linux/drivers/rtc/interface.c
<<
>>
Prefs
   1/*
   2 * RTC subsystem, interface functions
   3 *
   4 * Copyright (C) 2005 Tower Technologies
   5 * Author: Alessandro Zummo <a.zummo@towertech.it>
   6 *
   7 * based on arch/arm/common/rtctime.c
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12*/
  13
  14#include <linux/rtc.h>
  15#include <linux/sched.h>
  16#include <linux/module.h>
  17#include <linux/log2.h>
  18#include <linux/workqueue.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25        int err;
  26        if (!rtc->ops)
  27                err = -ENODEV;
  28        else if (!rtc->ops->read_time)
  29                err = -EINVAL;
  30        else {
  31                memset(tm, 0, sizeof(struct rtc_time));
  32                err = rtc->ops->read_time(rtc->dev.parent, tm);
  33        }
  34        return err;
  35}
  36
  37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  38{
  39        int err;
  40
  41        err = mutex_lock_interruptible(&rtc->ops_lock);
  42        if (err)
  43                return err;
  44
  45        err = __rtc_read_time(rtc, tm);
  46        mutex_unlock(&rtc->ops_lock);
  47        return err;
  48}
  49EXPORT_SYMBOL_GPL(rtc_read_time);
  50
  51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
  52{
  53        int err;
  54
  55        err = rtc_valid_tm(tm);
  56        if (err != 0)
  57                return err;
  58
  59        err = mutex_lock_interruptible(&rtc->ops_lock);
  60        if (err)
  61                return err;
  62
  63        if (!rtc->ops)
  64                err = -ENODEV;
  65        else if (rtc->ops->set_time)
  66                err = rtc->ops->set_time(rtc->dev.parent, tm);
  67        else if (rtc->ops->set_mmss) {
  68                unsigned long secs;
  69                err = rtc_tm_to_time(tm, &secs);
  70                if (err == 0)
  71                        err = rtc->ops->set_mmss(rtc->dev.parent, secs);
  72        } else
  73                err = -EINVAL;
  74
  75        pm_stay_awake(rtc->dev.parent);
  76        mutex_unlock(&rtc->ops_lock);
  77        /* A timer might have just expired */
  78        schedule_work(&rtc->irqwork);
  79        return err;
  80}
  81EXPORT_SYMBOL_GPL(rtc_set_time);
  82
  83int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
  84{
  85        int err;
  86
  87        err = mutex_lock_interruptible(&rtc->ops_lock);
  88        if (err)
  89                return err;
  90
  91        if (!rtc->ops)
  92                err = -ENODEV;
  93        else if (rtc->ops->set_mmss)
  94                err = rtc->ops->set_mmss(rtc->dev.parent, secs);
  95        else if (rtc->ops->read_time && rtc->ops->set_time) {
  96                struct rtc_time new, old;
  97
  98                err = rtc->ops->read_time(rtc->dev.parent, &old);
  99                if (err == 0) {
 100                        rtc_time_to_tm(secs, &new);
 101
 102                        /*
 103                         * avoid writing when we're going to change the day of
 104                         * the month. We will retry in the next minute. This
 105                         * basically means that if the RTC must not drift
 106                         * by more than 1 minute in 11 minutes.
 107                         */
 108                        if (!((old.tm_hour == 23 && old.tm_min == 59) ||
 109                                (new.tm_hour == 23 && new.tm_min == 59)))
 110                                err = rtc->ops->set_time(rtc->dev.parent,
 111                                                &new);
 112                }
 113        } else {
 114                err = -EINVAL;
 115        }
 116
 117        pm_stay_awake(rtc->dev.parent);
 118        mutex_unlock(&rtc->ops_lock);
 119        /* A timer might have just expired */
 120        schedule_work(&rtc->irqwork);
 121
 122        return err;
 123}
 124EXPORT_SYMBOL_GPL(rtc_set_mmss);
 125
 126static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 127{
 128        int err;
 129
 130        err = mutex_lock_interruptible(&rtc->ops_lock);
 131        if (err)
 132                return err;
 133
 134        if (rtc->ops == NULL)
 135                err = -ENODEV;
 136        else if (!rtc->ops->read_alarm)
 137                err = -EINVAL;
 138        else {
 139                memset(alarm, 0, sizeof(struct rtc_wkalrm));
 140                err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 141        }
 142
 143        mutex_unlock(&rtc->ops_lock);
 144        return err;
 145}
 146
 147int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 148{
 149        int err;
 150        struct rtc_time before, now;
 151        int first_time = 1;
 152        unsigned long t_now, t_alm;
 153        enum { none, day, month, year } missing = none;
 154        unsigned days;
 155
 156        /* The lower level RTC driver may return -1 in some fields,
 157         * creating invalid alarm->time values, for reasons like:
 158         *
 159         *   - The hardware may not be capable of filling them in;
 160         *     many alarms match only on time-of-day fields, not
 161         *     day/month/year calendar data.
 162         *
 163         *   - Some hardware uses illegal values as "wildcard" match
 164         *     values, which non-Linux firmware (like a BIOS) may try
 165         *     to set up as e.g. "alarm 15 minutes after each hour".
 166         *     Linux uses only oneshot alarms.
 167         *
 168         * When we see that here, we deal with it by using values from
 169         * a current RTC timestamp for any missing (-1) values.  The
 170         * RTC driver prevents "periodic alarm" modes.
 171         *
 172         * But this can be racey, because some fields of the RTC timestamp
 173         * may have wrapped in the interval since we read the RTC alarm,
 174         * which would lead to us inserting inconsistent values in place
 175         * of the -1 fields.
 176         *
 177         * Reading the alarm and timestamp in the reverse sequence
 178         * would have the same race condition, and not solve the issue.
 179         *
 180         * So, we must first read the RTC timestamp,
 181         * then read the RTC alarm value,
 182         * and then read a second RTC timestamp.
 183         *
 184         * If any fields of the second timestamp have changed
 185         * when compared with the first timestamp, then we know
 186         * our timestamp may be inconsistent with that used by
 187         * the low-level rtc_read_alarm_internal() function.
 188         *
 189         * So, when the two timestamps disagree, we just loop and do
 190         * the process again to get a fully consistent set of values.
 191         *
 192         * This could all instead be done in the lower level driver,
 193         * but since more than one lower level RTC implementation needs it,
 194         * then it's probably best best to do it here instead of there..
 195         */
 196
 197        /* Get the "before" timestamp */
 198        err = rtc_read_time(rtc, &before);
 199        if (err < 0)
 200                return err;
 201        do {
 202                if (!first_time)
 203                        memcpy(&before, &now, sizeof(struct rtc_time));
 204                first_time = 0;
 205
 206                /* get the RTC alarm values, which may be incomplete */
 207                err = rtc_read_alarm_internal(rtc, alarm);
 208                if (err)
 209                        return err;
 210
 211                /* full-function RTCs won't have such missing fields */
 212                if (rtc_valid_tm(&alarm->time) == 0)
 213                        return 0;
 214
 215                /* get the "after" timestamp, to detect wrapped fields */
 216                err = rtc_read_time(rtc, &now);
 217                if (err < 0)
 218                        return err;
 219
 220                /* note that tm_sec is a "don't care" value here: */
 221        } while (   before.tm_min   != now.tm_min
 222                 || before.tm_hour  != now.tm_hour
 223                 || before.tm_mon   != now.tm_mon
 224                 || before.tm_year  != now.tm_year);
 225
 226        /* Fill in the missing alarm fields using the timestamp; we
 227         * know there's at least one since alarm->time is invalid.
 228         */
 229        if (alarm->time.tm_sec == -1)
 230                alarm->time.tm_sec = now.tm_sec;
 231        if (alarm->time.tm_min == -1)
 232                alarm->time.tm_min = now.tm_min;
 233        if (alarm->time.tm_hour == -1)
 234                alarm->time.tm_hour = now.tm_hour;
 235
 236        /* For simplicity, only support date rollover for now */
 237        if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 238                alarm->time.tm_mday = now.tm_mday;
 239                missing = day;
 240        }
 241        if ((unsigned)alarm->time.tm_mon >= 12) {
 242                alarm->time.tm_mon = now.tm_mon;
 243                if (missing == none)
 244                        missing = month;
 245        }
 246        if (alarm->time.tm_year == -1) {
 247                alarm->time.tm_year = now.tm_year;
 248                if (missing == none)
 249                        missing = year;
 250        }
 251
 252        /* with luck, no rollover is needed */
 253        rtc_tm_to_time(&now, &t_now);
 254        rtc_tm_to_time(&alarm->time, &t_alm);
 255        if (t_now < t_alm)
 256                goto done;
 257
 258        switch (missing) {
 259
 260        /* 24 hour rollover ... if it's now 10am Monday, an alarm that
 261         * that will trigger at 5am will do so at 5am Tuesday, which
 262         * could also be in the next month or year.  This is a common
 263         * case, especially for PCs.
 264         */
 265        case day:
 266                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 267                t_alm += 24 * 60 * 60;
 268                rtc_time_to_tm(t_alm, &alarm->time);
 269                break;
 270
 271        /* Month rollover ... if it's the 31th, an alarm on the 3rd will
 272         * be next month.  An alarm matching on the 30th, 29th, or 28th
 273         * may end up in the month after that!  Many newer PCs support
 274         * this type of alarm.
 275         */
 276        case month:
 277                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 278                do {
 279                        if (alarm->time.tm_mon < 11)
 280                                alarm->time.tm_mon++;
 281                        else {
 282                                alarm->time.tm_mon = 0;
 283                                alarm->time.tm_year++;
 284                        }
 285                        days = rtc_month_days(alarm->time.tm_mon,
 286                                        alarm->time.tm_year);
 287                } while (days < alarm->time.tm_mday);
 288                break;
 289
 290        /* Year rollover ... easy except for leap years! */
 291        case year:
 292                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 293                do {
 294                        alarm->time.tm_year++;
 295                } while (!is_leap_year(alarm->time.tm_year + 1900)
 296                        && rtc_valid_tm(&alarm->time) != 0);
 297                break;
 298
 299        default:
 300                dev_warn(&rtc->dev, "alarm rollover not handled\n");
 301        }
 302
 303done:
 304        err = rtc_valid_tm(&alarm->time);
 305
 306        if (err) {
 307                dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
 308                        alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
 309                        alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
 310                        alarm->time.tm_sec);
 311        }
 312
 313        return err;
 314}
 315
 316int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 317{
 318        int err;
 319
 320        err = mutex_lock_interruptible(&rtc->ops_lock);
 321        if (err)
 322                return err;
 323        if (rtc->ops == NULL)
 324                err = -ENODEV;
 325        else if (!rtc->ops->read_alarm)
 326                err = -EINVAL;
 327        else {
 328                memset(alarm, 0, sizeof(struct rtc_wkalrm));
 329                alarm->enabled = rtc->aie_timer.enabled;
 330                alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 331        }
 332        mutex_unlock(&rtc->ops_lock);
 333
 334        return err;
 335}
 336EXPORT_SYMBOL_GPL(rtc_read_alarm);
 337
 338static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 339{
 340        struct rtc_time tm;
 341        long now, scheduled;
 342        int err;
 343
 344        err = rtc_valid_tm(&alarm->time);
 345        if (err)
 346                return err;
 347        rtc_tm_to_time(&alarm->time, &scheduled);
 348
 349        /* Make sure we're not setting alarms in the past */
 350        err = __rtc_read_time(rtc, &tm);
 351        rtc_tm_to_time(&tm, &now);
 352        if (scheduled <= now)
 353                return -ETIME;
 354        /*
 355         * XXX - We just checked to make sure the alarm time is not
 356         * in the past, but there is still a race window where if
 357         * the is alarm set for the next second and the second ticks
 358         * over right here, before we set the alarm.
 359         */
 360
 361        if (!rtc->ops)
 362                err = -ENODEV;
 363        else if (!rtc->ops->set_alarm)
 364                err = -EINVAL;
 365        else
 366                err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 367
 368        return err;
 369}
 370
 371int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 372{
 373        int err;
 374
 375        err = rtc_valid_tm(&alarm->time);
 376        if (err != 0)
 377                return err;
 378
 379        err = mutex_lock_interruptible(&rtc->ops_lock);
 380        if (err)
 381                return err;
 382        if (rtc->aie_timer.enabled)
 383                rtc_timer_remove(rtc, &rtc->aie_timer);
 384
 385        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 386        rtc->aie_timer.period = ktime_set(0, 0);
 387        if (alarm->enabled)
 388                err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 389
 390        mutex_unlock(&rtc->ops_lock);
 391        return err;
 392}
 393EXPORT_SYMBOL_GPL(rtc_set_alarm);
 394
 395/* Called once per device from rtc_device_register */
 396int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 397{
 398        int err;
 399        struct rtc_time now;
 400
 401        err = rtc_valid_tm(&alarm->time);
 402        if (err != 0)
 403                return err;
 404
 405        err = rtc_read_time(rtc, &now);
 406        if (err)
 407                return err;
 408
 409        err = mutex_lock_interruptible(&rtc->ops_lock);
 410        if (err)
 411                return err;
 412
 413        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 414        rtc->aie_timer.period = ktime_set(0, 0);
 415
 416        /* Alarm has to be enabled & in the futrure for us to enqueue it */
 417        if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
 418                         rtc->aie_timer.node.expires.tv64)) {
 419
 420                rtc->aie_timer.enabled = 1;
 421                timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 422        }
 423        mutex_unlock(&rtc->ops_lock);
 424        return err;
 425}
 426EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 427
 428
 429
 430int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 431{
 432        int err = mutex_lock_interruptible(&rtc->ops_lock);
 433        if (err)
 434                return err;
 435
 436        if (rtc->aie_timer.enabled != enabled) {
 437                if (enabled)
 438                        err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 439                else
 440                        rtc_timer_remove(rtc, &rtc->aie_timer);
 441        }
 442
 443        if (err)
 444                /* nothing */;
 445        else if (!rtc->ops)
 446                err = -ENODEV;
 447        else if (!rtc->ops->alarm_irq_enable)
 448                err = -EINVAL;
 449        else
 450                err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 451
 452        mutex_unlock(&rtc->ops_lock);
 453        return err;
 454}
 455EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 456
 457int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 458{
 459        int err = mutex_lock_interruptible(&rtc->ops_lock);
 460        if (err)
 461                return err;
 462
 463#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 464        if (enabled == 0 && rtc->uie_irq_active) {
 465                mutex_unlock(&rtc->ops_lock);
 466                return rtc_dev_update_irq_enable_emul(rtc, 0);
 467        }
 468#endif
 469        /* make sure we're changing state */
 470        if (rtc->uie_rtctimer.enabled == enabled)
 471                goto out;
 472
 473        if (rtc->uie_unsupported) {
 474                err = -EINVAL;
 475                goto out;
 476        }
 477
 478        if (enabled) {
 479                struct rtc_time tm;
 480                ktime_t now, onesec;
 481
 482                __rtc_read_time(rtc, &tm);
 483                onesec = ktime_set(1, 0);
 484                now = rtc_tm_to_ktime(tm);
 485                rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 486                rtc->uie_rtctimer.period = ktime_set(1, 0);
 487                err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 488        } else
 489                rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 490
 491out:
 492        mutex_unlock(&rtc->ops_lock);
 493#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 494        /*
 495         * Enable emulation if the driver did not provide
 496         * the update_irq_enable function pointer or if returned
 497         * -EINVAL to signal that it has been configured without
 498         * interrupts or that are not available at the moment.
 499         */
 500        if (err == -EINVAL)
 501                err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 502#endif
 503        return err;
 504
 505}
 506EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 507
 508
 509/**
 510 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 511 * @rtc: pointer to the rtc device
 512 *
 513 * This function is called when an AIE, UIE or PIE mode interrupt
 514 * has occurred (or been emulated).
 515 *
 516 * Triggers the registered irq_task function callback.
 517 */
 518void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 519{
 520        unsigned long flags;
 521
 522        /* mark one irq of the appropriate mode */
 523        spin_lock_irqsave(&rtc->irq_lock, flags);
 524        rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 525        spin_unlock_irqrestore(&rtc->irq_lock, flags);
 526
 527        /* call the task func */
 528        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 529        if (rtc->irq_task)
 530                rtc->irq_task->func(rtc->irq_task->private_data);
 531        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 532
 533        wake_up_interruptible(&rtc->irq_queue);
 534        kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 535}
 536
 537
 538/**
 539 * rtc_aie_update_irq - AIE mode rtctimer hook
 540 * @private: pointer to the rtc_device
 541 *
 542 * This functions is called when the aie_timer expires.
 543 */
 544void rtc_aie_update_irq(void *private)
 545{
 546        struct rtc_device *rtc = (struct rtc_device *)private;
 547        rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 548}
 549
 550
 551/**
 552 * rtc_uie_update_irq - UIE mode rtctimer hook
 553 * @private: pointer to the rtc_device
 554 *
 555 * This functions is called when the uie_timer expires.
 556 */
 557void rtc_uie_update_irq(void *private)
 558{
 559        struct rtc_device *rtc = (struct rtc_device *)private;
 560        rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 561}
 562
 563
 564/**
 565 * rtc_pie_update_irq - PIE mode hrtimer hook
 566 * @timer: pointer to the pie mode hrtimer
 567 *
 568 * This function is used to emulate PIE mode interrupts
 569 * using an hrtimer. This function is called when the periodic
 570 * hrtimer expires.
 571 */
 572enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 573{
 574        struct rtc_device *rtc;
 575        ktime_t period;
 576        int count;
 577        rtc = container_of(timer, struct rtc_device, pie_timer);
 578
 579        period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
 580        count = hrtimer_forward_now(timer, period);
 581
 582        rtc_handle_legacy_irq(rtc, count, RTC_PF);
 583
 584        return HRTIMER_RESTART;
 585}
 586
 587/**
 588 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 589 * @rtc: the rtc device
 590 * @num: how many irqs are being reported (usually one)
 591 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 592 * Context: any
 593 */
 594void rtc_update_irq(struct rtc_device *rtc,
 595                unsigned long num, unsigned long events)
 596{
 597        if (unlikely(IS_ERR_OR_NULL(rtc)))
 598                return;
 599
 600        pm_stay_awake(rtc->dev.parent);
 601        schedule_work(&rtc->irqwork);
 602}
 603EXPORT_SYMBOL_GPL(rtc_update_irq);
 604
 605static int __rtc_match(struct device *dev, const void *data)
 606{
 607        const char *name = data;
 608
 609        if (strcmp(dev_name(dev), name) == 0)
 610                return 1;
 611        return 0;
 612}
 613
 614struct rtc_device *rtc_class_open(const char *name)
 615{
 616        struct device *dev;
 617        struct rtc_device *rtc = NULL;
 618
 619        dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 620        if (dev)
 621                rtc = to_rtc_device(dev);
 622
 623        if (rtc) {
 624                if (!try_module_get(rtc->owner)) {
 625                        put_device(dev);
 626                        rtc = NULL;
 627                }
 628        }
 629
 630        return rtc;
 631}
 632EXPORT_SYMBOL_GPL(rtc_class_open);
 633
 634void rtc_class_close(struct rtc_device *rtc)
 635{
 636        module_put(rtc->owner);
 637        put_device(&rtc->dev);
 638}
 639EXPORT_SYMBOL_GPL(rtc_class_close);
 640
 641int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
 642{
 643        int retval = -EBUSY;
 644
 645        if (task == NULL || task->func == NULL)
 646                return -EINVAL;
 647
 648        /* Cannot register while the char dev is in use */
 649        if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
 650                return -EBUSY;
 651
 652        spin_lock_irq(&rtc->irq_task_lock);
 653        if (rtc->irq_task == NULL) {
 654                rtc->irq_task = task;
 655                retval = 0;
 656        }
 657        spin_unlock_irq(&rtc->irq_task_lock);
 658
 659        clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
 660
 661        return retval;
 662}
 663EXPORT_SYMBOL_GPL(rtc_irq_register);
 664
 665void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
 666{
 667        spin_lock_irq(&rtc->irq_task_lock);
 668        if (rtc->irq_task == task)
 669                rtc->irq_task = NULL;
 670        spin_unlock_irq(&rtc->irq_task_lock);
 671}
 672EXPORT_SYMBOL_GPL(rtc_irq_unregister);
 673
 674static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 675{
 676        /*
 677         * We always cancel the timer here first, because otherwise
 678         * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 679         * when we manage to start the timer before the callback
 680         * returns HRTIMER_RESTART.
 681         *
 682         * We cannot use hrtimer_cancel() here as a running callback
 683         * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 684         * would spin forever.
 685         */
 686        if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 687                return -1;
 688
 689        if (enabled) {
 690                ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
 691
 692                hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 693        }
 694        return 0;
 695}
 696
 697/**
 698 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 699 * @rtc: the rtc device
 700 * @task: currently registered with rtc_irq_register()
 701 * @enabled: true to enable periodic IRQs
 702 * Context: any
 703 *
 704 * Note that rtc_irq_set_freq() should previously have been used to
 705 * specify the desired frequency of periodic IRQ task->func() callbacks.
 706 */
 707int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
 708{
 709        int err = 0;
 710        unsigned long flags;
 711
 712retry:
 713        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 714        if (rtc->irq_task != NULL && task == NULL)
 715                err = -EBUSY;
 716        else if (rtc->irq_task != task)
 717                err = -EACCES;
 718        else {
 719                if (rtc_update_hrtimer(rtc, enabled) < 0) {
 720                        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 721                        cpu_relax();
 722                        goto retry;
 723                }
 724                rtc->pie_enabled = enabled;
 725        }
 726        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 727        return err;
 728}
 729EXPORT_SYMBOL_GPL(rtc_irq_set_state);
 730
 731/**
 732 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 733 * @rtc: the rtc device
 734 * @task: currently registered with rtc_irq_register()
 735 * @freq: positive frequency with which task->func() will be called
 736 * Context: any
 737 *
 738 * Note that rtc_irq_set_state() is used to enable or disable the
 739 * periodic IRQs.
 740 */
 741int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
 742{
 743        int err = 0;
 744        unsigned long flags;
 745
 746        if (freq <= 0 || freq > RTC_MAX_FREQ)
 747                return -EINVAL;
 748retry:
 749        spin_lock_irqsave(&rtc->irq_task_lock, flags);
 750        if (rtc->irq_task != NULL && task == NULL)
 751                err = -EBUSY;
 752        else if (rtc->irq_task != task)
 753                err = -EACCES;
 754        else {
 755                rtc->irq_freq = freq;
 756                if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
 757                        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 758                        cpu_relax();
 759                        goto retry;
 760                }
 761        }
 762        spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 763        return err;
 764}
 765EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
 766
 767/**
 768 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 769 * @rtc rtc device
 770 * @timer timer being added.
 771 *
 772 * Enqueues a timer onto the rtc devices timerqueue and sets
 773 * the next alarm event appropriately.
 774 *
 775 * Sets the enabled bit on the added timer.
 776 *
 777 * Must hold ops_lock for proper serialization of timerqueue
 778 */
 779static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 780{
 781        timer->enabled = 1;
 782        timerqueue_add(&rtc->timerqueue, &timer->node);
 783        if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 784                struct rtc_wkalrm alarm;
 785                int err;
 786                alarm.time = rtc_ktime_to_tm(timer->node.expires);
 787                alarm.enabled = 1;
 788                err = __rtc_set_alarm(rtc, &alarm);
 789                if (err == -ETIME) {
 790                        pm_stay_awake(rtc->dev.parent);
 791                        schedule_work(&rtc->irqwork);
 792                } else if (err) {
 793                        timerqueue_del(&rtc->timerqueue, &timer->node);
 794                        timer->enabled = 0;
 795                        return err;
 796                }
 797        }
 798        return 0;
 799}
 800
 801static void rtc_alarm_disable(struct rtc_device *rtc)
 802{
 803        if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 804                return;
 805
 806        rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 807}
 808
 809/**
 810 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 811 * @rtc rtc device
 812 * @timer timer being removed.
 813 *
 814 * Removes a timer onto the rtc devices timerqueue and sets
 815 * the next alarm event appropriately.
 816 *
 817 * Clears the enabled bit on the removed timer.
 818 *
 819 * Must hold ops_lock for proper serialization of timerqueue
 820 */
 821static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 822{
 823        struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 824        timerqueue_del(&rtc->timerqueue, &timer->node);
 825        timer->enabled = 0;
 826        if (next == &timer->node) {
 827                struct rtc_wkalrm alarm;
 828                int err;
 829                next = timerqueue_getnext(&rtc->timerqueue);
 830                if (!next) {
 831                        rtc_alarm_disable(rtc);
 832                        return;
 833                }
 834                alarm.time = rtc_ktime_to_tm(next->expires);
 835                alarm.enabled = 1;
 836                err = __rtc_set_alarm(rtc, &alarm);
 837                if (err == -ETIME) {
 838                        pm_stay_awake(rtc->dev.parent);
 839                        schedule_work(&rtc->irqwork);
 840                }
 841        }
 842}
 843
 844/**
 845 * rtc_timer_do_work - Expires rtc timers
 846 * @rtc rtc device
 847 * @timer timer being removed.
 848 *
 849 * Expires rtc timers. Reprograms next alarm event if needed.
 850 * Called via worktask.
 851 *
 852 * Serializes access to timerqueue via ops_lock mutex
 853 */
 854void rtc_timer_do_work(struct work_struct *work)
 855{
 856        struct rtc_timer *timer;
 857        struct timerqueue_node *next;
 858        ktime_t now;
 859        struct rtc_time tm;
 860
 861        struct rtc_device *rtc =
 862                container_of(work, struct rtc_device, irqwork);
 863
 864        mutex_lock(&rtc->ops_lock);
 865again:
 866        __rtc_read_time(rtc, &tm);
 867        now = rtc_tm_to_ktime(tm);
 868        while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 869                if (next->expires.tv64 > now.tv64)
 870                        break;
 871
 872                /* expire timer */
 873                timer = container_of(next, struct rtc_timer, node);
 874                timerqueue_del(&rtc->timerqueue, &timer->node);
 875                timer->enabled = 0;
 876                if (timer->task.func)
 877                        timer->task.func(timer->task.private_data);
 878
 879                /* Re-add/fwd periodic timers */
 880                if (ktime_to_ns(timer->period)) {
 881                        timer->node.expires = ktime_add(timer->node.expires,
 882                                                        timer->period);
 883                        timer->enabled = 1;
 884                        timerqueue_add(&rtc->timerqueue, &timer->node);
 885                }
 886        }
 887
 888        /* Set next alarm */
 889        if (next) {
 890                struct rtc_wkalrm alarm;
 891                int err;
 892                alarm.time = rtc_ktime_to_tm(next->expires);
 893                alarm.enabled = 1;
 894                err = __rtc_set_alarm(rtc, &alarm);
 895                if (err == -ETIME)
 896                        goto again;
 897        } else
 898                rtc_alarm_disable(rtc);
 899
 900        pm_relax(rtc->dev.parent);
 901        mutex_unlock(&rtc->ops_lock);
 902}
 903
 904
 905/* rtc_timer_init - Initializes an rtc_timer
 906 * @timer: timer to be intiialized
 907 * @f: function pointer to be called when timer fires
 908 * @data: private data passed to function pointer
 909 *
 910 * Kernel interface to initializing an rtc_timer.
 911 */
 912void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 913{
 914        timerqueue_init(&timer->node);
 915        timer->enabled = 0;
 916        timer->task.func = f;
 917        timer->task.private_data = data;
 918}
 919
 920/* rtc_timer_start - Sets an rtc_timer to fire in the future
 921 * @ rtc: rtc device to be used
 922 * @ timer: timer being set
 923 * @ expires: time at which to expire the timer
 924 * @ period: period that the timer will recur
 925 *
 926 * Kernel interface to set an rtc_timer
 927 */
 928int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 929                        ktime_t expires, ktime_t period)
 930{
 931        int ret = 0;
 932        mutex_lock(&rtc->ops_lock);
 933        if (timer->enabled)
 934                rtc_timer_remove(rtc, timer);
 935
 936        timer->node.expires = expires;
 937        timer->period = period;
 938
 939        ret = rtc_timer_enqueue(rtc, timer);
 940
 941        mutex_unlock(&rtc->ops_lock);
 942        return ret;
 943}
 944
 945/* rtc_timer_cancel - Stops an rtc_timer
 946 * @ rtc: rtc device to be used
 947 * @ timer: timer being set
 948 *
 949 * Kernel interface to cancel an rtc_timer
 950 */
 951int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
 952{
 953        int ret = 0;
 954        mutex_lock(&rtc->ops_lock);
 955        if (timer->enabled)
 956                rtc_timer_remove(rtc, timer);
 957        mutex_unlock(&rtc->ops_lock);
 958        return ret;
 959}
 960
 961
 962