1
2
3
4
5
6
7
8
9
10
11
12#include <linux/io.h>
13#include <linux/rtc.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/clk.h>
19
20#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
21#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
22#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
23
24#define RTC_SW_BIT (1 << 0)
25#define RTC_ALM_BIT (1 << 2)
26#define RTC_1HZ_BIT (1 << 4)
27#define RTC_2HZ_BIT (1 << 7)
28#define RTC_SAM0_BIT (1 << 8)
29#define RTC_SAM1_BIT (1 << 9)
30#define RTC_SAM2_BIT (1 << 10)
31#define RTC_SAM3_BIT (1 << 11)
32#define RTC_SAM4_BIT (1 << 12)
33#define RTC_SAM5_BIT (1 << 13)
34#define RTC_SAM6_BIT (1 << 14)
35#define RTC_SAM7_BIT (1 << 15)
36#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
37 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
38 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
39
40#define RTC_ENABLE_BIT (1 << 7)
41
42#define MAX_PIE_NUM 9
43#define MAX_PIE_FREQ 512
44static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
45 { 2, RTC_2HZ_BIT },
46 { 4, RTC_SAM0_BIT },
47 { 8, RTC_SAM1_BIT },
48 { 16, RTC_SAM2_BIT },
49 { 32, RTC_SAM3_BIT },
50 { 64, RTC_SAM4_BIT },
51 { 128, RTC_SAM5_BIT },
52 { 256, RTC_SAM6_BIT },
53 { MAX_PIE_FREQ, RTC_SAM7_BIT },
54};
55
56#define MXC_RTC_TIME 0
57#define MXC_RTC_ALARM 1
58
59#define RTC_HOURMIN 0x00
60#define RTC_SECOND 0x04
61#define RTC_ALRM_HM 0x08
62#define RTC_ALRM_SEC 0x0C
63#define RTC_RTCCTL 0x10
64#define RTC_RTCISR 0x14
65#define RTC_RTCIENR 0x18
66#define RTC_STPWCH 0x1C
67#define RTC_DAYR 0x20
68#define RTC_DAYALARM 0x24
69#define RTC_TEST1 0x28
70#define RTC_TEST2 0x2C
71#define RTC_TEST3 0x30
72
73enum imx_rtc_type {
74 IMX1_RTC,
75 IMX21_RTC,
76};
77
78struct rtc_plat_data {
79 struct rtc_device *rtc;
80 void __iomem *ioaddr;
81 int irq;
82 struct clk *clk;
83 struct rtc_time g_rtc_alarm;
84 enum imx_rtc_type devtype;
85};
86
87static struct platform_device_id imx_rtc_devtype[] = {
88 {
89 .name = "imx1-rtc",
90 .driver_data = IMX1_RTC,
91 }, {
92 .name = "imx21-rtc",
93 .driver_data = IMX21_RTC,
94 }, {
95
96 }
97};
98MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
99
100static inline int is_imx1_rtc(struct rtc_plat_data *data)
101{
102 return data->devtype == IMX1_RTC;
103}
104
105
106
107
108
109static u32 get_alarm_or_time(struct device *dev, int time_alarm)
110{
111 struct platform_device *pdev = to_platform_device(dev);
112 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
113 void __iomem *ioaddr = pdata->ioaddr;
114 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
115
116 switch (time_alarm) {
117 case MXC_RTC_TIME:
118 day = readw(ioaddr + RTC_DAYR);
119 hr_min = readw(ioaddr + RTC_HOURMIN);
120 sec = readw(ioaddr + RTC_SECOND);
121 break;
122 case MXC_RTC_ALARM:
123 day = readw(ioaddr + RTC_DAYALARM);
124 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
125 sec = readw(ioaddr + RTC_ALRM_SEC);
126 break;
127 }
128
129 hr = hr_min >> 8;
130 min = hr_min & 0xff;
131
132 return (((day * 24 + hr) * 60) + min) * 60 + sec;
133}
134
135
136
137
138static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
139{
140 u32 day, hr, min, sec, temp;
141 struct platform_device *pdev = to_platform_device(dev);
142 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
143 void __iomem *ioaddr = pdata->ioaddr;
144
145 day = time / 86400;
146 time -= day * 86400;
147
148
149 hr = time / 3600;
150 time -= hr * 3600;
151
152
153 min = time / 60;
154 sec = time - min * 60;
155
156 temp = (hr << 8) + min;
157
158 switch (time_alarm) {
159 case MXC_RTC_TIME:
160 writew(day, ioaddr + RTC_DAYR);
161 writew(sec, ioaddr + RTC_SECOND);
162 writew(temp, ioaddr + RTC_HOURMIN);
163 break;
164 case MXC_RTC_ALARM:
165 writew(day, ioaddr + RTC_DAYALARM);
166 writew(sec, ioaddr + RTC_ALRM_SEC);
167 writew(temp, ioaddr + RTC_ALRM_HM);
168 break;
169 }
170}
171
172
173
174
175
176static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
177{
178 struct rtc_time alarm_tm, now_tm;
179 unsigned long now, time;
180 struct platform_device *pdev = to_platform_device(dev);
181 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
182 void __iomem *ioaddr = pdata->ioaddr;
183
184 now = get_alarm_or_time(dev, MXC_RTC_TIME);
185 rtc_time_to_tm(now, &now_tm);
186 alarm_tm.tm_year = now_tm.tm_year;
187 alarm_tm.tm_mon = now_tm.tm_mon;
188 alarm_tm.tm_mday = now_tm.tm_mday;
189 alarm_tm.tm_hour = alrm->tm_hour;
190 alarm_tm.tm_min = alrm->tm_min;
191 alarm_tm.tm_sec = alrm->tm_sec;
192 rtc_tm_to_time(&alarm_tm, &time);
193
194
195 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
196 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
197
198 return 0;
199}
200
201static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
202 unsigned int enabled)
203{
204 struct platform_device *pdev = to_platform_device(dev);
205 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
206 void __iomem *ioaddr = pdata->ioaddr;
207 u32 reg;
208
209 spin_lock_irq(&pdata->rtc->irq_lock);
210 reg = readw(ioaddr + RTC_RTCIENR);
211
212 if (enabled)
213 reg |= bit;
214 else
215 reg &= ~bit;
216
217 writew(reg, ioaddr + RTC_RTCIENR);
218 spin_unlock_irq(&pdata->rtc->irq_lock);
219}
220
221
222static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
223{
224 struct platform_device *pdev = dev_id;
225 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
226 void __iomem *ioaddr = pdata->ioaddr;
227 unsigned long flags;
228 u32 status;
229 u32 events = 0;
230
231 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
232 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
233
234 writew(status, ioaddr + RTC_RTCISR);
235
236
237 if (status & RTC_ALM_BIT) {
238 events |= (RTC_AF | RTC_IRQF);
239
240 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
241 }
242
243 if (status & RTC_1HZ_BIT)
244 events |= (RTC_UF | RTC_IRQF);
245
246 if (status & PIT_ALL_ON)
247 events |= (RTC_PF | RTC_IRQF);
248
249 rtc_update_irq(pdata->rtc, 1, events);
250 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
251
252 return IRQ_HANDLED;
253}
254
255
256
257
258static void mxc_rtc_release(struct device *dev)
259{
260 struct platform_device *pdev = to_platform_device(dev);
261 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
262 void __iomem *ioaddr = pdata->ioaddr;
263
264 spin_lock_irq(&pdata->rtc->irq_lock);
265
266
267 writew(0, ioaddr + RTC_RTCIENR);
268
269
270 writew(0xffffffff, ioaddr + RTC_RTCISR);
271
272 spin_unlock_irq(&pdata->rtc->irq_lock);
273}
274
275static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
276{
277 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
278 return 0;
279}
280
281
282
283
284static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
285{
286 u32 val;
287
288
289 do {
290 val = get_alarm_or_time(dev, MXC_RTC_TIME);
291 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
292
293 rtc_time_to_tm(val, tm);
294
295 return 0;
296}
297
298
299
300
301static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
302{
303 struct platform_device *pdev = to_platform_device(dev);
304 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
305
306
307
308
309 if (is_imx1_rtc(pdata)) {
310 struct rtc_time tm;
311
312 rtc_time_to_tm(time, &tm);
313 tm.tm_year = 70;
314 rtc_tm_to_time(&tm, &time);
315 }
316
317
318 do {
319 set_alarm_or_time(dev, MXC_RTC_TIME, time);
320 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
321
322 return 0;
323}
324
325
326
327
328
329
330static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
331{
332 struct platform_device *pdev = to_platform_device(dev);
333 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
334 void __iomem *ioaddr = pdata->ioaddr;
335
336 rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
337 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
338
339 return 0;
340}
341
342
343
344
345static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
346{
347 struct platform_device *pdev = to_platform_device(dev);
348 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
349 int ret;
350
351 ret = rtc_update_alarm(dev, &alrm->time);
352 if (ret)
353 return ret;
354
355 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
356 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
357
358 return 0;
359}
360
361
362static struct rtc_class_ops mxc_rtc_ops = {
363 .release = mxc_rtc_release,
364 .read_time = mxc_rtc_read_time,
365 .set_mmss = mxc_rtc_set_mmss,
366 .read_alarm = mxc_rtc_read_alarm,
367 .set_alarm = mxc_rtc_set_alarm,
368 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
369};
370
371static int mxc_rtc_probe(struct platform_device *pdev)
372{
373 struct resource *res;
374 struct rtc_device *rtc;
375 struct rtc_plat_data *pdata = NULL;
376 u32 reg;
377 unsigned long rate;
378 int ret;
379
380 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
381 if (!pdata)
382 return -ENOMEM;
383
384 pdata->devtype = pdev->id_entry->driver_data;
385
386 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
387 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
388 if (IS_ERR(pdata->ioaddr))
389 return PTR_ERR(pdata->ioaddr);
390
391 pdata->clk = devm_clk_get(&pdev->dev, NULL);
392 if (IS_ERR(pdata->clk)) {
393 dev_err(&pdev->dev, "unable to get clock!\n");
394 return PTR_ERR(pdata->clk);
395 }
396
397 ret = clk_prepare_enable(pdata->clk);
398 if (ret)
399 return ret;
400
401 rate = clk_get_rate(pdata->clk);
402
403 if (rate == 32768)
404 reg = RTC_INPUT_CLK_32768HZ;
405 else if (rate == 32000)
406 reg = RTC_INPUT_CLK_32000HZ;
407 else if (rate == 38400)
408 reg = RTC_INPUT_CLK_38400HZ;
409 else {
410 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
411 ret = -EINVAL;
412 goto exit_put_clk;
413 }
414
415 reg |= RTC_ENABLE_BIT;
416 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
417 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
418 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
419 ret = -EIO;
420 goto exit_put_clk;
421 }
422
423 platform_set_drvdata(pdev, pdata);
424
425
426 pdata->irq = platform_get_irq(pdev, 0);
427
428 if (pdata->irq >= 0 &&
429 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
430 IRQF_SHARED, pdev->name, pdev) < 0) {
431 dev_warn(&pdev->dev, "interrupt not available.\n");
432 pdata->irq = -1;
433 }
434
435 if (pdata->irq >= 0)
436 device_init_wakeup(&pdev->dev, 1);
437
438 rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
439 THIS_MODULE);
440 if (IS_ERR(rtc)) {
441 ret = PTR_ERR(rtc);
442 goto exit_put_clk;
443 }
444
445 pdata->rtc = rtc;
446
447 return 0;
448
449exit_put_clk:
450 clk_disable_unprepare(pdata->clk);
451
452 return ret;
453}
454
455static int mxc_rtc_remove(struct platform_device *pdev)
456{
457 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
458
459 clk_disable_unprepare(pdata->clk);
460
461 return 0;
462}
463
464#ifdef CONFIG_PM_SLEEP
465static int mxc_rtc_suspend(struct device *dev)
466{
467 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
468
469 if (device_may_wakeup(dev))
470 enable_irq_wake(pdata->irq);
471
472 return 0;
473}
474
475static int mxc_rtc_resume(struct device *dev)
476{
477 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
478
479 if (device_may_wakeup(dev))
480 disable_irq_wake(pdata->irq);
481
482 return 0;
483}
484#endif
485
486static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
487
488static struct platform_driver mxc_rtc_driver = {
489 .driver = {
490 .name = "mxc_rtc",
491 .pm = &mxc_rtc_pm_ops,
492 .owner = THIS_MODULE,
493 },
494 .id_table = imx_rtc_devtype,
495 .probe = mxc_rtc_probe,
496 .remove = mxc_rtc_remove,
497};
498
499module_platform_driver(mxc_rtc_driver)
500
501MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
502MODULE_DESCRIPTION("RTC driver for Freescale MXC");
503MODULE_LICENSE("GPL");
504
505