linux/drivers/net/ethernet/sfc/efx.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/pci.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/notifier.h>
  17#include <linux/ip.h>
  18#include <linux/tcp.h>
  19#include <linux/in.h>
  20#include <linux/ethtool.h>
  21#include <linux/topology.h>
  22#include <linux/gfp.h>
  23#include <linux/aer.h>
  24#include <linux/interrupt.h>
  25#include "net_driver.h"
  26#include "efx.h"
  27#include "nic.h"
  28#include "selftest.h"
  29
  30#include "mcdi.h"
  31#include "workarounds.h"
  32
  33/**************************************************************************
  34 *
  35 * Type name strings
  36 *
  37 **************************************************************************
  38 */
  39
  40/* Loopback mode names (see LOOPBACK_MODE()) */
  41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  42const char *const efx_loopback_mode_names[] = {
  43        [LOOPBACK_NONE]         = "NONE",
  44        [LOOPBACK_DATA]         = "DATAPATH",
  45        [LOOPBACK_GMAC]         = "GMAC",
  46        [LOOPBACK_XGMII]        = "XGMII",
  47        [LOOPBACK_XGXS]         = "XGXS",
  48        [LOOPBACK_XAUI]         = "XAUI",
  49        [LOOPBACK_GMII]         = "GMII",
  50        [LOOPBACK_SGMII]        = "SGMII",
  51        [LOOPBACK_XGBR]         = "XGBR",
  52        [LOOPBACK_XFI]          = "XFI",
  53        [LOOPBACK_XAUI_FAR]     = "XAUI_FAR",
  54        [LOOPBACK_GMII_FAR]     = "GMII_FAR",
  55        [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
  56        [LOOPBACK_XFI_FAR]      = "XFI_FAR",
  57        [LOOPBACK_GPHY]         = "GPHY",
  58        [LOOPBACK_PHYXS]        = "PHYXS",
  59        [LOOPBACK_PCS]          = "PCS",
  60        [LOOPBACK_PMAPMD]       = "PMA/PMD",
  61        [LOOPBACK_XPORT]        = "XPORT",
  62        [LOOPBACK_XGMII_WS]     = "XGMII_WS",
  63        [LOOPBACK_XAUI_WS]      = "XAUI_WS",
  64        [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  65        [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  66        [LOOPBACK_GMII_WS]      = "GMII_WS",
  67        [LOOPBACK_XFI_WS]       = "XFI_WS",
  68        [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
  69        [LOOPBACK_PHYXS_WS]     = "PHYXS_WS",
  70};
  71
  72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  73const char *const efx_reset_type_names[] = {
  74        [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  75        [RESET_TYPE_ALL]                = "ALL",
  76        [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  77        [RESET_TYPE_WORLD]              = "WORLD",
  78        [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  79        [RESET_TYPE_MC_BIST]            = "MC_BIST",
  80        [RESET_TYPE_DISABLE]            = "DISABLE",
  81        [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  82        [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  83        [RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
  84        [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  85        [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  86        [RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
  87        [RESET_TYPE_MCDI_TIMEOUT]       = "MCDI_TIMEOUT (FLR)",
  88};
  89
  90/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  91 * queued onto this work queue. This is not a per-nic work queue, because
  92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  93 */
  94static struct workqueue_struct *reset_workqueue;
  95
  96/* How often and how many times to poll for a reset while waiting for a
  97 * BIST that another function started to complete.
  98 */
  99#define BIST_WAIT_DELAY_MS      100
 100#define BIST_WAIT_DELAY_COUNT   100
 101
 102/**************************************************************************
 103 *
 104 * Configurable values
 105 *
 106 *************************************************************************/
 107
 108/*
 109 * Use separate channels for TX and RX events
 110 *
 111 * Set this to 1 to use separate channels for TX and RX. It allows us
 112 * to control interrupt affinity separately for TX and RX.
 113 *
 114 * This is only used in MSI-X interrupt mode
 115 */
 116static bool separate_tx_channels;
 117module_param(separate_tx_channels, bool, 0444);
 118MODULE_PARM_DESC(separate_tx_channels,
 119                 "Use separate channels for TX and RX");
 120
 121/* This is the weight assigned to each of the (per-channel) virtual
 122 * NAPI devices.
 123 */
 124static int napi_weight = 64;
 125
 126/* This is the time (in jiffies) between invocations of the hardware
 127 * monitor.
 128 * On Falcon-based NICs, this will:
 129 * - Check the on-board hardware monitor;
 130 * - Poll the link state and reconfigure the hardware as necessary.
 131 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 132 * chance to start.
 133 */
 134static unsigned int efx_monitor_interval = 1 * HZ;
 135
 136/* Initial interrupt moderation settings.  They can be modified after
 137 * module load with ethtool.
 138 *
 139 * The default for RX should strike a balance between increasing the
 140 * round-trip latency and reducing overhead.
 141 */
 142static unsigned int rx_irq_mod_usec = 60;
 143
 144/* Initial interrupt moderation settings.  They can be modified after
 145 * module load with ethtool.
 146 *
 147 * This default is chosen to ensure that a 10G link does not go idle
 148 * while a TX queue is stopped after it has become full.  A queue is
 149 * restarted when it drops below half full.  The time this takes (assuming
 150 * worst case 3 descriptors per packet and 1024 descriptors) is
 151 *   512 / 3 * 1.2 = 205 usec.
 152 */
 153static unsigned int tx_irq_mod_usec = 150;
 154
 155/* This is the first interrupt mode to try out of:
 156 * 0 => MSI-X
 157 * 1 => MSI
 158 * 2 => legacy
 159 */
 160static unsigned int interrupt_mode;
 161
 162/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 163 * i.e. the number of CPUs among which we may distribute simultaneous
 164 * interrupt handling.
 165 *
 166 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 167 * The default (0) means to assign an interrupt to each core.
 168 */
 169static unsigned int rss_cpus;
 170module_param(rss_cpus, uint, 0444);
 171MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 172
 173static bool phy_flash_cfg;
 174module_param(phy_flash_cfg, bool, 0644);
 175MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 176
 177static unsigned irq_adapt_low_thresh = 8000;
 178module_param(irq_adapt_low_thresh, uint, 0644);
 179MODULE_PARM_DESC(irq_adapt_low_thresh,
 180                 "Threshold score for reducing IRQ moderation");
 181
 182static unsigned irq_adapt_high_thresh = 16000;
 183module_param(irq_adapt_high_thresh, uint, 0644);
 184MODULE_PARM_DESC(irq_adapt_high_thresh,
 185                 "Threshold score for increasing IRQ moderation");
 186
 187static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 188                         NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 189                         NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 190                         NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 191module_param(debug, uint, 0);
 192MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 193
 194/**************************************************************************
 195 *
 196 * Utility functions and prototypes
 197 *
 198 *************************************************************************/
 199
 200static int efx_soft_enable_interrupts(struct efx_nic *efx);
 201static void efx_soft_disable_interrupts(struct efx_nic *efx);
 202static void efx_remove_channel(struct efx_channel *channel);
 203static void efx_remove_channels(struct efx_nic *efx);
 204static const struct efx_channel_type efx_default_channel_type;
 205static void efx_remove_port(struct efx_nic *efx);
 206static void efx_init_napi_channel(struct efx_channel *channel);
 207static void efx_fini_napi(struct efx_nic *efx);
 208static void efx_fini_napi_channel(struct efx_channel *channel);
 209static void efx_fini_struct(struct efx_nic *efx);
 210static void efx_start_all(struct efx_nic *efx);
 211static void efx_stop_all(struct efx_nic *efx);
 212
 213#define EFX_ASSERT_RESET_SERIALISED(efx)                \
 214        do {                                            \
 215                if ((efx->state == STATE_READY) ||      \
 216                    (efx->state == STATE_RECOVERY) ||   \
 217                    (efx->state == STATE_DISABLED))     \
 218                        ASSERT_RTNL();                  \
 219        } while (0)
 220
 221static int efx_check_disabled(struct efx_nic *efx)
 222{
 223        if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
 224                netif_err(efx, drv, efx->net_dev,
 225                          "device is disabled due to earlier errors\n");
 226                return -EIO;
 227        }
 228        return 0;
 229}
 230
 231/**************************************************************************
 232 *
 233 * Event queue processing
 234 *
 235 *************************************************************************/
 236
 237/* Process channel's event queue
 238 *
 239 * This function is responsible for processing the event queue of a
 240 * single channel.  The caller must guarantee that this function will
 241 * never be concurrently called more than once on the same channel,
 242 * though different channels may be being processed concurrently.
 243 */
 244static int efx_process_channel(struct efx_channel *channel, int budget)
 245{
 246        int spent;
 247
 248        if (unlikely(!channel->enabled))
 249                return 0;
 250
 251        spent = efx_nic_process_eventq(channel, budget);
 252        if (spent && efx_channel_has_rx_queue(channel)) {
 253                struct efx_rx_queue *rx_queue =
 254                        efx_channel_get_rx_queue(channel);
 255
 256                efx_rx_flush_packet(channel);
 257                efx_fast_push_rx_descriptors(rx_queue, true);
 258        }
 259
 260        return spent;
 261}
 262
 263/* NAPI poll handler
 264 *
 265 * NAPI guarantees serialisation of polls of the same device, which
 266 * provides the guarantee required by efx_process_channel().
 267 */
 268static int efx_poll(struct napi_struct *napi, int budget)
 269{
 270        struct efx_channel *channel =
 271                container_of(napi, struct efx_channel, napi_str);
 272        struct efx_nic *efx = channel->efx;
 273        int spent;
 274
 275        netif_vdbg(efx, intr, efx->net_dev,
 276                   "channel %d NAPI poll executing on CPU %d\n",
 277                   channel->channel, raw_smp_processor_id());
 278
 279        spent = efx_process_channel(channel, budget);
 280
 281        if (spent < budget) {
 282                if (efx_channel_has_rx_queue(channel) &&
 283                    efx->irq_rx_adaptive &&
 284                    unlikely(++channel->irq_count == 1000)) {
 285                        if (unlikely(channel->irq_mod_score <
 286                                     irq_adapt_low_thresh)) {
 287                                if (channel->irq_moderation > 1) {
 288                                        channel->irq_moderation -= 1;
 289                                        efx->type->push_irq_moderation(channel);
 290                                }
 291                        } else if (unlikely(channel->irq_mod_score >
 292                                            irq_adapt_high_thresh)) {
 293                                if (channel->irq_moderation <
 294                                    efx->irq_rx_moderation) {
 295                                        channel->irq_moderation += 1;
 296                                        efx->type->push_irq_moderation(channel);
 297                                }
 298                        }
 299                        channel->irq_count = 0;
 300                        channel->irq_mod_score = 0;
 301                }
 302
 303                efx_filter_rfs_expire(channel);
 304
 305                /* There is no race here; although napi_disable() will
 306                 * only wait for napi_complete(), this isn't a problem
 307                 * since efx_nic_eventq_read_ack() will have no effect if
 308                 * interrupts have already been disabled.
 309                 */
 310                napi_complete(napi);
 311                efx_nic_eventq_read_ack(channel);
 312        }
 313
 314        return spent;
 315}
 316
 317/* Create event queue
 318 * Event queue memory allocations are done only once.  If the channel
 319 * is reset, the memory buffer will be reused; this guards against
 320 * errors during channel reset and also simplifies interrupt handling.
 321 */
 322static int efx_probe_eventq(struct efx_channel *channel)
 323{
 324        struct efx_nic *efx = channel->efx;
 325        unsigned long entries;
 326
 327        netif_dbg(efx, probe, efx->net_dev,
 328                  "chan %d create event queue\n", channel->channel);
 329
 330        /* Build an event queue with room for one event per tx and rx buffer,
 331         * plus some extra for link state events and MCDI completions. */
 332        entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 333        EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
 334        channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
 335
 336        return efx_nic_probe_eventq(channel);
 337}
 338
 339/* Prepare channel's event queue */
 340static int efx_init_eventq(struct efx_channel *channel)
 341{
 342        struct efx_nic *efx = channel->efx;
 343        int rc;
 344
 345        EFX_WARN_ON_PARANOID(channel->eventq_init);
 346
 347        netif_dbg(efx, drv, efx->net_dev,
 348                  "chan %d init event queue\n", channel->channel);
 349
 350        rc = efx_nic_init_eventq(channel);
 351        if (rc == 0) {
 352                efx->type->push_irq_moderation(channel);
 353                channel->eventq_read_ptr = 0;
 354                channel->eventq_init = true;
 355        }
 356        return rc;
 357}
 358
 359/* Enable event queue processing and NAPI */
 360static void efx_start_eventq(struct efx_channel *channel)
 361{
 362        netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 363                  "chan %d start event queue\n", channel->channel);
 364
 365        /* Make sure the NAPI handler sees the enabled flag set */
 366        channel->enabled = true;
 367        smp_wmb();
 368
 369        napi_enable(&channel->napi_str);
 370        efx_nic_eventq_read_ack(channel);
 371}
 372
 373/* Disable event queue processing and NAPI */
 374static void efx_stop_eventq(struct efx_channel *channel)
 375{
 376        if (!channel->enabled)
 377                return;
 378
 379        napi_disable(&channel->napi_str);
 380        channel->enabled = false;
 381}
 382
 383static void efx_fini_eventq(struct efx_channel *channel)
 384{
 385        if (!channel->eventq_init)
 386                return;
 387
 388        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 389                  "chan %d fini event queue\n", channel->channel);
 390
 391        efx_nic_fini_eventq(channel);
 392        channel->eventq_init = false;
 393}
 394
 395static void efx_remove_eventq(struct efx_channel *channel)
 396{
 397        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 398                  "chan %d remove event queue\n", channel->channel);
 399
 400        efx_nic_remove_eventq(channel);
 401}
 402
 403/**************************************************************************
 404 *
 405 * Channel handling
 406 *
 407 *************************************************************************/
 408
 409/* Allocate and initialise a channel structure. */
 410static struct efx_channel *
 411efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
 412{
 413        struct efx_channel *channel;
 414        struct efx_rx_queue *rx_queue;
 415        struct efx_tx_queue *tx_queue;
 416        int j;
 417
 418        channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 419        if (!channel)
 420                return NULL;
 421
 422        channel->efx = efx;
 423        channel->channel = i;
 424        channel->type = &efx_default_channel_type;
 425
 426        for (j = 0; j < EFX_TXQ_TYPES; j++) {
 427                tx_queue = &channel->tx_queue[j];
 428                tx_queue->efx = efx;
 429                tx_queue->queue = i * EFX_TXQ_TYPES + j;
 430                tx_queue->channel = channel;
 431        }
 432
 433        rx_queue = &channel->rx_queue;
 434        rx_queue->efx = efx;
 435        setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 436                    (unsigned long)rx_queue);
 437
 438        return channel;
 439}
 440
 441/* Allocate and initialise a channel structure, copying parameters
 442 * (but not resources) from an old channel structure.
 443 */
 444static struct efx_channel *
 445efx_copy_channel(const struct efx_channel *old_channel)
 446{
 447        struct efx_channel *channel;
 448        struct efx_rx_queue *rx_queue;
 449        struct efx_tx_queue *tx_queue;
 450        int j;
 451
 452        channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 453        if (!channel)
 454                return NULL;
 455
 456        *channel = *old_channel;
 457
 458        channel->napi_dev = NULL;
 459        memset(&channel->eventq, 0, sizeof(channel->eventq));
 460
 461        for (j = 0; j < EFX_TXQ_TYPES; j++) {
 462                tx_queue = &channel->tx_queue[j];
 463                if (tx_queue->channel)
 464                        tx_queue->channel = channel;
 465                tx_queue->buffer = NULL;
 466                memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 467        }
 468
 469        rx_queue = &channel->rx_queue;
 470        rx_queue->buffer = NULL;
 471        memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 472        setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 473                    (unsigned long)rx_queue);
 474
 475        return channel;
 476}
 477
 478static int efx_probe_channel(struct efx_channel *channel)
 479{
 480        struct efx_tx_queue *tx_queue;
 481        struct efx_rx_queue *rx_queue;
 482        int rc;
 483
 484        netif_dbg(channel->efx, probe, channel->efx->net_dev,
 485                  "creating channel %d\n", channel->channel);
 486
 487        rc = channel->type->pre_probe(channel);
 488        if (rc)
 489                goto fail;
 490
 491        rc = efx_probe_eventq(channel);
 492        if (rc)
 493                goto fail;
 494
 495        efx_for_each_channel_tx_queue(tx_queue, channel) {
 496                rc = efx_probe_tx_queue(tx_queue);
 497                if (rc)
 498                        goto fail;
 499        }
 500
 501        efx_for_each_channel_rx_queue(rx_queue, channel) {
 502                rc = efx_probe_rx_queue(rx_queue);
 503                if (rc)
 504                        goto fail;
 505        }
 506
 507        return 0;
 508
 509fail:
 510        efx_remove_channel(channel);
 511        return rc;
 512}
 513
 514static void
 515efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
 516{
 517        struct efx_nic *efx = channel->efx;
 518        const char *type;
 519        int number;
 520
 521        number = channel->channel;
 522        if (efx->tx_channel_offset == 0) {
 523                type = "";
 524        } else if (channel->channel < efx->tx_channel_offset) {
 525                type = "-rx";
 526        } else {
 527                type = "-tx";
 528                number -= efx->tx_channel_offset;
 529        }
 530        snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 531}
 532
 533static void efx_set_channel_names(struct efx_nic *efx)
 534{
 535        struct efx_channel *channel;
 536
 537        efx_for_each_channel(channel, efx)
 538                channel->type->get_name(channel,
 539                                        efx->msi_context[channel->channel].name,
 540                                        sizeof(efx->msi_context[0].name));
 541}
 542
 543static int efx_probe_channels(struct efx_nic *efx)
 544{
 545        struct efx_channel *channel;
 546        int rc;
 547
 548        /* Restart special buffer allocation */
 549        efx->next_buffer_table = 0;
 550
 551        /* Probe channels in reverse, so that any 'extra' channels
 552         * use the start of the buffer table. This allows the traffic
 553         * channels to be resized without moving them or wasting the
 554         * entries before them.
 555         */
 556        efx_for_each_channel_rev(channel, efx) {
 557                rc = efx_probe_channel(channel);
 558                if (rc) {
 559                        netif_err(efx, probe, efx->net_dev,
 560                                  "failed to create channel %d\n",
 561                                  channel->channel);
 562                        goto fail;
 563                }
 564        }
 565        efx_set_channel_names(efx);
 566
 567        return 0;
 568
 569fail:
 570        efx_remove_channels(efx);
 571        return rc;
 572}
 573
 574/* Channels are shutdown and reinitialised whilst the NIC is running
 575 * to propagate configuration changes (mtu, checksum offload), or
 576 * to clear hardware error conditions
 577 */
 578static void efx_start_datapath(struct efx_nic *efx)
 579{
 580        bool old_rx_scatter = efx->rx_scatter;
 581        struct efx_tx_queue *tx_queue;
 582        struct efx_rx_queue *rx_queue;
 583        struct efx_channel *channel;
 584        size_t rx_buf_len;
 585
 586        /* Calculate the rx buffer allocation parameters required to
 587         * support the current MTU, including padding for header
 588         * alignment and overruns.
 589         */
 590        efx->rx_dma_len = (efx->rx_prefix_size +
 591                           EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 592                           efx->type->rx_buffer_padding);
 593        rx_buf_len = (sizeof(struct efx_rx_page_state) +
 594                      efx->rx_ip_align + efx->rx_dma_len);
 595        if (rx_buf_len <= PAGE_SIZE) {
 596                efx->rx_scatter = efx->type->always_rx_scatter;
 597                efx->rx_buffer_order = 0;
 598        } else if (efx->type->can_rx_scatter) {
 599                BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 600                BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
 601                             2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
 602                                       EFX_RX_BUF_ALIGNMENT) >
 603                             PAGE_SIZE);
 604                efx->rx_scatter = true;
 605                efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
 606                efx->rx_buffer_order = 0;
 607        } else {
 608                efx->rx_scatter = false;
 609                efx->rx_buffer_order = get_order(rx_buf_len);
 610        }
 611
 612        efx_rx_config_page_split(efx);
 613        if (efx->rx_buffer_order)
 614                netif_dbg(efx, drv, efx->net_dev,
 615                          "RX buf len=%u; page order=%u batch=%u\n",
 616                          efx->rx_dma_len, efx->rx_buffer_order,
 617                          efx->rx_pages_per_batch);
 618        else
 619                netif_dbg(efx, drv, efx->net_dev,
 620                          "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 621                          efx->rx_dma_len, efx->rx_page_buf_step,
 622                          efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 623
 624        /* RX filters may also have scatter-enabled flags */
 625        if (efx->rx_scatter != old_rx_scatter)
 626                efx->type->filter_update_rx_scatter(efx);
 627
 628        /* We must keep at least one descriptor in a TX ring empty.
 629         * We could avoid this when the queue size does not exactly
 630         * match the hardware ring size, but it's not that important.
 631         * Therefore we stop the queue when one more skb might fill
 632         * the ring completely.  We wake it when half way back to
 633         * empty.
 634         */
 635        efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
 636        efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 637
 638        /* Initialise the channels */
 639        efx_for_each_channel(channel, efx) {
 640                efx_for_each_channel_tx_queue(tx_queue, channel) {
 641                        efx_init_tx_queue(tx_queue);
 642                        atomic_inc(&efx->active_queues);
 643                }
 644
 645                efx_for_each_channel_rx_queue(rx_queue, channel) {
 646                        efx_init_rx_queue(rx_queue);
 647                        atomic_inc(&efx->active_queues);
 648                        efx_stop_eventq(channel);
 649                        efx_fast_push_rx_descriptors(rx_queue, false);
 650                        efx_start_eventq(channel);
 651                }
 652
 653                WARN_ON(channel->rx_pkt_n_frags);
 654        }
 655
 656        efx_ptp_start_datapath(efx);
 657
 658        if (netif_device_present(efx->net_dev))
 659                netif_tx_wake_all_queues(efx->net_dev);
 660}
 661
 662static void efx_stop_datapath(struct efx_nic *efx)
 663{
 664        struct efx_channel *channel;
 665        struct efx_tx_queue *tx_queue;
 666        struct efx_rx_queue *rx_queue;
 667        int rc;
 668
 669        EFX_ASSERT_RESET_SERIALISED(efx);
 670        BUG_ON(efx->port_enabled);
 671
 672        efx_ptp_stop_datapath(efx);
 673
 674        /* Stop RX refill */
 675        efx_for_each_channel(channel, efx) {
 676                efx_for_each_channel_rx_queue(rx_queue, channel)
 677                        rx_queue->refill_enabled = false;
 678        }
 679
 680        efx_for_each_channel(channel, efx) {
 681                /* RX packet processing is pipelined, so wait for the
 682                 * NAPI handler to complete.  At least event queue 0
 683                 * might be kept active by non-data events, so don't
 684                 * use napi_synchronize() but actually disable NAPI
 685                 * temporarily.
 686                 */
 687                if (efx_channel_has_rx_queue(channel)) {
 688                        efx_stop_eventq(channel);
 689                        efx_start_eventq(channel);
 690                }
 691        }
 692
 693        rc = efx->type->fini_dmaq(efx);
 694        if (rc && EFX_WORKAROUND_7803(efx)) {
 695                /* Schedule a reset to recover from the flush failure. The
 696                 * descriptor caches reference memory we're about to free,
 697                 * but falcon_reconfigure_mac_wrapper() won't reconnect
 698                 * the MACs because of the pending reset.
 699                 */
 700                netif_err(efx, drv, efx->net_dev,
 701                          "Resetting to recover from flush failure\n");
 702                efx_schedule_reset(efx, RESET_TYPE_ALL);
 703        } else if (rc) {
 704                netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 705        } else {
 706                netif_dbg(efx, drv, efx->net_dev,
 707                          "successfully flushed all queues\n");
 708        }
 709
 710        efx_for_each_channel(channel, efx) {
 711                efx_for_each_channel_rx_queue(rx_queue, channel)
 712                        efx_fini_rx_queue(rx_queue);
 713                efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 714                        efx_fini_tx_queue(tx_queue);
 715        }
 716}
 717
 718static void efx_remove_channel(struct efx_channel *channel)
 719{
 720        struct efx_tx_queue *tx_queue;
 721        struct efx_rx_queue *rx_queue;
 722
 723        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 724                  "destroy chan %d\n", channel->channel);
 725
 726        efx_for_each_channel_rx_queue(rx_queue, channel)
 727                efx_remove_rx_queue(rx_queue);
 728        efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 729                efx_remove_tx_queue(tx_queue);
 730        efx_remove_eventq(channel);
 731        channel->type->post_remove(channel);
 732}
 733
 734static void efx_remove_channels(struct efx_nic *efx)
 735{
 736        struct efx_channel *channel;
 737
 738        efx_for_each_channel(channel, efx)
 739                efx_remove_channel(channel);
 740}
 741
 742int
 743efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
 744{
 745        struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
 746        u32 old_rxq_entries, old_txq_entries;
 747        unsigned i, next_buffer_table = 0;
 748        int rc, rc2;
 749
 750        rc = efx_check_disabled(efx);
 751        if (rc)
 752                return rc;
 753
 754        /* Not all channels should be reallocated. We must avoid
 755         * reallocating their buffer table entries.
 756         */
 757        efx_for_each_channel(channel, efx) {
 758                struct efx_rx_queue *rx_queue;
 759                struct efx_tx_queue *tx_queue;
 760
 761                if (channel->type->copy)
 762                        continue;
 763                next_buffer_table = max(next_buffer_table,
 764                                        channel->eventq.index +
 765                                        channel->eventq.entries);
 766                efx_for_each_channel_rx_queue(rx_queue, channel)
 767                        next_buffer_table = max(next_buffer_table,
 768                                                rx_queue->rxd.index +
 769                                                rx_queue->rxd.entries);
 770                efx_for_each_channel_tx_queue(tx_queue, channel)
 771                        next_buffer_table = max(next_buffer_table,
 772                                                tx_queue->txd.index +
 773                                                tx_queue->txd.entries);
 774        }
 775
 776        efx_device_detach_sync(efx);
 777        efx_stop_all(efx);
 778        efx_soft_disable_interrupts(efx);
 779
 780        /* Clone channels (where possible) */
 781        memset(other_channel, 0, sizeof(other_channel));
 782        for (i = 0; i < efx->n_channels; i++) {
 783                channel = efx->channel[i];
 784                if (channel->type->copy)
 785                        channel = channel->type->copy(channel);
 786                if (!channel) {
 787                        rc = -ENOMEM;
 788                        goto out;
 789                }
 790                other_channel[i] = channel;
 791        }
 792
 793        /* Swap entry counts and channel pointers */
 794        old_rxq_entries = efx->rxq_entries;
 795        old_txq_entries = efx->txq_entries;
 796        efx->rxq_entries = rxq_entries;
 797        efx->txq_entries = txq_entries;
 798        for (i = 0; i < efx->n_channels; i++) {
 799                channel = efx->channel[i];
 800                efx->channel[i] = other_channel[i];
 801                other_channel[i] = channel;
 802        }
 803
 804        /* Restart buffer table allocation */
 805        efx->next_buffer_table = next_buffer_table;
 806
 807        for (i = 0; i < efx->n_channels; i++) {
 808                channel = efx->channel[i];
 809                if (!channel->type->copy)
 810                        continue;
 811                rc = efx_probe_channel(channel);
 812                if (rc)
 813                        goto rollback;
 814                efx_init_napi_channel(efx->channel[i]);
 815        }
 816
 817out:
 818        /* Destroy unused channel structures */
 819        for (i = 0; i < efx->n_channels; i++) {
 820                channel = other_channel[i];
 821                if (channel && channel->type->copy) {
 822                        efx_fini_napi_channel(channel);
 823                        efx_remove_channel(channel);
 824                        kfree(channel);
 825                }
 826        }
 827
 828        rc2 = efx_soft_enable_interrupts(efx);
 829        if (rc2) {
 830                rc = rc ? rc : rc2;
 831                netif_err(efx, drv, efx->net_dev,
 832                          "unable to restart interrupts on channel reallocation\n");
 833                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 834        } else {
 835                efx_start_all(efx);
 836                netif_device_attach(efx->net_dev);
 837        }
 838        return rc;
 839
 840rollback:
 841        /* Swap back */
 842        efx->rxq_entries = old_rxq_entries;
 843        efx->txq_entries = old_txq_entries;
 844        for (i = 0; i < efx->n_channels; i++) {
 845                channel = efx->channel[i];
 846                efx->channel[i] = other_channel[i];
 847                other_channel[i] = channel;
 848        }
 849        goto out;
 850}
 851
 852void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 853{
 854        mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 855}
 856
 857static const struct efx_channel_type efx_default_channel_type = {
 858        .pre_probe              = efx_channel_dummy_op_int,
 859        .post_remove            = efx_channel_dummy_op_void,
 860        .get_name               = efx_get_channel_name,
 861        .copy                   = efx_copy_channel,
 862        .keep_eventq            = false,
 863};
 864
 865int efx_channel_dummy_op_int(struct efx_channel *channel)
 866{
 867        return 0;
 868}
 869
 870void efx_channel_dummy_op_void(struct efx_channel *channel)
 871{
 872}
 873
 874/**************************************************************************
 875 *
 876 * Port handling
 877 *
 878 **************************************************************************/
 879
 880/* This ensures that the kernel is kept informed (via
 881 * netif_carrier_on/off) of the link status, and also maintains the
 882 * link status's stop on the port's TX queue.
 883 */
 884void efx_link_status_changed(struct efx_nic *efx)
 885{
 886        struct efx_link_state *link_state = &efx->link_state;
 887
 888        /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 889         * that no events are triggered between unregister_netdev() and the
 890         * driver unloading. A more general condition is that NETDEV_CHANGE
 891         * can only be generated between NETDEV_UP and NETDEV_DOWN */
 892        if (!netif_running(efx->net_dev))
 893                return;
 894
 895        if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 896                efx->n_link_state_changes++;
 897
 898                if (link_state->up)
 899                        netif_carrier_on(efx->net_dev);
 900                else
 901                        netif_carrier_off(efx->net_dev);
 902        }
 903
 904        /* Status message for kernel log */
 905        if (link_state->up)
 906                netif_info(efx, link, efx->net_dev,
 907                           "link up at %uMbps %s-duplex (MTU %d)\n",
 908                           link_state->speed, link_state->fd ? "full" : "half",
 909                           efx->net_dev->mtu);
 910        else
 911                netif_info(efx, link, efx->net_dev, "link down\n");
 912}
 913
 914void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
 915{
 916        efx->link_advertising = advertising;
 917        if (advertising) {
 918                if (advertising & ADVERTISED_Pause)
 919                        efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 920                else
 921                        efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 922                if (advertising & ADVERTISED_Asym_Pause)
 923                        efx->wanted_fc ^= EFX_FC_TX;
 924        }
 925}
 926
 927void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
 928{
 929        efx->wanted_fc = wanted_fc;
 930        if (efx->link_advertising) {
 931                if (wanted_fc & EFX_FC_RX)
 932                        efx->link_advertising |= (ADVERTISED_Pause |
 933                                                  ADVERTISED_Asym_Pause);
 934                else
 935                        efx->link_advertising &= ~(ADVERTISED_Pause |
 936                                                   ADVERTISED_Asym_Pause);
 937                if (wanted_fc & EFX_FC_TX)
 938                        efx->link_advertising ^= ADVERTISED_Asym_Pause;
 939        }
 940}
 941
 942static void efx_fini_port(struct efx_nic *efx);
 943
 944/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 945 * the MAC appropriately. All other PHY configuration changes are pushed
 946 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 947 * through efx_monitor().
 948 *
 949 * Callers must hold the mac_lock
 950 */
 951int __efx_reconfigure_port(struct efx_nic *efx)
 952{
 953        enum efx_phy_mode phy_mode;
 954        int rc;
 955
 956        WARN_ON(!mutex_is_locked(&efx->mac_lock));
 957
 958        /* Disable PHY transmit in mac level loopbacks */
 959        phy_mode = efx->phy_mode;
 960        if (LOOPBACK_INTERNAL(efx))
 961                efx->phy_mode |= PHY_MODE_TX_DISABLED;
 962        else
 963                efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 964
 965        rc = efx->type->reconfigure_port(efx);
 966
 967        if (rc)
 968                efx->phy_mode = phy_mode;
 969
 970        return rc;
 971}
 972
 973/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 974 * disabled. */
 975int efx_reconfigure_port(struct efx_nic *efx)
 976{
 977        int rc;
 978
 979        EFX_ASSERT_RESET_SERIALISED(efx);
 980
 981        mutex_lock(&efx->mac_lock);
 982        rc = __efx_reconfigure_port(efx);
 983        mutex_unlock(&efx->mac_lock);
 984
 985        return rc;
 986}
 987
 988/* Asynchronous work item for changing MAC promiscuity and multicast
 989 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 990 * MAC directly. */
 991static void efx_mac_work(struct work_struct *data)
 992{
 993        struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 994
 995        mutex_lock(&efx->mac_lock);
 996        if (efx->port_enabled)
 997                efx->type->reconfigure_mac(efx);
 998        mutex_unlock(&efx->mac_lock);
 999}
1000
1001static int efx_probe_port(struct efx_nic *efx)
1002{
1003        int rc;
1004
1005        netif_dbg(efx, probe, efx->net_dev, "create port\n");
1006
1007        if (phy_flash_cfg)
1008                efx->phy_mode = PHY_MODE_SPECIAL;
1009
1010        /* Connect up MAC/PHY operations table */
1011        rc = efx->type->probe_port(efx);
1012        if (rc)
1013                return rc;
1014
1015        /* Initialise MAC address to permanent address */
1016        ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1017
1018        return 0;
1019}
1020
1021static int efx_init_port(struct efx_nic *efx)
1022{
1023        int rc;
1024
1025        netif_dbg(efx, drv, efx->net_dev, "init port\n");
1026
1027        mutex_lock(&efx->mac_lock);
1028
1029        rc = efx->phy_op->init(efx);
1030        if (rc)
1031                goto fail1;
1032
1033        efx->port_initialized = true;
1034
1035        /* Reconfigure the MAC before creating dma queues (required for
1036         * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1037        efx->type->reconfigure_mac(efx);
1038
1039        /* Ensure the PHY advertises the correct flow control settings */
1040        rc = efx->phy_op->reconfigure(efx);
1041        if (rc)
1042                goto fail2;
1043
1044        mutex_unlock(&efx->mac_lock);
1045        return 0;
1046
1047fail2:
1048        efx->phy_op->fini(efx);
1049fail1:
1050        mutex_unlock(&efx->mac_lock);
1051        return rc;
1052}
1053
1054static void efx_start_port(struct efx_nic *efx)
1055{
1056        netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1057        BUG_ON(efx->port_enabled);
1058
1059        mutex_lock(&efx->mac_lock);
1060        efx->port_enabled = true;
1061
1062        /* Ensure MAC ingress/egress is enabled */
1063        efx->type->reconfigure_mac(efx);
1064
1065        mutex_unlock(&efx->mac_lock);
1066}
1067
1068/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1069 * and the async self-test, wait for them to finish and prevent them
1070 * being scheduled again.  This doesn't cover online resets, which
1071 * should only be cancelled when removing the device.
1072 */
1073static void efx_stop_port(struct efx_nic *efx)
1074{
1075        netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1076
1077        EFX_ASSERT_RESET_SERIALISED(efx);
1078
1079        mutex_lock(&efx->mac_lock);
1080        efx->port_enabled = false;
1081        mutex_unlock(&efx->mac_lock);
1082
1083        /* Serialise against efx_set_multicast_list() */
1084        netif_addr_lock_bh(efx->net_dev);
1085        netif_addr_unlock_bh(efx->net_dev);
1086
1087        cancel_delayed_work_sync(&efx->monitor_work);
1088        efx_selftest_async_cancel(efx);
1089        cancel_work_sync(&efx->mac_work);
1090}
1091
1092static void efx_fini_port(struct efx_nic *efx)
1093{
1094        netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1095
1096        if (!efx->port_initialized)
1097                return;
1098
1099        efx->phy_op->fini(efx);
1100        efx->port_initialized = false;
1101
1102        efx->link_state.up = false;
1103        efx_link_status_changed(efx);
1104}
1105
1106static void efx_remove_port(struct efx_nic *efx)
1107{
1108        netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1109
1110        efx->type->remove_port(efx);
1111}
1112
1113/**************************************************************************
1114 *
1115 * NIC handling
1116 *
1117 **************************************************************************/
1118
1119static LIST_HEAD(efx_primary_list);
1120static LIST_HEAD(efx_unassociated_list);
1121
1122static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1123{
1124        return left->type == right->type &&
1125                left->vpd_sn && right->vpd_sn &&
1126                !strcmp(left->vpd_sn, right->vpd_sn);
1127}
1128
1129static void efx_associate(struct efx_nic *efx)
1130{
1131        struct efx_nic *other, *next;
1132
1133        if (efx->primary == efx) {
1134                /* Adding primary function; look for secondaries */
1135
1136                netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1137                list_add_tail(&efx->node, &efx_primary_list);
1138
1139                list_for_each_entry_safe(other, next, &efx_unassociated_list,
1140                                         node) {
1141                        if (efx_same_controller(efx, other)) {
1142                                list_del(&other->node);
1143                                netif_dbg(other, probe, other->net_dev,
1144                                          "moving to secondary list of %s %s\n",
1145                                          pci_name(efx->pci_dev),
1146                                          efx->net_dev->name);
1147                                list_add_tail(&other->node,
1148                                              &efx->secondary_list);
1149                                other->primary = efx;
1150                        }
1151                }
1152        } else {
1153                /* Adding secondary function; look for primary */
1154
1155                list_for_each_entry(other, &efx_primary_list, node) {
1156                        if (efx_same_controller(efx, other)) {
1157                                netif_dbg(efx, probe, efx->net_dev,
1158                                          "adding to secondary list of %s %s\n",
1159                                          pci_name(other->pci_dev),
1160                                          other->net_dev->name);
1161                                list_add_tail(&efx->node,
1162                                              &other->secondary_list);
1163                                efx->primary = other;
1164                                return;
1165                        }
1166                }
1167
1168                netif_dbg(efx, probe, efx->net_dev,
1169                          "adding to unassociated list\n");
1170                list_add_tail(&efx->node, &efx_unassociated_list);
1171        }
1172}
1173
1174static void efx_dissociate(struct efx_nic *efx)
1175{
1176        struct efx_nic *other, *next;
1177
1178        list_del(&efx->node);
1179        efx->primary = NULL;
1180
1181        list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1182                list_del(&other->node);
1183                netif_dbg(other, probe, other->net_dev,
1184                          "moving to unassociated list\n");
1185                list_add_tail(&other->node, &efx_unassociated_list);
1186                other->primary = NULL;
1187        }
1188}
1189
1190/* This configures the PCI device to enable I/O and DMA. */
1191static int efx_init_io(struct efx_nic *efx)
1192{
1193        struct pci_dev *pci_dev = efx->pci_dev;
1194        dma_addr_t dma_mask = efx->type->max_dma_mask;
1195        unsigned int mem_map_size = efx->type->mem_map_size(efx);
1196        int rc;
1197
1198        netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1199
1200        rc = pci_enable_device(pci_dev);
1201        if (rc) {
1202                netif_err(efx, probe, efx->net_dev,
1203                          "failed to enable PCI device\n");
1204                goto fail1;
1205        }
1206
1207        pci_set_master(pci_dev);
1208
1209        /* Set the PCI DMA mask.  Try all possibilities from our
1210         * genuine mask down to 32 bits, because some architectures
1211         * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1212         * masks event though they reject 46 bit masks.
1213         */
1214        while (dma_mask > 0x7fffffffUL) {
1215                if (dma_supported(&pci_dev->dev, dma_mask)) {
1216                        rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1217                        if (rc == 0)
1218                                break;
1219                }
1220                dma_mask >>= 1;
1221        }
1222        if (rc) {
1223                netif_err(efx, probe, efx->net_dev,
1224                          "could not find a suitable DMA mask\n");
1225                goto fail2;
1226        }
1227        netif_dbg(efx, probe, efx->net_dev,
1228                  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1229
1230        efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1231        rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1232        if (rc) {
1233                netif_err(efx, probe, efx->net_dev,
1234                          "request for memory BAR failed\n");
1235                rc = -EIO;
1236                goto fail3;
1237        }
1238        efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1239        if (!efx->membase) {
1240                netif_err(efx, probe, efx->net_dev,
1241                          "could not map memory BAR at %llx+%x\n",
1242                          (unsigned long long)efx->membase_phys, mem_map_size);
1243                rc = -ENOMEM;
1244                goto fail4;
1245        }
1246        netif_dbg(efx, probe, efx->net_dev,
1247                  "memory BAR at %llx+%x (virtual %p)\n",
1248                  (unsigned long long)efx->membase_phys, mem_map_size,
1249                  efx->membase);
1250
1251        return 0;
1252
1253 fail4:
1254        pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1255 fail3:
1256        efx->membase_phys = 0;
1257 fail2:
1258        pci_disable_device(efx->pci_dev);
1259 fail1:
1260        return rc;
1261}
1262
1263static void efx_fini_io(struct efx_nic *efx)
1264{
1265        netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1266
1267        if (efx->membase) {
1268                iounmap(efx->membase);
1269                efx->membase = NULL;
1270        }
1271
1272        if (efx->membase_phys) {
1273                pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1274                efx->membase_phys = 0;
1275        }
1276
1277        pci_disable_device(efx->pci_dev);
1278}
1279
1280static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1281{
1282        cpumask_var_t thread_mask;
1283        unsigned int count;
1284        int cpu;
1285
1286        if (rss_cpus) {
1287                count = rss_cpus;
1288        } else {
1289                if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1290                        netif_warn(efx, probe, efx->net_dev,
1291                                   "RSS disabled due to allocation failure\n");
1292                        return 1;
1293                }
1294
1295                count = 0;
1296                for_each_online_cpu(cpu) {
1297                        if (!cpumask_test_cpu(cpu, thread_mask)) {
1298                                ++count;
1299                                cpumask_or(thread_mask, thread_mask,
1300                                           topology_thread_cpumask(cpu));
1301                        }
1302                }
1303
1304                free_cpumask_var(thread_mask);
1305        }
1306
1307        /* If RSS is requested for the PF *and* VFs then we can't write RSS
1308         * table entries that are inaccessible to VFs
1309         */
1310        if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1311            count > efx_vf_size(efx)) {
1312                netif_warn(efx, probe, efx->net_dev,
1313                           "Reducing number of RSS channels from %u to %u for "
1314                           "VF support. Increase vf-msix-limit to use more "
1315                           "channels on the PF.\n",
1316                           count, efx_vf_size(efx));
1317                count = efx_vf_size(efx);
1318        }
1319
1320        return count;
1321}
1322
1323/* Probe the number and type of interrupts we are able to obtain, and
1324 * the resulting numbers of channels and RX queues.
1325 */
1326static int efx_probe_interrupts(struct efx_nic *efx)
1327{
1328        unsigned int extra_channels = 0;
1329        unsigned int i, j;
1330        int rc;
1331
1332        for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1333                if (efx->extra_channel_type[i])
1334                        ++extra_channels;
1335
1336        if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1337                struct msix_entry xentries[EFX_MAX_CHANNELS];
1338                unsigned int n_channels;
1339
1340                n_channels = efx_wanted_parallelism(efx);
1341                if (separate_tx_channels)
1342                        n_channels *= 2;
1343                n_channels += extra_channels;
1344                n_channels = min(n_channels, efx->max_channels);
1345
1346                for (i = 0; i < n_channels; i++)
1347                        xentries[i].entry = i;
1348                rc = pci_enable_msix_range(efx->pci_dev,
1349                                           xentries, 1, n_channels);
1350                if (rc < 0) {
1351                        /* Fall back to single channel MSI */
1352                        efx->interrupt_mode = EFX_INT_MODE_MSI;
1353                        netif_err(efx, drv, efx->net_dev,
1354                                  "could not enable MSI-X\n");
1355                } else if (rc < n_channels) {
1356                        netif_err(efx, drv, efx->net_dev,
1357                                  "WARNING: Insufficient MSI-X vectors"
1358                                  " available (%d < %u).\n", rc, n_channels);
1359                        netif_err(efx, drv, efx->net_dev,
1360                                  "WARNING: Performance may be reduced.\n");
1361                        n_channels = rc;
1362                }
1363
1364                if (rc > 0) {
1365                        efx->n_channels = n_channels;
1366                        if (n_channels > extra_channels)
1367                                n_channels -= extra_channels;
1368                        if (separate_tx_channels) {
1369                                efx->n_tx_channels = max(n_channels / 2, 1U);
1370                                efx->n_rx_channels = max(n_channels -
1371                                                         efx->n_tx_channels,
1372                                                         1U);
1373                        } else {
1374                                efx->n_tx_channels = n_channels;
1375                                efx->n_rx_channels = n_channels;
1376                        }
1377                        for (i = 0; i < efx->n_channels; i++)
1378                                efx_get_channel(efx, i)->irq =
1379                                        xentries[i].vector;
1380                }
1381        }
1382
1383        /* Try single interrupt MSI */
1384        if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1385                efx->n_channels = 1;
1386                efx->n_rx_channels = 1;
1387                efx->n_tx_channels = 1;
1388                rc = pci_enable_msi(efx->pci_dev);
1389                if (rc == 0) {
1390                        efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1391                } else {
1392                        netif_err(efx, drv, efx->net_dev,
1393                                  "could not enable MSI\n");
1394                        efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1395                }
1396        }
1397
1398        /* Assume legacy interrupts */
1399        if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1400                efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1401                efx->n_rx_channels = 1;
1402                efx->n_tx_channels = 1;
1403                efx->legacy_irq = efx->pci_dev->irq;
1404        }
1405
1406        /* Assign extra channels if possible */
1407        j = efx->n_channels;
1408        for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1409                if (!efx->extra_channel_type[i])
1410                        continue;
1411                if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1412                    efx->n_channels <= extra_channels) {
1413                        efx->extra_channel_type[i]->handle_no_channel(efx);
1414                } else {
1415                        --j;
1416                        efx_get_channel(efx, j)->type =
1417                                efx->extra_channel_type[i];
1418                }
1419        }
1420
1421        /* RSS might be usable on VFs even if it is disabled on the PF */
1422        efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1423                           efx->n_rx_channels : efx_vf_size(efx));
1424
1425        return 0;
1426}
1427
1428static int efx_soft_enable_interrupts(struct efx_nic *efx)
1429{
1430        struct efx_channel *channel, *end_channel;
1431        int rc;
1432
1433        BUG_ON(efx->state == STATE_DISABLED);
1434
1435        efx->irq_soft_enabled = true;
1436        smp_wmb();
1437
1438        efx_for_each_channel(channel, efx) {
1439                if (!channel->type->keep_eventq) {
1440                        rc = efx_init_eventq(channel);
1441                        if (rc)
1442                                goto fail;
1443                }
1444                efx_start_eventq(channel);
1445        }
1446
1447        efx_mcdi_mode_event(efx);
1448
1449        return 0;
1450fail:
1451        end_channel = channel;
1452        efx_for_each_channel(channel, efx) {
1453                if (channel == end_channel)
1454                        break;
1455                efx_stop_eventq(channel);
1456                if (!channel->type->keep_eventq)
1457                        efx_fini_eventq(channel);
1458        }
1459
1460        return rc;
1461}
1462
1463static void efx_soft_disable_interrupts(struct efx_nic *efx)
1464{
1465        struct efx_channel *channel;
1466
1467        if (efx->state == STATE_DISABLED)
1468                return;
1469
1470        efx_mcdi_mode_poll(efx);
1471
1472        efx->irq_soft_enabled = false;
1473        smp_wmb();
1474
1475        if (efx->legacy_irq)
1476                synchronize_irq(efx->legacy_irq);
1477
1478        efx_for_each_channel(channel, efx) {
1479                if (channel->irq)
1480                        synchronize_irq(channel->irq);
1481
1482                efx_stop_eventq(channel);
1483                if (!channel->type->keep_eventq)
1484                        efx_fini_eventq(channel);
1485        }
1486
1487        /* Flush the asynchronous MCDI request queue */
1488        efx_mcdi_flush_async(efx);
1489}
1490
1491static int efx_enable_interrupts(struct efx_nic *efx)
1492{
1493        struct efx_channel *channel, *end_channel;
1494        int rc;
1495
1496        BUG_ON(efx->state == STATE_DISABLED);
1497
1498        if (efx->eeh_disabled_legacy_irq) {
1499                enable_irq(efx->legacy_irq);
1500                efx->eeh_disabled_legacy_irq = false;
1501        }
1502
1503        efx->type->irq_enable_master(efx);
1504
1505        efx_for_each_channel(channel, efx) {
1506                if (channel->type->keep_eventq) {
1507                        rc = efx_init_eventq(channel);
1508                        if (rc)
1509                                goto fail;
1510                }
1511        }
1512
1513        rc = efx_soft_enable_interrupts(efx);
1514        if (rc)
1515                goto fail;
1516
1517        return 0;
1518
1519fail:
1520        end_channel = channel;
1521        efx_for_each_channel(channel, efx) {
1522                if (channel == end_channel)
1523                        break;
1524                if (channel->type->keep_eventq)
1525                        efx_fini_eventq(channel);
1526        }
1527
1528        efx->type->irq_disable_non_ev(efx);
1529
1530        return rc;
1531}
1532
1533static void efx_disable_interrupts(struct efx_nic *efx)
1534{
1535        struct efx_channel *channel;
1536
1537        efx_soft_disable_interrupts(efx);
1538
1539        efx_for_each_channel(channel, efx) {
1540                if (channel->type->keep_eventq)
1541                        efx_fini_eventq(channel);
1542        }
1543
1544        efx->type->irq_disable_non_ev(efx);
1545}
1546
1547static void efx_remove_interrupts(struct efx_nic *efx)
1548{
1549        struct efx_channel *channel;
1550
1551        /* Remove MSI/MSI-X interrupts */
1552        efx_for_each_channel(channel, efx)
1553                channel->irq = 0;
1554        pci_disable_msi(efx->pci_dev);
1555        pci_disable_msix(efx->pci_dev);
1556
1557        /* Remove legacy interrupt */
1558        efx->legacy_irq = 0;
1559}
1560
1561static void efx_set_channels(struct efx_nic *efx)
1562{
1563        struct efx_channel *channel;
1564        struct efx_tx_queue *tx_queue;
1565
1566        efx->tx_channel_offset =
1567                separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1568
1569        /* We need to mark which channels really have RX and TX
1570         * queues, and adjust the TX queue numbers if we have separate
1571         * RX-only and TX-only channels.
1572         */
1573        efx_for_each_channel(channel, efx) {
1574                if (channel->channel < efx->n_rx_channels)
1575                        channel->rx_queue.core_index = channel->channel;
1576                else
1577                        channel->rx_queue.core_index = -1;
1578
1579                efx_for_each_channel_tx_queue(tx_queue, channel)
1580                        tx_queue->queue -= (efx->tx_channel_offset *
1581                                            EFX_TXQ_TYPES);
1582        }
1583}
1584
1585static int efx_probe_nic(struct efx_nic *efx)
1586{
1587        size_t i;
1588        int rc;
1589
1590        netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1591
1592        /* Carry out hardware-type specific initialisation */
1593        rc = efx->type->probe(efx);
1594        if (rc)
1595                return rc;
1596
1597        /* Determine the number of channels and queues by trying to hook
1598         * in MSI-X interrupts. */
1599        rc = efx_probe_interrupts(efx);
1600        if (rc)
1601                goto fail1;
1602
1603        efx_set_channels(efx);
1604
1605        rc = efx->type->dimension_resources(efx);
1606        if (rc)
1607                goto fail2;
1608
1609        if (efx->n_channels > 1)
1610                get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1611        for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1612                efx->rx_indir_table[i] =
1613                        ethtool_rxfh_indir_default(i, efx->rss_spread);
1614
1615        netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1616        netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1617
1618        /* Initialise the interrupt moderation settings */
1619        efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1620                                true);
1621
1622        return 0;
1623
1624fail2:
1625        efx_remove_interrupts(efx);
1626fail1:
1627        efx->type->remove(efx);
1628        return rc;
1629}
1630
1631static void efx_remove_nic(struct efx_nic *efx)
1632{
1633        netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1634
1635        efx_remove_interrupts(efx);
1636        efx->type->remove(efx);
1637}
1638
1639static int efx_probe_filters(struct efx_nic *efx)
1640{
1641        int rc;
1642
1643        spin_lock_init(&efx->filter_lock);
1644
1645        rc = efx->type->filter_table_probe(efx);
1646        if (rc)
1647                return rc;
1648
1649#ifdef CONFIG_RFS_ACCEL
1650        if (efx->type->offload_features & NETIF_F_NTUPLE) {
1651                efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1652                                           sizeof(*efx->rps_flow_id),
1653                                           GFP_KERNEL);
1654                if (!efx->rps_flow_id) {
1655                        efx->type->filter_table_remove(efx);
1656                        return -ENOMEM;
1657                }
1658        }
1659#endif
1660
1661        return 0;
1662}
1663
1664static void efx_remove_filters(struct efx_nic *efx)
1665{
1666#ifdef CONFIG_RFS_ACCEL
1667        kfree(efx->rps_flow_id);
1668#endif
1669        efx->type->filter_table_remove(efx);
1670}
1671
1672static void efx_restore_filters(struct efx_nic *efx)
1673{
1674        efx->type->filter_table_restore(efx);
1675}
1676
1677/**************************************************************************
1678 *
1679 * NIC startup/shutdown
1680 *
1681 *************************************************************************/
1682
1683static int efx_probe_all(struct efx_nic *efx)
1684{
1685        int rc;
1686
1687        rc = efx_probe_nic(efx);
1688        if (rc) {
1689                netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1690                goto fail1;
1691        }
1692
1693        rc = efx_probe_port(efx);
1694        if (rc) {
1695                netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1696                goto fail2;
1697        }
1698
1699        BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1700        if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1701                rc = -EINVAL;
1702                goto fail3;
1703        }
1704        efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1705
1706        rc = efx_probe_filters(efx);
1707        if (rc) {
1708                netif_err(efx, probe, efx->net_dev,
1709                          "failed to create filter tables\n");
1710                goto fail3;
1711        }
1712
1713        rc = efx_probe_channels(efx);
1714        if (rc)
1715                goto fail4;
1716
1717        return 0;
1718
1719 fail4:
1720        efx_remove_filters(efx);
1721 fail3:
1722        efx_remove_port(efx);
1723 fail2:
1724        efx_remove_nic(efx);
1725 fail1:
1726        return rc;
1727}
1728
1729/* If the interface is supposed to be running but is not, start
1730 * the hardware and software data path, regular activity for the port
1731 * (MAC statistics, link polling, etc.) and schedule the port to be
1732 * reconfigured.  Interrupts must already be enabled.  This function
1733 * is safe to call multiple times, so long as the NIC is not disabled.
1734 * Requires the RTNL lock.
1735 */
1736static void efx_start_all(struct efx_nic *efx)
1737{
1738        EFX_ASSERT_RESET_SERIALISED(efx);
1739        BUG_ON(efx->state == STATE_DISABLED);
1740
1741        /* Check that it is appropriate to restart the interface. All
1742         * of these flags are safe to read under just the rtnl lock */
1743        if (efx->port_enabled || !netif_running(efx->net_dev) ||
1744            efx->reset_pending)
1745                return;
1746
1747        efx_start_port(efx);
1748        efx_start_datapath(efx);
1749
1750        /* Start the hardware monitor if there is one */
1751        if (efx->type->monitor != NULL)
1752                queue_delayed_work(efx->workqueue, &efx->monitor_work,
1753                                   efx_monitor_interval);
1754
1755        /* If link state detection is normally event-driven, we have
1756         * to poll now because we could have missed a change
1757         */
1758        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1759                mutex_lock(&efx->mac_lock);
1760                if (efx->phy_op->poll(efx))
1761                        efx_link_status_changed(efx);
1762                mutex_unlock(&efx->mac_lock);
1763        }
1764
1765        efx->type->start_stats(efx);
1766        efx->type->pull_stats(efx);
1767        spin_lock_bh(&efx->stats_lock);
1768        efx->type->update_stats(efx, NULL, NULL);
1769        spin_unlock_bh(&efx->stats_lock);
1770}
1771
1772/* Quiesce the hardware and software data path, and regular activity
1773 * for the port without bringing the link down.  Safe to call multiple
1774 * times with the NIC in almost any state, but interrupts should be
1775 * enabled.  Requires the RTNL lock.
1776 */
1777static void efx_stop_all(struct efx_nic *efx)
1778{
1779        EFX_ASSERT_RESET_SERIALISED(efx);
1780
1781        /* port_enabled can be read safely under the rtnl lock */
1782        if (!efx->port_enabled)
1783                return;
1784
1785        /* update stats before we go down so we can accurately count
1786         * rx_nodesc_drops
1787         */
1788        efx->type->pull_stats(efx);
1789        spin_lock_bh(&efx->stats_lock);
1790        efx->type->update_stats(efx, NULL, NULL);
1791        spin_unlock_bh(&efx->stats_lock);
1792        efx->type->stop_stats(efx);
1793        efx_stop_port(efx);
1794
1795        /* Stop the kernel transmit interface.  This is only valid if
1796         * the device is stopped or detached; otherwise the watchdog
1797         * may fire immediately.
1798         */
1799        WARN_ON(netif_running(efx->net_dev) &&
1800                netif_device_present(efx->net_dev));
1801        netif_tx_disable(efx->net_dev);
1802
1803        efx_stop_datapath(efx);
1804}
1805
1806static void efx_remove_all(struct efx_nic *efx)
1807{
1808        efx_remove_channels(efx);
1809        efx_remove_filters(efx);
1810        efx_remove_port(efx);
1811        efx_remove_nic(efx);
1812}
1813
1814/**************************************************************************
1815 *
1816 * Interrupt moderation
1817 *
1818 **************************************************************************/
1819
1820static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1821{
1822        if (usecs == 0)
1823                return 0;
1824        if (usecs * 1000 < quantum_ns)
1825                return 1; /* never round down to 0 */
1826        return usecs * 1000 / quantum_ns;
1827}
1828
1829/* Set interrupt moderation parameters */
1830int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1831                            unsigned int rx_usecs, bool rx_adaptive,
1832                            bool rx_may_override_tx)
1833{
1834        struct efx_channel *channel;
1835        unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1836                                                efx->timer_quantum_ns,
1837                                                1000);
1838        unsigned int tx_ticks;
1839        unsigned int rx_ticks;
1840
1841        EFX_ASSERT_RESET_SERIALISED(efx);
1842
1843        if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1844                return -EINVAL;
1845
1846        tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1847        rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1848
1849        if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1850            !rx_may_override_tx) {
1851                netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1852                          "RX and TX IRQ moderation must be equal\n");
1853                return -EINVAL;
1854        }
1855
1856        efx->irq_rx_adaptive = rx_adaptive;
1857        efx->irq_rx_moderation = rx_ticks;
1858        efx_for_each_channel(channel, efx) {
1859                if (efx_channel_has_rx_queue(channel))
1860                        channel->irq_moderation = rx_ticks;
1861                else if (efx_channel_has_tx_queues(channel))
1862                        channel->irq_moderation = tx_ticks;
1863        }
1864
1865        return 0;
1866}
1867
1868void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1869                            unsigned int *rx_usecs, bool *rx_adaptive)
1870{
1871        /* We must round up when converting ticks to microseconds
1872         * because we round down when converting the other way.
1873         */
1874
1875        *rx_adaptive = efx->irq_rx_adaptive;
1876        *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1877                                 efx->timer_quantum_ns,
1878                                 1000);
1879
1880        /* If channels are shared between RX and TX, so is IRQ
1881         * moderation.  Otherwise, IRQ moderation is the same for all
1882         * TX channels and is not adaptive.
1883         */
1884        if (efx->tx_channel_offset == 0)
1885                *tx_usecs = *rx_usecs;
1886        else
1887                *tx_usecs = DIV_ROUND_UP(
1888                        efx->channel[efx->tx_channel_offset]->irq_moderation *
1889                        efx->timer_quantum_ns,
1890                        1000);
1891}
1892
1893/**************************************************************************
1894 *
1895 * Hardware monitor
1896 *
1897 **************************************************************************/
1898
1899/* Run periodically off the general workqueue */
1900static void efx_monitor(struct work_struct *data)
1901{
1902        struct efx_nic *efx = container_of(data, struct efx_nic,
1903                                           monitor_work.work);
1904
1905        netif_vdbg(efx, timer, efx->net_dev,
1906                   "hardware monitor executing on CPU %d\n",
1907                   raw_smp_processor_id());
1908        BUG_ON(efx->type->monitor == NULL);
1909
1910        /* If the mac_lock is already held then it is likely a port
1911         * reconfiguration is already in place, which will likely do
1912         * most of the work of monitor() anyway. */
1913        if (mutex_trylock(&efx->mac_lock)) {
1914                if (efx->port_enabled)
1915                        efx->type->monitor(efx);
1916                mutex_unlock(&efx->mac_lock);
1917        }
1918
1919        queue_delayed_work(efx->workqueue, &efx->monitor_work,
1920                           efx_monitor_interval);
1921}
1922
1923/**************************************************************************
1924 *
1925 * ioctls
1926 *
1927 *************************************************************************/
1928
1929/* Net device ioctl
1930 * Context: process, rtnl_lock() held.
1931 */
1932static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1933{
1934        struct efx_nic *efx = netdev_priv(net_dev);
1935        struct mii_ioctl_data *data = if_mii(ifr);
1936
1937        if (cmd == SIOCSHWTSTAMP)
1938                return efx_ptp_set_ts_config(efx, ifr);
1939        if (cmd == SIOCGHWTSTAMP)
1940                return efx_ptp_get_ts_config(efx, ifr);
1941
1942        /* Convert phy_id from older PRTAD/DEVAD format */
1943        if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1944            (data->phy_id & 0xfc00) == 0x0400)
1945                data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1946
1947        return mdio_mii_ioctl(&efx->mdio, data, cmd);
1948}
1949
1950/**************************************************************************
1951 *
1952 * NAPI interface
1953 *
1954 **************************************************************************/
1955
1956static void efx_init_napi_channel(struct efx_channel *channel)
1957{
1958        struct efx_nic *efx = channel->efx;
1959
1960        channel->napi_dev = efx->net_dev;
1961        netif_napi_add(channel->napi_dev, &channel->napi_str,
1962                       efx_poll, napi_weight);
1963}
1964
1965static void efx_init_napi(struct efx_nic *efx)
1966{
1967        struct efx_channel *channel;
1968
1969        efx_for_each_channel(channel, efx)
1970                efx_init_napi_channel(channel);
1971}
1972
1973static void efx_fini_napi_channel(struct efx_channel *channel)
1974{
1975        if (channel->napi_dev)
1976                netif_napi_del(&channel->napi_str);
1977        channel->napi_dev = NULL;
1978}
1979
1980static void efx_fini_napi(struct efx_nic *efx)
1981{
1982        struct efx_channel *channel;
1983
1984        efx_for_each_channel(channel, efx)
1985                efx_fini_napi_channel(channel);
1986}
1987
1988/**************************************************************************
1989 *
1990 * Kernel netpoll interface
1991 *
1992 *************************************************************************/
1993
1994#ifdef CONFIG_NET_POLL_CONTROLLER
1995
1996/* Although in the common case interrupts will be disabled, this is not
1997 * guaranteed. However, all our work happens inside the NAPI callback,
1998 * so no locking is required.
1999 */
2000static void efx_netpoll(struct net_device *net_dev)
2001{
2002        struct efx_nic *efx = netdev_priv(net_dev);
2003        struct efx_channel *channel;
2004
2005        efx_for_each_channel(channel, efx)
2006                efx_schedule_channel(channel);
2007}
2008
2009#endif
2010
2011/**************************************************************************
2012 *
2013 * Kernel net device interface
2014 *
2015 *************************************************************************/
2016
2017/* Context: process, rtnl_lock() held. */
2018static int efx_net_open(struct net_device *net_dev)
2019{
2020        struct efx_nic *efx = netdev_priv(net_dev);
2021        int rc;
2022
2023        netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2024                  raw_smp_processor_id());
2025
2026        rc = efx_check_disabled(efx);
2027        if (rc)
2028                return rc;
2029        if (efx->phy_mode & PHY_MODE_SPECIAL)
2030                return -EBUSY;
2031        if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2032                return -EIO;
2033
2034        /* Notify the kernel of the link state polled during driver load,
2035         * before the monitor starts running */
2036        efx_link_status_changed(efx);
2037
2038        efx_start_all(efx);
2039        efx_selftest_async_start(efx);
2040        return 0;
2041}
2042
2043/* Context: process, rtnl_lock() held.
2044 * Note that the kernel will ignore our return code; this method
2045 * should really be a void.
2046 */
2047static int efx_net_stop(struct net_device *net_dev)
2048{
2049        struct efx_nic *efx = netdev_priv(net_dev);
2050
2051        netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2052                  raw_smp_processor_id());
2053
2054        /* Stop the device and flush all the channels */
2055        efx_stop_all(efx);
2056
2057        return 0;
2058}
2059
2060/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2061static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2062                                               struct rtnl_link_stats64 *stats)
2063{
2064        struct efx_nic *efx = netdev_priv(net_dev);
2065
2066        spin_lock_bh(&efx->stats_lock);
2067        efx->type->update_stats(efx, NULL, stats);
2068        spin_unlock_bh(&efx->stats_lock);
2069
2070        return stats;
2071}
2072
2073/* Context: netif_tx_lock held, BHs disabled. */
2074static void efx_watchdog(struct net_device *net_dev)
2075{
2076        struct efx_nic *efx = netdev_priv(net_dev);
2077
2078        netif_err(efx, tx_err, efx->net_dev,
2079                  "TX stuck with port_enabled=%d: resetting channels\n",
2080                  efx->port_enabled);
2081
2082        efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2083}
2084
2085
2086/* Context: process, rtnl_lock() held. */
2087static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2088{
2089        struct efx_nic *efx = netdev_priv(net_dev);
2090        int rc;
2091
2092        rc = efx_check_disabled(efx);
2093        if (rc)
2094                return rc;
2095        if (new_mtu > EFX_MAX_MTU)
2096                return -EINVAL;
2097
2098        netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2099
2100        efx_device_detach_sync(efx);
2101        efx_stop_all(efx);
2102
2103        mutex_lock(&efx->mac_lock);
2104        net_dev->mtu = new_mtu;
2105        efx->type->reconfigure_mac(efx);
2106        mutex_unlock(&efx->mac_lock);
2107
2108        efx_start_all(efx);
2109        netif_device_attach(efx->net_dev);
2110        return 0;
2111}
2112
2113static int efx_set_mac_address(struct net_device *net_dev, void *data)
2114{
2115        struct efx_nic *efx = netdev_priv(net_dev);
2116        struct sockaddr *addr = data;
2117        u8 *new_addr = addr->sa_data;
2118
2119        if (!is_valid_ether_addr(new_addr)) {
2120                netif_err(efx, drv, efx->net_dev,
2121                          "invalid ethernet MAC address requested: %pM\n",
2122                          new_addr);
2123                return -EADDRNOTAVAIL;
2124        }
2125
2126        ether_addr_copy(net_dev->dev_addr, new_addr);
2127        efx_sriov_mac_address_changed(efx);
2128
2129        /* Reconfigure the MAC */
2130        mutex_lock(&efx->mac_lock);
2131        efx->type->reconfigure_mac(efx);
2132        mutex_unlock(&efx->mac_lock);
2133
2134        return 0;
2135}
2136
2137/* Context: netif_addr_lock held, BHs disabled. */
2138static void efx_set_rx_mode(struct net_device *net_dev)
2139{
2140        struct efx_nic *efx = netdev_priv(net_dev);
2141
2142        if (efx->port_enabled)
2143                queue_work(efx->workqueue, &efx->mac_work);
2144        /* Otherwise efx_start_port() will do this */
2145}
2146
2147static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2148{
2149        struct efx_nic *efx = netdev_priv(net_dev);
2150
2151        /* If disabling RX n-tuple filtering, clear existing filters */
2152        if (net_dev->features & ~data & NETIF_F_NTUPLE)
2153                return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2154
2155        return 0;
2156}
2157
2158static const struct net_device_ops efx_farch_netdev_ops = {
2159        .ndo_open               = efx_net_open,
2160        .ndo_stop               = efx_net_stop,
2161        .ndo_get_stats64        = efx_net_stats,
2162        .ndo_tx_timeout         = efx_watchdog,
2163        .ndo_start_xmit         = efx_hard_start_xmit,
2164        .ndo_validate_addr      = eth_validate_addr,
2165        .ndo_do_ioctl           = efx_ioctl,
2166        .ndo_change_mtu         = efx_change_mtu,
2167        .ndo_set_mac_address    = efx_set_mac_address,
2168        .ndo_set_rx_mode        = efx_set_rx_mode,
2169        .ndo_set_features       = efx_set_features,
2170#ifdef CONFIG_SFC_SRIOV
2171        .ndo_set_vf_mac         = efx_sriov_set_vf_mac,
2172        .ndo_set_vf_vlan        = efx_sriov_set_vf_vlan,
2173        .ndo_set_vf_spoofchk    = efx_sriov_set_vf_spoofchk,
2174        .ndo_get_vf_config      = efx_sriov_get_vf_config,
2175#endif
2176#ifdef CONFIG_NET_POLL_CONTROLLER
2177        .ndo_poll_controller = efx_netpoll,
2178#endif
2179        .ndo_setup_tc           = efx_setup_tc,
2180#ifdef CONFIG_RFS_ACCEL
2181        .ndo_rx_flow_steer      = efx_filter_rfs,
2182#endif
2183};
2184
2185static const struct net_device_ops efx_ef10_netdev_ops = {
2186        .ndo_open               = efx_net_open,
2187        .ndo_stop               = efx_net_stop,
2188        .ndo_get_stats64        = efx_net_stats,
2189        .ndo_tx_timeout         = efx_watchdog,
2190        .ndo_start_xmit         = efx_hard_start_xmit,
2191        .ndo_validate_addr      = eth_validate_addr,
2192        .ndo_do_ioctl           = efx_ioctl,
2193        .ndo_change_mtu         = efx_change_mtu,
2194        .ndo_set_mac_address    = efx_set_mac_address,
2195        .ndo_set_rx_mode        = efx_set_rx_mode,
2196        .ndo_set_features       = efx_set_features,
2197#ifdef CONFIG_NET_POLL_CONTROLLER
2198        .ndo_poll_controller    = efx_netpoll,
2199#endif
2200#ifdef CONFIG_RFS_ACCEL
2201        .ndo_rx_flow_steer      = efx_filter_rfs,
2202#endif
2203};
2204
2205static void efx_update_name(struct efx_nic *efx)
2206{
2207        strcpy(efx->name, efx->net_dev->name);
2208        efx_mtd_rename(efx);
2209        efx_set_channel_names(efx);
2210}
2211
2212static int efx_netdev_event(struct notifier_block *this,
2213                            unsigned long event, void *ptr)
2214{
2215        struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2216
2217        if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2218             net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2219            event == NETDEV_CHANGENAME)
2220                efx_update_name(netdev_priv(net_dev));
2221
2222        return NOTIFY_DONE;
2223}
2224
2225static struct notifier_block efx_netdev_notifier = {
2226        .notifier_call = efx_netdev_event,
2227};
2228
2229static ssize_t
2230show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2231{
2232        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2233        return sprintf(buf, "%d\n", efx->phy_type);
2234}
2235static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2236
2237static int efx_register_netdev(struct efx_nic *efx)
2238{
2239        struct net_device *net_dev = efx->net_dev;
2240        struct efx_channel *channel;
2241        int rc;
2242
2243        net_dev->watchdog_timeo = 5 * HZ;
2244        net_dev->irq = efx->pci_dev->irq;
2245        if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2246                net_dev->netdev_ops = &efx_ef10_netdev_ops;
2247                net_dev->priv_flags |= IFF_UNICAST_FLT;
2248        } else {
2249                net_dev->netdev_ops = &efx_farch_netdev_ops;
2250        }
2251        net_dev->ethtool_ops = &efx_ethtool_ops;
2252        net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2253
2254        rtnl_lock();
2255
2256        /* Enable resets to be scheduled and check whether any were
2257         * already requested.  If so, the NIC is probably hosed so we
2258         * abort.
2259         */
2260        efx->state = STATE_READY;
2261        smp_mb(); /* ensure we change state before checking reset_pending */
2262        if (efx->reset_pending) {
2263                netif_err(efx, probe, efx->net_dev,
2264                          "aborting probe due to scheduled reset\n");
2265                rc = -EIO;
2266                goto fail_locked;
2267        }
2268
2269        rc = dev_alloc_name(net_dev, net_dev->name);
2270        if (rc < 0)
2271                goto fail_locked;
2272        efx_update_name(efx);
2273
2274        /* Always start with carrier off; PHY events will detect the link */
2275        netif_carrier_off(net_dev);
2276
2277        rc = register_netdevice(net_dev);
2278        if (rc)
2279                goto fail_locked;
2280
2281        efx_for_each_channel(channel, efx) {
2282                struct efx_tx_queue *tx_queue;
2283                efx_for_each_channel_tx_queue(tx_queue, channel)
2284                        efx_init_tx_queue_core_txq(tx_queue);
2285        }
2286
2287        efx_associate(efx);
2288
2289        rtnl_unlock();
2290
2291        rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2292        if (rc) {
2293                netif_err(efx, drv, efx->net_dev,
2294                          "failed to init net dev attributes\n");
2295                goto fail_registered;
2296        }
2297
2298        return 0;
2299
2300fail_registered:
2301        rtnl_lock();
2302        efx_dissociate(efx);
2303        unregister_netdevice(net_dev);
2304fail_locked:
2305        efx->state = STATE_UNINIT;
2306        rtnl_unlock();
2307        netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2308        return rc;
2309}
2310
2311static void efx_unregister_netdev(struct efx_nic *efx)
2312{
2313        if (!efx->net_dev)
2314                return;
2315
2316        BUG_ON(netdev_priv(efx->net_dev) != efx);
2317
2318        strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2319        device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2320
2321        rtnl_lock();
2322        unregister_netdevice(efx->net_dev);
2323        efx->state = STATE_UNINIT;
2324        rtnl_unlock();
2325}
2326
2327/**************************************************************************
2328 *
2329 * Device reset and suspend
2330 *
2331 **************************************************************************/
2332
2333/* Tears down the entire software state and most of the hardware state
2334 * before reset.  */
2335void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2336{
2337        EFX_ASSERT_RESET_SERIALISED(efx);
2338
2339        if (method == RESET_TYPE_MCDI_TIMEOUT)
2340                efx->type->prepare_flr(efx);
2341
2342        efx_stop_all(efx);
2343        efx_disable_interrupts(efx);
2344
2345        mutex_lock(&efx->mac_lock);
2346        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2347                efx->phy_op->fini(efx);
2348        efx->type->fini(efx);
2349}
2350
2351/* This function will always ensure that the locks acquired in
2352 * efx_reset_down() are released. A failure return code indicates
2353 * that we were unable to reinitialise the hardware, and the
2354 * driver should be disabled. If ok is false, then the rx and tx
2355 * engines are not restarted, pending a RESET_DISABLE. */
2356int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2357{
2358        int rc;
2359
2360        EFX_ASSERT_RESET_SERIALISED(efx);
2361
2362        if (method == RESET_TYPE_MCDI_TIMEOUT)
2363                efx->type->finish_flr(efx);
2364
2365        /* Ensure that SRAM is initialised even if we're disabling the device */
2366        rc = efx->type->init(efx);
2367        if (rc) {
2368                netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2369                goto fail;
2370        }
2371
2372        if (!ok)
2373                goto fail;
2374
2375        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2376                rc = efx->phy_op->init(efx);
2377                if (rc)
2378                        goto fail;
2379                if (efx->phy_op->reconfigure(efx))
2380                        netif_err(efx, drv, efx->net_dev,
2381                                  "could not restore PHY settings\n");
2382        }
2383
2384        rc = efx_enable_interrupts(efx);
2385        if (rc)
2386                goto fail;
2387        efx_restore_filters(efx);
2388        efx_sriov_reset(efx);
2389
2390        mutex_unlock(&efx->mac_lock);
2391
2392        efx_start_all(efx);
2393
2394        return 0;
2395
2396fail:
2397        efx->port_initialized = false;
2398
2399        mutex_unlock(&efx->mac_lock);
2400
2401        return rc;
2402}
2403
2404/* Reset the NIC using the specified method.  Note that the reset may
2405 * fail, in which case the card will be left in an unusable state.
2406 *
2407 * Caller must hold the rtnl_lock.
2408 */
2409int efx_reset(struct efx_nic *efx, enum reset_type method)
2410{
2411        int rc, rc2;
2412        bool disabled;
2413
2414        netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2415                   RESET_TYPE(method));
2416
2417        efx_device_detach_sync(efx);
2418        efx_reset_down(efx, method);
2419
2420        rc = efx->type->reset(efx, method);
2421        if (rc) {
2422                netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2423                goto out;
2424        }
2425
2426        /* Clear flags for the scopes we covered.  We assume the NIC and
2427         * driver are now quiescent so that there is no race here.
2428         */
2429        if (method < RESET_TYPE_MAX_METHOD)
2430                efx->reset_pending &= -(1 << (method + 1));
2431        else /* it doesn't fit into the well-ordered scope hierarchy */
2432                __clear_bit(method, &efx->reset_pending);
2433
2434        /* Reinitialise bus-mastering, which may have been turned off before
2435         * the reset was scheduled. This is still appropriate, even in the
2436         * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2437         * can respond to requests. */
2438        pci_set_master(efx->pci_dev);
2439
2440out:
2441        /* Leave device stopped if necessary */
2442        disabled = rc ||
2443                method == RESET_TYPE_DISABLE ||
2444                method == RESET_TYPE_RECOVER_OR_DISABLE;
2445        rc2 = efx_reset_up(efx, method, !disabled);
2446        if (rc2) {
2447                disabled = true;
2448                if (!rc)
2449                        rc = rc2;
2450        }
2451
2452        if (disabled) {
2453                dev_close(efx->net_dev);
2454                netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2455                efx->state = STATE_DISABLED;
2456        } else {
2457                netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2458                netif_device_attach(efx->net_dev);
2459        }
2460        return rc;
2461}
2462
2463/* Try recovery mechanisms.
2464 * For now only EEH is supported.
2465 * Returns 0 if the recovery mechanisms are unsuccessful.
2466 * Returns a non-zero value otherwise.
2467 */
2468int efx_try_recovery(struct efx_nic *efx)
2469{
2470#ifdef CONFIG_EEH
2471        /* A PCI error can occur and not be seen by EEH because nothing
2472         * happens on the PCI bus. In this case the driver may fail and
2473         * schedule a 'recover or reset', leading to this recovery handler.
2474         * Manually call the eeh failure check function.
2475         */
2476        struct eeh_dev *eehdev =
2477                of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2478
2479        if (eeh_dev_check_failure(eehdev)) {
2480                /* The EEH mechanisms will handle the error and reset the
2481                 * device if necessary.
2482                 */
2483                return 1;
2484        }
2485#endif
2486        return 0;
2487}
2488
2489static void efx_wait_for_bist_end(struct efx_nic *efx)
2490{
2491        int i;
2492
2493        for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2494                if (efx_mcdi_poll_reboot(efx))
2495                        goto out;
2496                msleep(BIST_WAIT_DELAY_MS);
2497        }
2498
2499        netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2500out:
2501        /* Either way unset the BIST flag. If we found no reboot we probably
2502         * won't recover, but we should try.
2503         */
2504        efx->mc_bist_for_other_fn = false;
2505}
2506
2507/* The worker thread exists so that code that cannot sleep can
2508 * schedule a reset for later.
2509 */
2510static void efx_reset_work(struct work_struct *data)
2511{
2512        struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2513        unsigned long pending;
2514        enum reset_type method;
2515
2516        pending = ACCESS_ONCE(efx->reset_pending);
2517        method = fls(pending) - 1;
2518
2519        if (method == RESET_TYPE_MC_BIST)
2520                efx_wait_for_bist_end(efx);
2521
2522        if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2523             method == RESET_TYPE_RECOVER_OR_ALL) &&
2524            efx_try_recovery(efx))
2525                return;
2526
2527        if (!pending)
2528                return;
2529
2530        rtnl_lock();
2531
2532        /* We checked the state in efx_schedule_reset() but it may
2533         * have changed by now.  Now that we have the RTNL lock,
2534         * it cannot change again.
2535         */
2536        if (efx->state == STATE_READY)
2537                (void)efx_reset(efx, method);
2538
2539        rtnl_unlock();
2540}
2541
2542void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2543{
2544        enum reset_type method;
2545
2546        if (efx->state == STATE_RECOVERY) {
2547                netif_dbg(efx, drv, efx->net_dev,
2548                          "recovering: skip scheduling %s reset\n",
2549                          RESET_TYPE(type));
2550                return;
2551        }
2552
2553        switch (type) {
2554        case RESET_TYPE_INVISIBLE:
2555        case RESET_TYPE_ALL:
2556        case RESET_TYPE_RECOVER_OR_ALL:
2557        case RESET_TYPE_WORLD:
2558        case RESET_TYPE_DISABLE:
2559        case RESET_TYPE_RECOVER_OR_DISABLE:
2560        case RESET_TYPE_MC_BIST:
2561        case RESET_TYPE_MCDI_TIMEOUT:
2562                method = type;
2563                netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2564                          RESET_TYPE(method));
2565                break;
2566        default:
2567                method = efx->type->map_reset_reason(type);
2568                netif_dbg(efx, drv, efx->net_dev,
2569                          "scheduling %s reset for %s\n",
2570                          RESET_TYPE(method), RESET_TYPE(type));
2571                break;
2572        }
2573
2574        set_bit(method, &efx->reset_pending);
2575        smp_mb(); /* ensure we change reset_pending before checking state */
2576
2577        /* If we're not READY then just leave the flags set as the cue
2578         * to abort probing or reschedule the reset later.
2579         */
2580        if (ACCESS_ONCE(efx->state) != STATE_READY)
2581                return;
2582
2583        /* efx_process_channel() will no longer read events once a
2584         * reset is scheduled. So switch back to poll'd MCDI completions. */
2585        efx_mcdi_mode_poll(efx);
2586
2587        queue_work(reset_workqueue, &efx->reset_work);
2588}
2589
2590/**************************************************************************
2591 *
2592 * List of NICs we support
2593 *
2594 **************************************************************************/
2595
2596/* PCI device ID table */
2597static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2598        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2599                    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2600         .driver_data = (unsigned long) &falcon_a1_nic_type},
2601        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2602                    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2603         .driver_data = (unsigned long) &falcon_b0_nic_type},
2604        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),  /* SFC9020 */
2605         .driver_data = (unsigned long) &siena_a0_nic_type},
2606        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),  /* SFL9021 */
2607         .driver_data = (unsigned long) &siena_a0_nic_type},
2608        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2609         .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2610        {0}                     /* end of list */
2611};
2612
2613/**************************************************************************
2614 *
2615 * Dummy PHY/MAC operations
2616 *
2617 * Can be used for some unimplemented operations
2618 * Needed so all function pointers are valid and do not have to be tested
2619 * before use
2620 *
2621 **************************************************************************/
2622int efx_port_dummy_op_int(struct efx_nic *efx)
2623{
2624        return 0;
2625}
2626void efx_port_dummy_op_void(struct efx_nic *efx) {}
2627
2628static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2629{
2630        return false;
2631}
2632
2633static const struct efx_phy_operations efx_dummy_phy_operations = {
2634        .init            = efx_port_dummy_op_int,
2635        .reconfigure     = efx_port_dummy_op_int,
2636        .poll            = efx_port_dummy_op_poll,
2637        .fini            = efx_port_dummy_op_void,
2638};
2639
2640/**************************************************************************
2641 *
2642 * Data housekeeping
2643 *
2644 **************************************************************************/
2645
2646/* This zeroes out and then fills in the invariants in a struct
2647 * efx_nic (including all sub-structures).
2648 */
2649static int efx_init_struct(struct efx_nic *efx,
2650                           struct pci_dev *pci_dev, struct net_device *net_dev)
2651{
2652        int i;
2653
2654        /* Initialise common structures */
2655        INIT_LIST_HEAD(&efx->node);
2656        INIT_LIST_HEAD(&efx->secondary_list);
2657        spin_lock_init(&efx->biu_lock);
2658#ifdef CONFIG_SFC_MTD
2659        INIT_LIST_HEAD(&efx->mtd_list);
2660#endif
2661        INIT_WORK(&efx->reset_work, efx_reset_work);
2662        INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2663        INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2664        efx->pci_dev = pci_dev;
2665        efx->msg_enable = debug;
2666        efx->state = STATE_UNINIT;
2667        strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2668
2669        efx->net_dev = net_dev;
2670        efx->rx_prefix_size = efx->type->rx_prefix_size;
2671        efx->rx_ip_align =
2672                NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2673        efx->rx_packet_hash_offset =
2674                efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2675        efx->rx_packet_ts_offset =
2676                efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2677        spin_lock_init(&efx->stats_lock);
2678        mutex_init(&efx->mac_lock);
2679        efx->phy_op = &efx_dummy_phy_operations;
2680        efx->mdio.dev = net_dev;
2681        INIT_WORK(&efx->mac_work, efx_mac_work);
2682        init_waitqueue_head(&efx->flush_wq);
2683
2684        for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2685                efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2686                if (!efx->channel[i])
2687                        goto fail;
2688                efx->msi_context[i].efx = efx;
2689                efx->msi_context[i].index = i;
2690        }
2691
2692        /* Higher numbered interrupt modes are less capable! */
2693        efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2694                                  interrupt_mode);
2695
2696        /* Would be good to use the net_dev name, but we're too early */
2697        snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2698                 pci_name(pci_dev));
2699        efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2700        if (!efx->workqueue)
2701                goto fail;
2702
2703        return 0;
2704
2705fail:
2706        efx_fini_struct(efx);
2707        return -ENOMEM;
2708}
2709
2710static void efx_fini_struct(struct efx_nic *efx)
2711{
2712        int i;
2713
2714        for (i = 0; i < EFX_MAX_CHANNELS; i++)
2715                kfree(efx->channel[i]);
2716
2717        kfree(efx->vpd_sn);
2718
2719        if (efx->workqueue) {
2720                destroy_workqueue(efx->workqueue);
2721                efx->workqueue = NULL;
2722        }
2723}
2724
2725/**************************************************************************
2726 *
2727 * PCI interface
2728 *
2729 **************************************************************************/
2730
2731/* Main body of final NIC shutdown code
2732 * This is called only at module unload (or hotplug removal).
2733 */
2734static void efx_pci_remove_main(struct efx_nic *efx)
2735{
2736        /* Flush reset_work. It can no longer be scheduled since we
2737         * are not READY.
2738         */
2739        BUG_ON(efx->state == STATE_READY);
2740        cancel_work_sync(&efx->reset_work);
2741
2742        efx_disable_interrupts(efx);
2743        efx_nic_fini_interrupt(efx);
2744        efx_fini_port(efx);
2745        efx->type->fini(efx);
2746        efx_fini_napi(efx);
2747        efx_remove_all(efx);
2748}
2749
2750/* Final NIC shutdown
2751 * This is called only at module unload (or hotplug removal).
2752 */
2753static void efx_pci_remove(struct pci_dev *pci_dev)
2754{
2755        struct efx_nic *efx;
2756
2757        efx = pci_get_drvdata(pci_dev);
2758        if (!efx)
2759                return;
2760
2761        /* Mark the NIC as fini, then stop the interface */
2762        rtnl_lock();
2763        efx_dissociate(efx);
2764        dev_close(efx->net_dev);
2765        efx_disable_interrupts(efx);
2766        rtnl_unlock();
2767
2768        efx_sriov_fini(efx);
2769        efx_unregister_netdev(efx);
2770
2771        efx_mtd_remove(efx);
2772
2773        efx_pci_remove_main(efx);
2774
2775        efx_fini_io(efx);
2776        netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2777
2778        efx_fini_struct(efx);
2779        free_netdev(efx->net_dev);
2780
2781        pci_disable_pcie_error_reporting(pci_dev);
2782};
2783
2784/* NIC VPD information
2785 * Called during probe to display the part number of the
2786 * installed NIC.  VPD is potentially very large but this should
2787 * always appear within the first 512 bytes.
2788 */
2789#define SFC_VPD_LEN 512
2790static void efx_probe_vpd_strings(struct efx_nic *efx)
2791{
2792        struct pci_dev *dev = efx->pci_dev;
2793        char vpd_data[SFC_VPD_LEN];
2794        ssize_t vpd_size;
2795        int ro_start, ro_size, i, j;
2796
2797        /* Get the vpd data from the device */
2798        vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2799        if (vpd_size <= 0) {
2800                netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2801                return;
2802        }
2803
2804        /* Get the Read only section */
2805        ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2806        if (ro_start < 0) {
2807                netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2808                return;
2809        }
2810
2811        ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2812        j = ro_size;
2813        i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2814        if (i + j > vpd_size)
2815                j = vpd_size - i;
2816
2817        /* Get the Part number */
2818        i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2819        if (i < 0) {
2820                netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2821                return;
2822        }
2823
2824        j = pci_vpd_info_field_size(&vpd_data[i]);
2825        i += PCI_VPD_INFO_FLD_HDR_SIZE;
2826        if (i + j > vpd_size) {
2827                netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2828                return;
2829        }
2830
2831        netif_info(efx, drv, efx->net_dev,
2832                   "Part Number : %.*s\n", j, &vpd_data[i]);
2833
2834        i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2835        j = ro_size;
2836        i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2837        if (i < 0) {
2838                netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2839                return;
2840        }
2841
2842        j = pci_vpd_info_field_size(&vpd_data[i]);
2843        i += PCI_VPD_INFO_FLD_HDR_SIZE;
2844        if (i + j > vpd_size) {
2845                netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2846                return;
2847        }
2848
2849        efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2850        if (!efx->vpd_sn)
2851                return;
2852
2853        snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2854}
2855
2856
2857/* Main body of NIC initialisation
2858 * This is called at module load (or hotplug insertion, theoretically).
2859 */
2860static int efx_pci_probe_main(struct efx_nic *efx)
2861{
2862        int rc;
2863
2864        /* Do start-of-day initialisation */
2865        rc = efx_probe_all(efx);
2866        if (rc)
2867                goto fail1;
2868
2869        efx_init_napi(efx);
2870
2871        rc = efx->type->init(efx);
2872        if (rc) {
2873                netif_err(efx, probe, efx->net_dev,
2874                          "failed to initialise NIC\n");
2875                goto fail3;
2876        }
2877
2878        rc = efx_init_port(efx);
2879        if (rc) {
2880                netif_err(efx, probe, efx->net_dev,
2881                          "failed to initialise port\n");
2882                goto fail4;
2883        }
2884
2885        rc = efx_nic_init_interrupt(efx);
2886        if (rc)
2887                goto fail5;
2888        rc = efx_enable_interrupts(efx);
2889        if (rc)
2890                goto fail6;
2891
2892        return 0;
2893
2894 fail6:
2895        efx_nic_fini_interrupt(efx);
2896 fail5:
2897        efx_fini_port(efx);
2898 fail4:
2899        efx->type->fini(efx);
2900 fail3:
2901        efx_fini_napi(efx);
2902        efx_remove_all(efx);
2903 fail1:
2904        return rc;
2905}
2906
2907/* NIC initialisation
2908 *
2909 * This is called at module load (or hotplug insertion,
2910 * theoretically).  It sets up PCI mappings, resets the NIC,
2911 * sets up and registers the network devices with the kernel and hooks
2912 * the interrupt service routine.  It does not prepare the device for
2913 * transmission; this is left to the first time one of the network
2914 * interfaces is brought up (i.e. efx_net_open).
2915 */
2916static int efx_pci_probe(struct pci_dev *pci_dev,
2917                         const struct pci_device_id *entry)
2918{
2919        struct net_device *net_dev;
2920        struct efx_nic *efx;
2921        int rc;
2922
2923        /* Allocate and initialise a struct net_device and struct efx_nic */
2924        net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2925                                     EFX_MAX_RX_QUEUES);
2926        if (!net_dev)
2927                return -ENOMEM;
2928        efx = netdev_priv(net_dev);
2929        efx->type = (const struct efx_nic_type *) entry->driver_data;
2930        net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2931                              NETIF_F_HIGHDMA | NETIF_F_TSO |
2932                              NETIF_F_RXCSUM);
2933        if (efx->type->offload_features & NETIF_F_V6_CSUM)
2934                net_dev->features |= NETIF_F_TSO6;
2935        /* Mask for features that also apply to VLAN devices */
2936        net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2937                                   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2938                                   NETIF_F_RXCSUM);
2939        /* All offloads can be toggled */
2940        net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2941        pci_set_drvdata(pci_dev, efx);
2942        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2943        rc = efx_init_struct(efx, pci_dev, net_dev);
2944        if (rc)
2945                goto fail1;
2946
2947        netif_info(efx, probe, efx->net_dev,
2948                   "Solarflare NIC detected\n");
2949
2950        efx_probe_vpd_strings(efx);
2951
2952        /* Set up basic I/O (BAR mappings etc) */
2953        rc = efx_init_io(efx);
2954        if (rc)
2955                goto fail2;
2956
2957        rc = efx_pci_probe_main(efx);
2958        if (rc)
2959                goto fail3;
2960
2961        rc = efx_register_netdev(efx);
2962        if (rc)
2963                goto fail4;
2964
2965        rc = efx_sriov_init(efx);
2966        if (rc)
2967                netif_err(efx, probe, efx->net_dev,
2968                          "SR-IOV can't be enabled rc %d\n", rc);
2969
2970        netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2971
2972        /* Try to create MTDs, but allow this to fail */
2973        rtnl_lock();
2974        rc = efx_mtd_probe(efx);
2975        rtnl_unlock();
2976        if (rc)
2977                netif_warn(efx, probe, efx->net_dev,
2978                           "failed to create MTDs (%d)\n", rc);
2979
2980        rc = pci_enable_pcie_error_reporting(pci_dev);
2981        if (rc && rc != -EINVAL)
2982                netif_warn(efx, probe, efx->net_dev,
2983                           "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2984
2985        return 0;
2986
2987 fail4:
2988        efx_pci_remove_main(efx);
2989 fail3:
2990        efx_fini_io(efx);
2991 fail2:
2992        efx_fini_struct(efx);
2993 fail1:
2994        WARN_ON(rc > 0);
2995        netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2996        free_netdev(net_dev);
2997        return rc;
2998}
2999
3000static int efx_pm_freeze(struct device *dev)
3001{
3002        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3003
3004        rtnl_lock();
3005
3006        if (efx->state != STATE_DISABLED) {
3007                efx->state = STATE_UNINIT;
3008
3009                efx_device_detach_sync(efx);
3010
3011                efx_stop_all(efx);
3012                efx_disable_interrupts(efx);
3013        }
3014
3015        rtnl_unlock();
3016
3017        return 0;
3018}
3019
3020static int efx_pm_thaw(struct device *dev)
3021{
3022        int rc;
3023        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3024
3025        rtnl_lock();
3026
3027        if (efx->state != STATE_DISABLED) {
3028                rc = efx_enable_interrupts(efx);
3029                if (rc)
3030                        goto fail;
3031
3032                mutex_lock(&efx->mac_lock);
3033                efx->phy_op->reconfigure(efx);
3034                mutex_unlock(&efx->mac_lock);
3035
3036                efx_start_all(efx);
3037
3038                netif_device_attach(efx->net_dev);
3039
3040                efx->state = STATE_READY;
3041
3042                efx->type->resume_wol(efx);
3043        }
3044
3045        rtnl_unlock();
3046
3047        /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3048        queue_work(reset_workqueue, &efx->reset_work);
3049
3050        return 0;
3051
3052fail:
3053        rtnl_unlock();
3054
3055        return rc;
3056}
3057
3058static int efx_pm_poweroff(struct device *dev)
3059{
3060        struct pci_dev *pci_dev = to_pci_dev(dev);
3061        struct efx_nic *efx = pci_get_drvdata(pci_dev);
3062
3063        efx->type->fini(efx);
3064
3065        efx->reset_pending = 0;
3066
3067        pci_save_state(pci_dev);
3068        return pci_set_power_state(pci_dev, PCI_D3hot);
3069}
3070
3071/* Used for both resume and restore */
3072static int efx_pm_resume(struct device *dev)
3073{
3074        struct pci_dev *pci_dev = to_pci_dev(dev);
3075        struct efx_nic *efx = pci_get_drvdata(pci_dev);
3076        int rc;
3077
3078        rc = pci_set_power_state(pci_dev, PCI_D0);
3079        if (rc)
3080                return rc;
3081        pci_restore_state(pci_dev);
3082        rc = pci_enable_device(pci_dev);
3083        if (rc)
3084                return rc;
3085        pci_set_master(efx->pci_dev);
3086        rc = efx->type->reset(efx, RESET_TYPE_ALL);
3087        if (rc)
3088                return rc;
3089        rc = efx->type->init(efx);
3090        if (rc)
3091                return rc;
3092        rc = efx_pm_thaw(dev);
3093        return rc;
3094}
3095
3096static int efx_pm_suspend(struct device *dev)
3097{
3098        int rc;
3099
3100        efx_pm_freeze(dev);
3101        rc = efx_pm_poweroff(dev);
3102        if (rc)
3103                efx_pm_resume(dev);
3104        return rc;
3105}
3106
3107static const struct dev_pm_ops efx_pm_ops = {
3108        .suspend        = efx_pm_suspend,
3109        .resume         = efx_pm_resume,
3110        .freeze         = efx_pm_freeze,
3111        .thaw           = efx_pm_thaw,
3112        .poweroff       = efx_pm_poweroff,
3113        .restore        = efx_pm_resume,
3114};
3115
3116/* A PCI error affecting this device was detected.
3117 * At this point MMIO and DMA may be disabled.
3118 * Stop the software path and request a slot reset.
3119 */
3120static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3121                                              enum pci_channel_state state)
3122{
3123        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3124        struct efx_nic *efx = pci_get_drvdata(pdev);
3125
3126        if (state == pci_channel_io_perm_failure)
3127                return PCI_ERS_RESULT_DISCONNECT;
3128
3129        rtnl_lock();
3130
3131        if (efx->state != STATE_DISABLED) {
3132                efx->state = STATE_RECOVERY;
3133                efx->reset_pending = 0;
3134
3135                efx_device_detach_sync(efx);
3136
3137                efx_stop_all(efx);
3138                efx_disable_interrupts(efx);
3139
3140                status = PCI_ERS_RESULT_NEED_RESET;
3141        } else {
3142                /* If the interface is disabled we don't want to do anything
3143                 * with it.
3144                 */
3145                status = PCI_ERS_RESULT_RECOVERED;
3146        }
3147
3148        rtnl_unlock();
3149
3150        pci_disable_device(pdev);
3151
3152        return status;
3153}
3154
3155/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3156static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3157{
3158        struct efx_nic *efx = pci_get_drvdata(pdev);
3159        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3160        int rc;
3161
3162        if (pci_enable_device(pdev)) {
3163                netif_err(efx, hw, efx->net_dev,
3164                          "Cannot re-enable PCI device after reset.\n");
3165                status =  PCI_ERS_RESULT_DISCONNECT;
3166        }
3167
3168        rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3169        if (rc) {
3170                netif_err(efx, hw, efx->net_dev,
3171                "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3172                /* Non-fatal error. Continue. */
3173        }
3174
3175        return status;
3176}
3177
3178/* Perform the actual reset and resume I/O operations. */
3179static void efx_io_resume(struct pci_dev *pdev)
3180{
3181        struct efx_nic *efx = pci_get_drvdata(pdev);
3182        int rc;
3183
3184        rtnl_lock();
3185
3186        if (efx->state == STATE_DISABLED)
3187                goto out;
3188
3189        rc = efx_reset(efx, RESET_TYPE_ALL);
3190        if (rc) {
3191                netif_err(efx, hw, efx->net_dev,
3192                          "efx_reset failed after PCI error (%d)\n", rc);
3193        } else {
3194                efx->state = STATE_READY;
3195                netif_dbg(efx, hw, efx->net_dev,
3196                          "Done resetting and resuming IO after PCI error.\n");
3197        }
3198
3199out:
3200        rtnl_unlock();
3201}
3202
3203/* For simplicity and reliability, we always require a slot reset and try to
3204 * reset the hardware when a pci error affecting the device is detected.
3205 * We leave both the link_reset and mmio_enabled callback unimplemented:
3206 * with our request for slot reset the mmio_enabled callback will never be
3207 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3208 */
3209static struct pci_error_handlers efx_err_handlers = {
3210        .error_detected = efx_io_error_detected,
3211        .slot_reset     = efx_io_slot_reset,
3212        .resume         = efx_io_resume,
3213};
3214
3215static struct pci_driver efx_pci_driver = {
3216        .name           = KBUILD_MODNAME,
3217        .id_table       = efx_pci_table,
3218        .probe          = efx_pci_probe,
3219        .remove         = efx_pci_remove,
3220        .driver.pm      = &efx_pm_ops,
3221        .err_handler    = &efx_err_handlers,
3222};
3223
3224/**************************************************************************
3225 *
3226 * Kernel module interface
3227 *
3228 *************************************************************************/
3229
3230module_param(interrupt_mode, uint, 0444);
3231MODULE_PARM_DESC(interrupt_mode,
3232                 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3233
3234static int __init efx_init_module(void)
3235{
3236        int rc;
3237
3238        printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3239
3240        rc = register_netdevice_notifier(&efx_netdev_notifier);
3241        if (rc)
3242                goto err_notifier;
3243
3244        rc = efx_init_sriov();
3245        if (rc)
3246                goto err_sriov;
3247
3248        reset_workqueue = create_singlethread_workqueue("sfc_reset");
3249        if (!reset_workqueue) {
3250                rc = -ENOMEM;
3251                goto err_reset;
3252        }
3253
3254        rc = pci_register_driver(&efx_pci_driver);
3255        if (rc < 0)
3256                goto err_pci;
3257
3258        return 0;
3259
3260 err_pci:
3261        destroy_workqueue(reset_workqueue);
3262 err_reset:
3263        efx_fini_sriov();
3264 err_sriov:
3265        unregister_netdevice_notifier(&efx_netdev_notifier);
3266 err_notifier:
3267        return rc;
3268}
3269
3270static void __exit efx_exit_module(void)
3271{
3272        printk(KERN_INFO "Solarflare NET driver unloading\n");
3273
3274        pci_unregister_driver(&efx_pci_driver);
3275        destroy_workqueue(reset_workqueue);
3276        efx_fini_sriov();
3277        unregister_netdevice_notifier(&efx_netdev_notifier);
3278
3279}
3280
3281module_init(efx_init_module);
3282module_exit(efx_exit_module);
3283
3284MODULE_AUTHOR("Solarflare Communications and "
3285              "Michael Brown <mbrown@fensystems.co.uk>");
3286MODULE_DESCRIPTION("Solarflare network driver");
3287MODULE_LICENSE("GPL");
3288MODULE_DEVICE_TABLE(pci, efx_pci_table);
3289