 485 *  Reads the part number string from the EEPROM.
 486 **/
 487s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 488                                  u32 pba_num_size)
 489{
 490        s32 ret_val;
 491        u16 data;
 492        u16 pba_ptr;
 493        u16 offset;
 494        u16 length;
 495
 496        if (pba_num == NULL) {
 497                hw_dbg(hw, "PBA string buffer was null\n");
 498                return IXGBE_ERR_INVALID_ARGUMENT;
 499        }
 500
 501        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 502        if (ret_val) {
 503                hw_dbg(hw, "NVM Read Error\n");
 504                return ret_val;
 505        }
 506
 507        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 508        if (ret_val) {
 509                hw_dbg(hw, "NVM Read Error\n");
 510                return ret_val;
 511        }
 512
 513        /*
 514         * if data is not ptr guard the PBA must be in legacy format which
 515         * means pba_ptr is actually our second data word for the PBA number
 516         * and we can decode it into an ascii string
 517         */
 518        if (data != IXGBE_PBANUM_PTR_GUARD) {
 519                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 520
 521                /* we will need 11 characters to store the PBA */
 522                if (pba_num_size < 11) {
 523                        hw_dbg(hw, "PBA string buffer too small\n");
 524                        return IXGBE_ERR_NO_SPACE;
 525                }
 526
 527                /* extract hex string from data and pba_ptr */
 528                pba_num[0] = (data >> 12) & 0xF;
 529                pba_num[1] = (data >> 8) & 0xF;
 530                pba_num[2] = (data >> 4) & 0xF;
 531                pba_num[3] = data & 0xF;
 532                pba_num[4] = (pba_ptr >> 12) & 0xF;
 533                pba_num[5] = (pba_ptr >> 8) & 0xF;
 534                pba_num[6] = '-';
 535                pba_num[7] = 0;
 536                pba_num[8] = (pba_ptr >> 4) & 0xF;
 537                pba_num[9] = pba_ptr & 0xF;
 538
 539                /* put a null character on the end of our string */
 540                pba_num[10] = '\0';
 541
 542                /* switch all the data but the '-' to hex char */
 543                for (offset = 0; offset < 10; offset++) {
 544                        if (pba_num[offset] < 0xA)
 545                                pba_num[offset] += '0';
 546                        else if (pba_num[offset] < 0x10)
 547                                pba_num[offset] += 'A' - 0xA;
 548                }
 549
 550                return 0;
 551        }
 552
 553        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 554        if (ret_val) {
 555                hw_dbg(hw, "NVM Read Error\n");
 556                return ret_val;
 557        }
 558
 559        if (length == 0xFFFF || length == 0) {
 560                hw_dbg(hw, "NVM PBA number section invalid length\n");
 561                return IXGBE_ERR_PBA_SECTION;
 562        }
 563
 564        /* check if pba_num buffer is big enough */
 565        if (pba_num_size  < (((u32)length * 2) - 1)) {
 566                hw_dbg(hw, "PBA string buffer too small\n");
 567                return IXGBE_ERR_NO_SPACE;
 568        }
 569
 570        /* trim pba length from start of string */
 571        pba_ptr++;
 572        length--;
 573
 574        for (offset = 0; offset < length; offset++) {
 575                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 576                if (ret_val) {
 577                        hw_dbg(hw, "NVM Read Error\n");
 578                        return ret_val;
 579                }
 580                pba_num[offset * 2] = (u8)(data >> 8);
 581                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 582        }
 583        pba_num[offset * 2] = '\0';
 584
 585        return 0;
 586}
 587
 588/**
 589 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 590 *  @hw: pointer to hardware structure
 591 *  @mac_addr: Adapter MAC address
 592 *
 593 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 594 *  A reset of the adapter must be performed prior to calling this function
 595 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 596 **/
 597s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 598{
 599        u32 rar_high;
 600        u32 rar_low;
 601        u16 i;
 602
 603        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 604        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 605
 606        for (i = 0; i < 4; i++)
 607                mac_addr[i] = (u8)(rar_low >> (i*8));
 608
 609        for (i = 0; i < 2; i++)
 610                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 611
 612        return 0;
 613}
 614
 615enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 616{
 617        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 618        case IXGBE_PCI_LINK_WIDTH_1:
 619                return ixgbe_bus_width_pcie_x1;
 620        case IXGBE_PCI_LINK_WIDTH_2:
 621                return ixgbe_bus_width_pcie_x2;
 622        case IXGBE_PCI_LINK_WIDTH_4:
 623                return ixgbe_bus_width_pcie_x4;
 624        case IXGBE_PCI_LINK_WIDTH_8:
 625                return ixgbe_bus_width_pcie_x8;
 626        default:
 627                return ixgbe_bus_width_unknown;
 628        }
 629}
 630
 631enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 632{
 633        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 634        case IXGBE_PCI_LINK_SPEED_2500:
 635                return ixgbe_bus_speed_2500;
 636        case IXGBE_PCI_LINK_SPEED_5000:
 637                return ixgbe_bus_speed_5000;
 638        case IXGBE_PCI_LINK_SPEED_8000:
 639                return ixgbe_bus_speed_8000;
 640        default:
 641                return ixgbe_bus_speed_unknown;
 642        }
 643}
 644
 645/**
 646 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 647 *  @hw: pointer to hardware structure
 648 *
 649 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 650 **/
 651s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 652{
 653        u16 link_status;
 654
 655        hw->bus.type = ixgbe_bus_type_pci_express;
 656
 657        /* Get the negotiated link width and speed from PCI config space */
 658        link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 659
 660        hw->bus.width = ixgbe_convert_bus_width(link_status);
 661        hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 662
 663        hw->mac.ops.set_lan_id(hw);
 664
 665        return 0;
 666}
 667
 668/**
 669 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 670 *  @hw: pointer to the HW structure
 671 *
 672 *  Determines the LAN function id by reading memory-mapped registers
 673 *  and swaps the port value if requested.
 674 **/
 675void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 676{
 677        struct ixgbe_bus_info *bus = &hw->bus;
 678        u32 reg;
 679
 680        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 681        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 682        bus->lan_id = bus->func;
 683
 684        /* check for a port swap */
 685        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 686        if (reg & IXGBE_FACTPS_LFS)
 687                bus->func ^= 0x1;
 688}
 689
 690/**
 691 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 692 *  @hw: pointer to hardware structure
 693 *
 694 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 695 *  disables transmit and receive units. The adapter_stopped flag is used by
 696 *  the shared code and drivers to determine if the adapter is in a stopped
 697 *  state and should not touch the hardware.
 698 **/
 699s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 700{
 701        u32 reg_val;
 702        u16 i;
 703
 704        /*
 705         * Set the adapter_stopped flag so other driver functions stop touching
 706         * the hardware
 707         */
 708        hw->adapter_stopped = true;
 709
 710        /* Disable the receive unit */
 711        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
 712
 713        /* Clear interrupt mask to stop interrupts from being generated */
 714        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 715
 716        /* Clear any pending interrupts, flush previous writes */
 717        IXGBE_READ_REG(hw, IXGBE_EICR);
 718
 719        /* Disable the transmit unit.  Each queue must be disabled. */
 720        for (i = 0; i < hw->mac.max_tx_queues; i++)
 721                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 722
 723        /* Disable the receive unit by stopping each queue */
 724        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 725                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 726                reg_val &= ~IXGBE_RXDCTL_ENABLE;
 727                reg_val |= IXGBE_RXDCTL_SWFLSH;
 728                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 729        }
 730
 731        /* flush all queues disables */
 732        IXGBE_WRITE_FLUSH(hw);
 733        usleep_range(1000, 2000);
 734
 735        /*
 736         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 737         * access and verify no pending requests
 738         */
 739        return ixgbe_disable_pcie_master(hw);
 740}
 741
 742/**
 743 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 744 *  @hw: pointer to hardware structure
 745 *  @index: led number to turn on
 746 **/
 747s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 748{
 749        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 750
 751        /* To turn on the LED, set mode to ON. */
 752        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 753        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 754        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 755        IXGBE_WRITE_FLUSH(hw);
 756
 757        return 0;
 758}
 759
 760/**
 761 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 762 *  @hw: pointer to hardware structure
 763 *  @index: led number to turn off
 764 **/
 765s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 766{
 767        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 768
 769        /* To turn off the LED, set mode to OFF. */
 770        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 771        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 772        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 773        IXGBE_WRITE_FLUSH(hw);
 774
 775        return 0;
 776}
 777
 778/**
 779 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 780 *  @hw: pointer to hardware structure
 781 *
 782 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 783 *  ixgbe_hw struct in order to set up EEPROM access.
 784 **/
 785s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 786{
 787        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 788        u32 eec;
 789        u16 eeprom_size;
 790
 791        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 792                eeprom->type = ixgbe_eeprom_none;
 793                /* Set default semaphore delay to 10ms which is a well
 794                 * tested value */
 795                eeprom->semaphore_delay = 10;
 796                /* Clear EEPROM page size, it will be initialized as needed */
 797                eeprom->word_page_size = 0;
 798
 799                /*
 800                 * Check for EEPROM present first.
 801                 * If not present leave as none
 802                 */
 803                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 804                if (eec & IXGBE_EEC_PRES) {
 805                        eeprom->type = ixgbe_eeprom_spi;
 806
 807                        /*
 808                         * SPI EEPROM is assumed here.  This code would need to
 809                         * change if a future EEPROM is not SPI.
 810                         */
 811                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 812                                            IXGBE_EEC_SIZE_SHIFT);
 813                        eeprom->word_size = 1 << (eeprom_size +
 814                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 815                }
 816
 817                if (eec & IXGBE_EEC_ADDR_SIZE)
 818                        eeprom->address_bits = 16;
 819                else
 820                        eeprom->address_bits = 8;
 821                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 822                       eeprom->type, eeprom->word_size, eeprom->address_bits);
 823        }
 824
 825        return 0;
 826}
 827
 828/**
 829 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 830 *  @hw: pointer to hardware structure
 831 *  @offset: offset within the EEPROM to write
 832 *  @words: number of words
 833 *  @data: 16 bit word(s) to write to EEPROM
 834 *
 835 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 836 **/
 837s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 838                                               u16 words, u16 *data)
 839{
 840        s32 status = 0;
 841        u16 i, count;
 842
 843        hw->eeprom.ops.init_params(hw);
 844
 845        if (words == 0) {
 846                status = IXGBE_ERR_INVALID_ARGUMENT;
 847                goto out;
 848        }
 849
 850        if (offset + words > hw->eeprom.word_size) {
 851                status = IXGBE_ERR_EEPROM;
 852                goto out;
 853        }
 854
 855        /*
 856         * The EEPROM page size cannot be queried from the chip. We do lazy
 857         * initialization. It is worth to do that when we write large buffer.
 858         */
 859        if ((hw->eeprom.word_page_size == 0) &&
 860            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 861                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 862
 863        /*
 864         * We cannot hold synchronization semaphores for too long
 865         * to avoid other entity starvation. However it is more efficient
 866         * to read in bursts than synchronizing access for each word.
 867         */
 868        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 869                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 870                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 871                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 872                                                            count, &data[i]);
 873
 874                if (status != 0)
 875                        break;
 876        }
 877
 878out:
 879        return status;
 880}
 881
 882/**
 883 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 884 *  @hw: pointer to hardware structure
 885 *  @offset: offset within the EEPROM to be written to
 886 *  @words: number of word(s)
 887 *  @data: 16 bit word(s) to be written to the EEPROM
 888 *
 889 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 890 *  EEPROM will most likely contain an invalid checksum.
 891 **/
 892static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 893                                              u16 words, u16 *data)
 894{
 895        s32 status;
 896        u16 word;
 897        u16 page_size;
 898        u16 i;
 899        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 900
 901        /* Prepare the EEPROM for writing  */
 902        status = ixgbe_acquire_eeprom(hw);
 903
 904        if (status == 0) {
 905                if (ixgbe_ready_eeprom(hw) != 0) {
 906                        ixgbe_release_eeprom(hw);
 907                        status = IXGBE_ERR_EEPROM;
 908                }
 909        }
 910
 911        if (status == 0) {
 912                for (i = 0; i < words; i++) {
 913                        ixgbe_standby_eeprom(hw);
 914
 915                        /*  Send the WRITE ENABLE command (8 bit opcode )  */
 916                        ixgbe_shift_out_eeprom_bits(hw,
 917                                                  IXGBE_EEPROM_WREN_OPCODE_SPI,
 918                                                  IXGBE_EEPROM_OPCODE_BITS);
 919
 920                        ixgbe_standby_eeprom(hw);
 921
 922                        /*
 923                         * Some SPI eeproms use the 8th address bit embedded
 924                         * in the opcode
 925                         */
 926                        if ((hw->eeprom.address_bits == 8) &&
 927                            ((offset + i) >= 128))
 928                                write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 929
 930                        /* Send the Write command (8-bit opcode + addr) */
 931                        ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 932                                                    IXGBE_EEPROM_OPCODE_BITS);
 933                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 934                                                    hw->eeprom.address_bits);
 935
 936                        page_size = hw->eeprom.word_page_size;
 937
 938                        /* Send the data in burst via SPI*/
 939                        do {
 940                                word = data[i];
 941                                word = (word >> 8) | (word << 8);
 942                                ixgbe_shift_out_eeprom_bits(hw, word, 16);
 943
 944                                if (page_size == 0)
 945                                        break;
 946
 947                                /* do not wrap around page */
 948                                if (((offset + i) & (page_size - 1)) ==
 949                                    (page_size - 1))
 950                                        break;
 951                        } while (++i < words);
 952
 953                        ixgbe_standby_eeprom(hw);
 954                        usleep_range(10000, 20000);
 955                }
 956                /* Done with writing - release the EEPROM */
 957                ixgbe_release_eeprom(hw);
 958        }
 959
 960        return status;
 961}
 962
 963/**
 964 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 965 *  @hw: pointer to hardware structure
 966 *  @offset: offset within the EEPROM to be written to
 967 *  @data: 16 bit word to be written to the EEPROM
 968 *
 969 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 970 *  EEPROM will most likely contain an invalid checksum.
 971 **/
 972s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 973{
 974        s32 status;
 975
 976        hw->eeprom.ops.init_params(hw);
 977
 978        if (offset >= hw->eeprom.word_size) {
 979                status = IXGBE_ERR_EEPROM;
 980                goto out;
 981        }
 982
 983        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 984
 985out:
 986        return status;
 987}
 988
 989/**
 990 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 991 *  @hw: pointer to hardware structure
 992 *  @offset: offset within the EEPROM to be read
 993 *  @words: number of word(s)
 994 *  @data: read 16 bit words(s) from EEPROM
 995 *
 996 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 997 **/
 998s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 999                                              u16 words, u16 *data)
1000{
1001        s32 status = 0;
1002        u16 i, count;
1003
1004        hw->eeprom.ops.init_params(hw);
1005
1006        if (words == 0) {
1007                status = IXGBE_ERR_INVALID_ARGUMENT;
1008                goto out;
1009        }
1010
1011        if (offset + words > hw->eeprom.word_size) {
1012                status = IXGBE_ERR_EEPROM;
1013                goto out;
1014        }
1015
1016        /*
1017         * We cannot hold synchronization semaphores for too long
1018         * to avoid other entity starvation. However it is more efficient
1019         * to read in bursts than synchronizing access for each word.
1020         */
1021        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1022                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1023                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1024
1025                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1026                                                           count, &data[i]);
1027
1028                if (status != 0)
1029                        break;
1030        }
1031
1032out:
1033        return status;
1034}
1035
1036/**
1037 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1038 *  @hw: pointer to hardware structure
1039 *  @offset: offset within the EEPROM to be read
1040 *  @words: number of word(s)
1041 *  @data: read 16 bit word(s) from EEPROM
1042 *
1043 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044 **/
1045static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1046                                             u16 words, u16 *data)
1047{
1048        s32 status;
1049        u16 word_in;
1050        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1051        u16 i;
1052
1053        /* Prepare the EEPROM for reading  */
1054        status = ixgbe_acquire_eeprom(hw);
1055
1056        if (status == 0) {
1057                if (ixgbe_ready_eeprom(hw) != 0) {
1058                        ixgbe_release_eeprom(hw);
1059                        status = IXGBE_ERR_EEPROM;
1060                }
1061        }
1062
1063        if (status == 0) {
1064                for (i = 0; i < words; i++) {
1065                        ixgbe_standby_eeprom(hw);
1066                        /*
1067                         * Some SPI eeproms use the 8th address bit embedded
1068                         * in the opcode
1069                         */
1070                        if ((hw->eeprom.address_bits == 8) &&
1071                            ((offset + i) >= 128))
1072                                read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1073
1074                        /* Send the READ command (opcode + addr) */
1075                        ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1076                                                    IXGBE_EEPROM_OPCODE_BITS);
1077                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1078                                                    hw->eeprom.address_bits);
1079
1080                        /* Read the data. */
1081                        word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1082                        data[i] = (word_in >> 8) | (word_in << 8);
1083                }
1084
1085                /* End this read operation */
1086                ixgbe_release_eeprom(hw);
1087        }
1088
1089        return status;
1090}
1091
1092/**
1093 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1094 *  @hw: pointer to hardware structure
1095 *  @offset: offset within the EEPROM to be read
1096 *  @data: read 16 bit value from EEPROM
1097 *
1098 *  Reads 16 bit value from EEPROM through bit-bang method
1099 **/
1100s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1101                                       u16 *data)
1102{
1103        s32 status;
1104
1105        hw->eeprom.ops.init_params(hw);
1106
1107        if (offset >= hw->eeprom.word_size) {
1108                status = IXGBE_ERR_EEPROM;
1109                goto out;
1110        }
1111
1112        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1113
1114out:
1115        return status;
1116}
1117
1118/**
1119 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1120 *  @hw: pointer to hardware structure
1121 *  @offset: offset of word in the EEPROM to read
1122 *  @words: number of word(s)
1123 *  @data: 16 bit word(s) from the EEPROM
1124 *
1125 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1126 **/
1127s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1128                                   u16 words, u16 *data)
1129{
1130        u32 eerd;
1131        s32 status = 0;
1132        u32 i;
1133
1134        hw->eeprom.ops.init_params(hw);
1135
1136        if (words == 0) {
1137                status = IXGBE_ERR_INVALID_ARGUMENT;
1138                goto out;
1139        }
1140
1141        if (offset >= hw->eeprom.word_size) {
1142                status = IXGBE_ERR_EEPROM;
1143                goto out;
1144        }
1145
1146        for (i = 0; i < words; i++) {
1147                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1148                       IXGBE_EEPROM_RW_REG_START;
1149
1150                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1151                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1152
1153                if (status == 0) {
1154                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1155                                   IXGBE_EEPROM_RW_REG_DATA);
1156                } else {
1157                        hw_dbg(hw, "Eeprom read timed out\n");
1158                        goto out;
1159                }
1160        }
1161out:
1162        return status;
1163}
1164
1165/**
1166 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1167 *  @hw: pointer to hardware structure
1168 *  @offset: offset within the EEPROM to be used as a scratch pad
1169 *
1170 *  Discover EEPROM page size by writing marching data at given offset.
1171 *  This function is called only when we are writing a new large buffer
1172 *  at given offset so the data would be overwritten anyway.
1173 **/
1174static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1175                                                 u16 offset)
1176{
1177        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1178        s32 status = 0;
1179        u16 i;
1180
1181        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1182                data[i] = i;
1183
1184        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1185        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1186                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1187        hw->eeprom.word_page_size = 0;
1188        if (status != 0)
1189                goto out;
1190
1191        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1192        if (status != 0)
1193                goto out;
1194
1195        /*
1196         * When writing in burst more than the actual page size
1197         * EEPROM address wraps around current page.
1198         */
1199        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1200
1201        hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1202               hw->eeprom.word_page_size);
1203out:
1204        return status;
1205}
1206
1207/**
1208 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1209 *  @hw: pointer to hardware structure
1210 *  @offset: offset of  word in the EEPROM to read
1211 *  @data: word read from the EEPROM
1212 *
1213 *  Reads a 16 bit word from the EEPROM using the EERD register.
1214 **/
1215s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1216{
1217        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1218}
1219
1220/**
1221 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1222 *  @hw: pointer to hardware structure
1223 *  @offset: offset of  word in the EEPROM to write
1224 *  @words: number of words
1225 *  @data: word(s) write to the EEPROM
1226 *
1227 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1228 **/
1229s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1230                                    u16 words, u16 *data)
1231{
1232        u32 eewr;
1233        s32 status = 0;
1234        u16 i;
1235
1236        hw->eeprom.ops.init_params(hw);
1237
1238        if (words == 0) {
1239                status = IXGBE_ERR_INVALID_ARGUMENT;
1240                goto out;
1241        }
1242
1243        if (offset >= hw->eeprom.word_size) {
1244                status = IXGBE_ERR_EEPROM;
1245                goto out;
1246        }
1247
1248        for (i = 0; i < words; i++) {
1249                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1250                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1251                       IXGBE_EEPROM_RW_REG_START;
1252
1253                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1254                if (status != 0) {
1255                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1256                        goto out;
1257                }
1258
1259                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1260
1261                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1262                if (status != 0) {
1263                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1264                        goto out;
1265                }
1266        }
1267
1268out:
1269        return status;
1270}
1271
1272/**
1273 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1274 *  @hw: pointer to hardware structure
1275 *  @offset: offset of  word in the EEPROM to write
1276 *  @data: word write to the EEPROM
1277 *
1278 *  Write a 16 bit word to the EEPROM using the EEWR register.
1279 **/
1280s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1281{
1282        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1283}
1284
1285/**
1286 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1287 *  @hw: pointer to hardware structure
1288 *  @ee_reg: EEPROM flag for polling
1289 *
1290 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1291 *  read or write is done respectively.
1292 **/
1293static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1294{
1295        u32 i;
1296        u32 reg;
1297        s32 status = IXGBE_ERR_EEPROM;
1298
1299        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1300                if (ee_reg == IXGBE_NVM_POLL_READ)
1301                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1302                else
1303                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1304
1305                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1306                        status = 0;
1307                        break;
1308                }
1309                udelay(5);
1310        }
1311        return status;
1312}
1313
1314/**
1315 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1316 *  @hw: pointer to hardware structure
1317 *
1318 *  Prepares EEPROM for access using bit-bang method. This function should
1319 *  be called before issuing a command to the EEPROM.
1320 **/
1321static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1322{
1323        s32 status = 0;
1324        u32 eec;
1325        u32 i;
1326
1327        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1328                status = IXGBE_ERR_SWFW_SYNC;
1329
1330        if (status == 0) {
1331                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1332
1333                /* Request EEPROM Access */
1334                eec |= IXGBE_EEC_REQ;
1335                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1336
1337                for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1338                        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1339                        if (eec & IXGBE_EEC_GNT)
1340                                break;
1341                        udelay(5);
1342                }
1343
1344                /* Release if grant not acquired */
1345                if (!(eec & IXGBE_EEC_GNT)) {
1346                        eec &= ~IXGBE_EEC_REQ;
1347                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1348                        hw_dbg(hw, "Could not acquire EEPROM grant\n");
1349
1350                        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1351                        status = IXGBE_ERR_EEPROM;
1352                }
1353
1354                /* Setup EEPROM for Read/Write */
1355                if (status == 0) {
1356                        /* Clear CS and SK */
1357                        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1358                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1359                        IXGBE_WRITE_FLUSH(hw);
1360                        udelay(1);
1361                }
1362        }
1363        return status;
1364}
1365
1366/**
1367 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1368 *  @hw: pointer to hardware structure
1369 *
1370 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1371 **/
1372static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1373{
1374        s32 status = IXGBE_ERR_EEPROM;
1375        u32 timeout = 2000;
1376        u32 i;
1377        u32 swsm;
1378
1379        /* Get SMBI software semaphore between device drivers first */
1380        for (i = 0; i < timeout; i++) {
1381                /*
1382                 * If the SMBI bit is 0 when we read it, then the bit will be
1383                 * set and we have the semaphore
1384                 */
1385                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1386                if (!(swsm & IXGBE_SWSM_SMBI)) {
1387                        status = 0;
1388                        break;
1389                }
1390                udelay(50);
1391        }
1392
1393        if (i == timeout) {
1394                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1395                /*
1396                 * this release is particularly important because our attempts
1397                 * above to get the semaphore may have succeeded, and if there
1398                 * was a timeout, we should unconditionally clear the semaphore
1399                 * bits to free the driver to make progress
1400                 */
1401                ixgbe_release_eeprom_semaphore(hw);
1402
1403                udelay(50);
1404                /*
1405                 * one last try
1406                 * If the SMBI bit is 0 when we read it, then the bit will be
1407                 * set and we have the semaphore
1408                 */
1409                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1410                if (!(swsm & IXGBE_SWSM_SMBI))
1411                        status = 0;
1412        }
1413
1414        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1415        if (status == 0) {
1416                for (i = 0; i < timeout; i++) {
1417                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1418
1419                        /* Set the SW EEPROM semaphore bit to request access */
1420                        swsm |= IXGBE_SWSM_SWESMBI;
1421                        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1422
1423                        /*
1424                         * If we set the bit successfully then we got the
1425                         * semaphore.
1426                         */
1427                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1428                        if (swsm & IXGBE_SWSM_SWESMBI)
1429                                break;
1430
1431                        udelay(50);
1432                }
1433
1434                /*
1435                 * Release semaphores and return error if SW EEPROM semaphore
1436                 * was not granted because we don't have access to the EEPROM
1437                 */
1438                if (i >= timeout) {
1439                        hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1440                        ixgbe_release_eeprom_semaphore(hw);
1441                        status = IXGBE_ERR_EEPROM;
1442                }
1443        } else {
1444                hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1445        }
1446
1447        return status;
1448}
1449
1450/**
1451 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1452 *  @hw: pointer to hardware structure
1453 *
1454 *  This function clears hardware semaphore bits.
1455 **/
1456static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1457{
1458        u32 swsm;
1459
1460        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1461
1462        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1463        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1464        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1465        IXGBE_WRITE_FLUSH(hw);
1466}
1467
1468/**
1469 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1470 *  @hw: pointer to hardware structure
1471 **/
1472static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1473{
1474        s32 status = 0;
1475        u16 i;
1476        u8 spi_stat_reg;
1477
1478        /*
1479         * Read "Status Register" repeatedly until the LSB is cleared.  The
1480         * EEPROM will signal that the command has been completed by clearing
1481         * bit 0 of the internal status register.  If it's not cleared within
1482         * 5 milliseconds, then error out.
1483         */
1484        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1485                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1486                                            IXGBE_EEPROM_OPCODE_BITS);
1487                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1488                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1489                        break;
1490
1491                udelay(5);
1492                ixgbe_standby_eeprom(hw);
1493        }
1494
1495        /*
1496         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1497         * devices (and only 0-5mSec on 5V devices)
1498         */
1499        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1500                hw_dbg(hw, "SPI EEPROM Status error\n");
1501                status = IXGBE_ERR_EEPROM;
1502        }
1503
1504        return status;
1505}
1506
1507/**
1508 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1509 *  @hw: pointer to hardware structure
1510 **/
1511static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1512{
1513        u32 eec;
1514
1515        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1516
1517        /* Toggle CS to flush commands */
1518        eec |= IXGBE_EEC_CS;
1519        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1520        IXGBE_WRITE_FLUSH(hw);
1521        udelay(1);
1522        eec &= ~IXGBE_EEC_CS;
1523        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1524        IXGBE_WRITE_FLUSH(hw);
1525        udelay(1);
1526}
1527
1528/**
1529 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1530 *  @hw: pointer to hardware structure
1531 *  @data: data to send to the EEPROM
1532 *  @count: number of bits to shift out
1533 **/
1534static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1535                                        u16 count)
1536{
1537        u32 eec;
1538        u32 mask;
1539        u32 i;
1540
1541        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1542
1543        /*
1544         * Mask is used to shift "count" bits of "data" out to the EEPROM
1545         * one bit at a time.  Determine the starting bit based on count
1546         */
1547        mask = 0x01 << (count - 1);
1548
1549        for (i = 0; i < count; i++) {
1550                /*
1551                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1552                 * "1", and then raising and then lowering the clock (the SK
1553                 * bit controls the clock input to the EEPROM).  A "0" is
1554                 * shifted out to the EEPROM by setting "DI" to "0" and then
1555                 * raising and then lowering the clock.
1556                 */
1557                if (data & mask)
1558                        eec |= IXGBE_EEC_DI;
1559                else
1560                        eec &= ~IXGBE_EEC_DI;
1561
1562                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1563                IXGBE_WRITE_FLUSH(hw);
1564
1565                udelay(1);
1566
1567                ixgbe_raise_eeprom_clk(hw, &eec);
1568                ixgbe_lower_eeprom_clk(hw, &eec);
1569
1570                /*
1571                 * Shift mask to signify next bit of data to shift in to the
1572                 * EEPROM
1573                 */
1574                mask = mask >> 1;
1575        }
1576
1577        /* We leave the "DI" bit set to "0" when we leave this routine. */
1578        eec &= ~IXGBE_EEC_DI;
1579        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1580        IXGBE_WRITE_FLUSH(hw);
1581}
1582
1583/**
1584 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1585 *  @hw: pointer to hardware structure
1586 **/
1587static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1588{
1589        u32 eec;
1590        u32 i;
1591        u16 data = 0;
1592
1593        /*
1594         * In order to read a register from the EEPROM, we need to shift
1595         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1596         * the clock input to the EEPROM (setting the SK bit), and then reading
1597         * the value of the "DO" bit.  During this "shifting in" process the
1598         * "DI" bit should always be clear.
1599         */
1600        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601
1602        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1603
1604        for (i = 0; i < count; i++) {
1605                data = data << 1;
1606                ixgbe_raise_eeprom_clk(hw, &eec);
1607
1608                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1609
1610                eec &= ~(IXGBE_EEC_DI);
1611                if (eec & IXGBE_EEC_DO)
1612                        data |= 1;
1613
1614                ixgbe_lower_eeprom_clk(hw, &eec);
1615        }
1616
1617        return data;
1618}
1619
1620/**
1621 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1622 *  @hw: pointer to hardware structure
1623 *  @eec: EEC register's current value
1624 **/
1625static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1626{
1627        /*
1628         * Raise the clock input to the EEPROM
1629         * (setting the SK bit), then delay
1630         */
1631        *eec = *eec | IXGBE_EEC_SK;
1632        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1633        IXGBE_WRITE_FLUSH(hw);
1634        udelay(1);
1635}
1636
1637/**
1638 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1639 *  @hw: pointer to hardware structure
1640 *  @eecd: EECD's current value
1641 **/
1642static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1643{
1644        /*
1645         * Lower the clock input to the EEPROM (clearing the SK bit), then
1646         * delay
1647         */
1648        *eec = *eec & ~IXGBE_EEC_SK;
1649        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1650        IXGBE_WRITE_FLUSH(hw);
1651        udelay(1);
1652}
1653
1654/**
1655 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1656 *  @hw: pointer to hardware structure
1657 **/
1658static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1659{
1660        u32 eec;
1661
1662        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1663
1664        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1665        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1666
1667        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1668        IXGBE_WRITE_FLUSH(hw);
1669
1670        udelay(1);
1671
1672        /* Stop requesting EEPROM access */
1673        eec &= ~IXGBE_EEC_REQ;
1674        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1675
1676        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1677
1678        /*
1679         * Delay before attempt to obtain semaphore again to allow FW
1680         * access. semaphore_delay is in ms we need us for usleep_range
1681         */
1682        usleep_range(hw->eeprom.semaphore_delay * 1000,
1683                     hw->eeprom.semaphore_delay * 2000);
1684}
1685
1686/**
1687 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1688 *  @hw: pointer to hardware structure
1689 **/
1690u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1691{
1692        u16 i;
1693        u16 j;
1694        u16 checksum = 0;
1695        u16 length = 0;
1696        u16 pointer = 0;
1697        u16 word = 0;
1698
1699        /* Include 0x0-0x3F in the checksum */
1700        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1701                if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1702                        hw_dbg(hw, "EEPROM read failed\n");
1703                        break;
1704                }
1705                checksum += word;
1706        }
1707
1708        /* Include all data from pointers except for the fw pointer */
1709        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1710                hw->eeprom.ops.read(hw, i, &pointer);
1711
1712                /* Make sure the pointer seems valid */
1713                if (pointer != 0xFFFF && pointer != 0) {
1714                        hw->eeprom.ops.read(hw, pointer, &length);
1715
1716                        if (length != 0xFFFF && length != 0) {
1717                                for (j = pointer+1; j <= pointer+length; j++) {
1718                                        hw->eeprom.ops.read(hw, j, &word);
1719                                        checksum += word;
1720                                }
1721                        }
1722                }
1723        }
1724
1725        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1726
1727        return checksum;
1728}
1729
1730/**
1731 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1732 *  @hw: pointer to hardware structure
1733 *  @checksum_val: calculated checksum
1734 *
1735 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1736 *  caller does not need checksum_val, the value can be NULL.
1737 **/
1738s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1739                                           u16 *checksum_val)
1740{
1741        s32 status;
1742        u16 checksum;
1743        u16 read_checksum = 0;
1744
1745        /*
1746         * Read the first word from the EEPROM. If this times out or fails, do
1747         * not continue or we could be in for a very long wait while every
1748         * EEPROM read fails
1749         */
1750        status = hw->eeprom.ops.read(hw, 0, &checksum);
1751
1752        if (status == 0) {
1753                checksum = hw->eeprom.ops.calc_checksum(hw);
1754
1755                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1756
1757                /*
1758                 * Verify read checksum from EEPROM is the same as
1759                 * calculated checksum
1760                 */
1761                if (read_checksum != checksum)
1762                        status = IXGBE_ERR_EEPROM_CHECKSUM;
1763
1764                /* If the user cares, return the calculated checksum */
1765                if (checksum_val)
1766                        *checksum_val = checksum;
1767        } else {
1768                hw_dbg(hw, "EEPROM read failed\n");
1769        }
1770
1771        return status;
1772}
1773
1774/**
1775 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1776 *  @hw: pointer to hardware structure
1777 **/
1778s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1779{
1780        s32 status;
1781        u16 checksum;
1782
1783        /*
1784         * Read the first word from the EEPROM. If this times out or fails, do
1785         * not continue or we could be in for a very long wait while every
1786         * EEPROM read fails
1787         */
1788        status = hw->eeprom.ops.read(hw, 0, &checksum);
1789
1790        if (status == 0) {
1791                checksum = hw->eeprom.ops.calc_checksum(hw);
1792                status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1793                                              checksum);
1794        } else {
1795                hw_dbg(hw, "EEPROM read failed\n");
1796        }
1797
1798        return status;
1799}
1800
1801/**
1802 *  ixgbe_set_rar_generic - Set Rx address register
1803 *  @hw: pointer to hardware structure
1804 *  @index: Receive address register to write
1805 *  @addr: Address to put into receive address register
1806 *  @vmdq: VMDq "set" or "pool" index
1807 *  @enable_addr: set flag that address is active
1808 *
1809 *  Puts an ethernet address into a receive address register.
1810 **/
1811s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1812                          u32 enable_addr)
1813{
1814        u32 rar_low, rar_high;
1815        u32 rar_entries = hw->mac.num_rar_entries;
1816
1817        /* Make sure we are using a valid rar index range */
1818        if (index >= rar_entries) {
1819                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1820                return IXGBE_ERR_INVALID_ARGUMENT;
1821        }
1822
1823        /* setup VMDq pool selection before this RAR gets enabled */
1824        hw->mac.ops.set_vmdq(hw, index, vmdq);
1825
1826        /*
1827         * HW expects these in little endian so we reverse the byte
1828         * order from network order (big endian) to little endian
1829         */
1830        rar_low = ((u32)addr[0] |
1831                   ((u32)addr[1] << 8) |
1832                   ((u32)addr[2] << 16) |
1833                   ((u32)addr[3] << 24));
1834        /*
1835         * Some parts put the VMDq setting in the extra RAH bits,
1836         * so save everything except the lower 16 bits that hold part
1837         * of the address and the address valid bit.
1838         */
1839        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1840        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1841        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1842
1843        if (enable_addr != 0)
1844                rar_high |= IXGBE_RAH_AV;
1845
1846        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1847        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1848
1849        return 0;
1850}
1851
1852/**
1853 *  ixgbe_clear_rar_generic - Remove Rx address register
1854 *  @hw: pointer to hardware structure
1855 *  @index: Receive address register to write
1856 *
1857 *  Clears an ethernet address from a receive address register.
1858 **/
1859s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1860{
1861        u32 rar_high;
1862        u32 rar_entries = hw->mac.num_rar_entries;
1863
1864        /* Make sure we are using a valid rar index range */
1865        if (index >= rar_entries) {
1866                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1867                return IXGBE_ERR_INVALID_ARGUMENT;
1868        }
1869
1870        /*
1871         * Some parts put the VMDq setting in the extra RAH bits,
1872         * so save everything except the lower 16 bits that hold part
1873         * of the address and the address valid bit.
1874         */
1875        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1876        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1877
1878        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1879        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1880
1881        /* clear VMDq pool/queue selection for this RAR */
1882        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1883
1884        return 0;
1885}
1886
1887/**
1888 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1889 *  @hw: pointer to hardware structure
1890 *
1891 *  Places the MAC address in receive address register 0 and clears the rest
1892 *  of the receive address registers. Clears the multicast table. Assumes
1893 *  the receiver is in reset when the routine is called.
1894 **/
1895s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1896{
1897        u32 i;
1898        u32 rar_entries = hw->mac.num_rar_entries;
1899
1900        /*
1901         * If the current mac address is valid, assume it is a software override
1902         * to the permanent address.
1903         * Otherwise, use the permanent address from the eeprom.
1904         */
1905        if (!is_valid_ether_addr(hw->mac.addr)) {
1906                /* Get the MAC address from the RAR0 for later reference */
1907                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1908
1909                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1910        } else {
1911                /* Setup the receive address. */
1912                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1913                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1914
1915                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1916
1917                /*  clear VMDq pool/queue selection for RAR 0 */
1918                hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1919        }
1920        hw->addr_ctrl.overflow_promisc = 0;
1921
1922        hw->addr_ctrl.rar_used_count = 1;
1923
1924        /* Zero out the other receive addresses. */
1925        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1926        for (i = 1; i < rar_entries; i++) {
1927                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1928                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1929        }
1930
1931        /* Clear the MTA */
1932        hw->addr_ctrl.mta_in_use = 0;
1933        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1934
1935        hw_dbg(hw, " Clearing MTA\n");
1936        for (i = 0; i < hw->mac.mcft_size; i++)
1937                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1938
1939        if (hw->mac.ops.init_uta_tables)
1940                hw->mac.ops.init_uta_tables(hw);
1941
1942        return 0;
1943}
1944
1945/**
1946 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1947 *  @hw: pointer to hardware structure
1948 *  @mc_addr: the multicast address
1949 *
1950 *  Extracts the 12 bits, from a multicast address, to determine which
1951 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1952 *  incoming rx multicast addresses, to determine the bit-vector to check in
1953 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1954 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1955 *  to mc_filter_type.
1956 **/
1957static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1958{
1959        u32 vector = 0;
1960
1961        switch (hw->mac.mc_filter_type) {
1962        case 0:   /* use bits [47:36] of the address */
1963                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1964                break;
1965        case 1:   /* use bits [46:35] of the address */
1966                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1967                break;
1968        case 2:   /* use bits [45:34] of the address */
1969                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1970                break;
1971        case 3:   /* use bits [43:32] of the address */
1972                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1973                break;
1974        default:  /* Invalid mc_filter_type */
1975                hw_dbg(hw, "MC filter type param set incorrectly\n");
1976                break;
1977        }
1978
1979        /* vector can only be 12-bits or boundary will be exceeded */
1980        vector &= 0xFFF;
1981        return vector;
1982}
1983
1984/**
1985 *  ixgbe_set_mta - Set bit-vector in multicast table
1986 *  @hw: pointer to hardware structure
1987 *  @hash_value: Multicast address hash value
1988 *
1989 *  Sets the bit-vector in the multicast table.
1990 **/
1991static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1992{
1993        u32 vector;
1994        u32 vector_bit;
1995        u32 vector_reg;
1996
1997        hw->addr_ctrl.mta_in_use++;
1998
1999        vector = ixgbe_mta_vector(hw, mc_addr);
2000        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2001
2002        /*
2003         * The MTA is a register array of 128 32-bit registers. It is treated
2004         * like an array of 4096 bits.  We want to set bit
2005         * BitArray[vector_value]. So we figure out what register the bit is
2006         * in, read it, OR in the new bit, then write back the new value.  The
2007         * register is determined by the upper 7 bits of the vector value and
2008         * the bit within that register are determined by the lower 5 bits of
2009         * the value.
2010         */
2011        vector_reg = (vector >> 5) & 0x7F;
2012        vector_bit = vector & 0x1F;
2013        hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2014}
2015
2016/**
2017 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2018 *  @hw: pointer to hardware structure
2019 *  @netdev: pointer to net device structure
2020 *
2021 *  The given list replaces any existing list. Clears the MC addrs from receive
2022 *  address registers and the multicast table. Uses unused receive address
2023 *  registers for the first multicast addresses, and hashes the rest into the
2024 *  multicast table.
2025 **/
2026s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2027                                      struct net_device *netdev)
2028{
2029        struct netdev_hw_addr *ha;
2030        u32 i;
2031
2032        /*
2033         * Set the new number of MC addresses that we are being requested to
2034         * use.
2035         */
2036        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2037        hw->addr_ctrl.mta_in_use = 0;
2038
2039        /* Clear mta_shadow */
2040        hw_dbg(hw, " Clearing MTA\n");
2041        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2042
2043        /* Update mta shadow */
2044        netdev_for_each_mc_addr(ha, netdev) {
2045                hw_dbg(hw, " Adding the multicast addresses:\n");
2046                ixgbe_set_mta(hw, ha->addr);
2047        }
2048
2049        /* Enable mta */
2050        for (i = 0; i < hw->mac.mcft_size; i++)
2051                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2052                                      hw->mac.mta_shadow[i]);
2053
2054        if (hw->addr_ctrl.mta_in_use > 0)
2055                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2056                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2057
2058        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2059        return 0;
2060}
2061
2062/**
2063 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2064 *  @hw: pointer to hardware structure
2065 *
2066 *  Enables multicast address in RAR and the use of the multicast hash table.
2067 **/
2068s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2069{
2070        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2071
2072        if (a->mta_in_use > 0)
2073                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2074                                hw->mac.mc_filter_type);
2075
2076        return 0;
2077}
2078
2079/**
2080 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2081 *  @hw: pointer to hardware structure
2082 *
2083 *  Disables multicast address in RAR and the use of the multicast hash table.
2084 **/
2085s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2086{
2087        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2088
2089        if (a->mta_in_use > 0)
2090                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2091
2092        return 0;
2093}
2094
2095/**
2096 *  ixgbe_fc_enable_generic - Enable flow control
2097 *  @hw: pointer to hardware structure
2098 *
2099 *  Enable flow control according to the current settings.
2100 **/
2101s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2102{
2103        s32 ret_val = 0;
2104        u32 mflcn_reg, fccfg_reg;
2105        u32 reg;
2106        u32 fcrtl, fcrth;
2107        int i;
2108
2109        /* Validate the water mark configuration. */
2110        if (!hw->fc.pause_time) {
2111                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2112                goto out;
2113        }
2114
2115        /* Low water mark of zero causes XOFF floods */
2116        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2117                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2118                    hw->fc.high_water[i]) {
2119                        if (!hw->fc.low_water[i] ||
2120                            hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2121                                hw_dbg(hw, "Invalid water mark configuration\n");
2122                                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2123                                goto out;
2124                        }
2125                }
2126        }
2127
2128        /* Negotiate the fc mode to use */
2129        ixgbe_fc_autoneg(hw);
2130
2131        /* Disable any previous flow control settings */
2132        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2133        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2134
2135        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2136        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2137
2138        /*
2139         * The possible values of fc.current_mode are:
2140         * 0: Flow control is completely disabled
2141         * 1: Rx flow control is enabled (we can receive pause frames,
2142         *    but not send pause frames).
2143         * 2: Tx flow control is enabled (we can send pause frames but
2144         *    we do not support receiving pause frames).
2145         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2146         * other: Invalid.
2147         */
2148        switch (hw->fc.current_mode) {
2149        case ixgbe_fc_none:
2150                /*
2151                 * Flow control is disabled by software override or autoneg.
2152                 * The code below will actually disable it in the HW.
2153                 */
2154                break;
2155        case ixgbe_fc_rx_pause:
2156                /*
2157                 * Rx Flow control is enabled and Tx Flow control is
2158                 * disabled by software override. Since there really
2159                 * isn't a way to advertise that we are capable of RX
2160                 * Pause ONLY, we will advertise that we support both
2161                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2162                 * disable the adapter's ability to send PAUSE frames.
2163                 */
2164                mflcn_reg |= IXGBE_MFLCN_RFCE;
2165                break;
2166        case ixgbe_fc_tx_pause:
2167                /*
2168                 * Tx Flow control is enabled, and Rx Flow control is
2169                 * disabled by software override.
2170                 */
2171                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2172                break;
2173        case ixgbe_fc_full:
2174                /* Flow control (both Rx and Tx) is enabled by SW override. */
2175                mflcn_reg |= IXGBE_MFLCN_RFCE;
2176                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2177                break;
2178        default:
2179                hw_dbg(hw, "Flow control param set incorrectly\n");
2180                ret_val = IXGBE_ERR_CONFIG;
2181                goto out;
2182                break;
2183        }
2184
2185        /* Set 802.3x based flow control settings. */
2186        mflcn_reg |= IXGBE_MFLCN_DPF;
2187        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2188        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2189
2190        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2191        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2192                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2193                    hw->fc.high_water[i]) {
2194                        fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2195                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2196                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2197                } else {
2198                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2199                        /*
2200                         * In order to prevent Tx hangs when the internal Tx
2201                         * switch is enabled we must set the high water mark
2202                         * to the maximum FCRTH value.  This allows the Tx
2203                         * switch to function even under heavy Rx workloads.
2204                         */
2205                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2206                }
2207
2208                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2209        }
2210
2211        /* Configure pause time (2 TCs per register) */
2212        reg = hw->fc.pause_time * 0x00010001;
2213        for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2214                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2215
2216        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2217
2218out:
2219        return ret_val;
2220}
2221
2222/**
2223 *  ixgbe_negotiate_fc - Negotiate flow control
2224 *  @hw: pointer to hardware structure
2225 *  @adv_reg: flow control advertised settings
2226 *  @lp_reg: link partner's flow control settings
2227 *  @adv_sym: symmetric pause bit in advertisement
2228 *  @adv_asm: asymmetric pause bit in advertisement
2229 *  @lp_sym: symmetric pause bit in link partner advertisement
2230 *  @lp_asm: asymmetric pause bit in link partner advertisement
2231 *
2232 *  Find the intersection between advertised settings and link partner's
2233 *  advertised settings
2234 **/
2235static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2236                              u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2237{
2238        if ((!(adv_reg)) ||  (!(lp_reg)))
2239                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2240
2241        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2242                /*
2243                 * Now we need to check if the user selected Rx ONLY
2244                 * of pause frames.  In this case, we had to advertise
2245                 * FULL flow control because we could not advertise RX
2246                 * ONLY. Hence, we must now check to see if we need to
2247                 * turn OFF the TRANSMISSION of PAUSE frames.
2248                 */
2249                if (hw->fc.requested_mode == ixgbe_fc_full) {
2250                        hw->fc.current_mode = ixgbe_fc_full;
2251                        hw_dbg(hw, "Flow Control = FULL.\n");
2252                } else {
2253                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2254                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2255                }
2256        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2257                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2258                hw->fc.current_mode = ixgbe_fc_tx_pause;
2259                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2260        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2261                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2262                hw->fc.current_mode = ixgbe_fc_rx_pause;
2263                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2264        } else {
2265                hw->fc.current_mode = ixgbe_fc_none;
2266                hw_dbg(hw, "Flow Control = NONE.\n");
2267        }
2268        return 0;
2269}
2270
2271/**
2272 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2273 *  @hw: pointer to hardware structure
2274 *
2275 *  Enable flow control according on 1 gig fiber.
2276 **/
2277static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2278{
2279        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2280        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2281
2282        /*
2283         * On multispeed fiber at 1g, bail out if
2284         * - link is up but AN did not complete, or if
2285         * - link is up and AN completed but timed out
2286         */
2287
2288        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2289        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2290            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2291                goto out;
2292
2293        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2294        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2295
2296        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2297                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2298                               IXGBE_PCS1GANA_ASM_PAUSE,
2299                               IXGBE_PCS1GANA_SYM_PAUSE,
2300                               IXGBE_PCS1GANA_ASM_PAUSE);
2301
2302out:
2303        return ret_val;
2304}
2305
2306/**
2307 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2308 *  @hw: pointer to hardware structure
2309 *
2310 *  Enable flow control according to IEEE clause 37.
2311 **/
2312static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2313{
2314        u32 links2, anlp1_reg, autoc_reg, links;
2315        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2316
2317        /*
2318         * On backplane, bail out if
2319         * - backplane autoneg was not completed, or if
2320         * - we are 82599 and link partner is not AN enabled
2321         */
2322        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2323        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2324                goto out;
2325
2326        if (hw->mac.type == ixgbe_mac_82599EB) {
2327                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2328                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2329                        goto out;
2330        }
2331        /*
2332         * Read the 10g AN autoc and LP ability registers and resolve
2333         * local flow control settings accordingly
2334         */
2335        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2336        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2337
2338        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2339                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2340                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2341
2342out:
2343        return ret_val;
2344}
2345
2346/**
2347 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2348 *  @hw: pointer to hardware structure
2349 *
2350 *  Enable flow control according to IEEE clause 37.
2351 **/
2352static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2353{
2354        u16 technology_ability_reg = 0;
2355        u16 lp_technology_ability_reg = 0;
2356
2357        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2358                             MDIO_MMD_AN,
2359                             &technology_ability_reg);
2360        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2361                             MDIO_MMD_AN,
2362                             &lp_technology_ability_reg);
2363
2364        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2365                                  (u32)lp_technology_ability_reg,
2366                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2367                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2368}
2369
2370/**
2371 *  ixgbe_fc_autoneg - Configure flow control
2372 *  @hw: pointer to hardware structure
2373 *
2374 *  Compares our advertised flow control capabilities to those advertised by
2375 *  our link partner, and determines the proper flow control mode to use.
2376 **/
2377void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2378{
2379        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2380        ixgbe_link_speed speed;
2381        bool link_up;
2382
2383        /*
2384         * AN should have completed when the cable was plugged in.
2385         * Look for reasons to bail out.  Bail out if:
2386         * - FC autoneg is disabled, or if
2387         * - link is not up.
2388         *
2389         * Since we're being called from an LSC, link is already known to be up.
2390         * So use link_up_wait_to_complete=false.
2391         */
2392        if (hw->fc.disable_fc_autoneg)
2393                goto out;
2394
2395        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2396        if (!link_up)
2397                goto out;
2398
2399        switch (hw->phy.media_type) {
2400        /* Autoneg flow control on fiber adapters */
2401        case ixgbe_media_type_fiber:
2402                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2403                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2404                break;
2405
2406        /* Autoneg flow control on backplane adapters */
2407        case ixgbe_media_type_backplane:
2408                ret_val = ixgbe_fc_autoneg_backplane(hw);
2409                break;
2410
2411        /* Autoneg flow control on copper adapters */
2412        case ixgbe_media_type_copper:
2413                if (ixgbe_device_supports_autoneg_fc(hw))
2414                        ret_val = ixgbe_fc_autoneg_copper(hw);
2415                break;
2416
2417        default:
2418                break;
2419        }
2420
2421out:
2422        if (ret_val == 0) {
2423                hw->fc.fc_was_autonegged = true;
2424        } else {
2425                hw->fc.fc_was_autonegged = false;
2426                hw->fc.current_mode = hw->fc.requested_mode;
2427        }
2428}
2429
2430/**
2431 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2432 * @hw: pointer to hardware structure
2433 *
2434 * System-wide timeout range is encoded in PCIe Device Control2 register.
2435 *
2436 *  Add 10% to specified maximum and return the number of times to poll for
2437 *  completion timeout, in units of 100 microsec.  Never return less than
2438 *  800 = 80 millisec.
2439 **/
2440static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2441{
2442        s16 devctl2;
2443        u32 pollcnt;
2444
2445        devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2446        devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2447
2448        switch (devctl2) {
2449        case IXGBE_PCIDEVCTRL2_65_130ms:
2450                 pollcnt = 1300;         /* 130 millisec */
2451                break;
2452        case IXGBE_PCIDEVCTRL2_260_520ms:
2453                pollcnt = 5200;         /* 520 millisec */
2454                break;
2455        case IXGBE_PCIDEVCTRL2_1_2s:
2456                pollcnt = 20000;        /* 2 sec */
2457                break;
2458        case IXGBE_PCIDEVCTRL2_4_8s:
2459                pollcnt = 80000;        /* 8 sec */
2460                break;
2461        case IXGBE_PCIDEVCTRL2_17_34s:
2462                pollcnt = 34000;        /* 34 sec */
2463                break;
2464        case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2465        case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2466        case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2467        case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2468        default:
2469                pollcnt = 800;          /* 80 millisec minimum */
2470                break;
2471        }
2472
2473        /* add 10% to spec maximum */
2474        return (pollcnt * 11) / 10;
2475}
2476
2477/**
2478 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2479 *  @hw: pointer to hardware structure
2480 *
2481 *  Disables PCI-Express master access and verifies there are no pending
2482 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2483 *  bit hasn't caused the master requests to be disabled, else 0
2484 *  is returned signifying master requests disabled.
2485 **/
2486static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2487{
2488        s32 status = 0;
2489        u32 i, poll;
2490        u16 value;
2491
2492        /* Always set this bit to ensure any future transactions are blocked */
2493        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2494
2495        /* Exit if master requests are blocked */
2496        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2497            ixgbe_removed(hw->hw_addr))
2498                goto out;
2499
2500        /* Poll for master request bit to clear */
2501        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2502                udelay(100);
2503                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2504                        goto out;
2505        }
2506
2507        /*
2508         * Two consecutive resets are required via CTRL.RST per datasheet
2509         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2510         * of this need.  The first reset prevents new master requests from
2511         * being issued by our device.  We then must wait 1usec or more for any
2512         * remaining completions from the PCIe bus to trickle in, and then reset
2513         * again to clear out any effects they may have had on our device.
2514         */
2515        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2516        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2517
2518        /*
2519         * Before proceeding, make sure that the PCIe block does not have
2520         * transactions pending.
2521         */
2522        poll = ixgbe_pcie_timeout_poll(hw);
2523        for (i = 0; i < poll; i++) {
2524                udelay(100);
2525                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2526                if (ixgbe_removed(hw->hw_addr))
2527                        goto out;
2528                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2529                        goto out;
2530        }
2531
2532        hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2533        status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2534
2535out:
2536        return status;
2537}
2538
2539/**
2540 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2541 *  @hw: pointer to hardware structure
2542 *  @mask: Mask to specify which semaphore to acquire
2543 *
2544 *  Acquires the SWFW semaphore through the GSSR register for the specified
2545 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2546 **/
2547s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2548{
2549        u32 gssr = 0;
2550        u32 swmask = mask;
2551        u32 fwmask = mask << 5;
2552        u32 timeout = 200;
2553        u32 i;
2554
2555        for (i = 0; i < timeout; i++) {
2556                /*
2557                 * SW NVM semaphore bit is used for access to all
2558                 * SW_FW_SYNC bits (not just NVM)
2559                 */
2560                if (ixgbe_get_eeprom_semaphore(hw))
2561                        return IXGBE_ERR_SWFW_SYNC;
2562
2563                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2564                if (!(gssr & (fwmask | swmask))) {
2565                        gssr |= swmask;
2566                        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2567                        ixgbe_release_eeprom_semaphore(hw);
2568                        return 0;
2569                } else {
2570                        /* Resource is currently in use by FW or SW */
2571                        ixgbe_release_eeprom_semaphore(hw);
2572                        usleep_range(5000, 10000);
2573                }
2574        }
2575
2576        /* If time expired clear the bits holding the lock and retry */
2577        if (gssr & (fwmask | swmask))
2578                ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2579
2580        usleep_range(5000, 10000);
2581        return IXGBE_ERR_SWFW_SYNC;
2582}
2583
2584/**
2585 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2586 *  @hw: pointer to hardware structure
2587 *  @mask: Mask to specify which semaphore to release
2588 *
2589 *  Releases the SWFW semaphore through the GSSR register for the specified
2590 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2591 **/
2592void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2593{
2594        u32 gssr;
2595        u32 swmask = mask;
2596
2597        ixgbe_get_eeprom_semaphore(hw);
2598
2599        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2600        gssr &= ~swmask;
2601        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2602
2603        ixgbe_release_eeprom_semaphore(hw);
2604}
2605
2606/**
2607 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2608 * @hw: pointer to hardware structure
2609 * @reg_val: Value we read from AUTOC
2610 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2611 *          true in this the generic case.
2612 *
2613 * The default case requires no protection so just to the register read.
2614 **/
2615s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2616{
2617        *locked = false;
2618        *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2619        return 0;
2620}
2621
2622/**
2623 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2624 * @hw: pointer to hardware structure
2625 * @reg_val: value to write to AUTOC
2626 * @locked: bool to indicate whether the SW/FW lock was already taken by
2627 *          previous read.
2628 **/
2629s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2630{
2631        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2632        return 0;
2633}
2634
2635/**
2636 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2637 *  @hw: pointer to hardware structure
2638 *
2639 *  Stops the receive data path and waits for the HW to internally
2640 *  empty the Rx security block.
2641 **/
2642s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2643{
2644#define IXGBE_MAX_SECRX_POLL 40
2645        int i;
2646        int secrxreg;
2647
2648        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2649        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2650        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2651        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2652                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2653                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2654                        break;
2655                else
2656                        /* Use interrupt-safe sleep just in case */
2657                        udelay(1000);
2658        }
2659
2660        /* For informational purposes only */
2661        if (i >= IXGBE_MAX_SECRX_POLL)
2662                hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2663
2664        return 0;
2665
2666}
2667
2668/**
2669 *  ixgbe_enable_rx_buff - Enables the receive data path
2670 *  @hw: pointer to hardware structure
2671 *
2672 *  Enables the receive data path
2673 **/
2674s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2675{
2676        int secrxreg;
2677
2678        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2679        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2680        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2681        IXGBE_WRITE_FLUSH(hw);
2682
2683        return 0;
2684}
2685
2686/**
2687 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2688 *  @hw: pointer to hardware structure
2689 *  @regval: register value to write to RXCTRL
2690 *
2691 *  Enables the Rx DMA unit
2692 **/
2693s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2694{
2695        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2696
2697        return 0;
2698}
2699
2700/**
2701 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2702 *  @hw: pointer to hardware structure
2703 *  @index: led number to blink
2704 **/
2705s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2706{
2707        ixgbe_link_speed speed = 0;
2708        bool link_up = false;
2709        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2710        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2711        s32 ret_val = 0;
2712        bool locked = false;
2713
2714        /*
2715         * Link must be up to auto-blink the LEDs;
2716         * Force it if link is down.
2717         */
2718        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2719
2720        if (!link_up) {
2721                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2722                if (ret_val)
2723                        goto out;
2724
2725                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2726                autoc_reg |= IXGBE_AUTOC_FLU;
2727
2728                ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2729                if (ret_val)
2730                        goto out;
2731
2732                IXGBE_WRITE_FLUSH(hw);
2733
2734                usleep_range(10000, 20000);
2735        }
2736
2737        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2738        led_reg |= IXGBE_LED_BLINK(index);
2739        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2740        IXGBE_WRITE_FLUSH(hw);
2741
2742out:
2743        return ret_val;
2744}
2745
2746/**
2747 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2748 *  @hw: pointer to hardware structure
2749 *  @index: led number to stop blinking
2750 **/
2751s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2752{
2753        u32 autoc_reg = 0;
2754        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2755        s32 ret_val = 0;
2756        bool locked = false;
2757
2758        ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2759        if (ret_val)
2760                goto out;
2761
2762        autoc_reg &= ~IXGBE_AUTOC_FLU;
2763        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2764
2765        ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2766        if (ret_val)
2767                goto out;
2768
2769        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2770        led_reg &= ~IXGBE_LED_BLINK(index);
2771        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2772        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2773        IXGBE_WRITE_FLUSH(hw);
2774
2775out:
2776        return ret_val;
2777}
2778
2779/**
2780 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2781 *  @hw: pointer to hardware structure
2782 *  @san_mac_offset: SAN MAC address offset
2783 *
2784 *  This function will read the EEPROM location for the SAN MAC address
2785 *  pointer, and returns the value at that location.  This is used in both
2786 *  get and set mac_addr routines.
2787 **/
2788static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2789                                        u16 *san_mac_offset)
2790{
2791        s32 ret_val;
2792
2793        /*
2794         * First read the EEPROM pointer to see if the MAC addresses are
2795         * available.
2796         */
2797        ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2798                                      san_mac_offset);
2799        if (ret_val)
2800                hw_err(hw, "eeprom read at offset %d failed\n",
2801                       IXGBE_SAN_MAC_ADDR_PTR);
2802
2803        return ret_val;
2804}
2805
2806/**
2807 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2808 *  @hw: pointer to hardware structure
2809 *  @san_mac_addr: SAN MAC address
2810 *
2811 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2812 *  per-port, so set_lan_id() must be called before reading the addresses.
2813 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2814 *  upon for non-SFP connections, so we must call it here.
2815 **/
2816s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2817{
2818        u16 san_mac_data, san_mac_offset;
2819        u8 i;
2820        s32 ret_val;
2821
2822        /*
2823         * First read the EEPROM pointer to see if the MAC addresses are
2824         * available.  If they're not, no point in calling set_lan_id() here.
2825         */
2826        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2827        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2828
2829                goto san_mac_addr_clr;
2830
2831        /* make sure we know which port we need to program */
2832        hw->mac.ops.set_lan_id(hw);
2833        /* apply the port offset to the address offset */
2834        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2835                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2836        for (i = 0; i < 3; i++) {
2837                ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2838                                              &san_mac_data);
2839                if (ret_val) {
2840                        hw_err(hw, "eeprom read at offset %d failed\n",
2841                               san_mac_offset);
2842                        goto san_mac_addr_clr;
2843                }
2844                san_mac_addr[i * 2] = (u8)(san_mac_data);
2845                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2846                san_mac_offset++;
2847        }
2848        return 0;
2849
2850san_mac_addr_clr:
2851        /* No addresses available in this EEPROM.  It's not necessarily an
2852         * error though, so just wipe the local address and return.
2853         */
2854        for (i = 0; i < 6; i++)
2855                san_mac_addr[i] = 0xFF;
2856        return ret_val;
2857}
2858
2859/**
2860 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2861 *  @hw: pointer to hardware structure
2862 *
2863 *  Read PCIe configuration space, and get the MSI-X vector count from
2864 *  the capabilities table.
2865 **/
2866u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2867{
2868        u16 msix_count = 1;
2869        u16 max_msix_count;
2870        u16 pcie_offset;
2871
2872        switch (hw->mac.type) {
2873        case ixgbe_mac_82598EB:
2874                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2875                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2876                break;
2877        case ixgbe_mac_82599EB:
2878        case ixgbe_mac_X540:
2879                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2880                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2881                break;
2882        default:
2883                return msix_count;
2884        }
2885
2886        msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2887        if (ixgbe_removed(hw->hw_addr))
2888                msix_count = 0;
2889        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2890
2891        /* MSI-X count is zero-based in HW */
2892        msix_count++;
2893
2894        if (msix_count > max_msix_count)
2895                msix_count = max_msix_count;
2896
2897        return msix_count;
2898}
2899
2900/**
2901 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2902 *  @hw: pointer to hardware struct
2903 *  @rar: receive address register index to disassociate
2904 *  @vmdq: VMDq pool index to remove from the rar
2905 **/
2906s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2907{
2908        u32 mpsar_lo, mpsar_hi;
2909        u32 rar_entries = hw->mac.num_rar_entries;
2910
2911        /* Make sure we are using a valid rar index range */
2912        if (rar >= rar_entries) {
2913                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2914                return IXGBE_ERR_INVALID_ARGUMENT;
2915        }
2916
2917        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2918        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2919
2920        if (ixgbe_removed(hw->hw_addr))
2921                goto done;
2922
2923        if (!mpsar_lo && !mpsar_hi)
2924                goto done;
2925
2926        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2927                if (mpsar_lo) {
2928                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2929                        mpsar_lo = 0;
2930                }
2931                if (mpsar_hi) {
2932                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2933                        mpsar_hi = 0;
2934                }
2935        } else if (vmdq < 32) {
2936                mpsar_lo &= ~(1 << vmdq);
2937                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2938        } else {
2939                mpsar_hi &= ~(1 << (vmdq - 32));
2940                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2941        }
2942
2943        /* was that the last pool using this rar? */
2944        if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2945                hw->mac.ops.clear_rar(hw, rar);
2946done:
2947        return 0;
2948}
2949
2950/**
2951 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2952 *  @hw: pointer to hardware struct
2953 *  @rar: receive address register index to associate with a VMDq index
2954 *  @vmdq: VMDq pool index
2955 **/
2956s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2957{
2958        u32 mpsar;
2959        u32 rar_entries = hw->mac.num_rar_entries;
2960
2961        /* Make sure we are using a valid rar index range */
2962        if (rar >= rar_entries) {
2963                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2964                return IXGBE_ERR_INVALID_ARGUMENT;
2965        }
2966
2967        if (vmdq < 32) {
2968                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2969                mpsar |= 1 << vmdq;
2970                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2971        } else {
2972                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2973                mpsar |= 1 << (vmdq - 32);
2974                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2975        }
2976        return 0;
2977}
2978
2979/**
2980 *  This function should only be involved in the IOV mode.
2981 *  In IOV mode, Default pool is next pool after the number of
2982 *  VFs advertized and not 0.
2983 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2984 *
2985 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2986 *  @hw: pointer to hardware struct
2987 *  @vmdq: VMDq pool index
2988 **/
2989s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2990{
2991        u32 rar = hw->mac.san_mac_rar_index;
2992
2993        if (vmdq < 32) {
2994                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2995                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2996        } else {
2997                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2998                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2999        }
3000
3001        return 0;
3002}
3003
3004/**
3005 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3006 *  @hw: pointer to hardware structure
3007 **/
3008s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3009{
3010        int i;
3011
3012        for (i = 0; i < 128; i++)
3013                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3014
3015        return 0;
3016}
3017
3018/**
3019 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3020 *  @hw: pointer to hardware structure
3021 *  @vlan: VLAN id to write to VLAN filter
3022 *
3023 *  return the VLVF index where this VLAN id should be placed
3024 *
3025 **/
3026static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3027{
3028        u32 bits = 0;
3029        u32 first_empty_slot = 0;
3030        s32 regindex;
3031
3032        /* short cut the special case */
3033        if (vlan == 0)
3034                return 0;
3035
3036        /*
3037          * Search for the vlan id in the VLVF entries. Save off the first empty
3038          * slot found along the way
3039          */
3040        for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3041                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3042                if (!bits && !(first_empty_slot))
3043                        first_empty_slot = regindex;
3044                else if ((bits & 0x0FFF) == vlan)
3045                        break;
3046        }
3047
3048        /*
3049          * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3050          * in the VLVF. Else use the first empty VLVF register for this
3051          * vlan id.
3052          */
3053        if (regindex >= IXGBE_VLVF_ENTRIES) {
3054                if (first_empty_slot)
3055                        regindex = first_empty_slot;
3056                else {
3057                        hw_dbg(hw, "No space in VLVF.\n");
3058                        regindex = IXGBE_ERR_NO_SPACE;
3059                }
3060        }
3061
3062        return regindex;
3063}
3064
3065/**
3066 *  ixgbe_set_vfta_generic - Set VLAN filter table
3067 *  @hw: pointer to hardware structure
3068 *  @vlan: VLAN id to write to VLAN filter
3069 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3070 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3071 *
3072 *  Turn on/off specified VLAN in the VLAN filter table.
3073 **/
3074s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3075                           bool vlan_on)
3076{
3077        s32 regindex;
3078        u32 bitindex;
3079        u32 vfta;
3080        u32 bits;
3081        u32 vt;
3082        u32 targetbit;
3083        bool vfta_changed = false;
3084
3085        if (vlan > 4095)
3086                return IXGBE_ERR_PARAM;
3087
3088        /*
3089         * this is a 2 part operation - first the VFTA, then the
3090         * VLVF and VLVFB if VT Mode is set
3091         * We don't write the VFTA until we know the VLVF part succeeded.
3092         */
3093
3094        /* Part 1
3095         * The VFTA is a bitstring made up of 128 32-bit registers
3096         * that enable the particular VLAN id, much like the MTA:
3097         *    bits[11-5]: which register
3098         *    bits[4-0]:  which bit in the register
3099         */
3100        regindex = (vlan >> 5) & 0x7F;
3101        bitindex = vlan & 0x1F;
3102        targetbit = (1 << bitindex);
3103        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3104
3105        if (vlan_on) {
3106                if (!(vfta & targetbit)) {
3107                        vfta |= targetbit;
3108                        vfta_changed = true;
3109                }
3110        } else {
3111                if ((vfta & targetbit)) {
3112                        vfta &= ~targetbit;
3113                        vfta_changed = true;
3114                }
3115        }
3116
3117        /* Part 2
3118         * If VT Mode is set
3119         *   Either vlan_on
3120         *     make sure the vlan is in VLVF
3121         *     set the vind bit in the matching VLVFB
3122         *   Or !vlan_on
3123         *     clear the pool bit and possibly the vind
3124         */
3125        vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3126        if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3127                s32 vlvf_index;
3128
3129                vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3130                if (vlvf_index < 0)
3131                        return vlvf_index;
3132
3133                if (vlan_on) {
3134                        /* set the pool bit */
3135                        if (vind < 32) {
3136                                bits = IXGBE_READ_REG(hw,
3137                                                IXGBE_VLVFB(vlvf_index*2));
3138                                bits |= (1 << vind);
3139                                IXGBE_WRITE_REG(hw,
3140                                                IXGBE_VLVFB(vlvf_index*2),
3141                                                bits);
3142                        } else {
3143                                bits = IXGBE_READ_REG(hw,
3144                                                IXGBE_VLVFB((vlvf_index*2)+1));
3145                                bits |= (1 << (vind-32));
3146                                IXGBE_WRITE_REG(hw,
3147                                                IXGBE_VLVFB((vlvf_index*2)+1),
3148                                                bits);
3149                        }
3150                } else {
3151                        /* clear the pool bit */
3152                        if (vind < 32) {
3153                                bits = IXGBE_READ_REG(hw,
3154                                                IXGBE_VLVFB(vlvf_index*2));
3155                                bits &= ~(1 << vind);
3156                                IXGBE_WRITE_REG(hw,
3157                                                IXGBE_VLVFB(vlvf_index*2),
3158                                                bits);
3159                                bits |= IXGBE_READ_REG(hw,
3160                                                IXGBE_VLVFB((vlvf_index*2)+1));
3161                        } else {
3162                                bits = IXGBE_READ_REG(hw,
3163                                                IXGBE_VLVFB((vlvf_index*2)+1));
3164                                bits &= ~(1 << (vind-32));
3165                                IXGBE_WRITE_REG(hw,
3166                                                IXGBE_VLVFB((vlvf_index*2)+1),
3167                                                bits);
3168                                bits |= IXGBE_READ_REG(hw,
3169                                                IXGBE_VLVFB(vlvf_index*2));
3170                        }
3171                }
3172
3173                /*
3174                 * If there are still bits set in the VLVFB registers
3175                 * for the VLAN ID indicated we need to see if the
3176                 * caller is requesting that we clear the VFTA entry bit.
3177                 * If the caller has requested that we clear the VFTA
3178                 * entry bit but there are still pools/VFs using this VLAN
3179                 * ID entry then ignore the request.  We're not worried
3180                 * about the case where we're turning the VFTA VLAN ID
3181                 * entry bit on, only when requested to turn it off as
3182                 * there may be multiple pools and/or VFs using the
3183                 * VLAN ID entry.  In that case we cannot clear the
3184                 * VFTA bit until all pools/VFs using that VLAN ID have also
3185                 * been cleared.  This will be indicated by "bits" being
3186                 * zero.
3187                 */
3188                if (bits) {
3189                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3190                                        (IXGBE_VLVF_VIEN | vlan));
3191                        if (!vlan_on) {
3192                                /* someone wants to clear the vfta entry
3193                                 * but some pools/VFs are still using it.
3194                                 * Ignore it. */
3195                                vfta_changed = false;
3196                        }
3197                } else {
3198                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3199                }
3200        }
3201
3202        if (vfta_changed)
3203                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3204
3205        return 0;
3206}
3207
3208/**
3209 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3210 *  @hw: pointer to hardware structure
3211 *
3212 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3213 **/
3214s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3215{
3216        u32 offset;
3217
3218        for (offset = 0; offset < hw->mac.vft_size; offset++)
3219                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3220
3221        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3222                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3223                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3224                IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3225        }
3226
3227        return 0;
3228}
3229
3230/**
3231 *  ixgbe_check_mac_link_generic - Determine link and speed status
3232 *  @hw: pointer to hardware structure
3233 *  @speed: pointer to link speed
3234 *  @link_up: true when link is up
3235 *  @link_up_wait_to_complete: bool used to wait for link up or not
3236 *
3237 *  Reads the links register to determine if link is up and the current speed
3238 **/
3239s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3240                                 bool *link_up, bool link_up_wait_to_complete)
3241{
3242        u32 links_reg, links_orig;
3243        u32 i;
3244
3245        /* clear the old state */
3246        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3247
3248        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3249
3250        if (links_orig != links_reg) {
3251                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3252                       links_orig, links_reg);
3253        }
3254
3255        if (link_up_wait_to_complete) {
3256                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3257                        if (links_reg & IXGBE_LINKS_UP) {
3258                                *link_up = true;
3259                                break;
3260                        } else {
3261                                *link_up = false;
3262                        }
3263                        msleep(100);
3264                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3265                }
3266        } else {
3267                if (links_reg & IXGBE_LINKS_UP)
3268                        *link_up = true;
3269                else
3270                        *link_up = false;
3271        }
3272
3273        if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3274            IXGBE_LINKS_SPEED_10G_82599)
3275                *speed = IXGBE_LINK_SPEED_10GB_FULL;
3276        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3277                 IXGBE_LINKS_SPEED_1G_82599)
3278                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3279        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3280                 IXGBE_LINKS_SPEED_100_82599)
3281                *speed = IXGBE_LINK_SPEED_100_FULL;
3282        else
3283                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3284
3285        return 0;
3286}
3287
3288/**
3289 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3290 *  the EEPROM
3291 *  @hw: pointer to hardware structure
3292 *  @wwnn_prefix: the alternative WWNN prefix
3293 *  @wwpn_prefix: the alternative WWPN prefix
3294 *
3295 *  This function will read the EEPROM from the alternative SAN MAC address
3296 *  block to check the support for the alternative WWNN/WWPN prefix support.
3297 **/
3298s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3299                                        u16 *wwpn_prefix)
3300{
3301        u16 offset, caps;
3302        u16 alt_san_mac_blk_offset;
3303
3304        /* clear output first */
3305        *wwnn_prefix = 0xFFFF;
3306        *wwpn_prefix = 0xFFFF;
3307
3308        /* check if alternative SAN MAC is supported */
3309        offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3310        if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3311                goto wwn_prefix_err;
3312
3313        if ((alt_san_mac_blk_offset == 0) ||
3314            (alt_san_mac_blk_offset == 0xFFFF))
3315                goto wwn_prefix_out;
3316
3317        /* check capability in alternative san mac address block */
3318        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3319        if (hw->eeprom.ops.read(hw, offset, &caps))
3320                goto wwn_prefix_err;
3321        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3322                goto wwn_prefix_out;
3323
3324        /* get the corresponding prefix for WWNN/WWPN */
3325        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3326        if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3327                hw_err(hw, "eeprom read at offset %d failed\n", offset);
3328
3329        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3330        if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3331                goto wwn_prefix_err;
3332
3333wwn_prefix_out:
3334        return 0;
3335
3336wwn_prefix_err:
3337        hw_err(hw, "eeprom read at offset %d failed\n", offset);
3338        return 0;
3339}
3340
3341/**
3342 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3343 *  @hw: pointer to hardware structure
3344 *  @enable: enable or disable switch for anti-spoofing
3345 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3346 *
3347 **/
3348void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3349{
3350        int j;
3351        int pf_target_reg = pf >> 3;
3352        int pf_target_shift = pf % 8;
3353        u32 pfvfspoof = 0;
3354
3355        if (hw->mac.type == ixgbe_mac_82598EB)
3356                return;
3357
3358        if (enable)
3359                pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3360
3361        /*
3362         * PFVFSPOOF register array is size 8 with 8 bits assigned to
3363         * MAC anti-spoof enables in each register array element.
3364         */
3365        for (j = 0; j < pf_target_reg; j++)
3366                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3367
3368        /*
3369         * The PF should be allowed to spoof so that it can support
3370         * emulation mode NICs.  Do not set the bits assigned to the PF
3371         */
3372        pfvfspoof &= (1 << pf_target_shift) - 1;
3373        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3374
3375        /*
3376         * Remaining pools belong to the PF so they do not need to have
3377         * anti-spoofing enabled.
3378         */
3379        for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3380                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3381}
3382
3383/**
3384 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3385 *  @hw: pointer to hardware structure
3386 *  @enable: enable or disable switch for VLAN anti-spoofing
3387 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3388 *
3389 **/
3390void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3391{
3392        int vf_target_reg = vf >> 3;
3393        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3394        u32 pfvfspoof;
3395
3396        if (hw->mac.type == ixgbe_mac_82598EB)
3397                return;
3398
3399        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3400        if (enable)
3401                pfvfspoof |= (1 << vf_target_shift);
3402        else
3403                pfvfspoof &= ~(1 << vf_target_shift);
3404        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3405}
3406
3407/**
3408 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3409 *  @hw: pointer to hardware structure
3410 *  @device_caps: the EEPROM word with the extra device capabilities
3411 *
3412 *  This function will read the EEPROM location for the device capabilities,
3413 *  and return the word through device_caps.
3414 **/
3415s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3416{
3417        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3418
3419        return 0;
3420}
3421
3422/**
3423 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3424 * @hw: pointer to hardware structure
3425 * @num_pb: number of packet buffers to allocate
3426 * @headroom: reserve n KB of headroom
3427 * @strategy: packet buffer allocation strategy
3428 **/
3429void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3430                             int num_pb,
3431                             u32 headroom,
3432                             int strategy)
3433{
3434        u32 pbsize = hw->mac.rx_pb_size;
3435        int i = 0;
3436        u32 rxpktsize, txpktsize, txpbthresh;
3437
3438        /* Reserve headroom */
3439        pbsize -= headroom;
3440
3441        if (!num_pb)
3442                num_pb = 1;
3443
3444        /* Divide remaining packet buffer space amongst the number
3445         * of packet buffers requested using supplied strategy.
3446         */
3447        switch (strategy) {
3448        case (PBA_STRATEGY_WEIGHTED):
3449                /* pba_80_48 strategy weight first half of packet buffer with
3450                 * 5/8 of the packet buffer space.
3451                 */
3452                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3453                pbsize -= rxpktsize * (num_pb / 2);
3454                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3455                for (; i < (num_pb / 2); i++)
3456                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3457                /* Fall through to configure remaining packet buffers */
3458        case (PBA_STRATEGY_EQUAL):
3459                /* Divide the remaining Rx packet buffer evenly among the TCs */
3460                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3461                for (; i < num_pb; i++)
3462                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3463                break;
3464        default:
3465                break;
3466        }
3467
3468        /*
3469         * Setup Tx packet buffer and threshold equally for all TCs
3470         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3471         * 10 since the largest packet we support is just over 9K.
3472         */
3473        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3474        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3475        for (i = 0; i < num_pb; i++) {
3476                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3477                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3478        }
3479
3480        /* Clear unused TCs, if any, to zero buffer size*/
3481        for (; i < IXGBE_MAX_PB; i++) {
3482                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3483                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3484                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3485        }
3486}
3487
3488/**
3489 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3490 *  @buffer: pointer to EEPROM
3491 *  @length: size of EEPROM to calculate a checksum for
3492 *
3493 *  Calculates the checksum for some buffer on a specified length.  The
3494 *  checksum calculated is returned.
3495 **/
3496static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3497{
3498        u32 i;
3499        u8 sum = 0;
3500
3501        if (!buffer)
3502                return 0;
3503
3504        for (i = 0; i < length; i++)
3505                sum += buffer[i];
3506
3507        return (u8) (0 - sum);
3508}
3509
3510/**
3511 *  ixgbe_host_interface_command - Issue command to manageability block
3512 *  @hw: pointer to the HW structure
3513 *  @buffer: contains the command to write and where the return status will
3514 *           be placed
3515 *  @length: length of buffer, must be multiple of 4 bytes
3516 *
3517 *  Communicates with the manageability block.  On success return 0
3518 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3519 **/
3520static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3521                                        u32 length)
3522{
3523        u32 hicr, i, bi;
3524        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3525        u8 buf_len, dword_len;
3526
3527        s32 ret_val = 0;
3528
3529        if (length == 0 || length & 0x3 ||
3530            length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3531                hw_dbg(hw, "Buffer length failure.\n");
3532                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3533                goto out;
3534        }
3535
3536        /* Check that the host interface is enabled. */
3537        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3538        if ((hicr & IXGBE_HICR_EN) == 0) {
3539                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3540                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3541                goto out;
3542        }
3543
3544        /* Calculate length in DWORDs */
3545        dword_len = length >> 2;
3546
3547        /*
3548         * The device driver writes the relevant command block
3549         * into the ram area.
3550         */
3551        for (i = 0; i < dword_len; i++)
3552                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3553                                      i, cpu_to_le32(buffer[i]));
3554
3555        /* Setting this bit tells the ARC that a new command is pending. */
3556        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3557
3558        for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3559                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3560                if (!(hicr & IXGBE_HICR_C))
3561                        break;
3562                usleep_range(1000, 2000);
3563        }
3564
3565        /* Check command successful completion. */
3566        if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3567            (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3568                hw_dbg(hw, "Command has failed with no status valid.\n");
3569                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3570                goto out;
3571        }
3572
3573        /* Calculate length in DWORDs */
3574        dword_len = hdr_size >> 2;
3575
3576        /* first pull in the header so we know the buffer length */
3577        for (bi = 0; bi < dword_len; bi++) {
3578                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3579                le32_to_cpus(&buffer[bi]);
3580        }
3581
3582        /* If there is any thing in data position pull it in */
3583        buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3584        if (buf_len == 0)
3585                goto out;
3586
3587        if (length < (buf_len + hdr_size)) {
3588                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3589                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3590                goto out;
3591        }
3592
3593        /* Calculate length in DWORDs, add 3 for odd lengths */
3594        dword_len = (buf_len + 3) >> 2;
3595
3596        /* Pull in the rest of the buffer (bi is where we left off)*/
3597        for (; bi <= dword_len; bi++) {
3598                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3599                le32_to_cpus(&buffer[bi]);
3600        }
3601
3602out:
3603        return ret_val;
3604}
3605
3606/**
3607 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3608 *  @hw: pointer to the HW structure
3609 *  @maj: driver version major number
3610 *  @min: driver version minor number
3611 *  @build: driver version build number
3612 *  @sub: driver version sub build number
3613 *
3614 *  Sends driver version number to firmware through the manageability
3615 *  block.  On success return 0
3616 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3617 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3618 **/
3619s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3620                                 u8 build, u8 sub)
3621{
3622        struct ixgbe_hic_drv_info fw_cmd;
3623        int i;
3624        s32 ret_val = 0;
3625
3626        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3627                ret_val = IXGBE_ERR_SWFW_SYNC;
3628                goto out;
3629        }
3630
3631        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3632        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3633        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3634        fw_cmd.port_num = (u8)hw->bus.func;
3635        fw_cmd.ver_maj = maj;
3636        fw_cmd.ver_min = min;
3637        fw_cmd.ver_build = build;
3638        fw_cmd.ver_sub = sub;
3639        fw_cmd.hdr.checksum = 0;
3640        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3641                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3642        fw_cmd.pad = 0;
3643        fw_cmd.pad2 = 0;
3644
3645        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3646                ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3647                                                       sizeof(fw_cmd));
3648                if (ret_val != 0)
3649                        continue;
3650
3651                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3652                    FW_CEM_RESP_STATUS_SUCCESS)
3653                        ret_val = 0;
3654                else
3655                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3656
3657                break;
3658        }
3659
3660        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3661out:
3662        return ret_val;
3663}
3664
3665/**
3666 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3667 * @hw: pointer to the hardware structure
3668 *
3669 * The 82599 and x540 MACs can experience issues if TX work is still pending
3670 * when a reset occurs.  This function prevents this by flushing the PCIe
3671 * buffers on the system.
3672 **/
3673void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3674{
3675        u32 gcr_ext, hlreg0;
3676
3677        /*
3678         * If double reset is not requested then all transactions should
3679         * already be clear and as such there is no work to do
3680         */
3681        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3682                return;
3683
3684        /*
3685         * Set loopback enable to prevent any transmits from being sent
3686         * should the link come up.  This assumes that the RXCTRL.RXEN bit
3687         * has already been cleared.
3688         */
3689        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3690        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3691
3692        /* initiate cleaning flow for buffers in the PCIe transaction layer */
3693        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3694        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3695                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3696
3697        /* Flush all writes and allow 20usec for all transactions to clear */
3698        IXGBE_WRITE_FLUSH(hw);
3699        udelay(20);
3700
3701        /* restore previous register values */
3702        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3703        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3704}
3705
3706static const u8 ixgbe_emc_temp_data[4] = {
3707        IXGBE_EMC_INTERNAL_DATA,
3708        IXGBE_EMC_DIODE1_DATA,
3709        IXGBE_EMC_DIODE2_DATA,
3710        IXGBE_EMC_DIODE3_DATA
3711};
3712static const u8 ixgbe_emc_therm_limit[4] = {
3713        IXGBE_EMC_INTERNAL_THERM_LIMIT,
3714        IXGBE_EMC_DIODE1_THERM_LIMIT,
3715        IXGBE_EMC_DIODE2_THERM_LIMIT,
3716        IXGBE_EMC_DIODE3_THERM_LIMIT
3717};
3718
3719/**
3720 *  ixgbe_get_ets_data - Extracts the ETS bit data
3721 *  @hw: pointer to hardware structure
3722 *  @ets_cfg: extected ETS data
3723 *  @ets_offset: offset of ETS data
3724 *
3725 *  Returns error code.
3726 **/
3727static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3728                              u16 *ets_offset)
3729{
3730        s32 status = 0;
3731
3732        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3733        if (status)
3734                goto out;
3735
3736        if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3737                status = IXGBE_NOT_IMPLEMENTED;
3738                goto out;
3739        }
3740
3741        status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3742        if (status)
3743                goto out;
3744
3745        if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3746                status = IXGBE_NOT_IMPLEMENTED;
3747                goto out;
3748        }
3749
3750out:
3751        return status;
3752}
3753
3754/**
3755 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3756 *  @hw: pointer to hardware structure
3757 *
3758 *  Returns the thermal sensor data structure
3759 **/
3760s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3761{
3762        s32 status = 0;
3763        u16 ets_offset;
3764        u16 ets_cfg;
3765        u16 ets_sensor;
3766        u8  num_sensors;
3767        u8  i;
3768        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3769
3770        /* Only support thermal sensors attached to physical port 0 */
3771        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3772                status = IXGBE_NOT_IMPLEMENTED;
3773                goto out;
3774        }
3775
3776        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3777        if (status)
3778                goto out;
3779
3780        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3781        if (num_sensors > IXGBE_MAX_SENSORS)
3782                num_sensors = IXGBE_MAX_SENSORS;
3783
3784        for (i = 0; i < num_sensors; i++) {
3785                u8  sensor_index;
3786                u8  sensor_location;
3787
3788                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3789                                             &ets_sensor);
3790                if (status)
3791                        goto out;
3792
3793                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3794                                IXGBE_ETS_DATA_INDEX_SHIFT);
3795                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3796                                   IXGBE_ETS_DATA_LOC_SHIFT);
3797
3798                if (sensor_location != 0) {
3799                        status = hw->phy.ops.read_i2c_byte(hw,
3800                                        ixgbe_emc_temp_data[sensor_index],
3801                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
3802                                        &data->sensor[i].temp);
3803                        if (status)
3804                                goto out;
3805                }
3806        }
3807out:
3808        return status;
3809}
3810
3811/**
3812 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3813 * @hw: pointer to hardware structure
3814 *
3815 * Inits the thermal sensor thresholds according to the NVM map
3816 * and save off the threshold and location values into mac.thermal_sensor_data
3817 **/
3818s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3819{
3820        s32 status = 0;
3821        u16 ets_offset;
3822        u16 ets_cfg;
3823        u16 ets_sensor;
3824        u8  low_thresh_delta;
3825        u8  num_sensors;
3826        u8  therm_limit;
3827        u8  i;
3828        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3829
3830        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3831
3832        /* Only support thermal sensors attached to physical port 0 */
3833        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3834                status = IXGBE_NOT_IMPLEMENTED;
3835                goto out;
3836        }
3837
3838        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3839        if (status)
3840                goto out;
3841
3842        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3843                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
3844        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3845        if (num_sensors > IXGBE_MAX_SENSORS)
3846                num_sensors = IXGBE_MAX_SENSORS;
3847
3848        for (i = 0; i < num_sensors; i++) {
3849                u8  sensor_index;
3850                u8  sensor_location;
3851
3852                if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3853                        hw_err(hw, "eeprom read at offset %d failed\n",
3854                               ets_offset + 1 + i);
3855                        continue;
3856                }
3857                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3858                                IXGBE_ETS_DATA_INDEX_SHIFT);
3859                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3860                                   IXGBE_ETS_DATA_LOC_SHIFT);
3861                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3862
3863                hw->phy.ops.write_i2c_byte(hw,
3864                        ixgbe_emc_therm_limit[sensor_index],
3865                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3866
3867                if (sensor_location == 0)
3868                        continue;
3869
3870                data->sensor[i].location = sensor_location;
3871                data->sensor[i].caution_thresh = therm_limit;
3872                data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3873        }
3874out:
3875        return status;
3876}
3877
3878