linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pci_hotplug.h>
  26#include <asm-generic/pci-bridge.h>
  27#include <asm/setup.h>
  28#include "pci.h"
  29
  30const char *pci_power_names[] = {
  31        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  32};
  33EXPORT_SYMBOL_GPL(pci_power_names);
  34
  35int isa_dma_bridge_buggy;
  36EXPORT_SYMBOL(isa_dma_bridge_buggy);
  37
  38int pci_pci_problems;
  39EXPORT_SYMBOL(pci_pci_problems);
  40
  41unsigned int pci_pm_d3_delay;
  42
  43static void pci_pme_list_scan(struct work_struct *work);
  44
  45static LIST_HEAD(pci_pme_list);
  46static DEFINE_MUTEX(pci_pme_list_mutex);
  47static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  48
  49struct pci_pme_device {
  50        struct list_head list;
  51        struct pci_dev *dev;
  52};
  53
  54#define PME_TIMEOUT 1000 /* How long between PME checks */
  55
  56static void pci_dev_d3_sleep(struct pci_dev *dev)
  57{
  58        unsigned int delay = dev->d3_delay;
  59
  60        if (delay < pci_pm_d3_delay)
  61                delay = pci_pm_d3_delay;
  62
  63        msleep(delay);
  64}
  65
  66#ifdef CONFIG_PCI_DOMAINS
  67int pci_domains_supported = 1;
  68#endif
  69
  70#define DEFAULT_CARDBUS_IO_SIZE         (256)
  71#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  72/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  73unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  74unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  75
  76#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  77#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  78/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  79unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  80unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  81
  82enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  83
  84/*
  85 * The default CLS is used if arch didn't set CLS explicitly and not
  86 * all pci devices agree on the same value.  Arch can override either
  87 * the dfl or actual value as it sees fit.  Don't forget this is
  88 * measured in 32-bit words, not bytes.
  89 */
  90u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  91u8 pci_cache_line_size;
  92
  93/*
  94 * If we set up a device for bus mastering, we need to check the latency
  95 * timer as certain BIOSes forget to set it properly.
  96 */
  97unsigned int pcibios_max_latency = 255;
  98
  99/* If set, the PCIe ARI capability will not be used. */
 100static bool pcie_ari_disabled;
 101
 102/**
 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 104 * @bus: pointer to PCI bus structure to search
 105 *
 106 * Given a PCI bus, returns the highest PCI bus number present in the set
 107 * including the given PCI bus and its list of child PCI buses.
 108 */
 109unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 110{
 111        struct pci_bus *tmp;
 112        unsigned char max, n;
 113
 114        max = bus->busn_res.end;
 115        list_for_each_entry(tmp, &bus->children, node) {
 116                n = pci_bus_max_busnr(tmp);
 117                if (n > max)
 118                        max = n;
 119        }
 120        return max;
 121}
 122EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 123
 124#ifdef CONFIG_HAS_IOMEM
 125void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 126{
 127        /*
 128         * Make sure the BAR is actually a memory resource, not an IO resource
 129         */
 130        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 131                WARN_ON(1);
 132                return NULL;
 133        }
 134        return ioremap_nocache(pci_resource_start(pdev, bar),
 135                                     pci_resource_len(pdev, bar));
 136}
 137EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 138#endif
 139
 140#define PCI_FIND_CAP_TTL        48
 141
 142static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 143                                   u8 pos, int cap, int *ttl)
 144{
 145        u8 id;
 146
 147        while ((*ttl)--) {
 148                pci_bus_read_config_byte(bus, devfn, pos, &pos);
 149                if (pos < 0x40)
 150                        break;
 151                pos &= ~3;
 152                pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 153                                         &id);
 154                if (id == 0xff)
 155                        break;
 156                if (id == cap)
 157                        return pos;
 158                pos += PCI_CAP_LIST_NEXT;
 159        }
 160        return 0;
 161}
 162
 163static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 164                               u8 pos, int cap)
 165{
 166        int ttl = PCI_FIND_CAP_TTL;
 167
 168        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 169}
 170
 171int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 172{
 173        return __pci_find_next_cap(dev->bus, dev->devfn,
 174                                   pos + PCI_CAP_LIST_NEXT, cap);
 175}
 176EXPORT_SYMBOL_GPL(pci_find_next_capability);
 177
 178static int __pci_bus_find_cap_start(struct pci_bus *bus,
 179                                    unsigned int devfn, u8 hdr_type)
 180{
 181        u16 status;
 182
 183        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 184        if (!(status & PCI_STATUS_CAP_LIST))
 185                return 0;
 186
 187        switch (hdr_type) {
 188        case PCI_HEADER_TYPE_NORMAL:
 189        case PCI_HEADER_TYPE_BRIDGE:
 190                return PCI_CAPABILITY_LIST;
 191        case PCI_HEADER_TYPE_CARDBUS:
 192                return PCI_CB_CAPABILITY_LIST;
 193        default:
 194                return 0;
 195        }
 196
 197        return 0;
 198}
 199
 200/**
 201 * pci_find_capability - query for devices' capabilities
 202 * @dev: PCI device to query
 203 * @cap: capability code
 204 *
 205 * Tell if a device supports a given PCI capability.
 206 * Returns the address of the requested capability structure within the
 207 * device's PCI configuration space or 0 in case the device does not
 208 * support it.  Possible values for @cap:
 209 *
 210 *  %PCI_CAP_ID_PM           Power Management
 211 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 212 *  %PCI_CAP_ID_VPD          Vital Product Data
 213 *  %PCI_CAP_ID_SLOTID       Slot Identification
 214 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 215 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 216 *  %PCI_CAP_ID_PCIX         PCI-X
 217 *  %PCI_CAP_ID_EXP          PCI Express
 218 */
 219int pci_find_capability(struct pci_dev *dev, int cap)
 220{
 221        int pos;
 222
 223        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 224        if (pos)
 225                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 226
 227        return pos;
 228}
 229EXPORT_SYMBOL(pci_find_capability);
 230
 231/**
 232 * pci_bus_find_capability - query for devices' capabilities
 233 * @bus:   the PCI bus to query
 234 * @devfn: PCI device to query
 235 * @cap:   capability code
 236 *
 237 * Like pci_find_capability() but works for pci devices that do not have a
 238 * pci_dev structure set up yet.
 239 *
 240 * Returns the address of the requested capability structure within the
 241 * device's PCI configuration space or 0 in case the device does not
 242 * support it.
 243 */
 244int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 245{
 246        int pos;
 247        u8 hdr_type;
 248
 249        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 250
 251        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 252        if (pos)
 253                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 254
 255        return pos;
 256}
 257EXPORT_SYMBOL(pci_bus_find_capability);
 258
 259/**
 260 * pci_find_next_ext_capability - Find an extended capability
 261 * @dev: PCI device to query
 262 * @start: address at which to start looking (0 to start at beginning of list)
 263 * @cap: capability code
 264 *
 265 * Returns the address of the next matching extended capability structure
 266 * within the device's PCI configuration space or 0 if the device does
 267 * not support it.  Some capabilities can occur several times, e.g., the
 268 * vendor-specific capability, and this provides a way to find them all.
 269 */
 270int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 271{
 272        u32 header;
 273        int ttl;
 274        int pos = PCI_CFG_SPACE_SIZE;
 275
 276        /* minimum 8 bytes per capability */
 277        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 278
 279        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 280                return 0;
 281
 282        if (start)
 283                pos = start;
 284
 285        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 286                return 0;
 287
 288        /*
 289         * If we have no capabilities, this is indicated by cap ID,
 290         * cap version and next pointer all being 0.
 291         */
 292        if (header == 0)
 293                return 0;
 294
 295        while (ttl-- > 0) {
 296                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 297                        return pos;
 298
 299                pos = PCI_EXT_CAP_NEXT(header);
 300                if (pos < PCI_CFG_SPACE_SIZE)
 301                        break;
 302
 303                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 304                        break;
 305        }
 306
 307        return 0;
 308}
 309EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 310
 311/**
 312 * pci_find_ext_capability - Find an extended capability
 313 * @dev: PCI device to query
 314 * @cap: capability code
 315 *
 316 * Returns the address of the requested extended capability structure
 317 * within the device's PCI configuration space or 0 if the device does
 318 * not support it.  Possible values for @cap:
 319 *
 320 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 321 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 322 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 323 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 324 */
 325int pci_find_ext_capability(struct pci_dev *dev, int cap)
 326{
 327        return pci_find_next_ext_capability(dev, 0, cap);
 328}
 329EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 330
 331static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 332{
 333        int rc, ttl = PCI_FIND_CAP_TTL;
 334        u8 cap, mask;
 335
 336        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 337                mask = HT_3BIT_CAP_MASK;
 338        else
 339                mask = HT_5BIT_CAP_MASK;
 340
 341        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 342                                      PCI_CAP_ID_HT, &ttl);
 343        while (pos) {
 344                rc = pci_read_config_byte(dev, pos + 3, &cap);
 345                if (rc != PCIBIOS_SUCCESSFUL)
 346                        return 0;
 347
 348                if ((cap & mask) == ht_cap)
 349                        return pos;
 350
 351                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 352                                              pos + PCI_CAP_LIST_NEXT,
 353                                              PCI_CAP_ID_HT, &ttl);
 354        }
 355
 356        return 0;
 357}
 358/**
 359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 360 * @dev: PCI device to query
 361 * @pos: Position from which to continue searching
 362 * @ht_cap: Hypertransport capability code
 363 *
 364 * To be used in conjunction with pci_find_ht_capability() to search for
 365 * all capabilities matching @ht_cap. @pos should always be a value returned
 366 * from pci_find_ht_capability().
 367 *
 368 * NB. To be 100% safe against broken PCI devices, the caller should take
 369 * steps to avoid an infinite loop.
 370 */
 371int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 372{
 373        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 374}
 375EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 376
 377/**
 378 * pci_find_ht_capability - query a device's Hypertransport capabilities
 379 * @dev: PCI device to query
 380 * @ht_cap: Hypertransport capability code
 381 *
 382 * Tell if a device supports a given Hypertransport capability.
 383 * Returns an address within the device's PCI configuration space
 384 * or 0 in case the device does not support the request capability.
 385 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 386 * which has a Hypertransport capability matching @ht_cap.
 387 */
 388int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 389{
 390        int pos;
 391
 392        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 393        if (pos)
 394                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 395
 396        return pos;
 397}
 398EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 399
 400/**
 401 * pci_find_parent_resource - return resource region of parent bus of given region
 402 * @dev: PCI device structure contains resources to be searched
 403 * @res: child resource record for which parent is sought
 404 *
 405 *  For given resource region of given device, return the resource
 406 *  region of parent bus the given region is contained in.
 407 */
 408struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 409                                          struct resource *res)
 410{
 411        const struct pci_bus *bus = dev->bus;
 412        struct resource *r;
 413        int i;
 414
 415        pci_bus_for_each_resource(bus, r, i) {
 416                if (!r)
 417                        continue;
 418                if (res->start && resource_contains(r, res)) {
 419
 420                        /*
 421                         * If the window is prefetchable but the BAR is
 422                         * not, the allocator made a mistake.
 423                         */
 424                        if (r->flags & IORESOURCE_PREFETCH &&
 425                            !(res->flags & IORESOURCE_PREFETCH))
 426                                return NULL;
 427
 428                        /*
 429                         * If we're below a transparent bridge, there may
 430                         * be both a positively-decoded aperture and a
 431                         * subtractively-decoded region that contain the BAR.
 432                         * We want the positively-decoded one, so this depends
 433                         * on pci_bus_for_each_resource() giving us those
 434                         * first.
 435                         */
 436                        return r;
 437                }
 438        }
 439        return NULL;
 440}
 441EXPORT_SYMBOL(pci_find_parent_resource);
 442
 443/**
 444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 445 * @dev: the PCI device to operate on
 446 * @pos: config space offset of status word
 447 * @mask: mask of bit(s) to care about in status word
 448 *
 449 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 450 */
 451int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 452{
 453        int i;
 454
 455        /* Wait for Transaction Pending bit clean */
 456        for (i = 0; i < 4; i++) {
 457                u16 status;
 458                if (i)
 459                        msleep((1 << (i - 1)) * 100);
 460
 461                pci_read_config_word(dev, pos, &status);
 462                if (!(status & mask))
 463                        return 1;
 464        }
 465
 466        return 0;
 467}
 468
 469/**
 470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 471 * @dev: PCI device to have its BARs restored
 472 *
 473 * Restore the BAR values for a given device, so as to make it
 474 * accessible by its driver.
 475 */
 476static void pci_restore_bars(struct pci_dev *dev)
 477{
 478        int i;
 479
 480        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 481                pci_update_resource(dev, i);
 482}
 483
 484static struct pci_platform_pm_ops *pci_platform_pm;
 485
 486int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 487{
 488        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 489            || !ops->sleep_wake)
 490                return -EINVAL;
 491        pci_platform_pm = ops;
 492        return 0;
 493}
 494
 495static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 496{
 497        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 498}
 499
 500static inline int platform_pci_set_power_state(struct pci_dev *dev,
 501                                               pci_power_t t)
 502{
 503        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 504}
 505
 506static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 507{
 508        return pci_platform_pm ?
 509                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 510}
 511
 512static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 513{
 514        return pci_platform_pm ?
 515                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 516}
 517
 518static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 519{
 520        return pci_platform_pm ?
 521                        pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 522}
 523
 524/**
 525 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 526 *                           given PCI device
 527 * @dev: PCI device to handle.
 528 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 529 *
 530 * RETURN VALUE:
 531 * -EINVAL if the requested state is invalid.
 532 * -EIO if device does not support PCI PM or its PM capabilities register has a
 533 * wrong version, or device doesn't support the requested state.
 534 * 0 if device already is in the requested state.
 535 * 0 if device's power state has been successfully changed.
 536 */
 537static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 538{
 539        u16 pmcsr;
 540        bool need_restore = false;
 541
 542        /* Check if we're already there */
 543        if (dev->current_state == state)
 544                return 0;
 545
 546        if (!dev->pm_cap)
 547                return -EIO;
 548
 549        if (state < PCI_D0 || state > PCI_D3hot)
 550                return -EINVAL;
 551
 552        /* Validate current state:
 553         * Can enter D0 from any state, but if we can only go deeper
 554         * to sleep if we're already in a low power state
 555         */
 556        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 557            && dev->current_state > state) {
 558                dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
 559                        dev->current_state, state);
 560                return -EINVAL;
 561        }
 562
 563        /* check if this device supports the desired state */
 564        if ((state == PCI_D1 && !dev->d1_support)
 565           || (state == PCI_D2 && !dev->d2_support))
 566                return -EIO;
 567
 568        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 569
 570        /* If we're (effectively) in D3, force entire word to 0.
 571         * This doesn't affect PME_Status, disables PME_En, and
 572         * sets PowerState to 0.
 573         */
 574        switch (dev->current_state) {
 575        case PCI_D0:
 576        case PCI_D1:
 577        case PCI_D2:
 578                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 579                pmcsr |= state;
 580                break;
 581        case PCI_D3hot:
 582        case PCI_D3cold:
 583        case PCI_UNKNOWN: /* Boot-up */
 584                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 585                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 586                        need_restore = true;
 587                /* Fall-through: force to D0 */
 588        default:
 589                pmcsr = 0;
 590                break;
 591        }
 592
 593        /* enter specified state */
 594        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 595
 596        /* Mandatory power management transition delays */
 597        /* see PCI PM 1.1 5.6.1 table 18 */
 598        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 599                pci_dev_d3_sleep(dev);
 600        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 601                udelay(PCI_PM_D2_DELAY);
 602
 603        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 604        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 605        if (dev->current_state != state && printk_ratelimit())
 606                dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
 607                         dev->current_state);
 608
 609        /*
 610         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 611         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 612         * from D3hot to D0 _may_ perform an internal reset, thereby
 613         * going to "D0 Uninitialized" rather than "D0 Initialized".
 614         * For example, at least some versions of the 3c905B and the
 615         * 3c556B exhibit this behaviour.
 616         *
 617         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 618         * devices in a D3hot state at boot.  Consequently, we need to
 619         * restore at least the BARs so that the device will be
 620         * accessible to its driver.
 621         */
 622        if (need_restore)
 623                pci_restore_bars(dev);
 624
 625        if (dev->bus->self)
 626                pcie_aspm_pm_state_change(dev->bus->self);
 627
 628        return 0;
 629}
 630
 631/**
 632 * pci_update_current_state - Read PCI power state of given device from its
 633 *                            PCI PM registers and cache it
 634 * @dev: PCI device to handle.
 635 * @state: State to cache in case the device doesn't have the PM capability
 636 */
 637void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 638{
 639        if (dev->pm_cap) {
 640                u16 pmcsr;
 641
 642                /*
 643                 * Configuration space is not accessible for device in
 644                 * D3cold, so just keep or set D3cold for safety
 645                 */
 646                if (dev->current_state == PCI_D3cold)
 647                        return;
 648                if (state == PCI_D3cold) {
 649                        dev->current_state = PCI_D3cold;
 650                        return;
 651                }
 652                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 653                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 654        } else {
 655                dev->current_state = state;
 656        }
 657}
 658
 659/**
 660 * pci_power_up - Put the given device into D0 forcibly
 661 * @dev: PCI device to power up
 662 */
 663void pci_power_up(struct pci_dev *dev)
 664{
 665        if (platform_pci_power_manageable(dev))
 666                platform_pci_set_power_state(dev, PCI_D0);
 667
 668        pci_raw_set_power_state(dev, PCI_D0);
 669        pci_update_current_state(dev, PCI_D0);
 670}
 671
 672/**
 673 * pci_platform_power_transition - Use platform to change device power state
 674 * @dev: PCI device to handle.
 675 * @state: State to put the device into.
 676 */
 677static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 678{
 679        int error;
 680
 681        if (platform_pci_power_manageable(dev)) {
 682                error = platform_pci_set_power_state(dev, state);
 683                if (!error)
 684                        pci_update_current_state(dev, state);
 685        } else
 686                error = -ENODEV;
 687
 688        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 689                dev->current_state = PCI_D0;
 690
 691        return error;
 692}
 693
 694/**
 695 * pci_wakeup - Wake up a PCI device
 696 * @pci_dev: Device to handle.
 697 * @ign: ignored parameter
 698 */
 699static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 700{
 701        pci_wakeup_event(pci_dev);
 702        pm_request_resume(&pci_dev->dev);
 703        return 0;
 704}
 705
 706/**
 707 * pci_wakeup_bus - Walk given bus and wake up devices on it
 708 * @bus: Top bus of the subtree to walk.
 709 */
 710static void pci_wakeup_bus(struct pci_bus *bus)
 711{
 712        if (bus)
 713                pci_walk_bus(bus, pci_wakeup, NULL);
 714}
 715
 716/**
 717 * __pci_start_power_transition - Start power transition of a PCI device
 718 * @dev: PCI device to handle.
 719 * @state: State to put the device into.
 720 */
 721static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 722{
 723        if (state == PCI_D0) {
 724                pci_platform_power_transition(dev, PCI_D0);
 725                /*
 726                 * Mandatory power management transition delays, see
 727                 * PCI Express Base Specification Revision 2.0 Section
 728                 * 6.6.1: Conventional Reset.  Do not delay for
 729                 * devices powered on/off by corresponding bridge,
 730                 * because have already delayed for the bridge.
 731                 */
 732                if (dev->runtime_d3cold) {
 733                        msleep(dev->d3cold_delay);
 734                        /*
 735                         * When powering on a bridge from D3cold, the
 736                         * whole hierarchy may be powered on into
 737                         * D0uninitialized state, resume them to give
 738                         * them a chance to suspend again
 739                         */
 740                        pci_wakeup_bus(dev->subordinate);
 741                }
 742        }
 743}
 744
 745/**
 746 * __pci_dev_set_current_state - Set current state of a PCI device
 747 * @dev: Device to handle
 748 * @data: pointer to state to be set
 749 */
 750static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 751{
 752        pci_power_t state = *(pci_power_t *)data;
 753
 754        dev->current_state = state;
 755        return 0;
 756}
 757
 758/**
 759 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 760 * @bus: Top bus of the subtree to walk.
 761 * @state: state to be set
 762 */
 763static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 764{
 765        if (bus)
 766                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 767}
 768
 769/**
 770 * __pci_complete_power_transition - Complete power transition of a PCI device
 771 * @dev: PCI device to handle.
 772 * @state: State to put the device into.
 773 *
 774 * This function should not be called directly by device drivers.
 775 */
 776int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 777{
 778        int ret;
 779
 780        if (state <= PCI_D0)
 781                return -EINVAL;
 782        ret = pci_platform_power_transition(dev, state);
 783        /* Power off the bridge may power off the whole hierarchy */
 784        if (!ret && state == PCI_D3cold)
 785                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 786        return ret;
 787}
 788EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 789
 790/**
 791 * pci_set_power_state - Set the power state of a PCI device
 792 * @dev: PCI device to handle.
 793 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 794 *
 795 * Transition a device to a new power state, using the platform firmware and/or
 796 * the device's PCI PM registers.
 797 *
 798 * RETURN VALUE:
 799 * -EINVAL if the requested state is invalid.
 800 * -EIO if device does not support PCI PM or its PM capabilities register has a
 801 * wrong version, or device doesn't support the requested state.
 802 * 0 if device already is in the requested state.
 803 * 0 if device's power state has been successfully changed.
 804 */
 805int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 806{
 807        int error;
 808
 809        /* bound the state we're entering */
 810        if (state > PCI_D3cold)
 811                state = PCI_D3cold;
 812        else if (state < PCI_D0)
 813                state = PCI_D0;
 814        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 815                /*
 816                 * If the device or the parent bridge do not support PCI PM,
 817                 * ignore the request if we're doing anything other than putting
 818                 * it into D0 (which would only happen on boot).
 819                 */
 820                return 0;
 821
 822        /* Check if we're already there */
 823        if (dev->current_state == state)
 824                return 0;
 825
 826        __pci_start_power_transition(dev, state);
 827
 828        /* This device is quirked not to be put into D3, so
 829           don't put it in D3 */
 830        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 831                return 0;
 832
 833        /*
 834         * To put device in D3cold, we put device into D3hot in native
 835         * way, then put device into D3cold with platform ops
 836         */
 837        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 838                                        PCI_D3hot : state);
 839
 840        if (!__pci_complete_power_transition(dev, state))
 841                error = 0;
 842        /*
 843         * When aspm_policy is "powersave" this call ensures
 844         * that ASPM is configured.
 845         */
 846        if (!error && dev->bus->self)
 847                pcie_aspm_powersave_config_link(dev->bus->self);
 848
 849        return error;
 850}
 851EXPORT_SYMBOL(pci_set_power_state);
 852
 853/**
 854 * pci_choose_state - Choose the power state of a PCI device
 855 * @dev: PCI device to be suspended
 856 * @state: target sleep state for the whole system. This is the value
 857 *      that is passed to suspend() function.
 858 *
 859 * Returns PCI power state suitable for given device and given system
 860 * message.
 861 */
 862
 863pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 864{
 865        pci_power_t ret;
 866
 867        if (!dev->pm_cap)
 868                return PCI_D0;
 869
 870        ret = platform_pci_choose_state(dev);
 871        if (ret != PCI_POWER_ERROR)
 872                return ret;
 873
 874        switch (state.event) {
 875        case PM_EVENT_ON:
 876                return PCI_D0;
 877        case PM_EVENT_FREEZE:
 878        case PM_EVENT_PRETHAW:
 879                /* REVISIT both freeze and pre-thaw "should" use D0 */
 880        case PM_EVENT_SUSPEND:
 881        case PM_EVENT_HIBERNATE:
 882                return PCI_D3hot;
 883        default:
 884                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 885                         state.event);
 886                BUG();
 887        }
 888        return PCI_D0;
 889}
 890EXPORT_SYMBOL(pci_choose_state);
 891
 892#define PCI_EXP_SAVE_REGS       7
 893
 894static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 895                                                       u16 cap, bool extended)
 896{
 897        struct pci_cap_saved_state *tmp;
 898
 899        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 900                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 901                        return tmp;
 902        }
 903        return NULL;
 904}
 905
 906struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 907{
 908        return _pci_find_saved_cap(dev, cap, false);
 909}
 910
 911struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
 912{
 913        return _pci_find_saved_cap(dev, cap, true);
 914}
 915
 916static int pci_save_pcie_state(struct pci_dev *dev)
 917{
 918        int i = 0;
 919        struct pci_cap_saved_state *save_state;
 920        u16 *cap;
 921
 922        if (!pci_is_pcie(dev))
 923                return 0;
 924
 925        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 926        if (!save_state) {
 927                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 928                return -ENOMEM;
 929        }
 930
 931        cap = (u16 *)&save_state->cap.data[0];
 932        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 933        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 934        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 935        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 936        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 937        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 938        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 939
 940        return 0;
 941}
 942
 943static void pci_restore_pcie_state(struct pci_dev *dev)
 944{
 945        int i = 0;
 946        struct pci_cap_saved_state *save_state;
 947        u16 *cap;
 948
 949        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 950        if (!save_state)
 951                return;
 952
 953        cap = (u16 *)&save_state->cap.data[0];
 954        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 955        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 956        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 957        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 958        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 959        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 960        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 961}
 962
 963
 964static int pci_save_pcix_state(struct pci_dev *dev)
 965{
 966        int pos;
 967        struct pci_cap_saved_state *save_state;
 968
 969        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 970        if (pos <= 0)
 971                return 0;
 972
 973        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 974        if (!save_state) {
 975                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 976                return -ENOMEM;
 977        }
 978
 979        pci_read_config_word(dev, pos + PCI_X_CMD,
 980                             (u16 *)save_state->cap.data);
 981
 982        return 0;
 983}
 984
 985static void pci_restore_pcix_state(struct pci_dev *dev)
 986{
 987        int i = 0, pos;
 988        struct pci_cap_saved_state *save_state;
 989        u16 *cap;
 990
 991        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 992        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 993        if (!save_state || pos <= 0)
 994                return;
 995        cap = (u16 *)&save_state->cap.data[0];
 996
 997        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 998}
 999
1000
1001/**
1002 * pci_save_state - save the PCI configuration space of a device before suspending
1003 * @dev: - PCI device that we're dealing with
1004 */
1005int pci_save_state(struct pci_dev *dev)
1006{
1007        int i;
1008        /* XXX: 100% dword access ok here? */
1009        for (i = 0; i < 16; i++)
1010                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1011        dev->state_saved = true;
1012        if ((i = pci_save_pcie_state(dev)) != 0)
1013                return i;
1014        if ((i = pci_save_pcix_state(dev)) != 0)
1015                return i;
1016        if ((i = pci_save_vc_state(dev)) != 0)
1017                return i;
1018        return 0;
1019}
1020EXPORT_SYMBOL(pci_save_state);
1021
1022static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1023                                     u32 saved_val, int retry)
1024{
1025        u32 val;
1026
1027        pci_read_config_dword(pdev, offset, &val);
1028        if (val == saved_val)
1029                return;
1030
1031        for (;;) {
1032                dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1033                        offset, val, saved_val);
1034                pci_write_config_dword(pdev, offset, saved_val);
1035                if (retry-- <= 0)
1036                        return;
1037
1038                pci_read_config_dword(pdev, offset, &val);
1039                if (val == saved_val)
1040                        return;
1041
1042                mdelay(1);
1043        }
1044}
1045
1046static void pci_restore_config_space_range(struct pci_dev *pdev,
1047                                           int start, int end, int retry)
1048{
1049        int index;
1050
1051        for (index = end; index >= start; index--)
1052                pci_restore_config_dword(pdev, 4 * index,
1053                                         pdev->saved_config_space[index],
1054                                         retry);
1055}
1056
1057static void pci_restore_config_space(struct pci_dev *pdev)
1058{
1059        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1060                pci_restore_config_space_range(pdev, 10, 15, 0);
1061                /* Restore BARs before the command register. */
1062                pci_restore_config_space_range(pdev, 4, 9, 10);
1063                pci_restore_config_space_range(pdev, 0, 3, 0);
1064        } else {
1065                pci_restore_config_space_range(pdev, 0, 15, 0);
1066        }
1067}
1068
1069/**
1070 * pci_restore_state - Restore the saved state of a PCI device
1071 * @dev: - PCI device that we're dealing with
1072 */
1073void pci_restore_state(struct pci_dev *dev)
1074{
1075        if (!dev->state_saved)
1076                return;
1077
1078        /* PCI Express register must be restored first */
1079        pci_restore_pcie_state(dev);
1080        pci_restore_ats_state(dev);
1081        pci_restore_vc_state(dev);
1082
1083        pci_restore_config_space(dev);
1084
1085        pci_restore_pcix_state(dev);
1086        pci_restore_msi_state(dev);
1087        pci_restore_iov_state(dev);
1088
1089        dev->state_saved = false;
1090}
1091EXPORT_SYMBOL(pci_restore_state);
1092
1093struct pci_saved_state {
1094        u32 config_space[16];
1095        struct pci_cap_saved_data cap[0];
1096};
1097
1098/**
1099 * pci_store_saved_state - Allocate and return an opaque struct containing
1100 *                         the device saved state.
1101 * @dev: PCI device that we're dealing with
1102 *
1103 * Return NULL if no state or error.
1104 */
1105struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1106{
1107        struct pci_saved_state *state;
1108        struct pci_cap_saved_state *tmp;
1109        struct pci_cap_saved_data *cap;
1110        size_t size;
1111
1112        if (!dev->state_saved)
1113                return NULL;
1114
1115        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1116
1117        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1118                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1119
1120        state = kzalloc(size, GFP_KERNEL);
1121        if (!state)
1122                return NULL;
1123
1124        memcpy(state->config_space, dev->saved_config_space,
1125               sizeof(state->config_space));
1126
1127        cap = state->cap;
1128        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1129                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1130                memcpy(cap, &tmp->cap, len);
1131                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1132        }
1133        /* Empty cap_save terminates list */
1134
1135        return state;
1136}
1137EXPORT_SYMBOL_GPL(pci_store_saved_state);
1138
1139/**
1140 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1141 * @dev: PCI device that we're dealing with
1142 * @state: Saved state returned from pci_store_saved_state()
1143 */
1144static int pci_load_saved_state(struct pci_dev *dev,
1145                                struct pci_saved_state *state)
1146{
1147        struct pci_cap_saved_data *cap;
1148
1149        dev->state_saved = false;
1150
1151        if (!state)
1152                return 0;
1153
1154        memcpy(dev->saved_config_space, state->config_space,
1155               sizeof(state->config_space));
1156
1157        cap = state->cap;
1158        while (cap->size) {
1159                struct pci_cap_saved_state *tmp;
1160
1161                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1162                if (!tmp || tmp->cap.size != cap->size)
1163                        return -EINVAL;
1164
1165                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1166                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1167                       sizeof(struct pci_cap_saved_data) + cap->size);
1168        }
1169
1170        dev->state_saved = true;
1171        return 0;
1172}
1173
1174/**
1175 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1176 *                                 and free the memory allocated for it.
1177 * @dev: PCI device that we're dealing with
1178 * @state: Pointer to saved state returned from pci_store_saved_state()
1179 */
1180int pci_load_and_free_saved_state(struct pci_dev *dev,
1181                                  struct pci_saved_state **state)
1182{
1183        int ret = pci_load_saved_state(dev, *state);
1184        kfree(*state);
1185        *state = NULL;
1186        return ret;
1187}
1188EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1189
1190int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1191{
1192        return pci_enable_resources(dev, bars);
1193}
1194
1195static int do_pci_enable_device(struct pci_dev *dev, int bars)
1196{
1197        int err;
1198        u16 cmd;
1199        u8 pin;
1200
1201        err = pci_set_power_state(dev, PCI_D0);
1202        if (err < 0 && err != -EIO)
1203                return err;
1204        err = pcibios_enable_device(dev, bars);
1205        if (err < 0)
1206                return err;
1207        pci_fixup_device(pci_fixup_enable, dev);
1208
1209        if (dev->msi_enabled || dev->msix_enabled)
1210                return 0;
1211
1212        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1213        if (pin) {
1214                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1215                if (cmd & PCI_COMMAND_INTX_DISABLE)
1216                        pci_write_config_word(dev, PCI_COMMAND,
1217                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1218        }
1219
1220        return 0;
1221}
1222
1223/**
1224 * pci_reenable_device - Resume abandoned device
1225 * @dev: PCI device to be resumed
1226 *
1227 *  Note this function is a backend of pci_default_resume and is not supposed
1228 *  to be called by normal code, write proper resume handler and use it instead.
1229 */
1230int pci_reenable_device(struct pci_dev *dev)
1231{
1232        if (pci_is_enabled(dev))
1233                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1234        return 0;
1235}
1236EXPORT_SYMBOL(pci_reenable_device);
1237
1238static void pci_enable_bridge(struct pci_dev *dev)
1239{
1240        struct pci_dev *bridge;
1241        int retval;
1242
1243        bridge = pci_upstream_bridge(dev);
1244        if (bridge)
1245                pci_enable_bridge(bridge);
1246
1247        if (pci_is_enabled(dev)) {
1248                if (!dev->is_busmaster)
1249                        pci_set_master(dev);
1250                return;
1251        }
1252
1253        retval = pci_enable_device(dev);
1254        if (retval)
1255                dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1256                        retval);
1257        pci_set_master(dev);
1258}
1259
1260static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1261{
1262        struct pci_dev *bridge;
1263        int err;
1264        int i, bars = 0;
1265
1266        /*
1267         * Power state could be unknown at this point, either due to a fresh
1268         * boot or a device removal call.  So get the current power state
1269         * so that things like MSI message writing will behave as expected
1270         * (e.g. if the device really is in D0 at enable time).
1271         */
1272        if (dev->pm_cap) {
1273                u16 pmcsr;
1274                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1275                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1276        }
1277
1278        if (atomic_inc_return(&dev->enable_cnt) > 1)
1279                return 0;               /* already enabled */
1280
1281        bridge = pci_upstream_bridge(dev);
1282        if (bridge)
1283                pci_enable_bridge(bridge);
1284
1285        /* only skip sriov related */
1286        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1287                if (dev->resource[i].flags & flags)
1288                        bars |= (1 << i);
1289        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1290                if (dev->resource[i].flags & flags)
1291                        bars |= (1 << i);
1292
1293        err = do_pci_enable_device(dev, bars);
1294        if (err < 0)
1295                atomic_dec(&dev->enable_cnt);
1296        return err;
1297}
1298
1299/**
1300 * pci_enable_device_io - Initialize a device for use with IO space
1301 * @dev: PCI device to be initialized
1302 *
1303 *  Initialize device before it's used by a driver. Ask low-level code
1304 *  to enable I/O resources. Wake up the device if it was suspended.
1305 *  Beware, this function can fail.
1306 */
1307int pci_enable_device_io(struct pci_dev *dev)
1308{
1309        return pci_enable_device_flags(dev, IORESOURCE_IO);
1310}
1311EXPORT_SYMBOL(pci_enable_device_io);
1312
1313/**
1314 * pci_enable_device_mem - Initialize a device for use with Memory space
1315 * @dev: PCI device to be initialized
1316 *
1317 *  Initialize device before it's used by a driver. Ask low-level code
1318 *  to enable Memory resources. Wake up the device if it was suspended.
1319 *  Beware, this function can fail.
1320 */
1321int pci_enable_device_mem(struct pci_dev *dev)
1322{
1323        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1324}
1325EXPORT_SYMBOL(pci_enable_device_mem);
1326
1327/**
1328 * pci_enable_device - Initialize device before it's used by a driver.
1329 * @dev: PCI device to be initialized
1330 *
1331 *  Initialize device before it's used by a driver. Ask low-level code
1332 *  to enable I/O and memory. Wake up the device if it was suspended.
1333 *  Beware, this function can fail.
1334 *
1335 *  Note we don't actually enable the device many times if we call
1336 *  this function repeatedly (we just increment the count).
1337 */
1338int pci_enable_device(struct pci_dev *dev)
1339{
1340        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1341}
1342EXPORT_SYMBOL(pci_enable_device);
1343
1344/*
1345 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1346 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1347 * there's no need to track it separately.  pci_devres is initialized
1348 * when a device is enabled using managed PCI device enable interface.
1349 */
1350struct pci_devres {
1351        unsigned int enabled:1;
1352        unsigned int pinned:1;
1353        unsigned int orig_intx:1;
1354        unsigned int restore_intx:1;
1355        u32 region_mask;
1356};
1357
1358static void pcim_release(struct device *gendev, void *res)
1359{
1360        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1361        struct pci_devres *this = res;
1362        int i;
1363
1364        if (dev->msi_enabled)
1365                pci_disable_msi(dev);
1366        if (dev->msix_enabled)
1367                pci_disable_msix(dev);
1368
1369        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1370                if (this->region_mask & (1 << i))
1371                        pci_release_region(dev, i);
1372
1373        if (this->restore_intx)
1374                pci_intx(dev, this->orig_intx);
1375
1376        if (this->enabled && !this->pinned)
1377                pci_disable_device(dev);
1378}
1379
1380static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1381{
1382        struct pci_devres *dr, *new_dr;
1383
1384        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1385        if (dr)
1386                return dr;
1387
1388        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1389        if (!new_dr)
1390                return NULL;
1391        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1392}
1393
1394static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1395{
1396        if (pci_is_managed(pdev))
1397                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1398        return NULL;
1399}
1400
1401/**
1402 * pcim_enable_device - Managed pci_enable_device()
1403 * @pdev: PCI device to be initialized
1404 *
1405 * Managed pci_enable_device().
1406 */
1407int pcim_enable_device(struct pci_dev *pdev)
1408{
1409        struct pci_devres *dr;
1410        int rc;
1411
1412        dr = get_pci_dr(pdev);
1413        if (unlikely(!dr))
1414                return -ENOMEM;
1415        if (dr->enabled)
1416                return 0;
1417
1418        rc = pci_enable_device(pdev);
1419        if (!rc) {
1420                pdev->is_managed = 1;
1421                dr->enabled = 1;
1422        }
1423        return rc;
1424}
1425EXPORT_SYMBOL(pcim_enable_device);
1426
1427/**
1428 * pcim_pin_device - Pin managed PCI device
1429 * @pdev: PCI device to pin
1430 *
1431 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1432 * driver detach.  @pdev must have been enabled with
1433 * pcim_enable_device().
1434 */
1435void pcim_pin_device(struct pci_dev *pdev)
1436{
1437        struct pci_devres *dr;
1438
1439        dr = find_pci_dr(pdev);
1440        WARN_ON(!dr || !dr->enabled);
1441        if (dr)
1442                dr->pinned = 1;
1443}
1444EXPORT_SYMBOL(pcim_pin_device);
1445
1446/*
1447 * pcibios_add_device - provide arch specific hooks when adding device dev
1448 * @dev: the PCI device being added
1449 *
1450 * Permits the platform to provide architecture specific functionality when
1451 * devices are added. This is the default implementation. Architecture
1452 * implementations can override this.
1453 */
1454int __weak pcibios_add_device(struct pci_dev *dev)
1455{
1456        return 0;
1457}
1458
1459/**
1460 * pcibios_release_device - provide arch specific hooks when releasing device dev
1461 * @dev: the PCI device being released
1462 *
1463 * Permits the platform to provide architecture specific functionality when
1464 * devices are released. This is the default implementation. Architecture
1465 * implementations can override this.
1466 */
1467void __weak pcibios_release_device(struct pci_dev *dev) {}
1468
1469/**
1470 * pcibios_disable_device - disable arch specific PCI resources for device dev
1471 * @dev: the PCI device to disable
1472 *
1473 * Disables architecture specific PCI resources for the device. This
1474 * is the default implementation. Architecture implementations can
1475 * override this.
1476 */
1477void __weak pcibios_disable_device (struct pci_dev *dev) {}
1478
1479/**
1480 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1481 * @irq: ISA IRQ to penalize
1482 * @active: IRQ active or not
1483 *
1484 * Permits the platform to provide architecture-specific functionality when
1485 * penalizing ISA IRQs. This is the default implementation. Architecture
1486 * implementations can override this.
1487 */
1488void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1489
1490static void do_pci_disable_device(struct pci_dev *dev)
1491{
1492        u16 pci_command;
1493
1494        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1495        if (pci_command & PCI_COMMAND_MASTER) {
1496                pci_command &= ~PCI_COMMAND_MASTER;
1497                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1498        }
1499
1500        pcibios_disable_device(dev);
1501}
1502
1503/**
1504 * pci_disable_enabled_device - Disable device without updating enable_cnt
1505 * @dev: PCI device to disable
1506 *
1507 * NOTE: This function is a backend of PCI power management routines and is
1508 * not supposed to be called drivers.
1509 */
1510void pci_disable_enabled_device(struct pci_dev *dev)
1511{
1512        if (pci_is_enabled(dev))
1513                do_pci_disable_device(dev);
1514}
1515
1516/**
1517 * pci_disable_device - Disable PCI device after use
1518 * @dev: PCI device to be disabled
1519 *
1520 * Signal to the system that the PCI device is not in use by the system
1521 * anymore.  This only involves disabling PCI bus-mastering, if active.
1522 *
1523 * Note we don't actually disable the device until all callers of
1524 * pci_enable_device() have called pci_disable_device().
1525 */
1526void pci_disable_device(struct pci_dev *dev)
1527{
1528        struct pci_devres *dr;
1529
1530        dr = find_pci_dr(dev);
1531        if (dr)
1532                dr->enabled = 0;
1533
1534        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1535                      "disabling already-disabled device");
1536
1537        if (atomic_dec_return(&dev->enable_cnt) != 0)
1538                return;
1539
1540        do_pci_disable_device(dev);
1541
1542        dev->is_busmaster = 0;
1543}
1544EXPORT_SYMBOL(pci_disable_device);
1545
1546/**
1547 * pcibios_set_pcie_reset_state - set reset state for device dev
1548 * @dev: the PCIe device reset
1549 * @state: Reset state to enter into
1550 *
1551 *
1552 * Sets the PCIe reset state for the device. This is the default
1553 * implementation. Architecture implementations can override this.
1554 */
1555int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1556                                        enum pcie_reset_state state)
1557{
1558        return -EINVAL;
1559}
1560
1561/**
1562 * pci_set_pcie_reset_state - set reset state for device dev
1563 * @dev: the PCIe device reset
1564 * @state: Reset state to enter into
1565 *
1566 *
1567 * Sets the PCI reset state for the device.
1568 */
1569int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1570{
1571        return pcibios_set_pcie_reset_state(dev, state);
1572}
1573EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1574
1575/**
1576 * pci_check_pme_status - Check if given device has generated PME.
1577 * @dev: Device to check.
1578 *
1579 * Check the PME status of the device and if set, clear it and clear PME enable
1580 * (if set).  Return 'true' if PME status and PME enable were both set or
1581 * 'false' otherwise.
1582 */
1583bool pci_check_pme_status(struct pci_dev *dev)
1584{
1585        int pmcsr_pos;
1586        u16 pmcsr;
1587        bool ret = false;
1588
1589        if (!dev->pm_cap)
1590                return false;
1591
1592        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1593        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1594        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1595                return false;
1596
1597        /* Clear PME status. */
1598        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1599        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1600                /* Disable PME to avoid interrupt flood. */
1601                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1602                ret = true;
1603        }
1604
1605        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1606
1607        return ret;
1608}
1609
1610/**
1611 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1612 * @dev: Device to handle.
1613 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1614 *
1615 * Check if @dev has generated PME and queue a resume request for it in that
1616 * case.
1617 */
1618static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1619{
1620        if (pme_poll_reset && dev->pme_poll)
1621                dev->pme_poll = false;
1622
1623        if (pci_check_pme_status(dev)) {
1624                pci_wakeup_event(dev);
1625                pm_request_resume(&dev->dev);
1626        }
1627        return 0;
1628}
1629
1630/**
1631 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1632 * @bus: Top bus of the subtree to walk.
1633 */
1634void pci_pme_wakeup_bus(struct pci_bus *bus)
1635{
1636        if (bus)
1637                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1638}
1639
1640
1641/**
1642 * pci_pme_capable - check the capability of PCI device to generate PME#
1643 * @dev: PCI device to handle.
1644 * @state: PCI state from which device will issue PME#.
1645 */
1646bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1647{
1648        if (!dev->pm_cap)
1649                return false;
1650
1651        return !!(dev->pme_support & (1 << state));
1652}
1653EXPORT_SYMBOL(pci_pme_capable);
1654
1655static void pci_pme_list_scan(struct work_struct *work)
1656{
1657        struct pci_pme_device *pme_dev, *n;
1658
1659        mutex_lock(&pci_pme_list_mutex);
1660        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1661                if (pme_dev->dev->pme_poll) {
1662                        struct pci_dev *bridge;
1663
1664                        bridge = pme_dev->dev->bus->self;
1665                        /*
1666                         * If bridge is in low power state, the
1667                         * configuration space of subordinate devices
1668                         * may be not accessible
1669                         */
1670                        if (bridge && bridge->current_state != PCI_D0)
1671                                continue;
1672                        pci_pme_wakeup(pme_dev->dev, NULL);
1673                } else {
1674                        list_del(&pme_dev->list);
1675                        kfree(pme_dev);
1676                }
1677        }
1678        if (!list_empty(&pci_pme_list))
1679                schedule_delayed_work(&pci_pme_work,
1680                                      msecs_to_jiffies(PME_TIMEOUT));
1681        mutex_unlock(&pci_pme_list_mutex);
1682}
1683
1684/**
1685 * pci_pme_active - enable or disable PCI device's PME# function
1686 * @dev: PCI device to handle.
1687 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1688 *
1689 * The caller must verify that the device is capable of generating PME# before
1690 * calling this function with @enable equal to 'true'.
1691 */
1692void pci_pme_active(struct pci_dev *dev, bool enable)
1693{
1694        u16 pmcsr;
1695
1696        if (!dev->pme_support)
1697                return;
1698
1699        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1700        /* Clear PME_Status by writing 1 to it and enable PME# */
1701        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1702        if (!enable)
1703                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1704
1705        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1706
1707        /*
1708         * PCI (as opposed to PCIe) PME requires that the device have
1709         * its PME# line hooked up correctly. Not all hardware vendors
1710         * do this, so the PME never gets delivered and the device
1711         * remains asleep. The easiest way around this is to
1712         * periodically walk the list of suspended devices and check
1713         * whether any have their PME flag set. The assumption is that
1714         * we'll wake up often enough anyway that this won't be a huge
1715         * hit, and the power savings from the devices will still be a
1716         * win.
1717         *
1718         * Although PCIe uses in-band PME message instead of PME# line
1719         * to report PME, PME does not work for some PCIe devices in
1720         * reality.  For example, there are devices that set their PME
1721         * status bits, but don't really bother to send a PME message;
1722         * there are PCI Express Root Ports that don't bother to
1723         * trigger interrupts when they receive PME messages from the
1724         * devices below.  So PME poll is used for PCIe devices too.
1725         */
1726
1727        if (dev->pme_poll) {
1728                struct pci_pme_device *pme_dev;
1729                if (enable) {
1730                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1731                                          GFP_KERNEL);
1732                        if (!pme_dev) {
1733                                dev_warn(&dev->dev, "can't enable PME#\n");
1734                                return;
1735                        }
1736                        pme_dev->dev = dev;
1737                        mutex_lock(&pci_pme_list_mutex);
1738                        list_add(&pme_dev->list, &pci_pme_list);
1739                        if (list_is_singular(&pci_pme_list))
1740                                schedule_delayed_work(&pci_pme_work,
1741                                                      msecs_to_jiffies(PME_TIMEOUT));
1742                        mutex_unlock(&pci_pme_list_mutex);
1743                } else {
1744                        mutex_lock(&pci_pme_list_mutex);
1745                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1746                                if (pme_dev->dev == dev) {
1747                                        list_del(&pme_dev->list);
1748                                        kfree(pme_dev);
1749                                        break;
1750                                }
1751                        }
1752                        mutex_unlock(&pci_pme_list_mutex);
1753                }
1754        }
1755
1756        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1757}
1758EXPORT_SYMBOL(pci_pme_active);
1759
1760/**
1761 * __pci_enable_wake - enable PCI device as wakeup event source
1762 * @dev: PCI device affected
1763 * @state: PCI state from which device will issue wakeup events
1764 * @runtime: True if the events are to be generated at run time
1765 * @enable: True to enable event generation; false to disable
1766 *
1767 * This enables the device as a wakeup event source, or disables it.
1768 * When such events involves platform-specific hooks, those hooks are
1769 * called automatically by this routine.
1770 *
1771 * Devices with legacy power management (no standard PCI PM capabilities)
1772 * always require such platform hooks.
1773 *
1774 * RETURN VALUE:
1775 * 0 is returned on success
1776 * -EINVAL is returned if device is not supposed to wake up the system
1777 * Error code depending on the platform is returned if both the platform and
1778 * the native mechanism fail to enable the generation of wake-up events
1779 */
1780int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1781                      bool runtime, bool enable)
1782{
1783        int ret = 0;
1784
1785        if (enable && !runtime && !device_may_wakeup(&dev->dev))
1786                return -EINVAL;
1787
1788        /* Don't do the same thing twice in a row for one device. */
1789        if (!!enable == !!dev->wakeup_prepared)
1790                return 0;
1791
1792        /*
1793         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1794         * Anderson we should be doing PME# wake enable followed by ACPI wake
1795         * enable.  To disable wake-up we call the platform first, for symmetry.
1796         */
1797
1798        if (enable) {
1799                int error;
1800
1801                if (pci_pme_capable(dev, state))
1802                        pci_pme_active(dev, true);
1803                else
1804                        ret = 1;
1805                error = runtime ? platform_pci_run_wake(dev, true) :
1806                                        platform_pci_sleep_wake(dev, true);
1807                if (ret)
1808                        ret = error;
1809                if (!ret)
1810                        dev->wakeup_prepared = true;
1811        } else {
1812                if (runtime)
1813                        platform_pci_run_wake(dev, false);
1814                else
1815                        platform_pci_sleep_wake(dev, false);
1816                pci_pme_active(dev, false);
1817                dev->wakeup_prepared = false;
1818        }
1819
1820        return ret;
1821}
1822EXPORT_SYMBOL(__pci_enable_wake);
1823
1824/**
1825 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1826 * @dev: PCI device to prepare
1827 * @enable: True to enable wake-up event generation; false to disable
1828 *
1829 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1830 * and this function allows them to set that up cleanly - pci_enable_wake()
1831 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1832 * ordering constraints.
1833 *
1834 * This function only returns error code if the device is not capable of
1835 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1836 * enable wake-up power for it.
1837 */
1838int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1839{
1840        return pci_pme_capable(dev, PCI_D3cold) ?
1841                        pci_enable_wake(dev, PCI_D3cold, enable) :
1842                        pci_enable_wake(dev, PCI_D3hot, enable);
1843}
1844EXPORT_SYMBOL(pci_wake_from_d3);
1845
1846/**
1847 * pci_target_state - find an appropriate low power state for a given PCI dev
1848 * @dev: PCI device
1849 *
1850 * Use underlying platform code to find a supported low power state for @dev.
1851 * If the platform can't manage @dev, return the deepest state from which it
1852 * can generate wake events, based on any available PME info.
1853 */
1854static pci_power_t pci_target_state(struct pci_dev *dev)
1855{
1856        pci_power_t target_state = PCI_D3hot;
1857
1858        if (platform_pci_power_manageable(dev)) {
1859                /*
1860                 * Call the platform to choose the target state of the device
1861                 * and enable wake-up from this state if supported.
1862                 */
1863                pci_power_t state = platform_pci_choose_state(dev);
1864
1865                switch (state) {
1866                case PCI_POWER_ERROR:
1867                case PCI_UNKNOWN:
1868                        break;
1869                case PCI_D1:
1870                case PCI_D2:
1871                        if (pci_no_d1d2(dev))
1872                                break;
1873                default:
1874                        target_state = state;
1875                }
1876        } else if (!dev->pm_cap) {
1877                target_state = PCI_D0;
1878        } else if (device_may_wakeup(&dev->dev)) {
1879                /*
1880                 * Find the deepest state from which the device can generate
1881                 * wake-up events, make it the target state and enable device
1882                 * to generate PME#.
1883                 */
1884                if (dev->pme_support) {
1885                        while (target_state
1886                              && !(dev->pme_support & (1 << target_state)))
1887                                target_state--;
1888                }
1889        }
1890
1891        return target_state;
1892}
1893
1894/**
1895 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1896 * @dev: Device to handle.
1897 *
1898 * Choose the power state appropriate for the device depending on whether
1899 * it can wake up the system and/or is power manageable by the platform
1900 * (PCI_D3hot is the default) and put the device into that state.
1901 */
1902int pci_prepare_to_sleep(struct pci_dev *dev)
1903{
1904        pci_power_t target_state = pci_target_state(dev);
1905        int error;
1906
1907        if (target_state == PCI_POWER_ERROR)
1908                return -EIO;
1909
1910        /* D3cold during system suspend/hibernate is not supported */
1911        if (target_state > PCI_D3hot)
1912                target_state = PCI_D3hot;
1913
1914        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1915
1916        error = pci_set_power_state(dev, target_state);
1917
1918        if (error)
1919                pci_enable_wake(dev, target_state, false);
1920
1921        return error;
1922}
1923EXPORT_SYMBOL(pci_prepare_to_sleep);
1924
1925/**
1926 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1927 * @dev: Device to handle.
1928 *
1929 * Disable device's system wake-up capability and put it into D0.
1930 */
1931int pci_back_from_sleep(struct pci_dev *dev)
1932{
1933        pci_enable_wake(dev, PCI_D0, false);
1934        return pci_set_power_state(dev, PCI_D0);
1935}
1936EXPORT_SYMBOL(pci_back_from_sleep);
1937
1938/**
1939 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1940 * @dev: PCI device being suspended.
1941 *
1942 * Prepare @dev to generate wake-up events at run time and put it into a low
1943 * power state.
1944 */
1945int pci_finish_runtime_suspend(struct pci_dev *dev)
1946{
1947        pci_power_t target_state = pci_target_state(dev);
1948        int error;
1949
1950        if (target_state == PCI_POWER_ERROR)
1951                return -EIO;
1952
1953        dev->runtime_d3cold = target_state == PCI_D3cold;
1954
1955        __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1956
1957        error = pci_set_power_state(dev, target_state);
1958
1959        if (error) {
1960                __pci_enable_wake(dev, target_state, true, false);
1961                dev->runtime_d3cold = false;
1962        }
1963
1964        return error;
1965}
1966
1967/**
1968 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1969 * @dev: Device to check.
1970 *
1971 * Return true if the device itself is capable of generating wake-up events
1972 * (through the platform or using the native PCIe PME) or if the device supports
1973 * PME and one of its upstream bridges can generate wake-up events.
1974 */
1975bool pci_dev_run_wake(struct pci_dev *dev)
1976{
1977        struct pci_bus *bus = dev->bus;
1978
1979        if (device_run_wake(&dev->dev))
1980                return true;
1981
1982        if (!dev->pme_support)
1983                return false;
1984
1985        while (bus->parent) {
1986                struct pci_dev *bridge = bus->self;
1987
1988                if (device_run_wake(&bridge->dev))
1989                        return true;
1990
1991                bus = bus->parent;
1992        }
1993
1994        /* We have reached the root bus. */
1995        if (bus->bridge)
1996                return device_run_wake(bus->bridge);
1997
1998        return false;
1999}
2000EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2001
2002void pci_config_pm_runtime_get(struct pci_dev *pdev)
2003{
2004        struct device *dev = &pdev->dev;
2005        struct device *parent = dev->parent;
2006
2007        if (parent)
2008                pm_runtime_get_sync(parent);
2009        pm_runtime_get_noresume(dev);
2010        /*
2011         * pdev->current_state is set to PCI_D3cold during suspending,
2012         * so wait until suspending completes
2013         */
2014        pm_runtime_barrier(dev);
2015        /*
2016         * Only need to resume devices in D3cold, because config
2017         * registers are still accessible for devices suspended but
2018         * not in D3cold.
2019         */
2020        if (pdev->current_state == PCI_D3cold)
2021                pm_runtime_resume(dev);
2022}
2023
2024void pci_config_pm_runtime_put(struct pci_dev *pdev)
2025{
2026        struct device *dev = &pdev->dev;
2027        struct device *parent = dev->parent;
2028
2029        pm_runtime_put(dev);
2030        if (parent)
2031                pm_runtime_put_sync(parent);
2032}
2033
2034/**
2035 * pci_pm_init - Initialize PM functions of given PCI device
2036 * @dev: PCI device to handle.
2037 */
2038void pci_pm_init(struct pci_dev *dev)
2039{
2040        int pm;
2041        u16 pmc;
2042
2043        pm_runtime_forbid(&dev->dev);
2044        pm_runtime_set_active(&dev->dev);
2045        pm_runtime_enable(&dev->dev);
2046        device_enable_async_suspend(&dev->dev);
2047        dev->wakeup_prepared = false;
2048
2049        dev->pm_cap = 0;
2050        dev->pme_support = 0;
2051
2052        /* find PCI PM capability in list */
2053        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2054        if (!pm)
2055                return;
2056        /* Check device's ability to generate PME# */
2057        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2058
2059        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2060                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2061                        pmc & PCI_PM_CAP_VER_MASK);
2062                return;
2063        }
2064
2065        dev->pm_cap = pm;
2066        dev->d3_delay = PCI_PM_D3_WAIT;
2067        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2068        dev->d3cold_allowed = true;
2069
2070        dev->d1_support = false;
2071        dev->d2_support = false;
2072        if (!pci_no_d1d2(dev)) {
2073                if (pmc & PCI_PM_CAP_D1)
2074                        dev->d1_support = true;
2075                if (pmc & PCI_PM_CAP_D2)
2076                        dev->d2_support = true;
2077
2078                if (dev->d1_support || dev->d2_support)
2079                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2080                                   dev->d1_support ? " D1" : "",
2081                                   dev->d2_support ? " D2" : "");
2082        }
2083
2084        pmc &= PCI_PM_CAP_PME_MASK;
2085        if (pmc) {
2086                dev_printk(KERN_DEBUG, &dev->dev,
2087                         "PME# supported from%s%s%s%s%s\n",
2088                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2089                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2090                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2091                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2092                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2093                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2094                dev->pme_poll = true;
2095                /*
2096                 * Make device's PM flags reflect the wake-up capability, but
2097                 * let the user space enable it to wake up the system as needed.
2098                 */
2099                device_set_wakeup_capable(&dev->dev, true);
2100                /* Disable the PME# generation functionality */
2101                pci_pme_active(dev, false);
2102        }
2103}
2104
2105static void pci_add_saved_cap(struct pci_dev *pci_dev,
2106        struct pci_cap_saved_state *new_cap)
2107{
2108        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2109}
2110
2111/**
2112 * _pci_add_cap_save_buffer - allocate buffer for saving given
2113 *                            capability registers
2114 * @dev: the PCI device
2115 * @cap: the capability to allocate the buffer for
2116 * @extended: Standard or Extended capability ID
2117 * @size: requested size of the buffer
2118 */
2119static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2120                                    bool extended, unsigned int size)
2121{
2122        int pos;
2123        struct pci_cap_saved_state *save_state;
2124
2125        if (extended)
2126                pos = pci_find_ext_capability(dev, cap);
2127        else
2128                pos = pci_find_capability(dev, cap);
2129
2130        if (pos <= 0)
2131                return 0;
2132
2133        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2134        if (!save_state)
2135                return -ENOMEM;
2136
2137        save_state->cap.cap_nr = cap;
2138        save_state->cap.cap_extended = extended;
2139        save_state->cap.size = size;
2140        pci_add_saved_cap(dev, save_state);
2141
2142        return 0;
2143}
2144
2145int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2146{
2147        return _pci_add_cap_save_buffer(dev, cap, false, size);
2148}
2149
2150int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2151{
2152        return _pci_add_cap_save_buffer(dev, cap, true, size);
2153}
2154
2155/**
2156 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2157 * @dev: the PCI device
2158 */
2159void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2160{
2161        int error;
2162
2163        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2164                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2165        if (error)
2166                dev_err(&dev->dev,
2167                        "unable to preallocate PCI Express save buffer\n");
2168
2169        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2170        if (error)
2171                dev_err(&dev->dev,
2172                        "unable to preallocate PCI-X save buffer\n");
2173
2174        pci_allocate_vc_save_buffers(dev);
2175}
2176
2177void pci_free_cap_save_buffers(struct pci_dev *dev)
2178{
2179        struct pci_cap_saved_state *tmp;
2180        struct hlist_node *n;
2181
2182        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2183                kfree(tmp);
2184}
2185
2186/**
2187 * pci_configure_ari - enable or disable ARI forwarding
2188 * @dev: the PCI device
2189 *
2190 * If @dev and its upstream bridge both support ARI, enable ARI in the
2191 * bridge.  Otherwise, disable ARI in the bridge.
2192 */
2193void pci_configure_ari(struct pci_dev *dev)
2194{
2195        u32 cap;
2196        struct pci_dev *bridge;
2197
2198        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2199                return;
2200
2201        bridge = dev->bus->self;
2202        if (!bridge)
2203                return;
2204
2205        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2206        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2207                return;
2208
2209        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2210                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2211                                         PCI_EXP_DEVCTL2_ARI);
2212                bridge->ari_enabled = 1;
2213        } else {
2214                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2215                                           PCI_EXP_DEVCTL2_ARI);
2216                bridge->ari_enabled = 0;
2217        }
2218}
2219
2220static int pci_acs_enable;
2221
2222/**
2223 * pci_request_acs - ask for ACS to be enabled if supported
2224 */
2225void pci_request_acs(void)
2226{
2227        pci_acs_enable = 1;
2228}
2229
2230/**
2231 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2232 * @dev: the PCI device
2233 */
2234static int pci_std_enable_acs(struct pci_dev *dev)
2235{
2236        int pos;
2237        u16 cap;
2238        u16 ctrl;
2239
2240        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2241        if (!pos)
2242                return -ENODEV;
2243
2244        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2245        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2246
2247        /* Source Validation */
2248        ctrl |= (cap & PCI_ACS_SV);
2249
2250        /* P2P Request Redirect */
2251        ctrl |= (cap & PCI_ACS_RR);
2252
2253        /* P2P Completion Redirect */
2254        ctrl |= (cap & PCI_ACS_CR);
2255
2256        /* Upstream Forwarding */
2257        ctrl |= (cap & PCI_ACS_UF);
2258
2259        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2260
2261        return 0;
2262}
2263
2264/**
2265 * pci_enable_acs - enable ACS if hardware support it
2266 * @dev: the PCI device
2267 */
2268void pci_enable_acs(struct pci_dev *dev)
2269{
2270        if (!pci_acs_enable)
2271                return;
2272
2273        if (!pci_std_enable_acs(dev))
2274                return;
2275
2276        pci_dev_specific_enable_acs(dev);
2277}
2278
2279static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2280{
2281        int pos;
2282        u16 cap, ctrl;
2283
2284        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2285        if (!pos)
2286                return false;
2287
2288        /*
2289         * Except for egress control, capabilities are either required
2290         * or only required if controllable.  Features missing from the
2291         * capability field can therefore be assumed as hard-wired enabled.
2292         */
2293        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2294        acs_flags &= (cap | PCI_ACS_EC);
2295
2296        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2297        return (ctrl & acs_flags) == acs_flags;
2298}
2299
2300/**
2301 * pci_acs_enabled - test ACS against required flags for a given device
2302 * @pdev: device to test
2303 * @acs_flags: required PCI ACS flags
2304 *
2305 * Return true if the device supports the provided flags.  Automatically
2306 * filters out flags that are not implemented on multifunction devices.
2307 *
2308 * Note that this interface checks the effective ACS capabilities of the
2309 * device rather than the actual capabilities.  For instance, most single
2310 * function endpoints are not required to support ACS because they have no
2311 * opportunity for peer-to-peer access.  We therefore return 'true'
2312 * regardless of whether the device exposes an ACS capability.  This makes
2313 * it much easier for callers of this function to ignore the actual type
2314 * or topology of the device when testing ACS support.
2315 */
2316bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2317{
2318        int ret;
2319
2320        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2321        if (ret >= 0)
2322                return ret > 0;
2323
2324        /*
2325         * Conventional PCI and PCI-X devices never support ACS, either
2326         * effectively or actually.  The shared bus topology implies that
2327         * any device on the bus can receive or snoop DMA.
2328         */
2329        if (!pci_is_pcie(pdev))
2330                return false;
2331
2332        switch (pci_pcie_type(pdev)) {
2333        /*
2334         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2335         * but since their primary interface is PCI/X, we conservatively
2336         * handle them as we would a non-PCIe device.
2337         */
2338        case PCI_EXP_TYPE_PCIE_BRIDGE:
2339        /*
2340         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2341         * applicable... must never implement an ACS Extended Capability...".
2342         * This seems arbitrary, but we take a conservative interpretation
2343         * of this statement.
2344         */
2345        case PCI_EXP_TYPE_PCI_BRIDGE:
2346        case PCI_EXP_TYPE_RC_EC:
2347                return false;
2348        /*
2349         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2350         * implement ACS in order to indicate their peer-to-peer capabilities,
2351         * regardless of whether they are single- or multi-function devices.
2352         */
2353        case PCI_EXP_TYPE_DOWNSTREAM:
2354        case PCI_EXP_TYPE_ROOT_PORT:
2355                return pci_acs_flags_enabled(pdev, acs_flags);
2356        /*
2357         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2358         * implemented by the remaining PCIe types to indicate peer-to-peer
2359         * capabilities, but only when they are part of a multifunction
2360         * device.  The footnote for section 6.12 indicates the specific
2361         * PCIe types included here.
2362         */
2363        case PCI_EXP_TYPE_ENDPOINT:
2364        case PCI_EXP_TYPE_UPSTREAM:
2365        case PCI_EXP_TYPE_LEG_END:
2366        case PCI_EXP_TYPE_RC_END:
2367                if (!pdev->multifunction)
2368                        break;
2369
2370                return pci_acs_flags_enabled(pdev, acs_flags);
2371        }
2372
2373        /*
2374         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2375         * to single function devices with the exception of downstream ports.
2376         */
2377        return true;
2378}
2379
2380/**
2381 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2382 * @start: starting downstream device
2383 * @end: ending upstream device or NULL to search to the root bus
2384 * @acs_flags: required flags
2385 *
2386 * Walk up a device tree from start to end testing PCI ACS support.  If
2387 * any step along the way does not support the required flags, return false.
2388 */
2389bool pci_acs_path_enabled(struct pci_dev *start,
2390                          struct pci_dev *end, u16 acs_flags)
2391{
2392        struct pci_dev *pdev, *parent = start;
2393
2394        do {
2395                pdev = parent;
2396
2397                if (!pci_acs_enabled(pdev, acs_flags))
2398                        return false;
2399
2400                if (pci_is_root_bus(pdev->bus))
2401                        return (end == NULL);
2402
2403                parent = pdev->bus->self;
2404        } while (pdev != end);
2405
2406        return true;
2407}
2408
2409/**
2410 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2411 * @dev: the PCI device
2412 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2413 *
2414 * Perform INTx swizzling for a device behind one level of bridge.  This is
2415 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2416 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2417 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2418 * the PCI Express Base Specification, Revision 2.1)
2419 */
2420u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2421{
2422        int slot;
2423
2424        if (pci_ari_enabled(dev->bus))
2425                slot = 0;
2426        else
2427                slot = PCI_SLOT(dev->devfn);
2428
2429        return (((pin - 1) + slot) % 4) + 1;
2430}
2431
2432int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2433{
2434        u8 pin;
2435
2436        pin = dev->pin;
2437        if (!pin)
2438                return -1;
2439
2440        while (!pci_is_root_bus(dev->bus)) {
2441                pin = pci_swizzle_interrupt_pin(dev, pin);
2442                dev = dev->bus->self;
2443        }
2444        *bridge = dev;
2445        return pin;
2446}
2447
2448/**
2449 * pci_common_swizzle - swizzle INTx all the way to root bridge
2450 * @dev: the PCI device
2451 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2452 *
2453 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2454 * bridges all the way up to a PCI root bus.
2455 */
2456u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2457{
2458        u8 pin = *pinp;
2459
2460        while (!pci_is_root_bus(dev->bus)) {
2461                pin = pci_swizzle_interrupt_pin(dev, pin);
2462                dev = dev->bus->self;
2463        }
2464        *pinp = pin;
2465        return PCI_SLOT(dev->devfn);
2466}
2467
2468/**
2469 *      pci_release_region - Release a PCI bar
2470 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2471 *      @bar: BAR to release
2472 *
2473 *      Releases the PCI I/O and memory resources previously reserved by a
2474 *      successful call to pci_request_region.  Call this function only
2475 *      after all use of the PCI regions has ceased.
2476 */
2477void pci_release_region(struct pci_dev *pdev, int bar)
2478{
2479        struct pci_devres *dr;
2480
2481        if (pci_resource_len(pdev, bar) == 0)
2482                return;
2483        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2484                release_region(pci_resource_start(pdev, bar),
2485                                pci_resource_len(pdev, bar));
2486        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2487                release_mem_region(pci_resource_start(pdev, bar),
2488                                pci_resource_len(pdev, bar));
2489
2490        dr = find_pci_dr(pdev);
2491        if (dr)
2492                dr->region_mask &= ~(1 << bar);
2493}
2494EXPORT_SYMBOL(pci_release_region);
2495
2496/**
2497 *      __pci_request_region - Reserved PCI I/O and memory resource
2498 *      @pdev: PCI device whose resources are to be reserved
2499 *      @bar: BAR to be reserved
2500 *      @res_name: Name to be associated with resource.
2501 *      @exclusive: whether the region access is exclusive or not
2502 *
2503 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2504 *      being reserved by owner @res_name.  Do not access any
2505 *      address inside the PCI regions unless this call returns
2506 *      successfully.
2507 *
2508 *      If @exclusive is set, then the region is marked so that userspace
2509 *      is explicitly not allowed to map the resource via /dev/mem or
2510 *      sysfs MMIO access.
2511 *
2512 *      Returns 0 on success, or %EBUSY on error.  A warning
2513 *      message is also printed on failure.
2514 */
2515static int __pci_request_region(struct pci_dev *pdev, int bar,
2516                                const char *res_name, int exclusive)
2517{
2518        struct pci_devres *dr;
2519
2520        if (pci_resource_len(pdev, bar) == 0)
2521                return 0;
2522
2523        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2524                if (!request_region(pci_resource_start(pdev, bar),
2525                            pci_resource_len(pdev, bar), res_name))
2526                        goto err_out;
2527        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2528                if (!__request_mem_region(pci_resource_start(pdev, bar),
2529                                        pci_resource_len(pdev, bar), res_name,
2530                                        exclusive))
2531                        goto err_out;
2532        }
2533
2534        dr = find_pci_dr(pdev);
2535        if (dr)
2536                dr->region_mask |= 1 << bar;
2537
2538        return 0;
2539
2540err_out:
2541        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2542                 &pdev->resource[bar]);
2543        return -EBUSY;
2544}
2545
2546/**
2547 *      pci_request_region - Reserve PCI I/O and memory resource
2548 *      @pdev: PCI device whose resources are to be reserved
2549 *      @bar: BAR to be reserved
2550 *      @res_name: Name to be associated with resource
2551 *
2552 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2553 *      being reserved by owner @res_name.  Do not access any
2554 *      address inside the PCI regions unless this call returns
2555 *      successfully.
2556 *
2557 *      Returns 0 on success, or %EBUSY on error.  A warning
2558 *      message is also printed on failure.
2559 */
2560int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2561{
2562        return __pci_request_region(pdev, bar, res_name, 0);
2563}
2564EXPORT_SYMBOL(pci_request_region);
2565
2566/**
2567 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2568 *      @pdev: PCI device whose resources are to be reserved
2569 *      @bar: BAR to be reserved
2570 *      @res_name: Name to be associated with resource.
2571 *
2572 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2573 *      being reserved by owner @res_name.  Do not access any
2574 *      address inside the PCI regions unless this call returns
2575 *      successfully.
2576 *
2577 *      Returns 0 on success, or %EBUSY on error.  A warning
2578 *      message is also printed on failure.
2579 *
2580 *      The key difference that _exclusive makes it that userspace is
2581 *      explicitly not allowed to map the resource via /dev/mem or
2582 *      sysfs.
2583 */
2584int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2585                                 const char *res_name)
2586{
2587        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2588}
2589EXPORT_SYMBOL(pci_request_region_exclusive);
2590
2591/**
2592 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2593 * @pdev: PCI device whose resources were previously reserved
2594 * @bars: Bitmask of BARs to be released
2595 *
2596 * Release selected PCI I/O and memory resources previously reserved.
2597 * Call this function only after all use of the PCI regions has ceased.
2598 */
2599void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2600{
2601        int i;
2602
2603        for (i = 0; i < 6; i++)
2604                if (bars & (1 << i))
2605                        pci_release_region(pdev, i);
2606}
2607EXPORT_SYMBOL(pci_release_selected_regions);
2608
2609static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2610                                          const char *res_name, int excl)
2611{
2612        int i;
2613
2614        for (i = 0; i < 6; i++)
2615                if (bars & (1 << i))
2616                        if (__pci_request_region(pdev, i, res_name, excl))
2617                                goto err_out;
2618        return 0;
2619
2620err_out:
2621        while (--i >= 0)
2622                if (bars & (1 << i))
2623                        pci_release_region(pdev, i);
2624
2625        return -EBUSY;
2626}
2627
2628
2629/**
2630 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2631 * @pdev: PCI device whose resources are to be reserved
2632 * @bars: Bitmask of BARs to be requested
2633 * @res_name: Name to be associated with resource
2634 */
2635int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2636                                 const char *res_name)
2637{
2638        return __pci_request_selected_regions(pdev, bars, res_name, 0);
2639}
2640EXPORT_SYMBOL(pci_request_selected_regions);
2641
2642int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2643                                           const char *res_name)
2644{
2645        return __pci_request_selected_regions(pdev, bars, res_name,
2646                        IORESOURCE_EXCLUSIVE);
2647}
2648EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2649
2650/**
2651 *      pci_release_regions - Release reserved PCI I/O and memory resources
2652 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2653 *
2654 *      Releases all PCI I/O and memory resources previously reserved by a
2655 *      successful call to pci_request_regions.  Call this function only
2656 *      after all use of the PCI regions has ceased.
2657 */
2658
2659void pci_release_regions(struct pci_dev *pdev)
2660{
2661        pci_release_selected_regions(pdev, (1 << 6) - 1);
2662}
2663EXPORT_SYMBOL(pci_release_regions);
2664
2665/**
2666 *      pci_request_regions - Reserved PCI I/O and memory resources
2667 *      @pdev: PCI device whose resources are to be reserved
2668 *      @res_name: Name to be associated with resource.
2669 *
2670 *      Mark all PCI regions associated with PCI device @pdev as
2671 *      being reserved by owner @res_name.  Do not access any
2672 *      address inside the PCI regions unless this call returns
2673 *      successfully.
2674 *
2675 *      Returns 0 on success, or %EBUSY on error.  A warning
2676 *      message is also printed on failure.
2677 */
2678int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2679{
2680        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2681}
2682EXPORT_SYMBOL(pci_request_regions);
2683
2684/**
2685 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2686 *      @pdev: PCI device whose resources are to be reserved
2687 *      @res_name: Name to be associated with resource.
2688 *
2689 *      Mark all PCI regions associated with PCI device @pdev as
2690 *      being reserved by owner @res_name.  Do not access any
2691 *      address inside the PCI regions unless this call returns
2692 *      successfully.
2693 *
2694 *      pci_request_regions_exclusive() will mark the region so that
2695 *      /dev/mem and the sysfs MMIO access will not be allowed.
2696 *
2697 *      Returns 0 on success, or %EBUSY on error.  A warning
2698 *      message is also printed on failure.
2699 */
2700int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2701{
2702        return pci_request_selected_regions_exclusive(pdev,
2703                                        ((1 << 6) - 1), res_name);
2704}
2705EXPORT_SYMBOL(pci_request_regions_exclusive);
2706
2707static void __pci_set_master(struct pci_dev *dev, bool enable)
2708{
2709        u16 old_cmd, cmd;
2710
2711        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2712        if (enable)
2713                cmd = old_cmd | PCI_COMMAND_MASTER;
2714        else
2715                cmd = old_cmd & ~PCI_COMMAND_MASTER;
2716        if (cmd != old_cmd) {
2717                dev_dbg(&dev->dev, "%s bus mastering\n",
2718                        enable ? "enabling" : "disabling");
2719                pci_write_config_word(dev, PCI_COMMAND, cmd);
2720        }
2721        dev->is_busmaster = enable;
2722}
2723
2724/**
2725 * pcibios_setup - process "pci=" kernel boot arguments
2726 * @str: string used to pass in "pci=" kernel boot arguments
2727 *
2728 * Process kernel boot arguments.  This is the default implementation.
2729 * Architecture specific implementations can override this as necessary.
2730 */
2731char * __weak __init pcibios_setup(char *str)
2732{
2733        return str;
2734}
2735
2736/**
2737 * pcibios_set_master - enable PCI bus-mastering for device dev
2738 * @dev: the PCI device to enable
2739 *
2740 * Enables PCI bus-mastering for the device.  This is the default
2741 * implementation.  Architecture specific implementations can override
2742 * this if necessary.
2743 */
2744void __weak pcibios_set_master(struct pci_dev *dev)
2745{
2746        u8 lat;
2747
2748        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2749        if (pci_is_pcie(dev))
2750                return;
2751
2752        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2753        if (lat < 16)
2754                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2755        else if (lat > pcibios_max_latency)
2756                lat = pcibios_max_latency;
2757        else
2758                return;
2759
2760        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2761}
2762
2763/**
2764 * pci_set_master - enables bus-mastering for device dev
2765 * @dev: the PCI device to enable
2766 *
2767 * Enables bus-mastering on the device and calls pcibios_set_master()
2768 * to do the needed arch specific settings.
2769 */
2770void pci_set_master(struct pci_dev *dev)
2771{
2772        __pci_set_master(dev, true);
2773        pcibios_set_master(dev);
2774}
2775EXPORT_SYMBOL(pci_set_master);
2776
2777/**
2778 * pci_clear_master - disables bus-mastering for device dev
2779 * @dev: the PCI device to disable
2780 */
2781void pci_clear_master(struct pci_dev *dev)
2782{
2783        __pci_set_master(dev, false);
2784}
2785EXPORT_SYMBOL(pci_clear_master);
2786
2787/**
2788 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2789 * @dev: the PCI device for which MWI is to be enabled
2790 *
2791 * Helper function for pci_set_mwi.
2792 * Originally copied from drivers/net/acenic.c.
2793 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2794 *
2795 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2796 */
2797int pci_set_cacheline_size(struct pci_dev *dev)
2798{
2799        u8 cacheline_size;
2800
2801        if (!pci_cache_line_size)
2802                return -EINVAL;
2803
2804        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2805           equal to or multiple of the right value. */
2806        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2807        if (cacheline_size >= pci_cache_line_size &&
2808            (cacheline_size % pci_cache_line_size) == 0)
2809                return 0;
2810
2811        /* Write the correct value. */
2812        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2813        /* Read it back. */
2814        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2815        if (cacheline_size == pci_cache_line_size)
2816                return 0;
2817
2818        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2819                   pci_cache_line_size << 2);
2820
2821        return -EINVAL;
2822}
2823EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2824
2825/**
2826 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2827 * @dev: the PCI device for which MWI is enabled
2828 *
2829 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2830 *
2831 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2832 */
2833int pci_set_mwi(struct pci_dev *dev)
2834{
2835#ifdef PCI_DISABLE_MWI
2836        return 0;
2837#else
2838        int rc;
2839        u16 cmd;
2840
2841        rc = pci_set_cacheline_size(dev);
2842        if (rc)
2843                return rc;
2844
2845        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2846        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2847                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2848                cmd |= PCI_COMMAND_INVALIDATE;
2849                pci_write_config_word(dev, PCI_COMMAND, cmd);
2850        }
2851        return 0;
2852#endif
2853}
2854EXPORT_SYMBOL(pci_set_mwi);
2855
2856/**
2857 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2858 * @dev: the PCI device for which MWI is enabled
2859 *
2860 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2861 * Callers are not required to check the return value.
2862 *
2863 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2864 */
2865int pci_try_set_mwi(struct pci_dev *dev)
2866{
2867#ifdef PCI_DISABLE_MWI
2868        return 0;
2869#else
2870        return pci_set_mwi(dev);
2871#endif
2872}
2873EXPORT_SYMBOL(pci_try_set_mwi);
2874
2875/**
2876 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2877 * @dev: the PCI device to disable
2878 *
2879 * Disables PCI Memory-Write-Invalidate transaction on the device
2880 */
2881void pci_clear_mwi(struct pci_dev *dev)
2882{
2883#ifndef PCI_DISABLE_MWI
2884        u16 cmd;
2885
2886        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2887        if (cmd & PCI_COMMAND_INVALIDATE) {
2888                cmd &= ~PCI_COMMAND_INVALIDATE;
2889                pci_write_config_word(dev, PCI_COMMAND, cmd);
2890        }
2891#endif
2892}
2893EXPORT_SYMBOL(pci_clear_mwi);
2894
2895/**
2896 * pci_intx - enables/disables PCI INTx for device dev
2897 * @pdev: the PCI device to operate on
2898 * @enable: boolean: whether to enable or disable PCI INTx
2899 *
2900 * Enables/disables PCI INTx for device dev
2901 */
2902void pci_intx(struct pci_dev *pdev, int enable)
2903{
2904        u16 pci_command, new;
2905
2906        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2907
2908        if (enable)
2909                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2910        else
2911                new = pci_command | PCI_COMMAND_INTX_DISABLE;
2912
2913        if (new != pci_command) {
2914                struct pci_devres *dr;
2915
2916                pci_write_config_word(pdev, PCI_COMMAND, new);
2917
2918                dr = find_pci_dr(pdev);
2919                if (dr && !dr->restore_intx) {
2920                        dr->restore_intx = 1;
2921                        dr->orig_intx = !enable;
2922                }
2923        }
2924}
2925EXPORT_SYMBOL_GPL(pci_intx);
2926
2927/**
2928 * pci_intx_mask_supported - probe for INTx masking support
2929 * @dev: the PCI device to operate on
2930 *
2931 * Check if the device dev support INTx masking via the config space
2932 * command word.
2933 */
2934bool pci_intx_mask_supported(struct pci_dev *dev)
2935{
2936        bool mask_supported = false;
2937        u16 orig, new;
2938
2939        if (dev->broken_intx_masking)
2940                return false;
2941
2942        pci_cfg_access_lock(dev);
2943
2944        pci_read_config_word(dev, PCI_COMMAND, &orig);
2945        pci_write_config_word(dev, PCI_COMMAND,
2946                              orig ^ PCI_COMMAND_INTX_DISABLE);
2947        pci_read_config_word(dev, PCI_COMMAND, &new);
2948
2949        /*
2950         * There's no way to protect against hardware bugs or detect them
2951         * reliably, but as long as we know what the value should be, let's
2952         * go ahead and check it.
2953         */
2954        if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2955                dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2956                        orig, new);
2957        } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2958                mask_supported = true;
2959                pci_write_config_word(dev, PCI_COMMAND, orig);
2960        }
2961
2962        pci_cfg_access_unlock(dev);
2963        return mask_supported;
2964}
2965EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2966
2967static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2968{
2969        struct pci_bus *bus = dev->bus;
2970        bool mask_updated = true;
2971        u32 cmd_status_dword;
2972        u16 origcmd, newcmd;
2973        unsigned long flags;
2974        bool irq_pending;
2975
2976        /*
2977         * We do a single dword read to retrieve both command and status.
2978         * Document assumptions that make this possible.
2979         */
2980        BUILD_BUG_ON(PCI_COMMAND % 4);
2981        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2982
2983        raw_spin_lock_irqsave(&pci_lock, flags);
2984
2985        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2986
2987        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2988
2989        /*
2990         * Check interrupt status register to see whether our device
2991         * triggered the interrupt (when masking) or the next IRQ is
2992         * already pending (when unmasking).
2993         */
2994        if (mask != irq_pending) {
2995                mask_updated = false;
2996                goto done;
2997        }
2998
2999        origcmd = cmd_status_dword;
3000        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3001        if (mask)
3002                newcmd |= PCI_COMMAND_INTX_DISABLE;
3003        if (newcmd != origcmd)
3004                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3005
3006done:
3007        raw_spin_unlock_irqrestore(&pci_lock, flags);
3008
3009        return mask_updated;
3010}
3011
3012/**
3013 * pci_check_and_mask_intx - mask INTx on pending interrupt
3014 * @dev: the PCI device to operate on
3015 *
3016 * Check if the device dev has its INTx line asserted, mask it and
3017 * return true in that case. False is returned if not interrupt was
3018 * pending.
3019 */
3020bool pci_check_and_mask_intx(struct pci_dev *dev)
3021{
3022        return pci_check_and_set_intx_mask(dev, true);
3023}
3024EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3025
3026/**
3027 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3028 * @dev: the PCI device to operate on
3029 *
3030 * Check if the device dev has its INTx line asserted, unmask it if not
3031 * and return true. False is returned and the mask remains active if
3032 * there was still an interrupt pending.
3033 */
3034bool pci_check_and_unmask_intx(struct pci_dev *dev)
3035{
3036        return pci_check_and_set_intx_mask(dev, false);
3037}
3038EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3039
3040/**
3041 * pci_msi_off - disables any MSI or MSI-X capabilities
3042 * @dev: the PCI device to operate on
3043 *
3044 * If you want to use MSI, see pci_enable_msi() and friends.
3045 * This is a lower-level primitive that allows us to disable
3046 * MSI operation at the device level.
3047 */
3048void pci_msi_off(struct pci_dev *dev)
3049{
3050        int pos;
3051        u16 control;
3052
3053        /*
3054         * This looks like it could go in msi.c, but we need it even when
3055         * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3056         * dev->msi_cap or dev->msix_cap here.
3057         */
3058        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3059        if (pos) {
3060                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3061                control &= ~PCI_MSI_FLAGS_ENABLE;
3062                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3063        }
3064        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3065        if (pos) {
3066                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3067                control &= ~PCI_MSIX_FLAGS_ENABLE;
3068                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3069        }
3070}
3071EXPORT_SYMBOL_GPL(pci_msi_off);
3072
3073int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3074{
3075        return dma_set_max_seg_size(&dev->dev, size);
3076}
3077EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3078
3079int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3080{
3081        return dma_set_seg_boundary(&dev->dev, mask);
3082}
3083EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3084
3085/**
3086 * pci_wait_for_pending_transaction - waits for pending transaction
3087 * @dev: the PCI device to operate on
3088 *
3089 * Return 0 if transaction is pending 1 otherwise.
3090 */
3091int pci_wait_for_pending_transaction(struct pci_dev *dev)
3092{
3093        if (!pci_is_pcie(dev))
3094                return 1;
3095
3096        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3097                                    PCI_EXP_DEVSTA_TRPND);
3098}
3099EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3100
3101static int pcie_flr(struct pci_dev *dev, int probe)
3102{
3103        u32 cap;
3104
3105        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3106        if (!(cap & PCI_EXP_DEVCAP_FLR))
3107                return -ENOTTY;
3108
3109        if (probe)
3110                return 0;
3111
3112        if (!pci_wait_for_pending_transaction(dev))
3113                dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3114
3115        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3116
3117        msleep(100);
3118
3119        return 0;
3120}
3121
3122static int pci_af_flr(struct pci_dev *dev, int probe)
3123{
3124        int pos;
3125        u8 cap;
3126
3127        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3128        if (!pos)
3129                return -ENOTTY;
3130
3131        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3132        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3133                return -ENOTTY;
3134
3135        if (probe)
3136                return 0;
3137
3138        /*
3139         * Wait for Transaction Pending bit to clear.  A word-aligned test
3140         * is used, so we use the conrol offset rather than status and shift
3141         * the test bit to match.
3142         */
3143        if (pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3144                                 PCI_AF_STATUS_TP << 8))
3145                goto clear;
3146
3147        dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3148
3149clear:
3150        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3151        msleep(100);
3152
3153        return 0;
3154}
3155
3156/**
3157 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3158 * @dev: Device to reset.
3159 * @probe: If set, only check if the device can be reset this way.
3160 *
3161 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3162 * unset, it will be reinitialized internally when going from PCI_D3hot to
3163 * PCI_D0.  If that's the case and the device is not in a low-power state
3164 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3165 *
3166 * NOTE: This causes the caller to sleep for twice the device power transition
3167 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3168 * by default (i.e. unless the @dev's d3_delay field has a different value).
3169 * Moreover, only devices in D0 can be reset by this function.
3170 */
3171static int pci_pm_reset(struct pci_dev *dev, int probe)
3172{
3173        u16 csr;
3174
3175        if (!dev->pm_cap)
3176                return -ENOTTY;
3177
3178        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3179        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3180                return -ENOTTY;
3181
3182        if (probe)
3183                return 0;
3184
3185        if (dev->current_state != PCI_D0)
3186                return -EINVAL;
3187
3188        csr &= ~PCI_PM_CTRL_STATE_MASK;
3189        csr |= PCI_D3hot;
3190        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3191        pci_dev_d3_sleep(dev);
3192
3193        csr &= ~PCI_PM_CTRL_STATE_MASK;
3194        csr |= PCI_D0;
3195        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3196        pci_dev_d3_sleep(dev);
3197
3198        return 0;
3199}
3200
3201void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3202{
3203        u16 ctrl;
3204
3205        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3206        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3207        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3208        /*
3209         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3210         * this to 2ms to ensure that we meet the minimum requirement.
3211         */
3212        msleep(2);
3213
3214        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3215        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3216
3217        /*
3218         * Trhfa for conventional PCI is 2^25 clock cycles.
3219         * Assuming a minimum 33MHz clock this results in a 1s
3220         * delay before we can consider subordinate devices to
3221         * be re-initialized.  PCIe has some ways to shorten this,
3222         * but we don't make use of them yet.
3223         */
3224        ssleep(1);
3225}
3226
3227/**
3228 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3229 * @dev: Bridge device
3230 *
3231 * Use the bridge control register to assert reset on the secondary bus.
3232 * Devices on the secondary bus are left in power-on state.
3233 */
3234void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3235{
3236        pcibios_reset_secondary_bus(dev);
3237}
3238EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3239
3240static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3241{
3242        struct pci_dev *pdev;
3243
3244        if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3245                return -ENOTTY;
3246
3247        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3248                if (pdev != dev)
3249                        return -ENOTTY;
3250
3251        if (probe)
3252                return 0;
3253
3254        pci_reset_bridge_secondary_bus(dev->bus->self);
3255
3256        return 0;
3257}
3258
3259static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3260{
3261        int rc = -ENOTTY;
3262
3263        if (!hotplug || !try_module_get(hotplug->ops->owner))
3264                return rc;
3265
3266        if (hotplug->ops->reset_slot)
3267                rc = hotplug->ops->reset_slot(hotplug, probe);
3268
3269        module_put(hotplug->ops->owner);
3270
3271        return rc;
3272}
3273
3274static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3275{
3276        struct pci_dev *pdev;
3277
3278        if (dev->subordinate || !dev->slot)
3279                return -ENOTTY;
3280
3281        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3282                if (pdev != dev && pdev->slot == dev->slot)
3283                        return -ENOTTY;
3284
3285        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3286}
3287
3288static int __pci_dev_reset(struct pci_dev *dev, int probe)
3289{
3290        int rc;
3291
3292        might_sleep();
3293
3294        rc = pci_dev_specific_reset(dev, probe);
3295        if (rc != -ENOTTY)
3296                goto done;
3297
3298        rc = pcie_flr(dev, probe);
3299        if (rc != -ENOTTY)
3300                goto done;
3301
3302        rc = pci_af_flr(dev, probe);
3303        if (rc != -ENOTTY)
3304                goto done;
3305
3306        rc = pci_pm_reset(dev, probe);
3307        if (rc != -ENOTTY)
3308                goto done;
3309
3310        rc = pci_dev_reset_slot_function(dev, probe);
3311        if (rc != -ENOTTY)
3312                goto done;
3313
3314        rc = pci_parent_bus_reset(dev, probe);
3315done:
3316        return rc;
3317}
3318
3319static void pci_dev_lock(struct pci_dev *dev)
3320{
3321        pci_cfg_access_lock(dev);
3322        /* block PM suspend, driver probe, etc. */
3323        device_lock(&dev->dev);
3324}
3325
3326/* Return 1 on successful lock, 0 on contention */
3327static int pci_dev_trylock(struct pci_dev *dev)
3328{
3329        if (pci_cfg_access_trylock(dev)) {
3330                if (device_trylock(&dev->dev))
3331                        return 1;
3332                pci_cfg_access_unlock(dev);
3333        }
3334
3335        return 0;
3336}
3337
3338static void pci_dev_unlock(struct pci_dev *dev)
3339{
3340        device_unlock(&dev->dev);
3341        pci_cfg_access_unlock(dev);
3342}
3343
3344/**
3345 * pci_reset_notify - notify device driver of reset
3346 * @dev: device to be notified of reset
3347 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3348 *           completed
3349 *
3350 * Must be called prior to device access being disabled and after device
3351 * access is restored.
3352 */
3353static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3354{
3355        const struct pci_error_handlers *err_handler =
3356                        dev->driver ? dev->driver->err_handler : NULL;
3357        if (err_handler && err_handler->reset_notify)
3358                err_handler->reset_notify(dev, prepare);
3359}
3360
3361static void pci_dev_save_and_disable(struct pci_dev *dev)
3362{
3363        pci_reset_notify(dev, true);
3364
3365        /*
3366         * Wake-up device prior to save.  PM registers default to D0 after
3367         * reset and a simple register restore doesn't reliably return
3368         * to a non-D0 state anyway.
3369         */
3370        pci_set_power_state(dev, PCI_D0);
3371
3372        pci_save_state(dev);
3373        /*
3374         * Disable the device by clearing the Command register, except for
3375         * INTx-disable which is set.  This not only disables MMIO and I/O port
3376         * BARs, but also prevents the device from being Bus Master, preventing
3377         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3378         * compliant devices, INTx-disable prevents legacy interrupts.
3379         */
3380        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3381}
3382
3383static void pci_dev_restore(struct pci_dev *dev)
3384{
3385        pci_restore_state(dev);
3386        pci_reset_notify(dev, false);
3387}
3388
3389static int pci_dev_reset(struct pci_dev *dev, int probe)
3390{
3391        int rc;
3392
3393        if (!probe)
3394                pci_dev_lock(dev);
3395
3396        rc = __pci_dev_reset(dev, probe);
3397
3398        if (!probe)
3399                pci_dev_unlock(dev);
3400
3401        return rc;
3402}
3403
3404/**
3405 * __pci_reset_function - reset a PCI device function
3406 * @dev: PCI device to reset
3407 *
3408 * Some devices allow an individual function to be reset without affecting
3409 * other functions in the same device.  The PCI device must be responsive
3410 * to PCI config space in order to use this function.
3411 *
3412 * The device function is presumed to be unused when this function is called.
3413 * Resetting the device will make the contents of PCI configuration space
3414 * random, so any caller of this must be prepared to reinitialise the
3415 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3416 * etc.
3417 *
3418 * Returns 0 if the device function was successfully reset or negative if the
3419 * device doesn't support resetting a single function.
3420 */
3421int __pci_reset_function(struct pci_dev *dev)
3422{
3423        return pci_dev_reset(dev, 0);
3424}
3425EXPORT_SYMBOL_GPL(__pci_reset_function);
3426
3427/**
3428 * __pci_reset_function_locked - reset a PCI device function while holding
3429 * the @dev mutex lock.
3430 * @dev: PCI device to reset
3431 *
3432 * Some devices allow an individual function to be reset without affecting
3433 * other functions in the same device.  The PCI device must be responsive
3434 * to PCI config space in order to use this function.
3435 *
3436 * The device function is presumed to be unused and the caller is holding
3437 * the device mutex lock when this function is called.
3438 * Resetting the device will make the contents of PCI configuration space
3439 * random, so any caller of this must be prepared to reinitialise the
3440 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3441 * etc.
3442 *
3443 * Returns 0 if the device function was successfully reset or negative if the
3444 * device doesn't support resetting a single function.
3445 */
3446int __pci_reset_function_locked(struct pci_dev *dev)
3447{
3448        return __pci_dev_reset(dev, 0);
3449}
3450EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3451
3452/**
3453 * pci_probe_reset_function - check whether the device can be safely reset
3454 * @dev: PCI device to reset
3455 *
3456 * Some devices allow an individual function to be reset without affecting
3457 * other functions in the same device.  The PCI device must be responsive
3458 * to PCI config space in order to use this function.
3459 *
3460 * Returns 0 if the device function can be reset or negative if the
3461 * device doesn't support resetting a single function.
3462 */
3463int pci_probe_reset_function(struct pci_dev *dev)
3464{
3465        return pci_dev_reset(dev, 1);
3466}
3467
3468/**
3469 * pci_reset_function - quiesce and reset a PCI device function
3470 * @dev: PCI device to reset
3471 *
3472 * Some devices allow an individual function to be reset without affecting
3473 * other functions in the same device.  The PCI device must be responsive
3474 * to PCI config space in order to use this function.
3475 *
3476 * This function does not just reset the PCI portion of a device, but
3477 * clears all the state associated with the device.  This function differs
3478 * from __pci_reset_function in that it saves and restores device state
3479 * over the reset.
3480 *
3481 * Returns 0 if the device function was successfully reset or negative if the
3482 * device doesn't support resetting a single function.
3483 */
3484int pci_reset_function(struct pci_dev *dev)
3485{
3486        int rc;
3487
3488        rc = pci_dev_reset(dev, 1);
3489        if (rc)
3490                return rc;
3491
3492        pci_dev_save_and_disable(dev);
3493
3494        rc = pci_dev_reset(dev, 0);
3495
3496        pci_dev_restore(dev);
3497
3498        return rc;
3499}
3500EXPORT_SYMBOL_GPL(pci_reset_function);
3501
3502/**
3503 * pci_try_reset_function - quiesce and reset a PCI device function
3504 * @dev: PCI device to reset
3505 *
3506 * Same as above, except return -EAGAIN if unable to lock device.
3507 */
3508int pci_try_reset_function(struct pci_dev *dev)
3509{
3510        int rc;
3511
3512        rc = pci_dev_reset(dev, 1);
3513        if (rc)
3514                return rc;
3515
3516        pci_dev_save_and_disable(dev);
3517
3518        if (pci_dev_trylock(dev)) {
3519                rc = __pci_dev_reset(dev, 0);
3520                pci_dev_unlock(dev);
3521        } else
3522                rc = -EAGAIN;
3523
3524        pci_dev_restore(dev);
3525
3526        return rc;
3527}
3528EXPORT_SYMBOL_GPL(pci_try_reset_function);
3529
3530/* Lock devices from the top of the tree down */
3531static void pci_bus_lock(struct pci_bus *bus)
3532{
3533        struct pci_dev *dev;
3534
3535        list_for_each_entry(dev, &bus->devices, bus_list) {
3536                pci_dev_lock(dev);
3537                if (dev->subordinate)
3538                        pci_bus_lock(dev->subordinate);
3539        }
3540}
3541
3542/* Unlock devices from the bottom of the tree up */
3543static void pci_bus_unlock(struct pci_bus *bus)
3544{
3545        struct pci_dev *dev;
3546
3547        list_for_each_entry(dev, &bus->devices, bus_list) {
3548                if (dev->subordinate)
3549                        pci_bus_unlock(dev->subordinate);
3550                pci_dev_unlock(dev);
3551        }
3552}
3553
3554/* Return 1 on successful lock, 0 on contention */
3555static int pci_bus_trylock(struct pci_bus *bus)
3556{
3557        struct pci_dev *dev;
3558
3559        list_for_each_entry(dev, &bus->devices, bus_list) {
3560                if (!pci_dev_trylock(dev))
3561                        goto unlock;
3562                if (dev->subordinate) {
3563                        if (!pci_bus_trylock(dev->subordinate)) {
3564                                pci_dev_unlock(dev);
3565                                goto unlock;
3566                        }
3567                }
3568        }
3569        return 1;
3570
3571unlock:
3572        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3573                if (dev->subordinate)
3574                        pci_bus_unlock(dev->subordinate);
3575                pci_dev_unlock(dev);
3576        }
3577        return 0;
3578}
3579
3580/* Lock devices from the top of the tree down */
3581static void pci_slot_lock(struct pci_slot *slot)
3582{
3583        struct pci_dev *dev;
3584
3585        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3586                if (!dev->slot || dev->slot != slot)
3587                        continue;
3588                pci_dev_lock(dev);
3589                if (dev->subordinate)
3590                        pci_bus_lock(dev->subordinate);
3591        }
3592}
3593
3594/* Unlock devices from the bottom of the tree up */
3595static void pci_slot_unlock(struct pci_slot *slot)
3596{
3597        struct pci_dev *dev;
3598
3599        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3600                if (!dev->slot || dev->slot != slot)
3601                        continue;
3602                if (dev->subordinate)
3603                        pci_bus_unlock(dev->subordinate);
3604                pci_dev_unlock(dev);
3605        }
3606}
3607
3608/* Return 1 on successful lock, 0 on contention */
3609static int pci_slot_trylock(struct pci_slot *slot)
3610{
3611        struct pci_dev *dev;
3612
3613        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3614                if (!dev->slot || dev->slot != slot)
3615                        continue;
3616                if (!pci_dev_trylock(dev))
3617                        goto unlock;
3618                if (dev->subordinate) {
3619                        if (!pci_bus_trylock(dev->subordinate)) {
3620                                pci_dev_unlock(dev);
3621                                goto unlock;
3622                        }
3623                }
3624        }
3625        return 1;
3626
3627unlock:
3628        list_for_each_entry_continue_reverse(dev,
3629                                             &slot->bus->devices, bus_list) {
3630                if (!dev->slot || dev->slot != slot)
3631                        continue;
3632                if (dev->subordinate)
3633                        pci_bus_unlock(dev->subordinate);
3634                pci_dev_unlock(dev);
3635        }
3636        return 0;
3637}
3638
3639/* Save and disable devices from the top of the tree down */
3640static void pci_bus_save_and_disable(struct pci_bus *bus)
3641{
3642        struct pci_dev *dev;
3643
3644        list_for_each_entry(dev, &bus->devices, bus_list) {
3645                pci_dev_save_and_disable(dev);
3646                if (dev->subordinate)
3647                        pci_bus_save_and_disable(dev->subordinate);
3648        }
3649}
3650
3651/*
3652 * Restore devices from top of the tree down - parent bridges need to be
3653 * restored before we can get to subordinate devices.
3654 */
3655static void pci_bus_restore(struct pci_bus *bus)
3656{
3657        struct pci_dev *dev;
3658
3659        list_for_each_entry(dev, &bus->devices, bus_list) {
3660                pci_dev_restore(dev);
3661                if (dev->subordinate)
3662                        pci_bus_restore(dev->subordinate);
3663        }
3664}
3665
3666/* Save and disable devices from the top of the tree down */
3667static void pci_slot_save_and_disable(struct pci_slot *slot)
3668{
3669        struct pci_dev *dev;
3670
3671        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3672                if (!dev->slot || dev->slot != slot)
3673                        continue;
3674                pci_dev_save_and_disable(dev);
3675                if (dev->subordinate)
3676                        pci_bus_save_and_disable(dev->subordinate);
3677        }
3678}
3679
3680/*
3681 * Restore devices from top of the tree down - parent bridges need to be
3682 * restored before we can get to subordinate devices.
3683 */
3684static void pci_slot_restore(struct pci_slot *slot)
3685{
3686        struct pci_dev *dev;
3687
3688        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3689                if (!dev->slot || dev->slot != slot)
3690                        continue;
3691                pci_dev_restore(dev);
3692                if (dev->subordinate)
3693                        pci_bus_restore(dev->subordinate);
3694        }
3695}
3696
3697static int pci_slot_reset(struct pci_slot *slot, int probe)
3698{
3699        int rc;
3700
3701        if (!slot)
3702                return -ENOTTY;
3703
3704        if (!probe)
3705                pci_slot_lock(slot);
3706
3707        might_sleep();
3708
3709        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3710
3711        if (!probe)
3712                pci_slot_unlock(slot);
3713
3714        return rc;
3715}
3716
3717/**
3718 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3719 * @slot: PCI slot to probe
3720 *
3721 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3722 */
3723int pci_probe_reset_slot(struct pci_slot *slot)
3724{
3725        return pci_slot_reset(slot, 1);
3726}
3727EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3728
3729/**
3730 * pci_reset_slot - reset a PCI slot
3731 * @slot: PCI slot to reset
3732 *
3733 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3734 * independent of other slots.  For instance, some slots may support slot power
3735 * control.  In the case of a 1:1 bus to slot architecture, this function may
3736 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3737 * Generally a slot reset should be attempted before a bus reset.  All of the
3738 * function of the slot and any subordinate buses behind the slot are reset
3739 * through this function.  PCI config space of all devices in the slot and
3740 * behind the slot is saved before and restored after reset.
3741 *
3742 * Return 0 on success, non-zero on error.
3743 */
3744int pci_reset_slot(struct pci_slot *slot)
3745{
3746        int rc;
3747
3748        rc = pci_slot_reset(slot, 1);
3749        if (rc)
3750                return rc;
3751
3752        pci_slot_save_and_disable(slot);
3753
3754        rc = pci_slot_reset(slot, 0);
3755
3756        pci_slot_restore(slot);
3757
3758        return rc;
3759}
3760EXPORT_SYMBOL_GPL(pci_reset_slot);
3761
3762/**
3763 * pci_try_reset_slot - Try to reset a PCI slot
3764 * @slot: PCI slot to reset
3765 *
3766 * Same as above except return -EAGAIN if the slot cannot be locked
3767 */
3768int pci_try_reset_slot(struct pci_slot *slot)
3769{
3770        int rc;
3771
3772        rc = pci_slot_reset(slot, 1);
3773        if (rc)
3774                return rc;
3775
3776        pci_slot_save_and_disable(slot);
3777
3778        if (pci_slot_trylock(slot)) {
3779                might_sleep();
3780                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3781                pci_slot_unlock(slot);
3782        } else
3783                rc = -EAGAIN;
3784
3785        pci_slot_restore(slot);
3786
3787        return rc;
3788}
3789EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3790
3791static int pci_bus_reset(struct pci_bus *bus, int probe)
3792{
3793        if (!bus->self)
3794                return -ENOTTY;
3795
3796        if (probe)
3797                return 0;
3798
3799        pci_bus_lock(bus);
3800
3801        might_sleep();
3802
3803        pci_reset_bridge_secondary_bus(bus->self);
3804
3805        pci_bus_unlock(bus);
3806
3807        return 0;
3808}
3809
3810/**
3811 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3812 * @bus: PCI bus to probe
3813 *
3814 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3815 */
3816int pci_probe_reset_bus(struct pci_bus *bus)
3817{
3818        return pci_bus_reset(bus, 1);
3819}
3820EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3821
3822/**
3823 * pci_reset_bus - reset a PCI bus
3824 * @bus: top level PCI bus to reset
3825 *
3826 * Do a bus reset on the given bus and any subordinate buses, saving
3827 * and restoring state of all devices.
3828 *
3829 * Return 0 on success, non-zero on error.
3830 */
3831int pci_reset_bus(struct pci_bus *bus)
3832{
3833        int rc;
3834
3835        rc = pci_bus_reset(bus, 1);
3836        if (rc)
3837                return rc;
3838
3839        pci_bus_save_and_disable(bus);
3840
3841        rc = pci_bus_reset(bus, 0);
3842
3843        pci_bus_restore(bus);
3844
3845        return rc;
3846}
3847EXPORT_SYMBOL_GPL(pci_reset_bus);
3848
3849/**
3850 * pci_try_reset_bus - Try to reset a PCI bus
3851 * @bus: top level PCI bus to reset
3852 *
3853 * Same as above except return -EAGAIN if the bus cannot be locked
3854 */
3855int pci_try_reset_bus(struct pci_bus *bus)
3856{
3857        int rc;
3858
3859        rc = pci_bus_reset(bus, 1);
3860        if (rc)
3861                return rc;
3862
3863        pci_bus_save_and_disable(bus);
3864
3865        if (pci_bus_trylock(bus)) {
3866                might_sleep();
3867                pci_reset_bridge_secondary_bus(bus->self);
3868                pci_bus_unlock(bus);
3869        } else
3870                rc = -EAGAIN;
3871
3872        pci_bus_restore(bus);
3873
3874        return rc;
3875}
3876EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3877
3878/**
3879 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3880 * @dev: PCI device to query
3881 *
3882 * Returns mmrbc: maximum designed memory read count in bytes
3883 *    or appropriate error value.
3884 */
3885int pcix_get_max_mmrbc(struct pci_dev *dev)
3886{
3887        int cap;
3888        u32 stat;
3889
3890        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3891        if (!cap)
3892                return -EINVAL;
3893
3894        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3895                return -EINVAL;
3896
3897        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3898}
3899EXPORT_SYMBOL(pcix_get_max_mmrbc);
3900
3901/**
3902 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3903 * @dev: PCI device to query
3904 *
3905 * Returns mmrbc: maximum memory read count in bytes
3906 *    or appropriate error value.
3907 */
3908int pcix_get_mmrbc(struct pci_dev *dev)
3909{
3910        int cap;
3911        u16 cmd;
3912
3913        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3914        if (!cap)
3915                return -EINVAL;
3916
3917        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3918                return -EINVAL;
3919
3920        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3921}
3922EXPORT_SYMBOL(pcix_get_mmrbc);
3923
3924/**
3925 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3926 * @dev: PCI device to query
3927 * @mmrbc: maximum memory read count in bytes
3928 *    valid values are 512, 1024, 2048, 4096
3929 *
3930 * If possible sets maximum memory read byte count, some bridges have erratas
3931 * that prevent this.
3932 */
3933int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3934{
3935        int cap;
3936        u32 stat, v, o;
3937        u16 cmd;
3938
3939        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3940                return -EINVAL;
3941
3942        v = ffs(mmrbc) - 10;
3943
3944        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3945        if (!cap)
3946                return -EINVAL;
3947
3948        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3949                return -EINVAL;
3950
3951        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3952                return -E2BIG;
3953
3954        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3955                return -EINVAL;
3956
3957        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3958        if (o != v) {
3959                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3960                        return -EIO;
3961
3962                cmd &= ~PCI_X_CMD_MAX_READ;
3963                cmd |= v << 2;
3964                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3965                        return -EIO;
3966        }
3967        return 0;
3968}
3969EXPORT_SYMBOL(pcix_set_mmrbc);
3970
3971/**
3972 * pcie_get_readrq - get PCI Express read request size
3973 * @dev: PCI device to query
3974 *
3975 * Returns maximum memory read request in bytes
3976 *    or appropriate error value.
3977 */
3978int pcie_get_readrq(struct pci_dev *dev)
3979{
3980        u16 ctl;
3981
3982        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3983
3984        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3985}
3986EXPORT_SYMBOL(pcie_get_readrq);
3987
3988/**
3989 * pcie_set_readrq - set PCI Express maximum memory read request
3990 * @dev: PCI device to query
3991 * @rq: maximum memory read count in bytes
3992 *    valid values are 128, 256, 512, 1024, 2048, 4096
3993 *
3994 * If possible sets maximum memory read request in bytes
3995 */
3996int pcie_set_readrq(struct pci_dev *dev, int rq)
3997{
3998        u16 v;
3999
4000        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4001                return -EINVAL;
4002
4003        /*
4004         * If using the "performance" PCIe config, we clamp the
4005         * read rq size to the max packet size to prevent the
4006         * host bridge generating requests larger than we can
4007         * cope with
4008         */
4009        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4010                int mps = pcie_get_mps(dev);
4011
4012                if (mps < rq)
4013                        rq = mps;
4014        }
4015
4016        v = (ffs(rq) - 8) << 12;
4017
4018        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4019                                                  PCI_EXP_DEVCTL_READRQ, v);
4020}
4021EXPORT_SYMBOL(pcie_set_readrq);
4022
4023/**
4024 * pcie_get_mps - get PCI Express maximum payload size
4025 * @dev: PCI device to query
4026 *
4027 * Returns maximum payload size in bytes
4028 */
4029int pcie_get_mps(struct pci_dev *dev)
4030{
4031        u16 ctl;
4032
4033        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4034
4035        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4036}
4037EXPORT_SYMBOL(pcie_get_mps);
4038
4039/**
4040 * pcie_set_mps - set PCI Express maximum payload size
4041 * @dev: PCI device to query
4042 * @mps: maximum payload size in bytes
4043 *    valid values are 128, 256, 512, 1024, 2048, 4096
4044 *
4045 * If possible sets maximum payload size
4046 */
4047int pcie_set_mps(struct pci_dev *dev, int mps)
4048{
4049        u16 v;
4050
4051        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4052                return -EINVAL;
4053
4054        v = ffs(mps) - 8;
4055        if (v > dev->pcie_mpss)
4056                return -EINVAL;
4057        v <<= 5;
4058
4059        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4060                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
4061}
4062EXPORT_SYMBOL(pcie_set_mps);
4063
4064/**
4065 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4066 * @dev: PCI device to query
4067 * @speed: storage for minimum speed
4068 * @width: storage for minimum width
4069 *
4070 * This function will walk up the PCI device chain and determine the minimum
4071 * link width and speed of the device.
4072 */
4073int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4074                          enum pcie_link_width *width)
4075{
4076        int ret;
4077
4078        *speed = PCI_SPEED_UNKNOWN;
4079        *width = PCIE_LNK_WIDTH_UNKNOWN;
4080
4081        while (dev) {
4082                u16 lnksta;
4083                enum pci_bus_speed next_speed;
4084                enum pcie_link_width next_width;
4085
4086                ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4087                if (ret)
4088                        return ret;
4089
4090                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4091                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4092                        PCI_EXP_LNKSTA_NLW_SHIFT;
4093
4094                if (next_speed < *speed)
4095                        *speed = next_speed;
4096
4097                if (next_width < *width)
4098                        *width = next_width;
4099
4100                dev = dev->bus->self;
4101        }
4102
4103        return 0;
4104}
4105EXPORT_SYMBOL(pcie_get_minimum_link);
4106
4107/**
4108 * pci_select_bars - Make BAR mask from the type of resource
4109 * @dev: the PCI device for which BAR mask is made
4110 * @flags: resource type mask to be selected
4111 *
4112 * This helper routine makes bar mask from the type of resource.
4113 */
4114int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4115{
4116        int i, bars = 0;
4117        for (i = 0; i < PCI_NUM_RESOURCES; i++)
4118                if (pci_resource_flags(dev, i) & flags)
4119                        bars |= (1 << i);
4120        return bars;
4121}
4122EXPORT_SYMBOL(pci_select_bars);
4123
4124/**
4125 * pci_resource_bar - get position of the BAR associated with a resource
4126 * @dev: the PCI device
4127 * @resno: the resource number
4128 * @type: the BAR type to be filled in
4129 *
4130 * Returns BAR position in config space, or 0 if the BAR is invalid.
4131 */
4132int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4133{
4134        int reg;
4135
4136        if (resno < PCI_ROM_RESOURCE) {
4137                *type = pci_bar_unknown;
4138                return PCI_BASE_ADDRESS_0 + 4 * resno;
4139        } else if (resno == PCI_ROM_RESOURCE) {
4140                *type = pci_bar_mem32;
4141                return dev->rom_base_reg;
4142        } else if (resno < PCI_BRIDGE_RESOURCES) {
4143                /* device specific resource */
4144                reg = pci_iov_resource_bar(dev, resno, type);
4145                if (reg)
4146                        return reg;
4147        }
4148
4149        dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4150        return 0;
4151}
4152
4153/* Some architectures require additional programming to enable VGA */
4154static arch_set_vga_state_t arch_set_vga_state;
4155
4156void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4157{
4158        arch_set_vga_state = func;      /* NULL disables */
4159}
4160
4161static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4162                                  unsigned int command_bits, u32 flags)
4163{
4164        if (arch_set_vga_state)
4165                return arch_set_vga_state(dev, decode, command_bits,
4166                                                flags);
4167        return 0;
4168}
4169
4170/**
4171 * pci_set_vga_state - set VGA decode state on device and parents if requested
4172 * @dev: the PCI device
4173 * @decode: true = enable decoding, false = disable decoding
4174 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4175 * @flags: traverse ancestors and change bridges
4176 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4177 */
4178int pci_set_vga_state(struct pci_dev *dev, bool decode,
4179                      unsigned int command_bits, u32 flags)
4180{
4181        struct pci_bus *bus;
4182        struct pci_dev *bridge;
4183        u16 cmd;
4184        int rc;
4185
4186        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4187
4188        /* ARCH specific VGA enables */
4189        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4190        if (rc)
4191                return rc;
4192
4193        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4194                pci_read_config_word(dev, PCI_COMMAND, &cmd);
4195                if (decode == true)
4196                        cmd |= command_bits;
4197                else
4198                        cmd &= ~command_bits;
4199                pci_write_config_word(dev, PCI_COMMAND, cmd);
4200        }
4201
4202        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4203                return 0;
4204
4205        bus = dev->bus;
4206        while (bus) {
4207                bridge = bus->self;
4208                if (bridge) {
4209                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4210                                             &cmd);
4211                        if (decode == true)
4212                                cmd |= PCI_BRIDGE_CTL_VGA;
4213                        else
4214                                cmd &= ~PCI_BRIDGE_CTL_VGA;
4215                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4216                                              cmd);
4217                }
4218                bus = bus->parent;
4219        }
4220        return 0;
4221}
4222
4223bool pci_device_is_present(struct pci_dev *pdev)
4224{
4225        u32 v;
4226
4227        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4228}
4229EXPORT_SYMBOL_GPL(pci_device_is_present);
4230
4231#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4232static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4233static DEFINE_SPINLOCK(resource_alignment_lock);
4234
4235/**
4236 * pci_specified_resource_alignment - get resource alignment specified by user.
4237 * @dev: the PCI device to get
4238 *
4239 * RETURNS: Resource alignment if it is specified.
4240 *          Zero if it is not specified.
4241 */
4242static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4243{
4244        int seg, bus, slot, func, align_order, count;
4245        resource_size_t align = 0;
4246        char *p;
4247
4248        spin_lock(&resource_alignment_lock);
4249        p = resource_alignment_param;
4250        while (*p) {
4251                count = 0;
4252                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4253                                                        p[count] == '@') {
4254                        p += count + 1;
4255                } else {
4256                        align_order = -1;
4257                }
4258                if (sscanf(p, "%x:%x:%x.%x%n",
4259                        &seg, &bus, &slot, &func, &count) != 4) {
4260                        seg = 0;
4261                        if (sscanf(p, "%x:%x.%x%n",
4262                                        &bus, &slot, &func, &count) != 3) {
4263                                /* Invalid format */
4264                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4265                                        p);
4266                                break;
4267                        }
4268                }
4269                p += count;
4270                if (seg == pci_domain_nr(dev->bus) &&
4271                        bus == dev->bus->number &&
4272                        slot == PCI_SLOT(dev->devfn) &&
4273                        func == PCI_FUNC(dev->devfn)) {
4274                        if (align_order == -1)
4275                                align = PAGE_SIZE;
4276                        else
4277                                align = 1 << align_order;
4278                        /* Found */
4279                        break;
4280                }
4281                if (*p != ';' && *p != ',') {
4282                        /* End of param or invalid format */
4283                        break;
4284                }
4285                p++;
4286        }
4287        spin_unlock(&resource_alignment_lock);
4288        return align;
4289}
4290
4291/*
4292 * This function disables memory decoding and releases memory resources
4293 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4294 * It also rounds up size to specified alignment.
4295 * Later on, the kernel will assign page-aligned memory resource back
4296 * to the device.
4297 */
4298void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4299{
4300        int i;
4301        struct resource *r;
4302        resource_size_t align, size;
4303        u16 command;
4304
4305        /* check if specified PCI is target device to reassign */
4306        align = pci_specified_resource_alignment(dev);
4307        if (!align)
4308                return;
4309
4310        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4311            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4312                dev_warn(&dev->dev,
4313                        "Can't reassign resources to host bridge.\n");
4314                return;
4315        }
4316
4317        dev_info(&dev->dev,
4318                "Disabling memory decoding and releasing memory resources.\n");
4319        pci_read_config_word(dev, PCI_COMMAND, &command);
4320        command &= ~PCI_COMMAND_MEMORY;
4321        pci_write_config_word(dev, PCI_COMMAND, command);
4322
4323        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4324                r = &dev->resource[i];
4325                if (!(r->flags & IORESOURCE_MEM))
4326                        continue;
4327                size = resource_size(r);
4328                if (size < align) {
4329                        size = align;
4330                        dev_info(&dev->dev,
4331                                "Rounding up size of resource #%d to %#llx.\n",
4332                                i, (unsigned long long)size);
4333                }
4334                r->flags |= IORESOURCE_UNSET;
4335                r->end = size - 1;
4336                r->start = 0;
4337        }
4338        /* Need to disable bridge's resource window,
4339         * to enable the kernel to reassign new resource
4340         * window later on.
4341         */
4342        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4343            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4344                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4345                        r = &dev->resource[i];
4346                        if (!(r->flags & IORESOURCE_MEM))
4347                                continue;
4348                        r->flags |= IORESOURCE_UNSET;
4349                        r->end = resource_size(r) - 1;
4350                        r->start = 0;
4351                }
4352                pci_disable_bridge_window(dev);
4353        }
4354}
4355
4356static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4357{
4358        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4359                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4360        spin_lock(&resource_alignment_lock);
4361        strncpy(resource_alignment_param, buf, count);
4362        resource_alignment_param[count] = '\0';
4363        spin_unlock(&resource_alignment_lock);
4364        return count;
4365}
4366
4367static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4368{
4369        size_t count;
4370        spin_lock(&resource_alignment_lock);
4371        count = snprintf(buf, size, "%s", resource_alignment_param);
4372        spin_unlock(&resource_alignment_lock);
4373        return count;
4374}
4375
4376static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4377{
4378        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4379}
4380
4381static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4382                                        const char *buf, size_t count)
4383{
4384        return pci_set_resource_alignment_param(buf, count);
4385}
4386
4387BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4388                                        pci_resource_alignment_store);
4389
4390static int __init pci_resource_alignment_sysfs_init(void)
4391{
4392        return bus_create_file(&pci_bus_type,
4393                                        &bus_attr_resource_alignment);
4394}
4395late_initcall(pci_resource_alignment_sysfs_init);
4396
4397static void pci_no_domains(void)
4398{
4399#ifdef CONFIG_PCI_DOMAINS
4400        pci_domains_supported = 0;
4401#endif
4402}
4403
4404/**
4405 * pci_ext_cfg_avail - can we access extended PCI config space?
4406 *
4407 * Returns 1 if we can access PCI extended config space (offsets
4408 * greater than 0xff). This is the default implementation. Architecture
4409 * implementations can override this.
4410 */
4411int __weak pci_ext_cfg_avail(void)
4412{
4413        return 1;
4414}
4415
4416void __weak pci_fixup_cardbus(struct pci_bus *bus)
4417{
4418}
4419EXPORT_SYMBOL(pci_fixup_cardbus);
4420
4421static int __init pci_setup(char *str)
4422{
4423        while (str) {
4424                char *k = strchr(str, ',');
4425                if (k)
4426                        *k++ = 0;
4427                if (*str && (str = pcibios_setup(str)) && *str) {
4428                        if (!strcmp(str, "nomsi")) {
4429                                pci_no_msi();
4430                        } else if (!strcmp(str, "noaer")) {
4431                                pci_no_aer();
4432                        } else if (!strncmp(str, "realloc=", 8)) {
4433                                pci_realloc_get_opt(str + 8);
4434                        } else if (!strncmp(str, "realloc", 7)) {
4435                                pci_realloc_get_opt("on");
4436                        } else if (!strcmp(str, "nodomains")) {
4437                                pci_no_domains();
4438                        } else if (!strncmp(str, "noari", 5)) {
4439                                pcie_ari_disabled = true;
4440                        } else if (!strncmp(str, "cbiosize=", 9)) {
4441                                pci_cardbus_io_size = memparse(str + 9, &str);
4442                        } else if (!strncmp(str, "cbmemsize=", 10)) {
4443                                pci_cardbus_mem_size = memparse(str + 10, &str);
4444                        } else if (!strncmp(str, "resource_alignment=", 19)) {
4445                                pci_set_resource_alignment_param(str + 19,
4446                                                        strlen(str + 19));
4447                        } else if (!strncmp(str, "ecrc=", 5)) {
4448                                pcie_ecrc_get_policy(str + 5);
4449                        } else if (!strncmp(str, "hpiosize=", 9)) {
4450                                pci_hotplug_io_size = memparse(str + 9, &str);
4451                        } else if (!strncmp(str, "hpmemsize=", 10)) {
4452                                pci_hotplug_mem_size = memparse(str + 10, &str);
4453                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4454                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
4455                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4456                                pcie_bus_config = PCIE_BUS_SAFE;
4457                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4458                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
4459                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4460                                pcie_bus_config = PCIE_BUS_PEER2PEER;
4461                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
4462                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4463                        } else {
4464                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
4465                                                str);
4466                        }
4467                }
4468                str = k;
4469        }
4470        return 0;
4471}
4472early_param("pci", pci_setup);
4473