linux/drivers/staging/et131x/et131x.c
<<
>>
Prefs
   1/* Agere Systems Inc.
   2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
   3 *
   4 * Copyright © 2005 Agere Systems Inc.
   5 * All rights reserved.
   6 *   http://www.agere.com
   7 *
   8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
   9 *
  10 *------------------------------------------------------------------------------
  11 *
  12 * SOFTWARE LICENSE
  13 *
  14 * This software is provided subject to the following terms and conditions,
  15 * which you should read carefully before using the software.  Using this
  16 * software indicates your acceptance of these terms and conditions.  If you do
  17 * not agree with these terms and conditions, do not use the software.
  18 *
  19 * Copyright © 2005 Agere Systems Inc.
  20 * All rights reserved.
  21 *
  22 * Redistribution and use in source or binary forms, with or without
  23 * modifications, are permitted provided that the following conditions are met:
  24 *
  25 * . Redistributions of source code must retain the above copyright notice, this
  26 *    list of conditions and the following Disclaimer as comments in the code as
  27 *    well as in the documentation and/or other materials provided with the
  28 *    distribution.
  29 *
  30 * . Redistributions in binary form must reproduce the above copyright notice,
  31 *    this list of conditions and the following Disclaimer in the documentation
  32 *    and/or other materials provided with the distribution.
  33 *
  34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
  35 *    may be used to endorse or promote products derived from this software
  36 *    without specific prior written permission.
  37 *
  38 * Disclaimer
  39 *
  40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
  41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
  42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
  43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
  44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
  45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
  49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  51 * DAMAGE.
  52 */
  53
  54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  55
  56#include <linux/pci.h>
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/kernel.h>
  60
  61#include <linux/sched.h>
  62#include <linux/ptrace.h>
  63#include <linux/slab.h>
  64#include <linux/ctype.h>
  65#include <linux/string.h>
  66#include <linux/timer.h>
  67#include <linux/interrupt.h>
  68#include <linux/in.h>
  69#include <linux/delay.h>
  70#include <linux/bitops.h>
  71#include <linux/io.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/if_arp.h>
  77#include <linux/ioport.h>
  78#include <linux/crc32.h>
  79#include <linux/random.h>
  80#include <linux/phy.h>
  81
  82#include "et131x.h"
  83
  84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
  85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
  86MODULE_LICENSE("Dual BSD/GPL");
  87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
  88
  89/* EEPROM defines */
  90#define MAX_NUM_REGISTER_POLLS          1000
  91#define MAX_NUM_WRITE_RETRIES           2
  92
  93/* MAC defines */
  94#define COUNTER_WRAP_16_BIT 0x10000
  95#define COUNTER_WRAP_12_BIT 0x1000
  96
  97/* PCI defines */
  98#define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
  99#define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
 100
 101/* ISR defines */
 102/* For interrupts, normal running is:
 103 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
 104 *       watchdog_interrupt & txdma_xfer_done
 105 *
 106 * In both cases, when flow control is enabled for either Tx or bi-direction,
 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
 108 * buffer rings are running low.
 109 */
 110#define INT_MASK_DISABLE            0xffffffff
 111
 112/* NOTE: Masking out MAC_STAT Interrupt for now...
 113 * #define INT_MASK_ENABLE             0xfff6bf17
 114 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
 115 */
 116#define INT_MASK_ENABLE             0xfffebf17
 117#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
 118
 119/* General defines */
 120/* Packet and header sizes */
 121#define NIC_MIN_PACKET_SIZE     60
 122
 123/* Multicast list size */
 124#define NIC_MAX_MCAST_LIST      128
 125
 126/* Supported Filters */
 127#define ET131X_PACKET_TYPE_DIRECTED             0x0001
 128#define ET131X_PACKET_TYPE_MULTICAST            0x0002
 129#define ET131X_PACKET_TYPE_BROADCAST            0x0004
 130#define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
 131#define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
 132
 133/* Tx Timeout */
 134#define ET131X_TX_TIMEOUT       (1 * HZ)
 135#define NIC_SEND_HANG_THRESHOLD 0
 136
 137/* MP_TCB flags */
 138#define FMP_DEST_MULTI                  0x00000001
 139#define FMP_DEST_BROAD                  0x00000002
 140
 141/* MP_ADAPTER flags */
 142#define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
 143
 144/* MP_SHARED flags */
 145#define FMP_ADAPTER_LOWER_POWER         0x00200000
 146
 147#define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
 148#define FMP_ADAPTER_HARDWARE_ERROR      0x04000000
 149
 150#define FMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
 151
 152/* Some offsets in PCI config space that are actually used. */
 153#define ET1310_PCI_MAC_ADDRESS          0xA4
 154#define ET1310_PCI_EEPROM_STATUS        0xB2
 155#define ET1310_PCI_ACK_NACK             0xC0
 156#define ET1310_PCI_REPLAY               0xC2
 157#define ET1310_PCI_L0L1LATENCY          0xCF
 158
 159/* PCI Product IDs */
 160#define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
 161#define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
 162
 163/* Define order of magnitude converter */
 164#define NANO_IN_A_MICRO 1000
 165
 166#define PARM_RX_NUM_BUFS_DEF    4
 167#define PARM_RX_TIME_INT_DEF    10
 168#define PARM_RX_MEM_END_DEF     0x2bc
 169#define PARM_TX_TIME_INT_DEF    40
 170#define PARM_TX_NUM_BUFS_DEF    4
 171#define PARM_DMA_CACHE_DEF      0
 172
 173/* RX defines */
 174#define FBR_CHUNKS              32
 175#define MAX_DESC_PER_RING_RX    1024
 176
 177/* number of RFDs - default and min */
 178#define RFD_LOW_WATER_MARK      40
 179#define NIC_DEFAULT_NUM_RFD     1024
 180#define NUM_FBRS                2
 181
 182#define NUM_PACKETS_HANDLED     256
 183
 184#define ALCATEL_MULTICAST_PKT   0x01000000
 185#define ALCATEL_BROADCAST_PKT   0x02000000
 186
 187/* typedefs for Free Buffer Descriptors */
 188struct fbr_desc {
 189        u32 addr_lo;
 190        u32 addr_hi;
 191        u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
 192};
 193
 194/* Packet Status Ring Descriptors
 195 *
 196 * Word 0:
 197 *
 198 * top 16 bits are from the Alcatel Status Word as enumerated in
 199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
 200 *
 201 * 0: hp                        hash pass
 202 * 1: ipa                       IP checksum assist
 203 * 2: ipp                       IP checksum pass
 204 * 3: tcpa                      TCP checksum assist
 205 * 4: tcpp                      TCP checksum pass
 206 * 5: wol                       WOL Event
 207 * 6: rxmac_error               RXMAC Error Indicator
 208 * 7: drop                      Drop packet
 209 * 8: ft                        Frame Truncated
 210 * 9: jp                        Jumbo Packet
 211 * 10: vp                       VLAN Packet
 212 * 11-15: unused
 213 * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
 214 * 17: asw_RX_DV_event          short receive event detected
 215 * 18: asw_false_carrier_event  bad carrier since last good packet
 216 * 19: asw_code_err             one or more nibbles signalled as errors
 217 * 20: asw_CRC_err              CRC error
 218 * 21: asw_len_chk_err          frame length field incorrect
 219 * 22: asw_too_long             frame length > 1518 bytes
 220 * 23: asw_OK                   valid CRC + no code error
 221 * 24: asw_multicast            has a multicast address
 222 * 25: asw_broadcast            has a broadcast address
 223 * 26: asw_dribble_nibble       spurious bits after EOP
 224 * 27: asw_control_frame        is a control frame
 225 * 28: asw_pause_frame          is a pause frame
 226 * 29: asw_unsupported_op       unsupported OP code
 227 * 30: asw_VLAN_tag             VLAN tag detected
 228 * 31: asw_long_evt             Rx long event
 229 *
 230 * Word 1:
 231 * 0-15: length                 length in bytes
 232 * 16-25: bi                    Buffer Index
 233 * 26-27: ri                    Ring Index
 234 * 28-31: reserved
 235 */
 236
 237struct pkt_stat_desc {
 238        u32 word0;
 239        u32 word1;
 240};
 241
 242/* Typedefs for the RX DMA status word */
 243
 244/* rx status word 0 holds part of the status bits of the Rx DMA engine
 245 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
 246 * which contains the Free Buffer ring 0 and 1 available offset.
 247 *
 248 * bit 0-9 FBR1 offset
 249 * bit 10 Wrap flag for FBR1
 250 * bit 16-25 FBR0 offset
 251 * bit 26 Wrap flag for FBR0
 252 */
 253
 254/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
 255 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
 256 * which contains the Packet Status Ring available offset.
 257 *
 258 * bit 0-15 reserved
 259 * bit 16-27 PSRoffset
 260 * bit 28 PSRwrap
 261 * bit 29-31 unused
 262 */
 263
 264/* struct rx_status_block is a structure representing the status of the Rx
 265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
 266 */
 267struct rx_status_block {
 268        u32 word0;
 269        u32 word1;
 270};
 271
 272/* Structure for look-up table holding free buffer ring pointers, addresses
 273 * and state.
 274 */
 275struct fbr_lookup {
 276        void            *virt[MAX_DESC_PER_RING_RX];
 277        u32              bus_high[MAX_DESC_PER_RING_RX];
 278        u32              bus_low[MAX_DESC_PER_RING_RX];
 279        void            *ring_virtaddr;
 280        dma_addr_t       ring_physaddr;
 281        void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 282        dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
 283        u32              local_full;
 284        u32              num_entries;
 285        dma_addr_t       buffsize;
 286};
 287
 288/* struct rx_ring is the sructure representing the adaptor's local
 289 * reference(s) to the rings
 290 */
 291struct rx_ring {
 292        struct fbr_lookup *fbr[NUM_FBRS];
 293        void *ps_ring_virtaddr;
 294        dma_addr_t ps_ring_physaddr;
 295        u32 local_psr_full;
 296        u32 psr_num_entries;
 297
 298        struct rx_status_block *rx_status_block;
 299        dma_addr_t rx_status_bus;
 300
 301        /* RECV */
 302        struct list_head recv_list;
 303        u32 num_ready_recv;
 304
 305        u32 num_rfd;
 306
 307        bool unfinished_receives;
 308};
 309
 310/* TX defines */
 311/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
 312 *
 313 * 0-15: length of packet
 314 * 16-27: VLAN tag
 315 * 28: VLAN CFI
 316 * 29-31: VLAN priority
 317 *
 318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
 319 *
 320 * 0: last packet in the sequence
 321 * 1: first packet in the sequence
 322 * 2: interrupt the processor when this pkt sent
 323 * 3: Control word - no packet data
 324 * 4: Issue half-duplex backpressure : XON/XOFF
 325 * 5: send pause frame
 326 * 6: Tx frame has error
 327 * 7: append CRC
 328 * 8: MAC override
 329 * 9: pad packet
 330 * 10: Packet is a Huge packet
 331 * 11: append VLAN tag
 332 * 12: IP checksum assist
 333 * 13: TCP checksum assist
 334 * 14: UDP checksum assist
 335 */
 336
 337#define TXDESC_FLAG_LASTPKT             0x0001
 338#define TXDESC_FLAG_FIRSTPKT            0x0002
 339#define TXDESC_FLAG_INTPROC             0x0004
 340
 341/* struct tx_desc represents each descriptor on the ring */
 342struct tx_desc {
 343        u32 addr_hi;
 344        u32 addr_lo;
 345        u32 len_vlan;   /* control words how to xmit the */
 346        u32 flags;      /* data (detailed above) */
 347};
 348
 349/* The status of the Tx DMA engine it sits in free memory, and is pointed to
 350 * by 0x101c / 0x1020. This is a DMA10 type
 351 */
 352
 353/* TCB (Transmit Control Block: Host Side) */
 354struct tcb {
 355        struct tcb *next;       /* Next entry in ring */
 356        u32 flags;              /* Our flags for the packet */
 357        u32 count;              /* Used to spot stuck/lost packets */
 358        u32 stale;              /* Used to spot stuck/lost packets */
 359        struct sk_buff *skb;    /* Network skb we are tied to */
 360        u32 index;              /* Ring indexes */
 361        u32 index_start;
 362};
 363
 364/* Structure representing our local reference(s) to the ring */
 365struct tx_ring {
 366        /* TCB (Transmit Control Block) memory and lists */
 367        struct tcb *tcb_ring;
 368
 369        /* List of TCBs that are ready to be used */
 370        struct tcb *tcb_qhead;
 371        struct tcb *tcb_qtail;
 372
 373        /* list of TCBs that are currently being sent.  NOTE that access to all
 374         * three of these (including used) are controlled via the
 375         * TCBSendQLock.  This lock should be secured prior to incementing /
 376         * decrementing used, or any queue manipulation on send_head /
 377         * tail
 378         */
 379        struct tcb *send_head;
 380        struct tcb *send_tail;
 381        int used;
 382
 383        /* The actual descriptor ring */
 384        struct tx_desc *tx_desc_ring;
 385        dma_addr_t tx_desc_ring_pa;
 386
 387        /* send_idx indicates where we last wrote to in the descriptor ring. */
 388        u32 send_idx;
 389
 390        /* The location of the write-back status block */
 391        u32 *tx_status;
 392        dma_addr_t tx_status_pa;
 393
 394        /* Packets since the last IRQ: used for interrupt coalescing */
 395        int since_irq;
 396};
 397
 398/* Do not change these values: if changed, then change also in respective
 399 * TXdma and Rxdma engines
 400 */
 401#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
 402#define NUM_TCB                      64
 403
 404/* These values are all superseded by registry entries to facilitate tuning.
 405 * Once the desired performance has been achieved, the optimal registry values
 406 * should be re-populated to these #defines:
 407 */
 408#define TX_ERROR_PERIOD             1000
 409
 410#define LO_MARK_PERCENT_FOR_PSR     15
 411#define LO_MARK_PERCENT_FOR_RX      15
 412
 413/* RFD (Receive Frame Descriptor) */
 414struct rfd {
 415        struct list_head list_node;
 416        struct sk_buff *skb;
 417        u32 len;        /* total size of receive frame */
 418        u16 bufferindex;
 419        u8 ringindex;
 420};
 421
 422/* Flow Control */
 423#define FLOW_BOTH       0
 424#define FLOW_TXONLY     1
 425#define FLOW_RXONLY     2
 426#define FLOW_NONE       3
 427
 428/* Struct to define some device statistics */
 429struct ce_stats {
 430        /* MIB II variables
 431         *
 432         * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
 433         * MUST have 32, then we'll need another way to perform atomic
 434         * operations
 435         */
 436        u32             unicast_pkts_rcvd;
 437        atomic_t        unicast_pkts_xmtd;
 438        u32             multicast_pkts_rcvd;
 439        atomic_t        multicast_pkts_xmtd;
 440        u32             broadcast_pkts_rcvd;
 441        atomic_t        broadcast_pkts_xmtd;
 442        u32             rcvd_pkts_dropped;
 443
 444        /* Tx Statistics. */
 445        u32             tx_underflows;
 446
 447        u32             tx_collisions;
 448        u32             tx_excessive_collisions;
 449        u32             tx_first_collisions;
 450        u32             tx_late_collisions;
 451        u32             tx_max_pkt_errs;
 452        u32             tx_deferred;
 453
 454        /* Rx Statistics. */
 455        u32             rx_overflows;
 456
 457        u32             rx_length_errs;
 458        u32             rx_align_errs;
 459        u32             rx_crc_errs;
 460        u32             rx_code_violations;
 461        u32             rx_other_errs;
 462
 463        u32             synchronous_iterations;
 464        u32             interrupt_status;
 465};
 466
 467/* The private adapter structure */
 468struct et131x_adapter {
 469        struct net_device *netdev;
 470        struct pci_dev *pdev;
 471        struct mii_bus *mii_bus;
 472        struct phy_device *phydev;
 473        struct work_struct task;
 474
 475        /* Flags that indicate current state of the adapter */
 476        u32 flags;
 477
 478        /* local link state, to determine if a state change has occurred */
 479        int link;
 480
 481        /* Configuration  */
 482        u8 rom_addr[ETH_ALEN];
 483        u8 addr[ETH_ALEN];
 484        bool has_eeprom;
 485        u8 eeprom_data[2];
 486
 487        /* Spinlocks */
 488        spinlock_t tcb_send_qlock;
 489        spinlock_t tcb_ready_qlock;
 490        spinlock_t send_hw_lock;
 491
 492        spinlock_t rcv_lock;
 493        spinlock_t fbr_lock;
 494
 495        /* Packet Filter and look ahead size */
 496        u32 packet_filter;
 497
 498        /* multicast list */
 499        u32 multicast_addr_count;
 500        u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
 501
 502        /* Pointer to the device's PCI register space */
 503        struct address_map __iomem *regs;
 504
 505        /* Registry parameters */
 506        u8 wanted_flow;         /* Flow we want for 802.3x flow control */
 507        u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
 508
 509        /* Derived from the registry: */
 510        u8 flowcontrol;         /* flow control validated by the far-end */
 511
 512        /* Minimize init-time */
 513        struct timer_list error_timer;
 514
 515        /* variable putting the phy into coma mode when boot up with no cable
 516         * plugged in after 5 seconds
 517         */
 518        u8 boot_coma;
 519
 520        /* Next two used to save power information at power down. This
 521         * information will be used during power up to set up parts of Power
 522         * Management in JAGCore
 523         */
 524        u16 pdown_speed;
 525        u8 pdown_duplex;
 526
 527        /* Tx Memory Variables */
 528        struct tx_ring tx_ring;
 529
 530        /* Rx Memory Variables */
 531        struct rx_ring rx_ring;
 532
 533        /* Stats */
 534        struct ce_stats stats;
 535
 536        struct net_device_stats net_stats;
 537};
 538
 539static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
 540{
 541        u32 reg;
 542        int i;
 543
 544        /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
 545         *    bits 7,1:0 both equal to 1, at least once after reset.
 546         *    Subsequent operations need only to check that bits 1:0 are equal
 547         *    to 1 prior to starting a single byte read/write
 548         */
 549
 550        for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
 551                /* Read registers grouped in DWORD1 */
 552                if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
 553                        return -EIO;
 554
 555                /* I2C idle and Phy Queue Avail both true */
 556                if ((reg & 0x3000) == 0x3000) {
 557                        if (status)
 558                                *status = reg;
 559                        return reg & 0xFF;
 560                }
 561        }
 562        return -ETIMEDOUT;
 563}
 564
 565/* eeprom_write - Write a byte to the ET1310's EEPROM
 566 * @adapter: pointer to our private adapter structure
 567 * @addr: the address to write
 568 * @data: the value to write
 569 *
 570 * Returns 1 for a successful write.
 571 */
 572static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
 573{
 574        struct pci_dev *pdev = adapter->pdev;
 575        int index = 0;
 576        int retries;
 577        int err = 0;
 578        int i2c_wack = 0;
 579        int writeok = 0;
 580        u32 status;
 581        u32 val = 0;
 582
 583        /* For an EEPROM, an I2C single byte write is defined as a START
 584         * condition followed by the device address, EEPROM address, one byte
 585         * of data and a STOP condition.  The STOP condition will trigger the
 586         * EEPROM's internally timed write cycle to the nonvolatile memory.
 587         * All inputs are disabled during this write cycle and the EEPROM will
 588         * not respond to any access until the internal write is complete.
 589         */
 590
 591        err = eeprom_wait_ready(pdev, NULL);
 592        if (err < 0)
 593                return err;
 594
 595         /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
 596          *    and bits 1:0 both =0.  Bit 5 should be set according to the
 597          *    type of EEPROM being accessed (1=two byte addressing, 0=one
 598          *    byte addressing).
 599          */
 600        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 601                        LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
 602                return -EIO;
 603
 604        i2c_wack = 1;
 605
 606        /* Prepare EEPROM address for Step 3 */
 607
 608        for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
 609                /* Write the address to the LBCIF Address Register */
 610                if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 611                        break;
 612                /* Write the data to the LBCIF Data Register (the I2C write
 613                 * will begin).
 614                 */
 615                if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
 616                        break;
 617                /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
 618                 * 1:0 are both equal to 1, the I2C write has completed and the
 619                 * internal write cycle of the EEPROM is about to start.
 620                 * (bits 1:0 = 01 is a legal state while waiting from both
 621                 * equal to 1, but bits 1:0 = 10 is invalid and implies that
 622                 * something is broken).
 623                 */
 624                err = eeprom_wait_ready(pdev, &status);
 625                if (err < 0)
 626                        return 0;
 627
 628                /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
 629                 * an error has occurred.Don't break here if we are revision
 630                 * 1, this is so we do a blind write for load bug.
 631                 */
 632                if ((status & LBCIF_STATUS_GENERAL_ERROR)
 633                        && adapter->pdev->revision == 0)
 634                        break;
 635
 636                /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
 637                 * ACK error has occurred on the address phase of the write.
 638                 * This could be due to an actual hardware failure or the
 639                 * EEPROM may still be in its internal write cycle from a
 640                 * previous write. This write operation was ignored and must be
 641                  *repeated later.
 642                 */
 643                if (status & LBCIF_STATUS_ACK_ERROR) {
 644                        /* This could be due to an actual hardware failure
 645                         * or the EEPROM may still be in its internal write
 646                         * cycle from a previous write. This write operation
 647                         * was ignored and must be repeated later.
 648                         */
 649                        udelay(10);
 650                        continue;
 651                }
 652
 653                writeok = 1;
 654                break;
 655        }
 656
 657        /* Set bit 6 of the LBCIF Control Register = 0.
 658         */
 659        udelay(10);
 660
 661        while (i2c_wack) {
 662                if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 663                        LBCIF_CONTROL_LBCIF_ENABLE))
 664                        writeok = 0;
 665
 666                /* Do read until internal ACK_ERROR goes away meaning write
 667                 * completed
 668                 */
 669                do {
 670                        pci_write_config_dword(pdev,
 671                                               LBCIF_ADDRESS_REGISTER,
 672                                               addr);
 673                        do {
 674                                pci_read_config_dword(pdev,
 675                                        LBCIF_DATA_REGISTER, &val);
 676                        } while ((val & 0x00010000) == 0);
 677                } while (val & 0x00040000);
 678
 679                if ((val & 0xFF00) != 0xC000 || index == 10000)
 680                        break;
 681                index++;
 682        }
 683        return writeok ? 0 : -EIO;
 684}
 685
 686/* eeprom_read - Read a byte from the ET1310's EEPROM
 687 * @adapter: pointer to our private adapter structure
 688 * @addr: the address from which to read
 689 * @pdata: a pointer to a byte in which to store the value of the read
 690 * @eeprom_id: the ID of the EEPROM
 691 * @addrmode: how the EEPROM is to be accessed
 692 *
 693 * Returns 1 for a successful read
 694 */
 695static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
 696{
 697        struct pci_dev *pdev = adapter->pdev;
 698        int err;
 699        u32 status;
 700
 701        /* A single byte read is similar to the single byte write, with the
 702         * exception of the data flow:
 703         */
 704
 705        err = eeprom_wait_ready(pdev, NULL);
 706        if (err < 0)
 707                return err;
 708        /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
 709         * and bits 1:0 both =0.  Bit 5 should be set according to the type
 710         * of EEPROM being accessed (1=two byte addressing, 0=one byte
 711         * addressing).
 712         */
 713        if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
 714                                  LBCIF_CONTROL_LBCIF_ENABLE))
 715                return -EIO;
 716        /* Write the address to the LBCIF Address Register (I2C read will
 717         * begin).
 718         */
 719        if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
 720                return -EIO;
 721        /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
 722         * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
 723         * has occurred).
 724         */
 725        err = eeprom_wait_ready(pdev, &status);
 726        if (err < 0)
 727                return err;
 728        /* Regardless of error status, read data byte from LBCIF Data
 729         * Register.
 730         */
 731        *pdata = err;
 732        /* Check bit 2 of the LBCIF Status Register.  If = 1,
 733         * then an error has occurred.
 734         */
 735        return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
 736}
 737
 738static int et131x_init_eeprom(struct et131x_adapter *adapter)
 739{
 740        struct pci_dev *pdev = adapter->pdev;
 741        u8 eestatus;
 742
 743        /* We first need to check the EEPROM Status code located at offset
 744         * 0xB2 of config space
 745         */
 746        pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
 747
 748        /* THIS IS A WORKAROUND:
 749         * I need to call this function twice to get my card in a
 750         * LG M1 Express Dual running. I tried also a msleep before this
 751         * function, because I thought there could be some time conditions
 752         * but it didn't work. Call the whole function twice also work.
 753         */
 754        if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
 755                dev_err(&pdev->dev,
 756                       "Could not read PCI config space for EEPROM Status\n");
 757                return -EIO;
 758        }
 759
 760        /* Determine if the error(s) we care about are present. If they are
 761         * present we need to fail.
 762         */
 763        if (eestatus & 0x4C) {
 764                int write_failed = 0;
 765
 766                if (pdev->revision == 0x01) {
 767                        int     i;
 768                        static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
 769
 770                        /* Re-write the first 4 bytes if we have an eeprom
 771                         * present and the revision id is 1, this fixes the
 772                         * corruption seen with 1310 B Silicon
 773                         */
 774                        for (i = 0; i < 3; i++)
 775                                if (eeprom_write(adapter, i, eedata[i]) < 0)
 776                                        write_failed = 1;
 777                }
 778                if (pdev->revision  != 0x01 || write_failed) {
 779                        dev_err(&pdev->dev,
 780                            "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
 781
 782                        /* This error could mean that there was an error
 783                         * reading the eeprom or that the eeprom doesn't exist.
 784                         * We will treat each case the same and not try to
 785                         * gather additional information that normally would
 786                         * come from the eeprom, like MAC Address
 787                         */
 788                        adapter->has_eeprom = 0;
 789                        return -EIO;
 790                }
 791        }
 792        adapter->has_eeprom = 1;
 793
 794        /* Read the EEPROM for information regarding LED behavior. Refer to
 795         * ET1310_phy.c, et131x_xcvr_init(), for its use.
 796         */
 797        eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
 798        eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
 799
 800        if (adapter->eeprom_data[0] != 0xcd)
 801                /* Disable all optional features */
 802                adapter->eeprom_data[1] = 0x00;
 803
 804        return 0;
 805}
 806
 807/* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
 808 * @adapter: pointer to our adapter structure
 809 */
 810static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
 811{
 812        /* Setup the receive dma configuration register for normal operation */
 813        u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
 814        struct rx_ring *rx_ring = &adapter->rx_ring;
 815
 816        if (rx_ring->fbr[1]->buffsize == 4096)
 817                csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
 818        else if (rx_ring->fbr[1]->buffsize == 8192)
 819                csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
 820        else if (rx_ring->fbr[1]->buffsize == 16384)
 821                csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
 822
 823        csr |= ET_RXDMA_CSR_FBR0_ENABLE;
 824        if (rx_ring->fbr[0]->buffsize == 256)
 825                csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
 826        else if (rx_ring->fbr[0]->buffsize == 512)
 827                csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
 828        else if (rx_ring->fbr[0]->buffsize == 1024)
 829                csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
 830        writel(csr, &adapter->regs->rxdma.csr);
 831
 832        csr = readl(&adapter->regs->rxdma.csr);
 833        if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 834                udelay(5);
 835                csr = readl(&adapter->regs->rxdma.csr);
 836                if (csr & ET_RXDMA_CSR_HALT_STATUS) {
 837                        dev_err(&adapter->pdev->dev,
 838                            "RX Dma failed to exit halt state.  CSR 0x%08x\n",
 839                                csr);
 840                }
 841        }
 842}
 843
 844/* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
 845 * @adapter: pointer to our adapter structure
 846 */
 847static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
 848{
 849        u32 csr;
 850        /* Setup the receive dma configuration register */
 851        writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
 852               &adapter->regs->rxdma.csr);
 853        csr = readl(&adapter->regs->rxdma.csr);
 854        if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
 855                udelay(5);
 856                csr = readl(&adapter->regs->rxdma.csr);
 857                if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
 858                        dev_err(&adapter->pdev->dev,
 859                              "RX Dma failed to enter halt state. CSR 0x%08x\n",
 860                              csr);
 861        }
 862}
 863
 864/* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
 865 * @adapter: pointer to our adapter structure
 866 *
 867 * Mainly used after a return to the D0 (full-power) state from a lower state.
 868 */
 869static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
 870{
 871        /* Setup the transmit dma configuration register for normal
 872         * operation
 873         */
 874        writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
 875                                        &adapter->regs->txdma.csr);
 876}
 877
 878static inline void add_10bit(u32 *v, int n)
 879{
 880        *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
 881}
 882
 883static inline void add_12bit(u32 *v, int n)
 884{
 885        *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
 886}
 887
 888/* et1310_config_mac_regs1 - Initialize the first part of MAC regs
 889 * @adapter: pointer to our adapter structure
 890 */
 891static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
 892{
 893        struct mac_regs __iomem *macregs = &adapter->regs->mac;
 894        u32 station1;
 895        u32 station2;
 896        u32 ipg;
 897
 898        /* First we need to reset everything.  Write to MAC configuration
 899         * register 1 to perform reset.
 900         */
 901        writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
 902               ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
 903               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
 904               &macregs->cfg1);
 905
 906        /* Next lets configure the MAC Inter-packet gap register */
 907        ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
 908        ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
 909        writel(ipg, &macregs->ipg);
 910
 911        /* Next lets configure the MAC Half Duplex register */
 912        /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
 913        writel(0x00A1F037, &macregs->hfdp);
 914
 915        /* Next lets configure the MAC Interface Control register */
 916        writel(0, &macregs->if_ctrl);
 917
 918        /* Let's move on to setting up the mii management configuration */
 919        writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
 920
 921        /* Next lets configure the MAC Station Address register.  These
 922         * values are read from the EEPROM during initialization and stored
 923         * in the adapter structure.  We write what is stored in the adapter
 924         * structure to the MAC Station Address registers high and low.  This
 925         * station address is used for generating and checking pause control
 926         * packets.
 927         */
 928        station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
 929                   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
 930        station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
 931                   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
 932                   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
 933                    adapter->addr[2];
 934        writel(station1, &macregs->station_addr_1);
 935        writel(station2, &macregs->station_addr_2);
 936
 937        /* Max ethernet packet in bytes that will be passed by the mac without
 938         * being truncated.  Allow the MAC to pass 4 more than our max packet
 939         * size.  This is 4 for the Ethernet CRC.
 940         *
 941         * Packets larger than (registry_jumbo_packet) that do not contain a
 942         * VLAN ID will be dropped by the Rx function.
 943         */
 944        writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
 945
 946        /* clear out MAC config reset */
 947        writel(0, &macregs->cfg1);
 948}
 949
 950/* et1310_config_mac_regs2 - Initialize the second part of MAC regs
 951 * @adapter: pointer to our adapter structure
 952 */
 953static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
 954{
 955        int32_t delay = 0;
 956        struct mac_regs __iomem *mac = &adapter->regs->mac;
 957        struct phy_device *phydev = adapter->phydev;
 958        u32 cfg1;
 959        u32 cfg2;
 960        u32 ifctrl;
 961        u32 ctl;
 962
 963        ctl = readl(&adapter->regs->txmac.ctl);
 964        cfg1 = readl(&mac->cfg1);
 965        cfg2 = readl(&mac->cfg2);
 966        ifctrl = readl(&mac->if_ctrl);
 967
 968        /* Set up the if mode bits */
 969        cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
 970        if (phydev->speed == SPEED_1000) {
 971                cfg2 |= ET_MAC_CFG2_IFMODE_1000;
 972                /* Phy mode bit */
 973                ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
 974        } else {
 975                cfg2 |= ET_MAC_CFG2_IFMODE_100;
 976                ifctrl |= ET_MAC_IFCTRL_PHYMODE;
 977        }
 978
 979        /* We need to enable Rx/Tx */
 980        cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
 981                                                        ET_MAC_CFG1_TX_FLOW;
 982        /* Initialize loop back to off */
 983        cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
 984        if (adapter->flowcontrol == FLOW_RXONLY ||
 985                                adapter->flowcontrol == FLOW_BOTH)
 986                cfg1 |= ET_MAC_CFG1_RX_FLOW;
 987        writel(cfg1, &mac->cfg1);
 988
 989        /* Now we need to initialize the MAC Configuration 2 register */
 990        /* preamble 7, check length, huge frame off, pad crc, crc enable
 991         * full duplex off
 992         */
 993        cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
 994        cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
 995        cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
 996        cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
 997        cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
 998        cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
 999
1000        /* Turn on duplex if needed */
1001        if (phydev->duplex == DUPLEX_FULL)
1002                cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
1003
1004        ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
1005        if (phydev->duplex == DUPLEX_HALF)
1006                ifctrl |= ET_MAC_IFCTRL_GHDMODE;
1007
1008        writel(ifctrl, &mac->if_ctrl);
1009        writel(cfg2, &mac->cfg2);
1010
1011        do {
1012                udelay(10);
1013                delay++;
1014                cfg1 = readl(&mac->cfg1);
1015        } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
1016
1017        if (delay == 100) {
1018                dev_warn(&adapter->pdev->dev,
1019                    "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1020                        cfg1);
1021        }
1022
1023        /* Enable txmac */
1024        ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
1025        writel(ctl, &adapter->regs->txmac.ctl);
1026
1027        /* Ready to start the RXDMA/TXDMA engine */
1028        if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
1029                et131x_rx_dma_enable(adapter);
1030                et131x_tx_dma_enable(adapter);
1031        }
1032}
1033
1034/* et1310_in_phy_coma - check if the device is in phy coma
1035 * @adapter: pointer to our adapter structure
1036 *
1037 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1038 */
1039static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1040{
1041        u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1042
1043        return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1044}
1045
1046static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1047{
1048        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1049        u32 hash1 = 0;
1050        u32 hash2 = 0;
1051        u32 hash3 = 0;
1052        u32 hash4 = 0;
1053        u32 pm_csr;
1054
1055        /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1056         * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1057         * specified) then we should pass NO multi-cast addresses to the
1058         * driver.
1059         */
1060        if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1061                int i;
1062
1063                /* Loop through our multicast array and set up the device */
1064                for (i = 0; i < adapter->multicast_addr_count; i++) {
1065                        u32 result;
1066
1067                        result = ether_crc(6, adapter->multicast_list[i]);
1068
1069                        result = (result & 0x3F800000) >> 23;
1070
1071                        if (result < 32) {
1072                                hash1 |= (1 << result);
1073                        } else if ((31 < result) && (result < 64)) {
1074                                result -= 32;
1075                                hash2 |= (1 << result);
1076                        } else if ((63 < result) && (result < 96)) {
1077                                result -= 64;
1078                                hash3 |= (1 << result);
1079                        } else {
1080                                result -= 96;
1081                                hash4 |= (1 << result);
1082                        }
1083                }
1084        }
1085
1086        /* Write out the new hash to the device */
1087        pm_csr = readl(&adapter->regs->global.pm_csr);
1088        if (!et1310_in_phy_coma(adapter)) {
1089                writel(hash1, &rxmac->multi_hash1);
1090                writel(hash2, &rxmac->multi_hash2);
1091                writel(hash3, &rxmac->multi_hash3);
1092                writel(hash4, &rxmac->multi_hash4);
1093        }
1094}
1095
1096static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1097{
1098        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099        u32 uni_pf1;
1100        u32 uni_pf2;
1101        u32 uni_pf3;
1102        u32 pm_csr;
1103
1104        /* Set up unicast packet filter reg 3 to be the first two octets of
1105         * the MAC address for both address
1106         *
1107         * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1108         * MAC address for second address
1109         *
1110         * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1111         * MAC address for first address
1112         */
1113        uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1114                  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1115                  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1116                   adapter->addr[1];
1117
1118        uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1119                  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1120                  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1121                   adapter->addr[5];
1122
1123        uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1124                  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1125                  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1126                   adapter->addr[5];
1127
1128        pm_csr = readl(&adapter->regs->global.pm_csr);
1129        if (!et1310_in_phy_coma(adapter)) {
1130                writel(uni_pf1, &rxmac->uni_pf_addr1);
1131                writel(uni_pf2, &rxmac->uni_pf_addr2);
1132                writel(uni_pf3, &rxmac->uni_pf_addr3);
1133        }
1134}
1135
1136static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1137{
1138        struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1139        struct phy_device *phydev = adapter->phydev;
1140        u32 sa_lo;
1141        u32 sa_hi = 0;
1142        u32 pf_ctrl = 0;
1143
1144        /* Disable the MAC while it is being configured (also disable WOL) */
1145        writel(0x8, &rxmac->ctrl);
1146
1147        /* Initialize WOL to disabled. */
1148        writel(0, &rxmac->crc0);
1149        writel(0, &rxmac->crc12);
1150        writel(0, &rxmac->crc34);
1151
1152        /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1153         * its default Values of 0x00000000 because there are not WOL masks
1154         * as of this time.
1155         */
1156        writel(0, &rxmac->mask0_word0);
1157        writel(0, &rxmac->mask0_word1);
1158        writel(0, &rxmac->mask0_word2);
1159        writel(0, &rxmac->mask0_word3);
1160
1161        writel(0, &rxmac->mask1_word0);
1162        writel(0, &rxmac->mask1_word1);
1163        writel(0, &rxmac->mask1_word2);
1164        writel(0, &rxmac->mask1_word3);
1165
1166        writel(0, &rxmac->mask2_word0);
1167        writel(0, &rxmac->mask2_word1);
1168        writel(0, &rxmac->mask2_word2);
1169        writel(0, &rxmac->mask2_word3);
1170
1171        writel(0, &rxmac->mask3_word0);
1172        writel(0, &rxmac->mask3_word1);
1173        writel(0, &rxmac->mask3_word2);
1174        writel(0, &rxmac->mask3_word3);
1175
1176        writel(0, &rxmac->mask4_word0);
1177        writel(0, &rxmac->mask4_word1);
1178        writel(0, &rxmac->mask4_word2);
1179        writel(0, &rxmac->mask4_word3);
1180
1181        /* Lets setup the WOL Source Address */
1182        sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1183                (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1184                (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1185                 adapter->addr[5];
1186        writel(sa_lo, &rxmac->sa_lo);
1187
1188        sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1189                       adapter->addr[1];
1190        writel(sa_hi, &rxmac->sa_hi);
1191
1192        /* Disable all Packet Filtering */
1193        writel(0, &rxmac->pf_ctrl);
1194
1195        /* Let's initialize the Unicast Packet filtering address */
1196        if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1197                et1310_setup_device_for_unicast(adapter);
1198                pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1199        } else {
1200                writel(0, &rxmac->uni_pf_addr1);
1201                writel(0, &rxmac->uni_pf_addr2);
1202                writel(0, &rxmac->uni_pf_addr3);
1203        }
1204
1205        /* Let's initialize the Multicast hash */
1206        if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1207                pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1208                et1310_setup_device_for_multicast(adapter);
1209        }
1210
1211        /* Runt packet filtering.  Didn't work in version A silicon. */
1212        pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1213        pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1214
1215        if (adapter->registry_jumbo_packet > 8192)
1216                /* In order to transmit jumbo packets greater than 8k, the
1217                 * FIFO between RxMAC and RxDMA needs to be reduced in size
1218                 * to (16k - Jumbo packet size).  In order to implement this,
1219                 * we must use "cut through" mode in the RxMAC, which chops
1220                 * packets down into segments which are (max_size * 16).  In
1221                 * this case we selected 256 bytes, since this is the size of
1222                 * the PCI-Express TLP's that the 1310 uses.
1223                 *
1224                 * seg_en on, fc_en off, size 0x10
1225                 */
1226                writel(0x41, &rxmac->mcif_ctrl_max_seg);
1227        else
1228                writel(0, &rxmac->mcif_ctrl_max_seg);
1229
1230        /* Initialize the MCIF water marks */
1231        writel(0, &rxmac->mcif_water_mark);
1232
1233        /*  Initialize the MIF control */
1234        writel(0, &rxmac->mif_ctrl);
1235
1236        /* Initialize the Space Available Register */
1237        writel(0, &rxmac->space_avail);
1238
1239        /* Initialize the the mif_ctrl register
1240         * bit 3:  Receive code error. One or more nibbles were signaled as
1241         *         errors  during the reception of the packet.  Clear this
1242         *         bit in Gigabit, set it in 100Mbit.  This was derived
1243         *         experimentally at UNH.
1244         * bit 4:  Receive CRC error. The packet's CRC did not match the
1245         *         internally generated CRC.
1246         * bit 5:  Receive length check error. Indicates that frame length
1247         *         field value in the packet does not match the actual data
1248         *         byte length and is not a type field.
1249         * bit 16: Receive frame truncated.
1250         * bit 17: Drop packet enable
1251         */
1252        if (phydev && phydev->speed == SPEED_100)
1253                writel(0x30038, &rxmac->mif_ctrl);
1254        else
1255                writel(0x30030, &rxmac->mif_ctrl);
1256
1257        /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1258         * filter is always enabled since it is where the runt packets are
1259         * supposed to be dropped.  For version A silicon, runt packet
1260         * dropping doesn't work, so it is disabled in the pf_ctrl register,
1261         * but we still leave the packet filter on.
1262         */
1263        writel(pf_ctrl, &rxmac->pf_ctrl);
1264        writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1265}
1266
1267static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1268{
1269        struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1270
1271        /* We need to update the Control Frame Parameters
1272         * cfpt - control frame pause timer set to 64 (0x40)
1273         * cfep - control frame extended pause timer set to 0x0
1274         */
1275        if (adapter->flowcontrol == FLOW_NONE)
1276                writel(0, &txmac->cf_param);
1277        else
1278                writel(0x40, &txmac->cf_param);
1279}
1280
1281static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1282{
1283        struct macstat_regs __iomem *macstat =
1284                &adapter->regs->macstat;
1285
1286        /* Next we need to initialize all the macstat registers to zero on
1287         * the device.
1288         */
1289        writel(0, &macstat->txrx_0_64_byte_frames);
1290        writel(0, &macstat->txrx_65_127_byte_frames);
1291        writel(0, &macstat->txrx_128_255_byte_frames);
1292        writel(0, &macstat->txrx_256_511_byte_frames);
1293        writel(0, &macstat->txrx_512_1023_byte_frames);
1294        writel(0, &macstat->txrx_1024_1518_byte_frames);
1295        writel(0, &macstat->txrx_1519_1522_gvln_frames);
1296
1297        writel(0, &macstat->rx_bytes);
1298        writel(0, &macstat->rx_packets);
1299        writel(0, &macstat->rx_fcs_errs);
1300        writel(0, &macstat->rx_multicast_packets);
1301        writel(0, &macstat->rx_broadcast_packets);
1302        writel(0, &macstat->rx_control_frames);
1303        writel(0, &macstat->rx_pause_frames);
1304        writel(0, &macstat->rx_unknown_opcodes);
1305        writel(0, &macstat->rx_align_errs);
1306        writel(0, &macstat->rx_frame_len_errs);
1307        writel(0, &macstat->rx_code_errs);
1308        writel(0, &macstat->rx_carrier_sense_errs);
1309        writel(0, &macstat->rx_undersize_packets);
1310        writel(0, &macstat->rx_oversize_packets);
1311        writel(0, &macstat->rx_fragment_packets);
1312        writel(0, &macstat->rx_jabbers);
1313        writel(0, &macstat->rx_drops);
1314
1315        writel(0, &macstat->tx_bytes);
1316        writel(0, &macstat->tx_packets);
1317        writel(0, &macstat->tx_multicast_packets);
1318        writel(0, &macstat->tx_broadcast_packets);
1319        writel(0, &macstat->tx_pause_frames);
1320        writel(0, &macstat->tx_deferred);
1321        writel(0, &macstat->tx_excessive_deferred);
1322        writel(0, &macstat->tx_single_collisions);
1323        writel(0, &macstat->tx_multiple_collisions);
1324        writel(0, &macstat->tx_late_collisions);
1325        writel(0, &macstat->tx_excessive_collisions);
1326        writel(0, &macstat->tx_total_collisions);
1327        writel(0, &macstat->tx_pause_honored_frames);
1328        writel(0, &macstat->tx_drops);
1329        writel(0, &macstat->tx_jabbers);
1330        writel(0, &macstat->tx_fcs_errs);
1331        writel(0, &macstat->tx_control_frames);
1332        writel(0, &macstat->tx_oversize_frames);
1333        writel(0, &macstat->tx_undersize_frames);
1334        writel(0, &macstat->tx_fragments);
1335        writel(0, &macstat->carry_reg1);
1336        writel(0, &macstat->carry_reg2);
1337
1338        /* Unmask any counters that we want to track the overflow of.
1339         * Initially this will be all counters.  It may become clear later
1340         * that we do not need to track all counters.
1341         */
1342        writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1343        writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1344}
1345
1346/* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1347 * @adapter: pointer to our private adapter structure
1348 * @addr: the address of the transceiver
1349 * @reg: the register to read
1350 * @value: pointer to a 16-bit value in which the value will be stored
1351 */
1352static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1353              u8 reg, u16 *value)
1354{
1355        struct mac_regs __iomem *mac = &adapter->regs->mac;
1356        int status = 0;
1357        u32 delay = 0;
1358        u32 mii_addr;
1359        u32 mii_cmd;
1360        u32 mii_indicator;
1361
1362        /* Save a local copy of the registers we are dealing with so we can
1363         * set them back
1364         */
1365        mii_addr = readl(&mac->mii_mgmt_addr);
1366        mii_cmd = readl(&mac->mii_mgmt_cmd);
1367
1368        /* Stop the current operation */
1369        writel(0, &mac->mii_mgmt_cmd);
1370
1371        /* Set up the register we need to read from on the correct PHY */
1372        writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1373
1374        writel(0x1, &mac->mii_mgmt_cmd);
1375
1376        do {
1377                udelay(50);
1378                delay++;
1379                mii_indicator = readl(&mac->mii_mgmt_indicator);
1380        } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1381
1382        /* If we hit the max delay, we could not read the register */
1383        if (delay == 50) {
1384                dev_warn(&adapter->pdev->dev,
1385                            "reg 0x%08x could not be read\n", reg);
1386                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1387                            mii_indicator);
1388
1389                status = -EIO;
1390                goto out;
1391        }
1392
1393        /* If we hit here we were able to read the register and we need to
1394         * return the value to the caller
1395         */
1396        *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1397
1398out:
1399        /* Stop the read operation */
1400        writel(0, &mac->mii_mgmt_cmd);
1401
1402        /* set the registers we touched back to the state at which we entered
1403         * this function
1404         */
1405        writel(mii_addr, &mac->mii_mgmt_addr);
1406        writel(mii_cmd, &mac->mii_mgmt_cmd);
1407
1408        return status;
1409}
1410
1411static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1412{
1413        struct phy_device *phydev = adapter->phydev;
1414
1415        if (!phydev)
1416                return -EIO;
1417
1418        return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1419}
1420
1421/* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1422 * @adapter: pointer to our private adapter structure
1423 * @reg: the register to read
1424 * @value: 16-bit value to write
1425 */
1426static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1427{
1428        struct mac_regs __iomem *mac = &adapter->regs->mac;
1429        struct phy_device *phydev = adapter->phydev;
1430        int status = 0;
1431        u8 addr;
1432        u32 delay = 0;
1433        u32 mii_addr;
1434        u32 mii_cmd;
1435        u32 mii_indicator;
1436
1437        if (!phydev)
1438                return -EIO;
1439
1440        addr = phydev->addr;
1441
1442        /* Save a local copy of the registers we are dealing with so we can
1443         * set them back
1444         */
1445        mii_addr = readl(&mac->mii_mgmt_addr);
1446        mii_cmd = readl(&mac->mii_mgmt_cmd);
1447
1448        /* Stop the current operation */
1449        writel(0, &mac->mii_mgmt_cmd);
1450
1451        /* Set up the register we need to write to on the correct PHY */
1452        writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1453
1454        /* Add the value to write to the registers to the mac */
1455        writel(value, &mac->mii_mgmt_ctrl);
1456
1457        do {
1458                udelay(50);
1459                delay++;
1460                mii_indicator = readl(&mac->mii_mgmt_indicator);
1461        } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1462
1463        /* If we hit the max delay, we could not write the register */
1464        if (delay == 100) {
1465                u16 tmp;
1466
1467                dev_warn(&adapter->pdev->dev,
1468                    "reg 0x%08x could not be written", reg);
1469                dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1470                            mii_indicator);
1471                dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1472                            readl(&mac->mii_mgmt_cmd));
1473
1474                et131x_mii_read(adapter, reg, &tmp);
1475
1476                status = -EIO;
1477        }
1478        /* Stop the write operation */
1479        writel(0, &mac->mii_mgmt_cmd);
1480
1481        /* set the registers we touched back to the state at which we entered
1482         * this function
1483         */
1484        writel(mii_addr, &mac->mii_mgmt_addr);
1485        writel(mii_cmd, &mac->mii_mgmt_cmd);
1486
1487        return status;
1488}
1489
1490static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1491                                    u16 regnum,
1492                                    u16 bitnum,
1493                                    u8 *value)
1494{
1495        u16 reg;
1496        u16 mask = 1 << bitnum;
1497
1498        /* Read the requested register */
1499        et131x_mii_read(adapter, regnum, &reg);
1500
1501        *value = (reg & mask) >> bitnum;
1502}
1503
1504static void et1310_config_flow_control(struct et131x_adapter *adapter)
1505{
1506        struct phy_device *phydev = adapter->phydev;
1507
1508        if (phydev->duplex == DUPLEX_HALF) {
1509                adapter->flowcontrol = FLOW_NONE;
1510        } else {
1511                char remote_pause, remote_async_pause;
1512
1513                et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1514                et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1515
1516                if (remote_pause && remote_async_pause) {
1517                        adapter->flowcontrol = adapter->wanted_flow;
1518                } else if (remote_pause && !remote_async_pause) {
1519                        if (adapter->wanted_flow == FLOW_BOTH)
1520                                adapter->flowcontrol = FLOW_BOTH;
1521                        else
1522                                adapter->flowcontrol = FLOW_NONE;
1523                } else if (!remote_pause && !remote_async_pause) {
1524                        adapter->flowcontrol = FLOW_NONE;
1525                } else {
1526                        if (adapter->wanted_flow == FLOW_BOTH)
1527                                adapter->flowcontrol = FLOW_RXONLY;
1528                        else
1529                                adapter->flowcontrol = FLOW_NONE;
1530                }
1531        }
1532}
1533
1534/* et1310_update_macstat_host_counters - Update local copy of the statistics */
1535static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1536{
1537        struct ce_stats *stats = &adapter->stats;
1538        struct macstat_regs __iomem *macstat =
1539                &adapter->regs->macstat;
1540
1541        stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1542        stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1543        stats->tx_deferred             += readl(&macstat->tx_deferred);
1544        stats->tx_excessive_collisions +=
1545                                readl(&macstat->tx_multiple_collisions);
1546        stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1547        stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1548        stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1549
1550        stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1551        stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1552        stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1553        stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1554        stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1555        stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1556        stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1557}
1558
1559/* et1310_handle_macstat_interrupt
1560 *
1561 * One of the MACSTAT counters has wrapped.  Update the local copy of
1562 * the statistics held in the adapter structure, checking the "wrap"
1563 * bit for each counter.
1564 */
1565static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1566{
1567        u32 carry_reg1;
1568        u32 carry_reg2;
1569
1570        /* Read the interrupt bits from the register(s).  These are Clear On
1571         * Write.
1572         */
1573        carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1574        carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1575
1576        writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1577        writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1578
1579        /* We need to do update the host copy of all the MAC_STAT counters.
1580         * For each counter, check it's overflow bit.  If the overflow bit is
1581         * set, then increment the host version of the count by one complete
1582         * revolution of the counter.  This routine is called when the counter
1583         * block indicates that one of the counters has wrapped.
1584         */
1585        if (carry_reg1 & (1 << 14))
1586                adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1587        if (carry_reg1 & (1 << 8))
1588                adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1589        if (carry_reg1 & (1 << 7))
1590                adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1591        if (carry_reg1 & (1 << 2))
1592                adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1593        if (carry_reg1 & (1 << 6))
1594                adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1595        if (carry_reg1 & (1 << 3))
1596                adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1597        if (carry_reg1 & (1 << 0))
1598                adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1599        if (carry_reg2 & (1 << 16))
1600                adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1601        if (carry_reg2 & (1 << 15))
1602                adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1603        if (carry_reg2 & (1 << 6))
1604                adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1605        if (carry_reg2 & (1 << 8))
1606                adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1607        if (carry_reg2 & (1 << 5))
1608                adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1609        if (carry_reg2 & (1 << 4))
1610                adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1611        if (carry_reg2 & (1 << 2))
1612                adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1613}
1614
1615static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1616{
1617        struct net_device *netdev = bus->priv;
1618        struct et131x_adapter *adapter = netdev_priv(netdev);
1619        u16 value;
1620        int ret;
1621
1622        ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1623
1624        if (ret < 0)
1625                return ret;
1626        else
1627                return value;
1628}
1629
1630static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1631                             int reg, u16 value)
1632{
1633        struct net_device *netdev = bus->priv;
1634        struct et131x_adapter *adapter = netdev_priv(netdev);
1635
1636        return et131x_mii_write(adapter, reg, value);
1637}
1638
1639static int et131x_mdio_reset(struct mii_bus *bus)
1640{
1641        struct net_device *netdev = bus->priv;
1642        struct et131x_adapter *adapter = netdev_priv(netdev);
1643
1644        et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1645
1646        return 0;
1647}
1648
1649/*      et1310_phy_power_switch -       PHY power control
1650 *      @adapter: device to control
1651 *      @down: true for off/false for back on
1652 *
1653 *      one hundred, ten, one thousand megs
1654 *      How would you like to have your LAN accessed
1655 *      Can't you see that this code processed
1656 *      Phy power, phy power..
1657 */
1658static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1659{
1660        u16 data;
1661
1662        et131x_mii_read(adapter, MII_BMCR, &data);
1663        data &= ~BMCR_PDOWN;
1664        if (down)
1665                data |= BMCR_PDOWN;
1666        et131x_mii_write(adapter, MII_BMCR, data);
1667}
1668
1669/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1670static void et131x_xcvr_init(struct et131x_adapter *adapter)
1671{
1672        u16 lcr2;
1673
1674        /* Set the LED behavior such that LED 1 indicates speed (off =
1675         * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1676         * link and activity (on for link, blink off for activity).
1677         *
1678         * NOTE: Some customizations have been added here for specific
1679         * vendors; The LED behavior is now determined by vendor data in the
1680         * EEPROM. However, the above description is the default.
1681         */
1682        if ((adapter->eeprom_data[1] & 0x4) == 0) {
1683                et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1684
1685                lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1686                lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1687
1688                if ((adapter->eeprom_data[1] & 0x8) == 0)
1689                        lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1690                else
1691                        lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1692
1693                et131x_mii_write(adapter, PHY_LED_2, lcr2);
1694        }
1695}
1696
1697/* et131x_configure_global_regs - configure JAGCore global regs
1698 *
1699 * Used to configure the global registers on the JAGCore
1700 */
1701static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1702{
1703        struct global_regs __iomem *regs = &adapter->regs->global;
1704
1705        writel(0, &regs->rxq_start_addr);
1706        writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1707
1708        if (adapter->registry_jumbo_packet < 2048) {
1709                /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1710                 * block of RAM that the driver can split between Tx
1711                 * and Rx as it desires.  Our default is to split it
1712                 * 50/50:
1713                 */
1714                writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1715                writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1716        } else if (adapter->registry_jumbo_packet < 8192) {
1717                /* For jumbo packets > 2k but < 8k, split 50-50. */
1718                writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1719                writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1720        } else {
1721                /* 9216 is the only packet size greater than 8k that
1722                 * is available. The Tx buffer has to be big enough
1723                 * for one whole packet on the Tx side. We'll make
1724                 * the Tx 9408, and give the rest to Rx
1725                 */
1726                writel(0x01b3, &regs->rxq_end_addr);
1727                writel(0x01b4, &regs->txq_start_addr);
1728        }
1729
1730        /* Initialize the loopback register. Disable all loopbacks. */
1731        writel(0, &regs->loopback);
1732
1733        /* MSI Register */
1734        writel(0, &regs->msi_config);
1735
1736        /* By default, disable the watchdog timer.  It will be enabled when
1737         * a packet is queued.
1738         */
1739        writel(0, &regs->watchdog_timer);
1740}
1741
1742/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1743static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1744{
1745        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1746        struct rx_ring *rx_local = &adapter->rx_ring;
1747        struct fbr_desc *fbr_entry;
1748        u32 entry;
1749        u32 psr_num_des;
1750        unsigned long flags;
1751        u8 id;
1752
1753        /* Halt RXDMA to perform the reconfigure.  */
1754        et131x_rx_dma_disable(adapter);
1755
1756        /* Load the completion writeback physical address */
1757        writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1758        writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1759
1760        memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1761
1762        /* Set the address and parameters of the packet status ring into the
1763         * 1310's registers
1764         */
1765        writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1766        writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1767        writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1768        writel(0, &rx_dma->psr_full_offset);
1769
1770        psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1771        writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1772               &rx_dma->psr_min_des);
1773
1774        spin_lock_irqsave(&adapter->rcv_lock, flags);
1775
1776        /* These local variables track the PSR in the adapter structure */
1777        rx_local->local_psr_full = 0;
1778
1779        for (id = 0; id < NUM_FBRS; id++) {
1780                u32 __iomem *num_des;
1781                u32 __iomem *full_offset;
1782                u32 __iomem *min_des;
1783                u32 __iomem *base_hi;
1784                u32 __iomem *base_lo;
1785                struct fbr_lookup *fbr = rx_local->fbr[id];
1786
1787                if (id == 0) {
1788                        num_des = &rx_dma->fbr0_num_des;
1789                        full_offset = &rx_dma->fbr0_full_offset;
1790                        min_des = &rx_dma->fbr0_min_des;
1791                        base_hi = &rx_dma->fbr0_base_hi;
1792                        base_lo = &rx_dma->fbr0_base_lo;
1793                } else {
1794                        num_des = &rx_dma->fbr1_num_des;
1795                        full_offset = &rx_dma->fbr1_full_offset;
1796                        min_des = &rx_dma->fbr1_min_des;
1797                        base_hi = &rx_dma->fbr1_base_hi;
1798                        base_lo = &rx_dma->fbr1_base_lo;
1799                }
1800
1801                /* Now's the best time to initialize FBR contents */
1802                fbr_entry = fbr->ring_virtaddr;
1803                for (entry = 0; entry < fbr->num_entries; entry++) {
1804                        fbr_entry->addr_hi = fbr->bus_high[entry];
1805                        fbr_entry->addr_lo = fbr->bus_low[entry];
1806                        fbr_entry->word2 = entry;
1807                        fbr_entry++;
1808                }
1809
1810                /* Set the address and parameters of Free buffer ring 1 and 0
1811                 * into the 1310's registers
1812                 */
1813                writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1814                writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1815                writel(fbr->num_entries - 1, num_des);
1816                writel(ET_DMA10_WRAP, full_offset);
1817
1818                /* This variable tracks the free buffer ring 1 full position,
1819                 * so it has to match the above.
1820                 */
1821                fbr->local_full = ET_DMA10_WRAP;
1822                writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1823                       min_des);
1824        }
1825
1826        /* Program the number of packets we will receive before generating an
1827         * interrupt.
1828         * For version B silicon, this value gets updated once autoneg is
1829         *complete.
1830         */
1831        writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1832
1833        /* The "time_done" is not working correctly to coalesce interrupts
1834         * after a given time period, but rather is giving us an interrupt
1835         * regardless of whether we have received packets.
1836         * This value gets updated once autoneg is complete.
1837         */
1838        writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1839
1840        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1841}
1842
1843/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1844 *
1845 * Configure the transmit engine with the ring buffers we have created
1846 * and prepare it for use.
1847 */
1848static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1849{
1850        struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1851        struct tx_ring *tx_ring = &adapter->tx_ring;
1852
1853        /* Load the hardware with the start of the transmit descriptor ring. */
1854        writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1855        writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1856
1857        /* Initialise the transmit DMA engine */
1858        writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1859
1860        /* Load the completion writeback physical address */
1861        writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1862        writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1863
1864        *tx_ring->tx_status = 0;
1865
1866        writel(0, &txdma->service_request);
1867        tx_ring->send_idx = 0;
1868}
1869
1870/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1871static void et131x_adapter_setup(struct et131x_adapter *adapter)
1872{
1873        /* Configure the JAGCore */
1874        et131x_configure_global_regs(adapter);
1875
1876        et1310_config_mac_regs1(adapter);
1877
1878        /* Configure the MMC registers */
1879        /* All we need to do is initialize the Memory Control Register */
1880        writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1881
1882        et1310_config_rxmac_regs(adapter);
1883        et1310_config_txmac_regs(adapter);
1884
1885        et131x_config_rx_dma_regs(adapter);
1886        et131x_config_tx_dma_regs(adapter);
1887
1888        et1310_config_macstat_regs(adapter);
1889
1890        et1310_phy_power_switch(adapter, 0);
1891        et131x_xcvr_init(adapter);
1892}
1893
1894/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1895static void et131x_soft_reset(struct et131x_adapter *adapter)
1896{
1897        u32 reg;
1898
1899        /* Disable MAC Core */
1900        reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1901              ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1902              ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1903        writel(reg, &adapter->regs->mac.cfg1);
1904
1905        reg = ET_RESET_ALL;
1906        writel(reg, &adapter->regs->global.sw_reset);
1907
1908        reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1909              ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1910        writel(reg, &adapter->regs->mac.cfg1);
1911        writel(0, &adapter->regs->mac.cfg1);
1912}
1913
1914/*      et131x_enable_interrupts        -       enable interrupt
1915 *
1916 *      Enable the appropriate interrupts on the ET131x according to our
1917 *      configuration
1918 */
1919static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1920{
1921        u32 mask;
1922
1923        /* Enable all global interrupts */
1924        if (adapter->flowcontrol == FLOW_TXONLY ||
1925            adapter->flowcontrol == FLOW_BOTH)
1926                mask = INT_MASK_ENABLE;
1927        else
1928                mask = INT_MASK_ENABLE_NO_FLOW;
1929
1930        writel(mask, &adapter->regs->global.int_mask);
1931}
1932
1933/*      et131x_disable_interrupts       -       interrupt disable
1934 *
1935 *      Block all interrupts from the et131x device at the device itself
1936 */
1937static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1938{
1939        /* Disable all global interrupts */
1940        writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1941}
1942
1943/* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
1944static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1945{
1946        /* Setup the tramsmit dma configuration register */
1947        writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1948                                        &adapter->regs->txdma.csr);
1949}
1950
1951/* et131x_enable_txrx - Enable tx/rx queues */
1952static void et131x_enable_txrx(struct net_device *netdev)
1953{
1954        struct et131x_adapter *adapter = netdev_priv(netdev);
1955
1956        /* Enable the Tx and Rx DMA engines (if not already enabled) */
1957        et131x_rx_dma_enable(adapter);
1958        et131x_tx_dma_enable(adapter);
1959
1960        /* Enable device interrupts */
1961        if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1962                et131x_enable_interrupts(adapter);
1963
1964        /* We're ready to move some data, so start the queue */
1965        netif_start_queue(netdev);
1966}
1967
1968/* et131x_disable_txrx - Disable tx/rx queues */
1969static void et131x_disable_txrx(struct net_device *netdev)
1970{
1971        struct et131x_adapter *adapter = netdev_priv(netdev);
1972
1973        /* First thing is to stop the queue */
1974        netif_stop_queue(netdev);
1975
1976        /* Stop the Tx and Rx DMA engines */
1977        et131x_rx_dma_disable(adapter);
1978        et131x_tx_dma_disable(adapter);
1979
1980        /* Disable device interrupts */
1981        et131x_disable_interrupts(adapter);
1982}
1983
1984/* et131x_init_send - Initialize send data structures */
1985static void et131x_init_send(struct et131x_adapter *adapter)
1986{
1987        u32 ct;
1988        struct tx_ring *tx_ring = &adapter->tx_ring;
1989        struct tcb *tcb = tx_ring->tcb_ring;
1990
1991        tx_ring->tcb_qhead = tcb;
1992
1993        memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1994
1995        /* Go through and set up each TCB */
1996        for (ct = 0; ct++ < NUM_TCB; tcb++)
1997                /* Set the link pointer in HW TCB to the next TCB in the
1998                 * chain
1999                 */
2000                tcb->next = tcb + 1;
2001
2002        /* Set the  tail pointer */
2003        tcb--;
2004        tx_ring->tcb_qtail = tcb;
2005        tcb->next = NULL;
2006        /* Curr send queue should now be empty */
2007        tx_ring->send_head = NULL;
2008        tx_ring->send_tail = NULL;
2009}
2010
2011/* et1310_enable_phy_coma - called when network cable is unplugged
2012 *
2013 * driver receive an phy status change interrupt while in D0 and check that
2014 * phy_status is down.
2015 *
2016 *          -- gate off JAGCore;
2017 *          -- set gigE PHY in Coma mode
2018 *          -- wake on phy_interrupt; Perform software reset JAGCore,
2019 *             re-initialize jagcore and gigE PHY
2020 *
2021 *      Add D0-ASPM-PhyLinkDown Support:
2022 *          -- while in D0, when there is a phy_interrupt indicating phy link
2023 *             down status, call the MPSetPhyComa routine to enter this active
2024 *             state power saving mode
2025 *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2026 *       indicating linkup status, call the MPDisablePhyComa routine to
2027 *             restore JAGCore and gigE PHY
2028 */
2029static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2030{
2031        unsigned long flags;
2032        u32 pmcsr;
2033
2034        pmcsr = readl(&adapter->regs->global.pm_csr);
2035
2036        /* Save the GbE PHY speed and duplex modes. Need to restore this
2037         * when cable is plugged back in
2038         */
2039
2040        /* Stop sending packets. */
2041        spin_lock_irqsave(&adapter->send_hw_lock, flags);
2042        adapter->flags |= FMP_ADAPTER_LOWER_POWER;
2043        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2044
2045        /* Wait for outstanding Receive packets */
2046
2047        et131x_disable_txrx(adapter->netdev);
2048
2049        /* Gate off JAGCore 3 clock domains */
2050        pmcsr &= ~ET_PMCSR_INIT;
2051        writel(pmcsr, &adapter->regs->global.pm_csr);
2052
2053        /* Program gigE PHY in to Coma mode */
2054        pmcsr |= ET_PM_PHY_SW_COMA;
2055        writel(pmcsr, &adapter->regs->global.pm_csr);
2056}
2057
2058/* et1310_disable_phy_coma - Disable the Phy Coma Mode */
2059static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2060{
2061        u32 pmcsr;
2062
2063        pmcsr = readl(&adapter->regs->global.pm_csr);
2064
2065        /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2066        pmcsr |= ET_PMCSR_INIT;
2067        pmcsr &= ~ET_PM_PHY_SW_COMA;
2068        writel(pmcsr, &adapter->regs->global.pm_csr);
2069
2070        /* Restore the GbE PHY speed and duplex modes;
2071         * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2072         */
2073
2074        /* Re-initialize the send structures */
2075        et131x_init_send(adapter);
2076
2077        /* Bring the device back to the state it was during init prior to
2078         * autonegotiation being complete.  This way, when we get the auto-neg
2079         * complete interrupt, we can complete init by calling ConfigMacREGS2.
2080         */
2081        et131x_soft_reset(adapter);
2082
2083        /* setup et1310 as per the documentation ?? */
2084        et131x_adapter_setup(adapter);
2085
2086        /* Allow Tx to restart */
2087        adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
2088
2089        et131x_enable_txrx(adapter->netdev);
2090}
2091
2092static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2093{
2094        u32 tmp_free_buff_ring = *free_buff_ring;
2095
2096        tmp_free_buff_ring++;
2097        /* This works for all cases where limit < 1024. The 1023 case
2098         * works because 1023++ is 1024 which means the if condition is not
2099         * taken but the carry of the bit into the wrap bit toggles the wrap
2100         * value correctly
2101         */
2102        if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2103                tmp_free_buff_ring &= ~ET_DMA10_MASK;
2104                tmp_free_buff_ring ^= ET_DMA10_WRAP;
2105        }
2106        /* For the 1023 case */
2107        tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
2108        *free_buff_ring = tmp_free_buff_ring;
2109        return tmp_free_buff_ring;
2110}
2111
2112/* et131x_rx_dma_memory_alloc
2113 *
2114 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2115 * and the Packet Status Ring.
2116 */
2117static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2118{
2119        u8 id;
2120        u32 i, j;
2121        u32 bufsize;
2122        u32 pktstat_ringsize;
2123        u32 fbr_chunksize;
2124        struct rx_ring *rx_ring = &adapter->rx_ring;
2125        struct fbr_lookup *fbr;
2126
2127        /* Alloc memory for the lookup table */
2128        rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2129        if (rx_ring->fbr[0] == NULL)
2130                return -ENOMEM;
2131        rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2132        if (rx_ring->fbr[1] == NULL)
2133                return -ENOMEM;
2134
2135        /* The first thing we will do is configure the sizes of the buffer
2136         * rings. These will change based on jumbo packet support.  Larger
2137         * jumbo packets increases the size of each entry in FBR0, and the
2138         * number of entries in FBR0, while at the same time decreasing the
2139         * number of entries in FBR1.
2140         *
2141         * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2142         * entries are huge in order to accommodate a "jumbo" frame, then it
2143         * will have less entries.  Conversely, FBR1 will now be relied upon
2144         * to carry more "normal" frames, thus it's entry size also increases
2145         * and the number of entries goes up too (since it now carries
2146         * "small" + "regular" packets.
2147         *
2148         * In this scheme, we try to maintain 512 entries between the two
2149         * rings. Also, FBR1 remains a constant size - when it's size doubles
2150         * the number of entries halves.  FBR0 increases in size, however.
2151         */
2152
2153        if (adapter->registry_jumbo_packet < 2048) {
2154                rx_ring->fbr[0]->buffsize = 256;
2155                rx_ring->fbr[0]->num_entries = 512;
2156                rx_ring->fbr[1]->buffsize = 2048;
2157                rx_ring->fbr[1]->num_entries = 512;
2158        } else if (adapter->registry_jumbo_packet < 4096) {
2159                rx_ring->fbr[0]->buffsize = 512;
2160                rx_ring->fbr[0]->num_entries = 1024;
2161                rx_ring->fbr[1]->buffsize = 4096;
2162                rx_ring->fbr[1]->num_entries = 512;
2163        } else {
2164                rx_ring->fbr[0]->buffsize = 1024;
2165                rx_ring->fbr[0]->num_entries = 768;
2166                rx_ring->fbr[1]->buffsize = 16384;
2167                rx_ring->fbr[1]->num_entries = 128;
2168        }
2169
2170        rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2171                                   rx_ring->fbr[1]->num_entries;
2172
2173        for (id = 0; id < NUM_FBRS; id++) {
2174                fbr = rx_ring->fbr[id];
2175                /* Allocate an area of memory for Free Buffer Ring */
2176                bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2177                fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2178                                                        bufsize,
2179                                                        &fbr->ring_physaddr,
2180                                                        GFP_KERNEL);
2181                if (!fbr->ring_virtaddr) {
2182                        dev_err(&adapter->pdev->dev,
2183                           "Cannot alloc memory for Free Buffer Ring %d\n", id);
2184                        return -ENOMEM;
2185                }
2186        }
2187
2188        for (id = 0; id < NUM_FBRS; id++) {
2189                fbr = rx_ring->fbr[id];
2190                fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
2191
2192                for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
2193                        dma_addr_t fbr_tmp_physaddr;
2194
2195                        fbr->mem_virtaddrs[i] = dma_alloc_coherent(
2196                                        &adapter->pdev->dev, fbr_chunksize,
2197                                        &fbr->mem_physaddrs[i],
2198                                        GFP_KERNEL);
2199
2200                        if (!fbr->mem_virtaddrs[i]) {
2201                                dev_err(&adapter->pdev->dev,
2202                                        "Could not alloc memory\n");
2203                                return -ENOMEM;
2204                        }
2205
2206                        /* See NOTE in "Save Physical Address" comment above */
2207                        fbr_tmp_physaddr = fbr->mem_physaddrs[i];
2208
2209                        for (j = 0; j < FBR_CHUNKS; j++) {
2210                                u32 index = (i * FBR_CHUNKS) + j;
2211
2212                                /* Save the Virtual address of this index for
2213                                 * quick access later
2214                                 */
2215                                fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2216                                                   (j * fbr->buffsize);
2217
2218                                /* now store the physical address in the
2219                                 * descriptor so the device can access it
2220                                 */
2221                                fbr->bus_high[index] =
2222                                                upper_32_bits(fbr_tmp_physaddr);
2223                                fbr->bus_low[index] =
2224                                                lower_32_bits(fbr_tmp_physaddr);
2225
2226                                fbr_tmp_physaddr += fbr->buffsize;
2227                        }
2228                }
2229        }
2230
2231        /* Allocate an area of memory for FIFO of Packet Status ring entries */
2232        pktstat_ringsize =
2233                sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
2234
2235        rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2236                                                  pktstat_ringsize,
2237                                                  &rx_ring->ps_ring_physaddr,
2238                                                  GFP_KERNEL);
2239
2240        if (!rx_ring->ps_ring_virtaddr) {
2241                dev_err(&adapter->pdev->dev,
2242                          "Cannot alloc memory for Packet Status Ring\n");
2243                return -ENOMEM;
2244        }
2245
2246        /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2247         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2248         * are ever returned, make sure the high part is retrieved here before
2249         * storing the adjusted address.
2250         */
2251
2252        /* Allocate an area of memory for writeback of status information */
2253        rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2254                                            sizeof(struct rx_status_block),
2255                                            &rx_ring->rx_status_bus,
2256                                            GFP_KERNEL);
2257        if (!rx_ring->rx_status_block) {
2258                dev_err(&adapter->pdev->dev,
2259                          "Cannot alloc memory for Status Block\n");
2260                return -ENOMEM;
2261        }
2262        rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2263
2264        /* The RFDs are going to be put on lists later on, so initialize the
2265         * lists now.
2266         */
2267        INIT_LIST_HEAD(&rx_ring->recv_list);
2268        return 0;
2269}
2270
2271/* et131x_rx_dma_memory_free - Free all memory allocated within this module */
2272static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2273{
2274        u8 id;
2275        u32 index;
2276        u32 bufsize;
2277        u32 pktstat_ringsize;
2278        struct rfd *rfd;
2279        struct rx_ring *rx_ring = &adapter->rx_ring;
2280        struct fbr_lookup *fbr;
2281
2282        /* Free RFDs and associated packet descriptors */
2283        WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2284
2285        while (!list_empty(&rx_ring->recv_list)) {
2286                rfd = list_entry(rx_ring->recv_list.next,
2287                                 struct rfd, list_node);
2288
2289                list_del(&rfd->list_node);
2290                rfd->skb = NULL;
2291                kfree(rfd);
2292        }
2293
2294        /* Free Free Buffer Rings */
2295        for (id = 0; id < NUM_FBRS; id++) {
2296                fbr = rx_ring->fbr[id];
2297
2298                if (!fbr || !fbr->ring_virtaddr)
2299                        continue;
2300
2301                /* First the packet memory */
2302                for (index = 0;
2303                     index < fbr->num_entries / FBR_CHUNKS;
2304                     index++) {
2305                        if (fbr->mem_virtaddrs[index]) {
2306                                bufsize = fbr->buffsize * FBR_CHUNKS;
2307
2308                                dma_free_coherent(&adapter->pdev->dev,
2309                                                  bufsize,
2310                                                  fbr->mem_virtaddrs[index],
2311                                                  fbr->mem_physaddrs[index]);
2312
2313                                fbr->mem_virtaddrs[index] = NULL;
2314                        }
2315                }
2316
2317                bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2318
2319                dma_free_coherent(&adapter->pdev->dev,
2320                                  bufsize,
2321                                  fbr->ring_virtaddr,
2322                                  fbr->ring_physaddr);
2323
2324                fbr->ring_virtaddr = NULL;
2325        }
2326
2327        /* Free Packet Status Ring */
2328        if (rx_ring->ps_ring_virtaddr) {
2329                pktstat_ringsize = sizeof(struct pkt_stat_desc) *
2330                                        rx_ring->psr_num_entries;
2331
2332                dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2333                                    rx_ring->ps_ring_virtaddr,
2334                                    rx_ring->ps_ring_physaddr);
2335
2336                rx_ring->ps_ring_virtaddr = NULL;
2337        }
2338
2339        /* Free area of memory for the writeback of status information */
2340        if (rx_ring->rx_status_block) {
2341                dma_free_coherent(&adapter->pdev->dev,
2342                        sizeof(struct rx_status_block),
2343                        rx_ring->rx_status_block, rx_ring->rx_status_bus);
2344                rx_ring->rx_status_block = NULL;
2345        }
2346
2347        /* Free the FBR Lookup Table */
2348        kfree(rx_ring->fbr[0]);
2349        kfree(rx_ring->fbr[1]);
2350
2351        /* Reset Counters */
2352        rx_ring->num_ready_recv = 0;
2353}
2354
2355/* et131x_init_recv - Initialize receive data structures */
2356static int et131x_init_recv(struct et131x_adapter *adapter)
2357{
2358        struct rfd *rfd;
2359        u32 rfdct;
2360        struct rx_ring *rx_ring = &adapter->rx_ring;
2361
2362        /* Setup each RFD */
2363        for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2364                rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
2365                if (!rfd)
2366                        return -ENOMEM;
2367
2368                rfd->skb = NULL;
2369
2370                /* Add this RFD to the recv_list */
2371                list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2372
2373                /* Increment the available RFD's */
2374                rx_ring->num_ready_recv++;
2375        }
2376
2377        return 0;
2378}
2379
2380/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2381static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2382{
2383        struct phy_device *phydev = adapter->phydev;
2384
2385        /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2386         * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2387         */
2388        if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2389                writel(0, &adapter->regs->rxdma.max_pkt_time);
2390                writel(1, &adapter->regs->rxdma.num_pkt_done);
2391        }
2392}
2393
2394/* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2395 * @adapter: pointer to our adapter
2396 * @rfd: pointer to the RFD
2397 */
2398static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2399{
2400        struct rx_ring *rx_local = &adapter->rx_ring;
2401        struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2402        u16 buff_index = rfd->bufferindex;
2403        u8 ring_index = rfd->ringindex;
2404        unsigned long flags;
2405        struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2406
2407        /* We don't use any of the OOB data besides status. Otherwise, we
2408         * need to clean up OOB data
2409         */
2410        if (buff_index < fbr->num_entries) {
2411                u32 free_buff_ring;
2412                u32 __iomem *offset;
2413                struct fbr_desc *next;
2414
2415                spin_lock_irqsave(&adapter->fbr_lock, flags);
2416
2417                if (ring_index == 0)
2418                        offset = &rx_dma->fbr0_full_offset;
2419                else
2420                        offset = &rx_dma->fbr1_full_offset;
2421
2422                next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2423                       INDEX10(fbr->local_full);
2424
2425                /* Handle the Free Buffer Ring advancement here. Write
2426                 * the PA / Buffer Index for the returned buffer into
2427                 * the oldest (next to be freed)FBR entry
2428                 */
2429                next->addr_hi = fbr->bus_high[buff_index];
2430                next->addr_lo = fbr->bus_low[buff_index];
2431                next->word2 = buff_index;
2432
2433                free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2434                                                     fbr->num_entries - 1);
2435                writel(free_buff_ring, offset);
2436
2437                spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2438        } else {
2439                dev_err(&adapter->pdev->dev,
2440                          "%s illegal Buffer Index returned\n", __func__);
2441        }
2442
2443        /* The processing on this RFD is done, so put it back on the tail of
2444         * our list
2445         */
2446        spin_lock_irqsave(&adapter->rcv_lock, flags);
2447        list_add_tail(&rfd->list_node, &rx_local->recv_list);
2448        rx_local->num_ready_recv++;
2449        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2450
2451        WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2452}
2453
2454/* nic_rx_pkts - Checks the hardware for available packets
2455 *
2456 * Returns rfd, a pointer to our MPRFD.
2457 *
2458 * Checks the hardware for available packets, using completion ring
2459 * If packets are available, it gets an RFD from the recv_list, attaches
2460 * the packet to it, puts the RFD in the RecvPendList, and also returns
2461 * the pointer to the RFD.
2462 */
2463static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2464{
2465        struct rx_ring *rx_local = &adapter->rx_ring;
2466        struct rx_status_block *status;
2467        struct pkt_stat_desc *psr;
2468        struct rfd *rfd;
2469        u32 i;
2470        u8 *buf;
2471        unsigned long flags;
2472        struct list_head *element;
2473        u8 ring_index;
2474        u16 buff_index;
2475        u32 len;
2476        u32 word0;
2477        u32 word1;
2478        struct sk_buff *skb;
2479        struct fbr_lookup *fbr;
2480
2481        /* RX Status block is written by the DMA engine prior to every
2482         * interrupt. It contains the next to be used entry in the Packet
2483         * Status Ring, and also the two Free Buffer rings.
2484         */
2485        status = rx_local->rx_status_block;
2486        word1 = status->word1 >> 16;    /* Get the useful bits */
2487
2488        /* Check the PSR and wrap bits do not match */
2489        if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2490                return NULL; /* Looks like this ring is not updated yet */
2491
2492        /* The packet status ring indicates that data is available. */
2493        psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2494                        (rx_local->local_psr_full & 0xFFF);
2495
2496        /* Grab any information that is required once the PSR is advanced,
2497         * since we can no longer rely on the memory being accurate
2498         */
2499        len = psr->word1 & 0xFFFF;
2500        ring_index = (psr->word1 >> 26) & 0x03;
2501        fbr = rx_local->fbr[ring_index];
2502        buff_index = (psr->word1 >> 16) & 0x3FF;
2503        word0 = psr->word0;
2504
2505        /* Indicate that we have used this PSR entry. */
2506        /* FIXME wrap 12 */
2507        add_12bit(&rx_local->local_psr_full, 1);
2508        if (
2509          (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2510                /* Clear psr full and toggle the wrap bit */
2511                rx_local->local_psr_full &=  ~0xFFF;
2512                rx_local->local_psr_full ^= 0x1000;
2513        }
2514
2515        writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2516
2517        if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2518                /* Illegal buffer or ring index cannot be used by S/W*/
2519                dev_err(&adapter->pdev->dev,
2520                        "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2521                        rx_local->local_psr_full & 0xFFF, len, buff_index);
2522                return NULL;
2523        }
2524
2525        /* Get and fill the RFD. */
2526        spin_lock_irqsave(&adapter->rcv_lock, flags);
2527
2528        element = rx_local->recv_list.next;
2529        rfd = list_entry(element, struct rfd, list_node);
2530
2531        if (!rfd) {
2532                spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2533                return NULL;
2534        }
2535
2536        list_del(&rfd->list_node);
2537        rx_local->num_ready_recv--;
2538
2539        spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2540
2541        rfd->bufferindex = buff_index;
2542        rfd->ringindex = ring_index;
2543
2544        /* In V1 silicon, there is a bug which screws up filtering of runt
2545         * packets. Therefore runt packet filtering is disabled in the MAC and
2546         * the packets are dropped here. They are also counted here.
2547         */
2548        if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2549                adapter->stats.rx_other_errs++;
2550                len = 0;
2551        }
2552
2553        if (len == 0) {
2554                rfd->len = 0;
2555                goto out;
2556        }
2557
2558        /* Determine if this is a multicast packet coming in */
2559        if ((word0 & ALCATEL_MULTICAST_PKT) &&
2560            !(word0 & ALCATEL_BROADCAST_PKT)) {
2561                /* Promiscuous mode and Multicast mode are not mutually
2562                 * exclusive as was first thought. I guess Promiscuous is just
2563                 * considered a super-set of the other filters. Generally filter
2564                 * is 0x2b when in promiscuous mode.
2565                 */
2566                if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2567                   && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2568                   && !(adapter->packet_filter &
2569                                        ET131X_PACKET_TYPE_ALL_MULTICAST)) {
2570                        buf = fbr->virt[buff_index];
2571
2572                        /* Loop through our list to see if the destination
2573                         * address of this packet matches one in our list.
2574                         */
2575                        for (i = 0; i < adapter->multicast_addr_count; i++) {
2576                                if (buf[0] == adapter->multicast_list[i][0]
2577                                 && buf[1] == adapter->multicast_list[i][1]
2578                                 && buf[2] == adapter->multicast_list[i][2]
2579                                 && buf[3] == adapter->multicast_list[i][3]
2580                                 && buf[4] == adapter->multicast_list[i][4]
2581                                 && buf[5] == adapter->multicast_list[i][5]) {
2582                                        break;
2583                                }
2584                        }
2585
2586                        /* If our index is equal to the number of Multicast
2587                         * address we have, then this means we did not find this
2588                         * packet's matching address in our list. Set the len to
2589                         * zero, so we free our RFD when we return from this
2590                         * function.
2591                         */
2592                        if (i == adapter->multicast_addr_count)
2593                                len = 0;
2594                }
2595
2596                if (len > 0)
2597                        adapter->stats.multicast_pkts_rcvd++;
2598        } else if (word0 & ALCATEL_BROADCAST_PKT) {
2599                adapter->stats.broadcast_pkts_rcvd++;
2600        } else {
2601                /* Not sure what this counter measures in promiscuous mode.
2602                 * Perhaps we should check the MAC address to see if it is
2603                 * directed to us in promiscuous mode.
2604                 */
2605                adapter->stats.unicast_pkts_rcvd++;
2606        }
2607
2608        if (!len) {
2609                rfd->len = 0;
2610                goto out;
2611        }
2612
2613        rfd->len = len;
2614
2615        skb = dev_alloc_skb(rfd->len + 2);
2616        if (!skb) {
2617                dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2618                return NULL;
2619        }
2620
2621        adapter->net_stats.rx_bytes += rfd->len;
2622
2623        memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2624
2625        skb->protocol = eth_type_trans(skb, adapter->netdev);
2626        skb->ip_summed = CHECKSUM_NONE;
2627        netif_rx_ni(skb);
2628
2629out:
2630        nic_return_rfd(adapter, rfd);
2631        return rfd;
2632}
2633
2634/* et131x_handle_recv_interrupt - Interrupt handler for receive processing
2635 *
2636 * Assumption, Rcv spinlock has been acquired.
2637 */
2638static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
2639{
2640        struct rfd *rfd = NULL;
2641        u32 count = 0;
2642        bool done = true;
2643        struct rx_ring *rx_ring = &adapter->rx_ring;
2644
2645        /* Process up to available RFD's */
2646        while (count < NUM_PACKETS_HANDLED) {
2647                if (list_empty(&rx_ring->recv_list)) {
2648                        WARN_ON(rx_ring->num_ready_recv != 0);
2649                        done = false;
2650                        break;
2651                }
2652
2653                rfd = nic_rx_pkts(adapter);
2654
2655                if (rfd == NULL)
2656                        break;
2657
2658                /* Do not receive any packets until a filter has been set.
2659                 * Do not receive any packets until we have link.
2660                 * If length is zero, return the RFD in order to advance the
2661                 * Free buffer ring.
2662                 */
2663                if (!adapter->packet_filter ||
2664                    !netif_carrier_ok(adapter->netdev) ||
2665                    rfd->len == 0)
2666                        continue;
2667
2668                /* Increment the number of packets we received */
2669                adapter->net_stats.rx_packets++;
2670
2671                /* Set the status on the packet, either resources or success */
2672                if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2673                        dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2674
2675                count++;
2676        }
2677
2678        if (count == NUM_PACKETS_HANDLED || !done) {
2679                rx_ring->unfinished_receives = true;
2680                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2681                       &adapter->regs->global.watchdog_timer);
2682        } else
2683                /* Watchdog timer will disable itself if appropriate. */
2684                rx_ring->unfinished_receives = false;
2685}
2686
2687/* et131x_tx_dma_memory_alloc
2688 *
2689 * Allocates memory that will be visible both to the device and to the CPU.
2690 * The OS will pass us packets, pointers to which we will insert in the Tx
2691 * Descriptor queue. The device will read this queue to find the packets in
2692 * memory. The device will update the "status" in memory each time it xmits a
2693 * packet.
2694 */
2695static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2696{
2697        int desc_size = 0;
2698        struct tx_ring *tx_ring = &adapter->tx_ring;
2699
2700        /* Allocate memory for the TCB's (Transmit Control Block) */
2701        tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2702                                    GFP_ATOMIC | GFP_DMA);
2703        if (!tx_ring->tcb_ring)
2704                return -ENOMEM;
2705
2706        desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2707        tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2708                                                   desc_size,
2709                                                   &tx_ring->tx_desc_ring_pa,
2710                                                   GFP_KERNEL);
2711        if (!tx_ring->tx_desc_ring) {
2712                dev_err(&adapter->pdev->dev,
2713                        "Cannot alloc memory for Tx Ring\n");
2714                return -ENOMEM;
2715        }
2716
2717        /* Save physical address
2718         *
2719         * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2720         * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2721         * are ever returned, make sure the high part is retrieved here before
2722         * storing the adjusted address.
2723         */
2724        /* Allocate memory for the Tx status block */
2725        tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2726                                                    sizeof(u32),
2727                                                    &tx_ring->tx_status_pa,
2728                                                    GFP_KERNEL);
2729        if (!tx_ring->tx_status_pa) {
2730                dev_err(&adapter->pdev->dev,
2731                        "Cannot alloc memory for Tx status block\n");
2732                return -ENOMEM;
2733        }
2734        return 0;
2735}
2736
2737/* et131x_tx_dma_memory_free - Free all memory allocated within this module */
2738static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2739{
2740        int desc_size = 0;
2741        struct tx_ring *tx_ring = &adapter->tx_ring;
2742
2743        if (tx_ring->tx_desc_ring) {
2744                /* Free memory relating to Tx rings here */
2745                desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2746                dma_free_coherent(&adapter->pdev->dev,
2747                                  desc_size,
2748                                  tx_ring->tx_desc_ring,
2749                                  tx_ring->tx_desc_ring_pa);
2750                tx_ring->tx_desc_ring = NULL;
2751        }
2752
2753        /* Free memory for the Tx status block */
2754        if (tx_ring->tx_status) {
2755                dma_free_coherent(&adapter->pdev->dev,
2756                                  sizeof(u32),
2757                                  tx_ring->tx_status,
2758                                  tx_ring->tx_status_pa);
2759
2760                tx_ring->tx_status = NULL;
2761        }
2762        /* Free the memory for the tcb structures */
2763        kfree(tx_ring->tcb_ring);
2764}
2765
2766/* nic_send_packet - NIC specific send handler for version B silicon.
2767 * @adapter: pointer to our adapter
2768 * @tcb: pointer to struct tcb
2769 */
2770static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2771{
2772        u32 i;
2773        struct tx_desc desc[24];        /* 24 x 16 byte */
2774        u32 frag = 0;
2775        u32 thiscopy, remainder;
2776        struct sk_buff *skb = tcb->skb;
2777        u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2778        struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2779        unsigned long flags;
2780        struct phy_device *phydev = adapter->phydev;
2781        dma_addr_t dma_addr;
2782        struct tx_ring *tx_ring = &adapter->tx_ring;
2783
2784        /* Part of the optimizations of this send routine restrict us to
2785         * sending 24 fragments at a pass.  In practice we should never see
2786         * more than 5 fragments.
2787         *
2788         * NOTE: The older version of this function (below) can handle any
2789         * number of fragments. If needed, we can call this function,
2790         * although it is less efficient.
2791         */
2792
2793        /* nr_frags should be no more than 18. */
2794        BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2795
2796        memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2797
2798        for (i = 0; i < nr_frags; i++) {
2799                /* If there is something in this element, lets get a
2800                 * descriptor from the ring and get the necessary data
2801                 */
2802                if (i == 0) {
2803                        /* If the fragments are smaller than a standard MTU,
2804                         * then map them to a single descriptor in the Tx
2805                         * Desc ring. However, if they're larger, as is
2806                         * possible with support for jumbo packets, then
2807                         * split them each across 2 descriptors.
2808                         *
2809                         * This will work until we determine why the hardware
2810                         * doesn't seem to like large fragments.
2811                         */
2812                        if (skb_headlen(skb) <= 1514) {
2813                                /* Low 16bits are length, high is vlan and
2814                                 * unused currently so zero
2815                                 */
2816                                desc[frag].len_vlan = skb_headlen(skb);
2817                                dma_addr = dma_map_single(&adapter->pdev->dev,
2818                                                          skb->data,
2819                                                          skb_headlen(skb),
2820                                                          DMA_TO_DEVICE);
2821                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2822                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2823                                frag++;
2824                        } else {
2825                                desc[frag].len_vlan = skb_headlen(skb) / 2;
2826                                dma_addr = dma_map_single(&adapter->pdev->dev,
2827                                                         skb->data,
2828                                                         (skb_headlen(skb) / 2),
2829                                                         DMA_TO_DEVICE);
2830                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2831                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2832                                frag++;
2833
2834                                desc[frag].len_vlan = skb_headlen(skb) / 2;
2835                                dma_addr = dma_map_single(&adapter->pdev->dev,
2836                                                         skb->data +
2837                                                         (skb_headlen(skb) / 2),
2838                                                         (skb_headlen(skb) / 2),
2839                                                         DMA_TO_DEVICE);
2840                                desc[frag].addr_lo = lower_32_bits(dma_addr);
2841                                desc[frag].addr_hi = upper_32_bits(dma_addr);
2842                                frag++;
2843                        }
2844                } else {
2845                        desc[frag].len_vlan = frags[i - 1].size;
2846                        dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2847                                                    &frags[i - 1],
2848                                                    0,
2849                                                    frags[i - 1].size,
2850                                                    DMA_TO_DEVICE);
2851                        desc[frag].addr_lo = lower_32_bits(dma_addr);
2852                        desc[frag].addr_hi = upper_32_bits(dma_addr);
2853                        frag++;
2854                }
2855        }
2856
2857        if (phydev && phydev->speed == SPEED_1000) {
2858                if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2859                        /* Last element & Interrupt flag */
2860                        desc[frag - 1].flags =
2861                                    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2862                        tx_ring->since_irq = 0;
2863                } else { /* Last element */
2864                        desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2865                }
2866        } else
2867                desc[frag - 1].flags =
2868                                    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2869
2870        desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2871
2872        tcb->index_start = tx_ring->send_idx;
2873        tcb->stale = 0;
2874
2875        spin_lock_irqsave(&adapter->send_hw_lock, flags);
2876
2877        thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2878
2879        if (thiscopy >= frag) {
2880                remainder = 0;
2881                thiscopy = frag;
2882        } else {
2883                remainder = frag - thiscopy;
2884        }
2885
2886        memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2887               desc,
2888               sizeof(struct tx_desc) * thiscopy);
2889
2890        add_10bit(&tx_ring->send_idx, thiscopy);
2891
2892        if (INDEX10(tx_ring->send_idx) == 0 ||
2893                  INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2894                tx_ring->send_idx &= ~ET_DMA10_MASK;
2895                tx_ring->send_idx ^= ET_DMA10_WRAP;
2896        }
2897
2898        if (remainder) {
2899                memcpy(tx_ring->tx_desc_ring,
2900                       desc + thiscopy,
2901                       sizeof(struct tx_desc) * remainder);
2902
2903                add_10bit(&tx_ring->send_idx, remainder);
2904        }
2905
2906        if (INDEX10(tx_ring->send_idx) == 0) {
2907                if (tx_ring->send_idx)
2908                        tcb->index = NUM_DESC_PER_RING_TX - 1;
2909                else
2910                        tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2911        } else
2912                tcb->index = tx_ring->send_idx - 1;
2913
2914        spin_lock(&adapter->tcb_send_qlock);
2915
2916        if (tx_ring->send_tail)
2917                tx_ring->send_tail->next = tcb;
2918        else
2919                tx_ring->send_head = tcb;
2920
2921        tx_ring->send_tail = tcb;
2922
2923        WARN_ON(tcb->next != NULL);
2924
2925        tx_ring->used++;
2926
2927        spin_unlock(&adapter->tcb_send_qlock);
2928
2929        /* Write the new write pointer back to the device. */
2930        writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2931
2932        /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2933         * timer to wake us up if this packet isn't followed by N more.
2934         */
2935        if (phydev && phydev->speed == SPEED_1000) {
2936                writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2937                       &adapter->regs->global.watchdog_timer);
2938        }
2939        spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2940
2941        return 0;
2942}
2943
2944/* send_packet - Do the work to send a packet
2945 *
2946 * Assumption: Send spinlock has been acquired
2947 */
2948static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2949{
2950        int status;
2951        struct tcb *tcb;
2952        u16 *shbufva;
2953        unsigned long flags;
2954        struct tx_ring *tx_ring = &adapter->tx_ring;
2955
2956        /* All packets must have at least a MAC address and a protocol type */
2957        if (skb->len < ETH_HLEN)
2958                return -EIO;
2959
2960        /* Get a TCB for this packet */
2961        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2962
2963        tcb = tx_ring->tcb_qhead;
2964
2965        if (tcb == NULL) {
2966                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2967                return -ENOMEM;
2968        }
2969
2970        tx_ring->tcb_qhead = tcb->next;
2971
2972        if (tx_ring->tcb_qhead == NULL)
2973                tx_ring->tcb_qtail = NULL;
2974
2975        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2976
2977        tcb->skb = skb;
2978
2979        if (skb->data != NULL && skb_headlen(skb) >= 6) {
2980                shbufva = (u16 *) skb->data;
2981
2982                if ((shbufva[0] == 0xffff) &&
2983                    (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
2984                        tcb->flags |= FMP_DEST_BROAD;
2985                else if ((shbufva[0] & 0x3) == 0x0001)
2986                        tcb->flags |=  FMP_DEST_MULTI;
2987        }
2988
2989        tcb->next = NULL;
2990
2991        /* Call the NIC specific send handler. */
2992        status = nic_send_packet(adapter, tcb);
2993
2994        if (status != 0) {
2995                spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2996
2997                if (tx_ring->tcb_qtail)
2998                        tx_ring->tcb_qtail->next = tcb;
2999                else
3000                        /* Apparently ready Q is empty. */
3001                        tx_ring->tcb_qhead = tcb;
3002
3003                tx_ring->tcb_qtail = tcb;
3004                spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3005                return status;
3006        }
3007        WARN_ON(tx_ring->used > NUM_TCB);
3008        return 0;
3009}
3010
3011/* et131x_send_packets - This function is called by the OS to send packets */
3012static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3013{
3014        int status = 0;
3015        struct et131x_adapter *adapter = netdev_priv(netdev);
3016        struct tx_ring *tx_ring = &adapter->tx_ring;
3017
3018        /* Send these packets
3019         *
3020         * NOTE: The Linux Tx entry point is only given one packet at a time
3021         * to Tx, so the PacketCount and it's array used makes no sense here
3022         */
3023
3024        /* TCB is not available */
3025        if (tx_ring->used >= NUM_TCB) {
3026                /* NOTE: If there's an error on send, no need to queue the
3027                 * packet under Linux; if we just send an error up to the
3028                 * netif layer, it will resend the skb to us.
3029                 */
3030                status = -ENOMEM;
3031        } else {
3032                /* We need to see if the link is up; if it's not, make the
3033                 * netif layer think we're good and drop the packet
3034                 */
3035                if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3036                                        !netif_carrier_ok(netdev)) {
3037                        dev_kfree_skb_any(skb);
3038                        skb = NULL;
3039
3040                        adapter->net_stats.tx_dropped++;
3041                } else {
3042                        status = send_packet(skb, adapter);
3043                        if (status != 0 && status != -ENOMEM) {
3044                                /* On any other error, make netif think we're
3045                                 * OK and drop the packet
3046                                 */
3047                                dev_kfree_skb_any(skb);
3048                                skb = NULL;
3049                                adapter->net_stats.tx_dropped++;
3050                        }
3051                }
3052        }
3053        return status;
3054}
3055
3056/* free_send_packet - Recycle a struct tcb
3057 * @adapter: pointer to our adapter
3058 * @tcb: pointer to struct tcb
3059 *
3060 * Complete the packet if necessary
3061 * Assumption - Send spinlock has been acquired
3062 */
3063static inline void free_send_packet(struct et131x_adapter *adapter,
3064                                                struct tcb *tcb)
3065{
3066        unsigned long flags;
3067        struct tx_desc *desc = NULL;
3068        struct net_device_stats *stats = &adapter->net_stats;
3069        struct tx_ring *tx_ring = &adapter->tx_ring;
3070        u64  dma_addr;
3071
3072        if (tcb->flags & FMP_DEST_BROAD)
3073                atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3074        else if (tcb->flags & FMP_DEST_MULTI)
3075                atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3076        else
3077                atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3078
3079        if (tcb->skb) {
3080                stats->tx_bytes += tcb->skb->len;
3081
3082                /* Iterate through the TX descriptors on the ring
3083                 * corresponding to this packet and umap the fragments
3084                 * they point to
3085                 */
3086                do {
3087                        desc = tx_ring->tx_desc_ring +
3088                               INDEX10(tcb->index_start);
3089
3090                        dma_addr = desc->addr_lo;
3091                        dma_addr |= (u64)desc->addr_hi << 32;
3092
3093                        dma_unmap_single(&adapter->pdev->dev,
3094                                         dma_addr,
3095                                         desc->len_vlan, DMA_TO_DEVICE);
3096
3097                        add_10bit(&tcb->index_start, 1);
3098                        if (INDEX10(tcb->index_start) >=
3099                                                        NUM_DESC_PER_RING_TX) {
3100                                tcb->index_start &= ~ET_DMA10_MASK;
3101                                tcb->index_start ^= ET_DMA10_WRAP;
3102                        }
3103                } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
3104
3105                dev_kfree_skb_any(tcb->skb);
3106        }
3107
3108        memset(tcb, 0, sizeof(struct tcb));
3109
3110        /* Add the TCB to the Ready Q */
3111        spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3112
3113        adapter->net_stats.tx_packets++;
3114
3115        if (tx_ring->tcb_qtail)
3116                tx_ring->tcb_qtail->next = tcb;
3117        else
3118                /* Apparently ready Q is empty. */
3119                tx_ring->tcb_qhead = tcb;
3120
3121        tx_ring->tcb_qtail = tcb;
3122
3123        spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3124        WARN_ON(tx_ring->used < 0);
3125}
3126
3127/* et131x_free_busy_send_packets - Free and complete the stopped active sends
3128 *
3129 * Assumption - Send spinlock has been acquired
3130 */
3131static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3132{
3133        struct tcb *tcb;
3134        unsigned long flags;
3135        u32 freed = 0;
3136        struct tx_ring *tx_ring = &adapter->tx_ring;
3137
3138        /* Any packets being sent? Check the first TCB on the send list */
3139        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3140
3141        tcb = tx_ring->send_head;
3142
3143        while (tcb != NULL && freed < NUM_TCB) {
3144                struct tcb *next = tcb->next;
3145
3146                tx_ring->send_head = next;
3147
3148                if (next == NULL)
3149                        tx_ring->send_tail = NULL;
3150
3151                tx_ring->used--;
3152
3153                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3154
3155                freed++;
3156                free_send_packet(adapter, tcb);
3157
3158                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3159
3160                tcb = tx_ring->send_head;
3161        }
3162
3163        WARN_ON(freed == NUM_TCB);
3164
3165        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3166
3167        tx_ring->used = 0;
3168}
3169
3170/* et131x_handle_send_interrupt - Interrupt handler for sending processing
3171 *
3172 * Re-claim the send resources, complete sends and get more to send from
3173 * the send wait queue.
3174 *
3175 * Assumption - Send spinlock has been acquired
3176 */
3177static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3178{
3179        unsigned long flags;
3180        u32 serviced;
3181        struct tcb *tcb;
3182        u32 index;
3183        struct tx_ring *tx_ring = &adapter->tx_ring;
3184
3185        serviced = readl(&adapter->regs->txdma.new_service_complete);
3186        index = INDEX10(serviced);
3187
3188        /* Has the ring wrapped?  Process any descriptors that do not have
3189         * the same "wrap" indicator as the current completion indicator
3190         */
3191        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3192
3193        tcb = tx_ring->send_head;
3194
3195        while (tcb &&
3196               ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3197               index < INDEX10(tcb->index)) {
3198                tx_ring->used--;
3199                tx_ring->send_head = tcb->next;
3200                if (tcb->next == NULL)
3201                        tx_ring->send_tail = NULL;
3202
3203                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3204                free_send_packet(adapter, tcb);
3205                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3206
3207                /* Goto the next packet */
3208                tcb = tx_ring->send_head;
3209        }
3210        while (tcb &&
3211               !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3212               && index > (tcb->index & ET_DMA10_MASK)) {
3213                tx_ring->used--;
3214                tx_ring->send_head = tcb->next;
3215                if (tcb->next == NULL)
3216                        tx_ring->send_tail = NULL;
3217
3218                spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3219                free_send_packet(adapter, tcb);
3220                spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3221
3222                /* Goto the next packet */
3223                tcb = tx_ring->send_head;
3224        }
3225
3226        /* Wake up the queue when we hit a low-water mark */
3227        if (tx_ring->used <= NUM_TCB / 3)
3228                netif_wake_queue(adapter->netdev);
3229
3230        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3231}
3232
3233static int et131x_get_settings(struct net_device *netdev,
3234                               struct ethtool_cmd *cmd)
3235{
3236        struct et131x_adapter *adapter = netdev_priv(netdev);
3237
3238        return phy_ethtool_gset(adapter->phydev, cmd);
3239}
3240
3241static int et131x_set_settings(struct net_device *netdev,
3242                               struct ethtool_cmd *cmd)
3243{
3244        struct et131x_adapter *adapter = netdev_priv(netdev);
3245
3246        return phy_ethtool_sset(adapter->phydev, cmd);
3247}
3248
3249static int et131x_get_regs_len(struct net_device *netdev)
3250{
3251#define ET131X_REGS_LEN 256
3252        return ET131X_REGS_LEN * sizeof(u32);
3253}
3254
3255static void et131x_get_regs(struct net_device *netdev,
3256                            struct ethtool_regs *regs, void *regs_data)
3257{
3258        struct et131x_adapter *adapter = netdev_priv(netdev);
3259        struct address_map __iomem *aregs = adapter->regs;
3260        u32 *regs_buff = regs_data;
3261        u32 num = 0;
3262        u16 tmp;
3263
3264        memset(regs_data, 0, et131x_get_regs_len(netdev));
3265
3266        regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3267                        adapter->pdev->device;
3268
3269        /* PHY regs */
3270        et131x_mii_read(adapter, MII_BMCR, &tmp);
3271        regs_buff[num++] = tmp;
3272        et131x_mii_read(adapter, MII_BMSR, &tmp);
3273        regs_buff[num++] = tmp;
3274        et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3275        regs_buff[num++] = tmp;
3276        et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3277        regs_buff[num++] = tmp;
3278        et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3279        regs_buff[num++] = tmp;
3280        et131x_mii_read(adapter, MII_LPA, &tmp);
3281        regs_buff[num++] = tmp;
3282        et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3283        regs_buff[num++] = tmp;
3284        /* Autoneg next page transmit reg */
3285        et131x_mii_read(adapter, 0x07, &tmp);
3286        regs_buff[num++] = tmp;
3287        /* Link partner next page reg */
3288        et131x_mii_read(adapter, 0x08, &tmp);
3289        regs_buff[num++] = tmp;
3290        et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3291        regs_buff[num++] = tmp;
3292        et131x_mii_read(adapter, MII_STAT1000, &tmp);
3293        regs_buff[num++] = tmp;
3294        et131x_mii_read(adapter, 0x0b, &tmp);
3295        regs_buff[num++] = tmp;
3296        et131x_mii_read(adapter, 0x0c, &tmp);
3297        regs_buff[num++] = tmp;
3298        et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3299        regs_buff[num++] = tmp;
3300        et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3301        regs_buff[num++] = tmp;
3302        et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3303        regs_buff[num++] = tmp;
3304
3305        et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3306        regs_buff[num++] = tmp;
3307        et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3308        regs_buff[num++] = tmp;
3309        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3310        regs_buff[num++] = tmp;
3311        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3312        regs_buff[num++] = tmp;
3313        et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3314        regs_buff[num++] = tmp;
3315
3316        et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3317        regs_buff[num++] = tmp;
3318        et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3319        regs_buff[num++] = tmp;
3320        et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3321        regs_buff[num++] = tmp;
3322        et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3323        regs_buff[num++] = tmp;
3324        et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3325        regs_buff[num++] = tmp;
3326        et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3327        regs_buff[num++] = tmp;
3328        et131x_mii_read(adapter, PHY_LED_1, &tmp);
3329        regs_buff[num++] = tmp;
3330        et131x_mii_read(adapter, PHY_LED_2, &tmp);
3331        regs_buff[num++] = tmp;
3332
3333        /* Global regs */
3334        regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3335        regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3336        regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3337        regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3338        regs_buff[num++] = readl(&aregs->global.pm_csr);
3339        regs_buff[num++] = adapter->stats.interrupt_status;
3340        regs_buff[num++] = readl(&aregs->global.int_mask);
3341        regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3342        regs_buff[num++] = readl(&aregs->global.int_status_alias);
3343        regs_buff[num++] = readl(&aregs->global.sw_reset);
3344        regs_buff[num++] = readl(&aregs->global.slv_timer);
3345        regs_buff[num++] = readl(&aregs->global.msi_config);
3346        regs_buff[num++] = readl(&aregs->global.loopback);
3347        regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3348
3349        /* TXDMA regs */
3350        regs_buff[num++] = readl(&aregs->txdma.csr);
3351        regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3352        regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3353        regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3354        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3355        regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3356        regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3357        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3358        regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3359        regs_buff[num++] = readl(&aregs->txdma.service_request);
3360        regs_buff[num++] = readl(&aregs->txdma.service_complete);
3361        regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3362        regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3363        regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3364        regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3365        regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3366        regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3367        regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3368        regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3369        regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3370        regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3371        regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3372        regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3373        regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3374        regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3375        regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3376
3377        /* RXDMA regs */
3378        regs_buff[num++] = readl(&aregs->rxdma.csr);
3379        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3380        regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3381        regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3382        regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3383        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3384        regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3385        regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3386        regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3387        regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3388        regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3389        regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3390        regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3391        regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3392        regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3393        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3394        regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3395        regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3396        regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3397        regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3398        regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3399        regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3400        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3401        regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3402        regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3403        regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3404        regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3405        regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3406        regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3407}
3408
3409static void et131x_get_drvinfo(struct net_device *netdev,
3410                               struct ethtool_drvinfo *info)
3411{
3412        struct et131x_adapter *adapter = netdev_priv(netdev);
3413
3414        strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3415        strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3416        strlcpy(info->bus_info, pci_name(adapter->pdev),
3417                sizeof(info->bus_info));
3418}
3419
3420static struct ethtool_ops et131x_ethtool_ops = {
3421        .get_settings   = et131x_get_settings,
3422        .set_settings   = et131x_set_settings,
3423        .get_drvinfo    = et131x_get_drvinfo,
3424        .get_regs_len   = et131x_get_regs_len,
3425        .get_regs       = et131x_get_regs,
3426        .get_link       = ethtool_op_get_link,
3427};
3428
3429/* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
3430static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3431{
3432        /* If have our default mac from init and no mac address from
3433         * EEPROM then we need to generate the last octet and set it on the
3434         * device
3435         */
3436        if (is_zero_ether_addr(adapter->rom_addr)) {
3437                /* We need to randomly generate the last octet so we
3438                 * decrease our chances of setting the mac address to
3439                 * same as another one of our cards in the system
3440                 */
3441                get_random_bytes(&adapter->addr[5], 1);
3442                /* We have the default value in the register we are
3443                 * working with so we need to copy the current
3444                 * address into the permanent address
3445                 */
3446                memcpy(adapter->rom_addr,
3447                        adapter->addr, ETH_ALEN);
3448        } else {
3449                /* We do not have an override address, so set the
3450                 * current address to the permanent address and add
3451                 * it to the device
3452                 */
3453                memcpy(adapter->addr,
3454                       adapter->rom_addr, ETH_ALEN);
3455        }
3456}
3457
3458/* et131x_pci_init       - initial PCI setup
3459 *
3460 * Perform the initial setup of PCI registers and if possible initialise
3461 * the MAC address. At this point the I/O registers have yet to be mapped
3462 */
3463static int et131x_pci_init(struct et131x_adapter *adapter,
3464                           struct pci_dev *pdev)
3465{
3466        u16 max_payload;
3467        int i, rc;
3468
3469        rc = et131x_init_eeprom(adapter);
3470        if (rc < 0)
3471                goto out;
3472
3473        if (!pci_is_pcie(pdev)) {
3474                dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3475                goto err_out;
3476        }
3477
3478        /* Let's set up the PORT LOGIC Register. */
3479
3480        /* Program the Ack/Nak latency and replay timers */
3481        max_payload = pdev->pcie_mpss;
3482
3483        if (max_payload < 2) {
3484                static const u16 acknak[2] = { 0x76, 0xD0 };
3485                static const u16 replay[2] = { 0x1E0, 0x2ED };
3486
3487                if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3488                                               acknak[max_payload])) {
3489                        dev_err(&pdev->dev,
3490                          "Could not write PCI config space for ACK/NAK\n");
3491                        goto err_out;
3492                }
3493                if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3494                                               replay[max_payload])) {
3495                        dev_err(&pdev->dev,
3496                          "Could not write PCI config space for Replay Timer\n");
3497                        goto err_out;
3498                }
3499        }
3500
3501        /* l0s and l1 latency timers.  We are using default values.
3502         * Representing 001 for L0s and 010 for L1
3503         */
3504        if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3505                dev_err(&pdev->dev,
3506                  "Could not write PCI config space for Latency Timers\n");
3507                goto err_out;
3508        }
3509
3510        /* Change the max read size to 2k */
3511        if (pcie_set_readrq(pdev, 2048)) {
3512                dev_err(&pdev->dev,
3513                        "Couldn't change PCI config space for Max read size\n");
3514                goto err_out;
3515        }
3516
3517        /* Get MAC address from config space if an eeprom exists, otherwise
3518         * the MAC address there will not be valid
3519         */
3520        if (!adapter->has_eeprom) {
3521                et131x_hwaddr_init(adapter);
3522                return 0;
3523        }
3524
3525        for (i = 0; i < ETH_ALEN; i++) {
3526                if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3527                                        adapter->rom_addr + i)) {
3528                        dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3529                        goto err_out;
3530                }
3531        }
3532        ether_addr_copy(adapter->addr, adapter->rom_addr);
3533out:
3534        return rc;
3535err_out:
3536        rc = -EIO;
3537        goto out;
3538}
3539
3540/* et131x_error_timer_handler
3541 * @data: timer-specific variable; here a pointer to our adapter structure
3542 *
3543 * The routine called when the error timer expires, to track the number of
3544 * recurring errors.
3545 */
3546static void et131x_error_timer_handler(unsigned long data)
3547{
3548        struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3549        struct phy_device *phydev = adapter->phydev;
3550
3551        if (et1310_in_phy_coma(adapter)) {
3552                /* Bring the device immediately out of coma, to
3553                 * prevent it from sleeping indefinitely, this
3554                 * mechanism could be improved!
3555                 */
3556                et1310_disable_phy_coma(adapter);
3557                adapter->boot_coma = 20;
3558        } else {
3559                et1310_update_macstat_host_counters(adapter);
3560        }
3561
3562        if (!phydev->link && adapter->boot_coma < 11)
3563                adapter->boot_coma++;
3564
3565        if (adapter->boot_coma == 10) {
3566                if (!phydev->link) {
3567                        if (!et1310_in_phy_coma(adapter)) {
3568                                /* NOTE - This was originally a 'sync with
3569                                 *  interrupt'. How to do that under Linux?
3570                                 */
3571                                et131x_enable_interrupts(adapter);
3572                                et1310_enable_phy_coma(adapter);
3573                        }
3574                }
3575        }
3576
3577        /* This is a periodic timer, so reschedule */
3578        mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
3579}
3580
3581/* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
3582static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3583{
3584        et131x_tx_dma_memory_free(adapter);
3585        et131x_rx_dma_memory_free(adapter);
3586}
3587
3588/* et131x_adapter_memory_alloc
3589 * Allocate all the memory blocks for send, receive and others.
3590 */
3591static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3592{
3593        int status;
3594
3595        /* Allocate memory for the Tx Ring */
3596        status = et131x_tx_dma_memory_alloc(adapter);
3597        if (status) {
3598                dev_err(&adapter->pdev->dev,
3599                          "et131x_tx_dma_memory_alloc FAILED\n");
3600                et131x_tx_dma_memory_free(adapter);
3601                return status;
3602        }
3603        /* Receive buffer memory allocation */
3604        status = et131x_rx_dma_memory_alloc(adapter);
3605        if (status) {
3606                dev_err(&adapter->pdev->dev,
3607                          "et131x_rx_dma_memory_alloc FAILED\n");
3608                et131x_adapter_memory_free(adapter);
3609                return status;
3610        }
3611
3612        /* Init receive data structures */
3613        status = et131x_init_recv(adapter);
3614        if (status) {
3615                dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3616                et131x_adapter_memory_free(adapter);
3617        }
3618        return status;
3619}
3620
3621static void et131x_adjust_link(struct net_device *netdev)
3622{
3623        struct et131x_adapter *adapter = netdev_priv(netdev);
3624        struct  phy_device *phydev = adapter->phydev;
3625
3626        if (!phydev)
3627                return;
3628        if (phydev->link == adapter->link)
3629                return;
3630
3631        /* Check to see if we are in coma mode and if
3632         * so, disable it because we will not be able
3633         * to read PHY values until we are out.
3634         */
3635        if (et1310_in_phy_coma(adapter))
3636                et1310_disable_phy_coma(adapter);
3637
3638        adapter->link = phydev->link;
3639        phy_print_status(phydev);
3640
3641        if (phydev->link) {
3642                adapter->boot_coma = 20;
3643                if (phydev->speed == SPEED_10) {
3644                        u16 register18;
3645
3646                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3647                                         &register18);
3648                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3649                                         register18 | 0x4);
3650                        et131x_mii_write(adapter, PHY_INDEX_REG,
3651                                         register18 | 0x8402);
3652                        et131x_mii_write(adapter, PHY_DATA_REG,
3653                                         register18 | 511);
3654                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3655                                         register18);
3656                }
3657
3658                et1310_config_flow_control(adapter);
3659
3660                if (phydev->speed == SPEED_1000 &&
3661                    adapter->registry_jumbo_packet > 2048) {
3662                        u16 reg;
3663
3664                        et131x_mii_read(adapter, PHY_CONFIG, &reg);
3665                        reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3666                        reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3667                        et131x_mii_write(adapter, PHY_CONFIG, reg);
3668                }
3669
3670                et131x_set_rx_dma_timer(adapter);
3671                et1310_config_mac_regs2(adapter);
3672        } else {
3673                adapter->boot_coma = 0;
3674
3675                if (phydev->speed == SPEED_10) {
3676                        u16 register18;
3677
3678                        et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3679                                         &register18);
3680                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3681                                         register18 | 0x4);
3682                        et131x_mii_write(adapter, PHY_INDEX_REG,
3683                                         register18 | 0x8402);
3684                        et131x_mii_write(adapter, PHY_DATA_REG,
3685                                         register18 | 511);
3686                        et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3687                                         register18);
3688                }
3689
3690                /* Free the packets being actively sent & stopped */
3691                et131x_free_busy_send_packets(adapter);
3692
3693                /* Re-initialize the send structures */
3694                et131x_init_send(adapter);
3695
3696                /* Bring the device back to the state it was during
3697                 * init prior to autonegotiation being complete. This
3698                 * way, when we get the auto-neg complete interrupt,
3699                 * we can complete init by calling config_mac_regs2.
3700                 */
3701                et131x_soft_reset(adapter);
3702
3703                /* Setup ET1310 as per the documentation */
3704                et131x_adapter_setup(adapter);
3705
3706                /* perform reset of tx/rx */
3707                et131x_disable_txrx(netdev);
3708                et131x_enable_txrx(netdev);
3709        }
3710}
3711
3712static int et131x_mii_probe(struct net_device *netdev)
3713{
3714        struct et131x_adapter *adapter = netdev_priv(netdev);
3715        struct  phy_device *phydev = NULL;
3716
3717        phydev = phy_find_first(adapter->mii_bus);
3718        if (!phydev) {
3719                dev_err(&adapter->pdev->dev, "no PHY found\n");
3720                return -ENODEV;
3721        }
3722
3723        phydev = phy_connect(netdev, dev_name(&phydev->dev),
3724                             &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3725
3726        if (IS_ERR(phydev)) {
3727                dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3728                return PTR_ERR(phydev);
3729        }
3730
3731        phydev->supported &= (SUPPORTED_10baseT_Half
3732                                | SUPPORTED_10baseT_Full
3733                                | SUPPORTED_100baseT_Half
3734                                | SUPPORTED_100baseT_Full
3735                                | SUPPORTED_Autoneg
3736                                | SUPPORTED_MII
3737                                | SUPPORTED_TP);
3738
3739        if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3740                phydev->supported |= SUPPORTED_1000baseT_Full;
3741
3742        phydev->advertising = phydev->supported;
3743        adapter->phydev = phydev;
3744
3745        dev_info(&adapter->pdev->dev,
3746                 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3747                 phydev->drv->name, dev_name(&phydev->dev));
3748
3749        return 0;
3750}
3751
3752/* et131x_adapter_init
3753 *
3754 * Initialize the data structures for the et131x_adapter object and link
3755 * them together with the platform provided device structures.
3756 */
3757static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3758                                                  struct pci_dev *pdev)
3759{
3760        static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3761
3762        struct et131x_adapter *adapter;
3763
3764        /* Allocate private adapter struct and copy in relevant information */
3765        adapter = netdev_priv(netdev);
3766        adapter->pdev = pci_dev_get(pdev);
3767        adapter->netdev = netdev;
3768
3769        /* Initialize spinlocks here */
3770        spin_lock_init(&adapter->tcb_send_qlock);
3771        spin_lock_init(&adapter->tcb_ready_qlock);
3772        spin_lock_init(&adapter->send_hw_lock);
3773        spin_lock_init(&adapter->rcv_lock);
3774        spin_lock_init(&adapter->fbr_lock);
3775
3776        adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3777
3778        /* Set the MAC address to a default */
3779        ether_addr_copy(adapter->addr, default_mac);
3780
3781        return adapter;
3782}
3783
3784/* et131x_pci_remove
3785 *
3786 * Registered in the pci_driver structure, this function is called when the
3787 * PCI subsystem detects that a PCI device which matches the information
3788 * contained in the pci_device_id table has been removed.
3789 */
3790static void et131x_pci_remove(struct pci_dev *pdev)
3791{
3792        struct net_device *netdev = pci_get_drvdata(pdev);
3793        struct et131x_adapter *adapter = netdev_priv(netdev);
3794
3795        unregister_netdev(netdev);
3796        phy_disconnect(adapter->phydev);
3797        mdiobus_unregister(adapter->mii_bus);
3798        cancel_work_sync(&adapter->task);
3799        kfree(adapter->mii_bus->irq);
3800        mdiobus_free(adapter->mii_bus);
3801
3802        et131x_adapter_memory_free(adapter);
3803        iounmap(adapter->regs);
3804        pci_dev_put(pdev);
3805
3806        free_netdev(netdev);
3807        pci_release_regions(pdev);
3808        pci_disable_device(pdev);
3809}
3810
3811/* et131x_up - Bring up a device for use.  */
3812static void et131x_up(struct net_device *netdev)
3813{
3814        struct et131x_adapter *adapter = netdev_priv(netdev);
3815
3816        et131x_enable_txrx(netdev);
3817        phy_start(adapter->phydev);
3818}
3819
3820/* et131x_down - Bring down the device */
3821static void et131x_down(struct net_device *netdev)
3822{
3823        struct et131x_adapter *adapter = netdev_priv(netdev);
3824
3825        /* Save the timestamp for the TX watchdog, prevent a timeout */
3826        netdev->trans_start = jiffies;
3827
3828        phy_stop(adapter->phydev);
3829        et131x_disable_txrx(netdev);
3830}
3831
3832#ifdef CONFIG_PM_SLEEP
3833static int et131x_suspend(struct device *dev)
3834{
3835        struct pci_dev *pdev = to_pci_dev(dev);
3836        struct net_device *netdev = pci_get_drvdata(pdev);
3837
3838        if (netif_running(netdev)) {
3839                netif_device_detach(netdev);
3840                et131x_down(netdev);
3841                pci_save_state(pdev);
3842        }
3843
3844        return 0;
3845}
3846
3847static int et131x_resume(struct device *dev)
3848{
3849        struct pci_dev *pdev = to_pci_dev(dev);
3850        struct net_device *netdev = pci_get_drvdata(pdev);
3851
3852        if (netif_running(netdev)) {
3853                pci_restore_state(pdev);
3854                et131x_up(netdev);
3855                netif_device_attach(netdev);
3856        }
3857
3858        return 0;
3859}
3860
3861static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3862#define ET131X_PM_OPS (&et131x_pm_ops)
3863#else
3864#define ET131X_PM_OPS NULL
3865#endif
3866
3867/* et131x_isr - The Interrupt Service Routine for the driver.
3868 * @irq: the IRQ on which the interrupt was received.
3869 * @dev_id: device-specific info (here a pointer to a net_device struct)
3870 *
3871 * Returns a value indicating if the interrupt was handled.
3872 */
3873static irqreturn_t et131x_isr(int irq, void *dev_id)
3874{
3875        bool handled = true;
3876        struct net_device *netdev = (struct net_device *)dev_id;
3877        struct et131x_adapter *adapter = netdev_priv(netdev);
3878        struct rx_ring *rx_ring = &adapter->rx_ring;
3879        struct tx_ring *tx_ring = &adapter->tx_ring;
3880        u32 status;
3881
3882        if (!netif_device_present(netdev)) {
3883                handled = false;
3884                goto out;
3885        }
3886
3887        /* If the adapter is in low power state, then it should not
3888         * recognize any interrupt
3889         */
3890
3891        /* Disable Device Interrupts */
3892        et131x_disable_interrupts(adapter);
3893
3894        /* Get a copy of the value in the interrupt status register
3895         * so we can process the interrupting section
3896         */
3897        status = readl(&adapter->regs->global.int_status);
3898
3899        if (adapter->flowcontrol == FLOW_TXONLY ||
3900            adapter->flowcontrol == FLOW_BOTH) {
3901                status &= ~INT_MASK_ENABLE;
3902        } else {
3903                status &= ~INT_MASK_ENABLE_NO_FLOW;
3904        }
3905
3906        /* Make sure this is our interrupt */
3907        if (!status) {
3908                handled = false;
3909                et131x_enable_interrupts(adapter);
3910                goto out;
3911        }
3912
3913        /* This is our interrupt, so process accordingly */
3914
3915        if (status & ET_INTR_WATCHDOG) {
3916                struct tcb *tcb = tx_ring->send_head;
3917
3918                if (tcb)
3919                        if (++tcb->stale > 1)
3920                                status |= ET_INTR_TXDMA_ISR;
3921
3922                if (rx_ring->unfinished_receives)
3923                        status |= ET_INTR_RXDMA_XFR_DONE;
3924                else if (tcb == NULL)
3925                        writel(0, &adapter->regs->global.watchdog_timer);
3926
3927                status &= ~ET_INTR_WATCHDOG;
3928        }
3929
3930        if (!status) {
3931                /* This interrupt has in some way been "handled" by
3932                 * the ISR. Either it was a spurious Rx interrupt, or
3933                 * it was a Tx interrupt that has been filtered by
3934                 * the ISR.
3935                 */
3936                et131x_enable_interrupts(adapter);
3937                goto out;
3938        }
3939
3940        /* We need to save the interrupt status value for use in our
3941         * DPC. We will clear the software copy of that in that
3942         * routine.
3943         */
3944        adapter->stats.interrupt_status = status;
3945
3946        /* Schedule the ISR handler as a bottom-half task in the
3947         * kernel's tq_immediate queue, and mark the queue for
3948         * execution
3949         */
3950        schedule_work(&adapter->task);
3951out:
3952        return IRQ_RETVAL(handled);
3953}
3954
3955/* et131x_isr_handler - The ISR handler
3956 *
3957 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3958 * work actually gets done.
3959 */
3960static void et131x_isr_handler(struct work_struct *work)
3961{
3962        struct et131x_adapter *adapter =
3963                container_of(work, struct et131x_adapter, task);
3964        u32 status = adapter->stats.interrupt_status;
3965        struct address_map __iomem *iomem = adapter->regs;
3966
3967        /* These first two are by far the most common.  Once handled, we clear
3968         * their two bits in the status word.  If the word is now zero, we
3969         * exit.
3970         */
3971        /* Handle all the completed Transmit interrupts */
3972        if (status & ET_INTR_TXDMA_ISR)
3973                et131x_handle_send_interrupt(adapter);
3974
3975        /* Handle all the completed Receives interrupts */
3976        if (status & ET_INTR_RXDMA_XFR_DONE)
3977                et131x_handle_recv_interrupt(adapter);
3978
3979        status &= ~(ET_INTR_TXDMA_ERR | ET_INTR_RXDMA_XFR_DONE);
3980
3981        if (!status)
3982                goto out;
3983
3984        /* Handle the TXDMA Error interrupt */
3985        if (status & ET_INTR_TXDMA_ERR) {
3986                /* Following read also clears the register (COR) */
3987                u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3988
3989                dev_warn(&adapter->pdev->dev,
3990                            "TXDMA_ERR interrupt, error = %d\n",
3991                            txdma_err);
3992        }
3993
3994        /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3995        if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3996                /* This indicates the number of unused buffers in RXDMA free
3997                 * buffer ring 0 is <= the limit you programmed. Free buffer
3998                 * resources need to be returned.  Free buffers are consumed as
3999                 * packets are passed from the network to the host. The host
4000                 * becomes aware of the packets from the contents of the packet
4001                 * status ring. This ring is queried when the packet done
4002                 * interrupt occurs. Packets are then passed to the OS. When
4003                 * the OS is done with the packets the resources can be
4004                 * returned to the ET1310 for re-use. This interrupt is one
4005                 * method of returning resources.
4006                 */
4007
4008                /*  If the user has flow control on, then we will
4009                 * send a pause packet, otherwise just exit
4010                 */
4011                if (adapter->flowcontrol == FLOW_TXONLY ||
4012                    adapter->flowcontrol == FLOW_BOTH) {
4013                        u32 pm_csr;
4014
4015                        /* Tell the device to send a pause packet via the back
4016                         * pressure register (bp req and bp xon/xoff)
4017                         */
4018                        pm_csr = readl(&iomem->global.pm_csr);
4019                        if (!et1310_in_phy_coma(adapter))
4020                                writel(3, &iomem->txmac.bp_ctrl);
4021                }
4022        }
4023
4024        /* Handle Packet Status Ring Low Interrupt */
4025        if (status & ET_INTR_RXDMA_STAT_LOW) {
4026                /* Same idea as with the two Free Buffer Rings. Packets going
4027                 * from the network to the host each consume a free buffer
4028                 * resource and a packet status resource. These resoures are
4029                 * passed to the OS. When the OS is done with the resources,
4030                 * they need to be returned to the ET1310. This is one method
4031                 * of returning the resources.
4032                 */
4033        }
4034
4035        /* Handle RXDMA Error Interrupt */
4036        if (status & ET_INTR_RXDMA_ERR) {
4037                /* The rxdma_error interrupt is sent when a time-out on a
4038                 * request issued by the JAGCore has occurred or a completion is
4039                 * returned with an un-successful status. In both cases the
4040                 * request is considered complete. The JAGCore will
4041                 * automatically re-try the request in question. Normally
4042                 * information on events like these are sent to the host using
4043                 * the "Advanced Error Reporting" capability. This interrupt is
4044                 * another way of getting similar information. The only thing
4045                 * required is to clear the interrupt by reading the ISR in the
4046                 * global resources. The JAGCore will do a re-try on the
4047                 * request. Normally you should never see this interrupt. If
4048                 * you start to see this interrupt occurring frequently then
4049                 * something bad has occurred. A reset might be the thing to do.
4050                 */
4051                /* TRAP();*/
4052
4053                dev_warn(&adapter->pdev->dev,
4054                            "RxDMA_ERR interrupt, error %x\n",
4055                            readl(&iomem->txmac.tx_test));
4056        }
4057
4058        /* Handle the Wake on LAN Event */
4059        if (status & ET_INTR_WOL) {
4060                /* This is a secondary interrupt for wake on LAN. The driver
4061                 * should never see this, if it does, something serious is
4062                 * wrong. We will TRAP the message when we are in DBG mode,
4063                 * otherwise we will ignore it.
4064                 */
4065                dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4066        }
4067
4068        /* Let's move on to the TxMac */
4069        if (status & ET_INTR_TXMAC) {
4070                u32 err = readl(&iomem->txmac.err);
4071
4072                /* When any of the errors occur and TXMAC generates an
4073                 * interrupt to report these errors, it usually means that
4074                 * TXMAC has detected an error in the data stream retrieved
4075                 * from the on-chip Tx Q. All of these errors are catastrophic
4076                 * and TXMAC won't be able to recover data when these errors
4077                 * occur. In a nutshell, the whole Tx path will have to be reset
4078                 * and re-configured afterwards.
4079                 */
4080                dev_warn(&adapter->pdev->dev,
4081                         "TXMAC interrupt, error 0x%08x\n",
4082                         err);
4083
4084                /* If we are debugging, we want to see this error, otherwise we
4085                 * just want the device to be reset and continue
4086                 */
4087        }
4088
4089        /* Handle RXMAC Interrupt */
4090        if (status & ET_INTR_RXMAC) {
4091                /* These interrupts are catastrophic to the device, what we need
4092                 * to do is disable the interrupts and set the flag to cause us
4093                 * to reset so we can solve this issue.
4094                 */
4095                /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
4096
4097                dev_warn(&adapter->pdev->dev,
4098                         "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4099                         readl(&iomem->rxmac.err_reg));
4100
4101                dev_warn(&adapter->pdev->dev,
4102                         "Enable 0x%08x, Diag 0x%08x\n",
4103                         readl(&iomem->rxmac.ctrl),
4104                         readl(&iomem->rxmac.rxq_diag));
4105
4106                /* If we are debugging, we want to see this error, otherwise we
4107                 * just want the device to be reset and continue
4108                 */
4109        }
4110
4111        /* Handle MAC_STAT Interrupt */
4112        if (status & ET_INTR_MAC_STAT) {
4113                /* This means at least one of the un-masked counters in the
4114                 * MAC_STAT block has rolled over. Use this to maintain the top,
4115                 * software managed bits of the counter(s).
4116                 */
4117                et1310_handle_macstat_interrupt(adapter);
4118        }
4119
4120        /* Handle SLV Timeout Interrupt */
4121        if (status & ET_INTR_SLV_TIMEOUT) {
4122                /* This means a timeout has occurred on a read or write request
4123                 * to one of the JAGCore registers. The Global Resources block
4124                 * has terminated the request and on a read request, returned a
4125                 * "fake" value. The most likely reasons are: Bad Address or the
4126                 * addressed module is in a power-down state and can't respond.
4127                 */
4128        }
4129out:
4130        et131x_enable_interrupts(adapter);
4131}
4132
4133/* et131x_stats - Return the current device statistics  */
4134static struct net_device_stats *et131x_stats(struct net_device *netdev)
4135{
4136        struct et131x_adapter *adapter = netdev_priv(netdev);
4137        struct net_device_stats *stats = &adapter->net_stats;
4138        struct ce_stats *devstat = &adapter->stats;
4139
4140        stats->rx_errors = devstat->rx_length_errs +
4141                           devstat->rx_align_errs +
4142                           devstat->rx_crc_errs +
4143                           devstat->rx_code_violations +
4144                           devstat->rx_other_errs;
4145        stats->tx_errors = devstat->tx_max_pkt_errs;
4146        stats->multicast = devstat->multicast_pkts_rcvd;
4147        stats->collisions = devstat->tx_collisions;
4148
4149        stats->rx_length_errors = devstat->rx_length_errs;
4150        stats->rx_over_errors = devstat->rx_overflows;
4151        stats->rx_crc_errors = devstat->rx_crc_errs;
4152
4153        /* NOTE: These stats don't have corresponding values in CE_STATS,
4154         * so we're going to have to update these directly from within the
4155         * TX/RX code
4156         */
4157        /* stats->rx_bytes            = 20; devstat->; */
4158        /* stats->tx_bytes            = 20;  devstat->; */
4159        /* stats->rx_dropped          = devstat->; */
4160        /* stats->tx_dropped          = devstat->; */
4161
4162        /*  NOTE: Not used, can't find analogous statistics */
4163        /* stats->rx_frame_errors     = devstat->; */
4164        /* stats->rx_fifo_errors      = devstat->; */
4165        /* stats->rx_missed_errors    = devstat->; */
4166
4167        /* stats->tx_aborted_errors   = devstat->; */
4168        /* stats->tx_carrier_errors   = devstat->; */
4169        /* stats->tx_fifo_errors      = devstat->; */
4170        /* stats->tx_heartbeat_errors = devstat->; */
4171        /* stats->tx_window_errors    = devstat->; */
4172        return stats;
4173}
4174
4175/* et131x_open - Open the device for use.  */
4176static int et131x_open(struct net_device *netdev)
4177{
4178        struct et131x_adapter *adapter = netdev_priv(netdev);
4179        struct pci_dev *pdev = adapter->pdev;
4180        unsigned int irq = pdev->irq;
4181        int result;
4182
4183        /* Start the timer to track NIC errors */
4184        init_timer(&adapter->error_timer);
4185        adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4186        adapter->error_timer.function = et131x_error_timer_handler;
4187        adapter->error_timer.data = (unsigned long)adapter;
4188        add_timer(&adapter->error_timer);
4189
4190        result = request_irq(irq, et131x_isr,
4191                             IRQF_SHARED, netdev->name, netdev);
4192        if (result) {
4193                dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4194                return result;
4195        }
4196
4197        adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
4198
4199        et131x_up(netdev);
4200
4201        return result;
4202}
4203
4204/* et131x_close - Close the device */
4205static int et131x_close(struct net_device *netdev)
4206{
4207        struct et131x_adapter *adapter = netdev_priv(netdev);
4208
4209        et131x_down(netdev);
4210
4211        adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
4212        free_irq(adapter->pdev->irq, netdev);
4213
4214        /* Stop the error timer */
4215        return del_timer_sync(&adapter->error_timer);
4216}
4217
4218/* et131x_ioctl - The I/O Control handler for the driver
4219 * @netdev: device on which the control request is being made
4220 * @reqbuf: a pointer to the IOCTL request buffer
4221 * @cmd: the IOCTL command code
4222 */
4223static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4224                        int cmd)
4225{
4226        struct et131x_adapter *adapter = netdev_priv(netdev);
4227
4228        if (!adapter->phydev)
4229                return -EINVAL;
4230
4231        return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4232}
4233
4234/* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4235 * @adapter: pointer to our private adapter structure
4236 *
4237 * FIXME: lot of dups with MAC code
4238 */
4239static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4240{
4241        int filter = adapter->packet_filter;
4242        u32 ctrl;
4243        u32 pf_ctrl;
4244
4245        ctrl = readl(&adapter->regs->rxmac.ctrl);
4246        pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4247
4248        /* Default to disabled packet filtering.  Enable it in the individual
4249         * case statements that require the device to filter something
4250         */
4251        ctrl |= 0x04;
4252
4253        /* Set us to be in promiscuous mode so we receive everything, this
4254         * is also true when we get a packet filter of 0
4255         */
4256        if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4257                pf_ctrl &= ~7;  /* Clear filter bits */
4258        else {
4259                /* Set us up with Multicast packet filtering.  Three cases are
4260                 * possible - (1) we have a multi-cast list, (2) we receive ALL
4261                 * multicast entries or (3) we receive none.
4262                 */
4263                if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4264                        pf_ctrl &= ~2;  /* Multicast filter bit */
4265                else {
4266                        et1310_setup_device_for_multicast(adapter);
4267                        pf_ctrl |= 2;
4268                        ctrl &= ~0x04;
4269                }
4270
4271                /* Set us up with Unicast packet filtering */
4272                if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4273                        et1310_setup_device_for_unicast(adapter);
4274                        pf_ctrl |= 4;
4275                        ctrl &= ~0x04;
4276                }
4277
4278                /* Set us up with Broadcast packet filtering */
4279                if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4280                        pf_ctrl |= 1;   /* Broadcast filter bit */
4281                        ctrl &= ~0x04;
4282                } else
4283                        pf_ctrl &= ~1;
4284
4285                /* Setup the receive mac configuration registers - Packet
4286                 * Filter control + the enable / disable for packet filter
4287                 * in the control reg.
4288                 */
4289                writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4290                writel(ctrl, &adapter->regs->rxmac.ctrl);
4291        }
4292        return 0;
4293}
4294
4295/* et131x_multicast - The handler to configure multicasting on the interface */
4296static void et131x_multicast(struct net_device *netdev)
4297{
4298        struct et131x_adapter *adapter = netdev_priv(netdev);
4299        int packet_filter;
4300        struct netdev_hw_addr *ha;
4301        int i;
4302
4303        /* Before we modify the platform-independent filter flags, store them
4304         * locally. This allows us to determine if anything's changed and if
4305         * we even need to bother the hardware
4306         */
4307        packet_filter = adapter->packet_filter;
4308
4309        /* Clear the 'multicast' flag locally; because we only have a single
4310         * flag to check multicast, and multiple multicast addresses can be
4311         * set, this is the easiest way to determine if more than one
4312         * multicast address is being set.
4313         */
4314        packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4315
4316        /* Check the net_device flags and set the device independent flags
4317         * accordingly
4318         */
4319
4320        if (netdev->flags & IFF_PROMISC)
4321                adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4322        else
4323                adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4324
4325        if (netdev->flags & IFF_ALLMULTI)
4326                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4327
4328        if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4329                adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4330
4331        if (netdev_mc_count(netdev) < 1) {
4332                adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4333                adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4334        } else
4335                adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4336
4337        /* Set values in the private adapter struct */
4338        i = 0;
4339        netdev_for_each_mc_addr(ha, netdev) {
4340                if (i == NIC_MAX_MCAST_LIST)
4341                        break;
4342                memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4343        }
4344        adapter->multicast_addr_count = i;
4345
4346        /* Are the new flags different from the previous ones? If not, then no
4347         * action is required
4348         *
4349         * NOTE - This block will always update the multicast_list with the
4350         *        hardware, even if the addresses aren't the same.
4351         */
4352        if (packet_filter != adapter->packet_filter)
4353                et131x_set_packet_filter(adapter);
4354}
4355
4356/* et131x_tx - The handler to tx a packet on the device */
4357static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4358{
4359        int status = 0;
4360        struct et131x_adapter *adapter = netdev_priv(netdev);
4361        struct tx_ring *tx_ring = &adapter->tx_ring;
4362
4363        /* stop the queue if it's getting full */
4364        if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
4365                netif_stop_queue(netdev);
4366
4367        /* Save the timestamp for the TX timeout watchdog */
4368        netdev->trans_start = jiffies;
4369
4370        /* Call the device-specific data Tx routine */
4371        status = et131x_send_packets(skb, netdev);
4372
4373        /* Check status and manage the netif queue if necessary */
4374        if (status != 0) {
4375                if (status == -ENOMEM)
4376                        status = NETDEV_TX_BUSY;
4377                else
4378                        status = NETDEV_TX_OK;
4379        }
4380        return status;
4381}
4382
4383/* et131x_tx_timeout - Timeout handler
4384 *
4385 * The handler called when a Tx request times out. The timeout period is
4386 * specified by the 'tx_timeo" element in the net_device structure (see
4387 * et131x_alloc_device() to see how this value is set).
4388 */
4389static void et131x_tx_timeout(struct net_device *netdev)
4390{
4391        struct et131x_adapter *adapter = netdev_priv(netdev);
4392        struct tx_ring *tx_ring = &adapter->tx_ring;
4393        struct tcb *tcb;
4394        unsigned long flags;
4395
4396        /* If the device is closed, ignore the timeout */
4397        if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
4398                return;
4399
4400        /* Any nonrecoverable hardware error?
4401         * Checks adapter->flags for any failure in phy reading
4402         */
4403        if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
4404                return;
4405
4406        /* Hardware failure? */
4407        if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
4408                dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4409                return;
4410        }
4411
4412        /* Is send stuck? */
4413        spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4414
4415        tcb = tx_ring->send_head;
4416
4417        if (tcb != NULL) {
4418                tcb->count++;
4419
4420                if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4421                        spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4422                                               flags);
4423
4424                        dev_warn(&adapter->pdev->dev,
4425                                "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
4426                                tcb->index,
4427                                tcb->flags);
4428
4429                        adapter->net_stats.tx_errors++;
4430
4431                        /* perform reset of tx/rx */
4432                        et131x_disable_txrx(netdev);
4433                        et131x_enable_txrx(netdev);
4434                        return;
4435                }
4436        }
4437
4438        spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4439}
4440
4441/* et131x_change_mtu - The handler called to change the MTU for the device */
4442static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4443{
4444        int result = 0;
4445        struct et131x_adapter *adapter = netdev_priv(netdev);
4446
4447        /* Make sure the requested MTU is valid */
4448        if (new_mtu < 64 || new_mtu > 9216)
4449                return -EINVAL;
4450
4451        et131x_disable_txrx(netdev);
4452        et131x_handle_send_interrupt(adapter);
4453        et131x_handle_recv_interrupt(adapter);
4454
4455        /* Set the new MTU */
4456        netdev->mtu = new_mtu;
4457
4458        /* Free Rx DMA memory */
4459        et131x_adapter_memory_free(adapter);
4460
4461        /* Set the config parameter for Jumbo Packet support */
4462        adapter->registry_jumbo_packet = new_mtu + 14;
4463        et131x_soft_reset(adapter);
4464
4465        /* Alloc and init Rx DMA memory */
4466        result = et131x_adapter_memory_alloc(adapter);
4467        if (result != 0) {
4468                dev_warn(&adapter->pdev->dev,
4469                        "Change MTU failed; couldn't re-alloc DMA memory\n");
4470                return result;
4471        }
4472
4473        et131x_init_send(adapter);
4474
4475        et131x_hwaddr_init(adapter);
4476        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4477
4478        /* Init the device with the new settings */
4479        et131x_adapter_setup(adapter);
4480
4481        et131x_enable_txrx(netdev);
4482
4483        return result;
4484}
4485
4486/* et131x_set_mac_addr - handler to change the MAC address for the device */
4487static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4488{
4489        int result = 0;
4490        struct et131x_adapter *adapter = netdev_priv(netdev);
4491        struct sockaddr *address = new_mac;
4492
4493        if (adapter == NULL)
4494                return -ENODEV;
4495
4496        /* Make sure the requested MAC is valid */
4497        if (!is_valid_ether_addr(address->sa_data))
4498                return -EADDRNOTAVAIL;
4499
4500        et131x_disable_txrx(netdev);
4501        et131x_handle_send_interrupt(adapter);
4502        et131x_handle_recv_interrupt(adapter);
4503
4504        /* Set the new MAC */
4505        /* netdev->set_mac_address  = &new_mac; */
4506
4507        memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4508
4509        netdev_info(netdev, "Setting MAC address to %pM\n",
4510                    netdev->dev_addr);
4511
4512        /* Free Rx DMA memory */
4513        et131x_adapter_memory_free(adapter);
4514
4515        et131x_soft_reset(adapter);
4516
4517        /* Alloc and init Rx DMA memory */
4518        result = et131x_adapter_memory_alloc(adapter);
4519        if (result != 0) {
4520                dev_err(&adapter->pdev->dev,
4521                        "Change MAC failed; couldn't re-alloc DMA memory\n");
4522                return result;
4523        }
4524
4525        et131x_init_send(adapter);
4526
4527        et131x_hwaddr_init(adapter);
4528
4529        /* Init the device with the new settings */
4530        et131x_adapter_setup(adapter);
4531
4532        et131x_enable_txrx(netdev);
4533
4534        return result;
4535}
4536
4537static const struct net_device_ops et131x_netdev_ops = {
4538        .ndo_open               = et131x_open,
4539        .ndo_stop               = et131x_close,
4540        .ndo_start_xmit         = et131x_tx,
4541        .ndo_set_rx_mode        = et131x_multicast,
4542        .ndo_tx_timeout         = et131x_tx_timeout,
4543        .ndo_change_mtu         = et131x_change_mtu,
4544        .ndo_set_mac_address    = et131x_set_mac_addr,
4545        .ndo_validate_addr      = eth_validate_addr,
4546        .ndo_get_stats          = et131x_stats,
4547        .ndo_do_ioctl           = et131x_ioctl,
4548};
4549
4550/* et131x_pci_setup - Perform device initialization
4551 * @pdev: a pointer to the device's pci_dev structure
4552 * @ent: this device's entry in the pci_device_id table
4553 *
4554 * Registered in the pci_driver structure, this function is called when the
4555 * PCI subsystem finds a new PCI device which matches the information
4556 * contained in the pci_device_id table. This routine is the equivalent to
4557 * a device insertion routine.
4558 */
4559static int et131x_pci_setup(struct pci_dev *pdev,
4560                            const struct pci_device_id *ent)
4561{
4562        struct net_device *netdev;
4563        struct et131x_adapter *adapter;
4564        int rc;
4565        int ii;
4566
4567        rc = pci_enable_device(pdev);
4568        if (rc < 0) {
4569                dev_err(&pdev->dev, "pci_enable_device() failed\n");
4570                goto out;
4571        }
4572
4573        /* Perform some basic PCI checks */
4574        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4575                dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4576                rc = -ENODEV;
4577                goto err_disable;
4578        }
4579
4580        rc = pci_request_regions(pdev, DRIVER_NAME);
4581        if (rc < 0) {
4582                dev_err(&pdev->dev, "Can't get PCI resources\n");
4583                goto err_disable;
4584        }
4585
4586        pci_set_master(pdev);
4587
4588        /* Check the DMA addressing support of this device */
4589        if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4590            dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
4591                dev_err(&pdev->dev, "No usable DMA addressing method\n");
4592                rc = -EIO;
4593                goto err_release_res;
4594        }
4595
4596        /* Allocate netdev and private adapter structs */
4597        netdev = alloc_etherdev(sizeof(struct et131x_adapter));
4598        if (!netdev) {
4599                dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4600                rc = -ENOMEM;
4601                goto err_release_res;
4602        }
4603
4604        netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4605        netdev->netdev_ops     = &et131x_netdev_ops;
4606
4607        SET_NETDEV_DEV(netdev, &pdev->dev);
4608        netdev->ethtool_ops = &et131x_ethtool_ops;
4609
4610        adapter = et131x_adapter_init(netdev, pdev);
4611
4612        rc = et131x_pci_init(adapter, pdev);
4613        if (rc < 0)
4614                goto err_free_dev;
4615
4616        /* Map the bus-relative registers to system virtual memory */
4617        adapter->regs = pci_ioremap_bar(pdev, 0);
4618        if (!adapter->regs) {
4619                dev_err(&pdev->dev, "Cannot map device registers\n");
4620                rc = -ENOMEM;
4621                goto err_free_dev;
4622        }
4623
4624        /* If Phy COMA mode was enabled when we went down, disable it here. */
4625        writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
4626
4627        /* Issue a global reset to the et1310 */
4628        et131x_soft_reset(adapter);
4629
4630        /* Disable all interrupts (paranoid) */
4631        et131x_disable_interrupts(adapter);
4632
4633        /* Allocate DMA memory */
4634        rc = et131x_adapter_memory_alloc(adapter);
4635        if (rc < 0) {
4636                dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4637                goto err_iounmap;
4638        }
4639
4640        /* Init send data structures */
4641        et131x_init_send(adapter);
4642
4643        /* Set up the task structure for the ISR's deferred handler */
4644        INIT_WORK(&adapter->task, et131x_isr_handler);
4645
4646        /* Copy address into the net_device struct */
4647        memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4648
4649        /* Init variable for counting how long we do not have link status */
4650        adapter->boot_coma = 0;
4651        et1310_disable_phy_coma(adapter);
4652
4653        rc = -ENOMEM;
4654
4655        /* Setup the mii_bus struct */
4656        adapter->mii_bus = mdiobus_alloc();
4657        if (!adapter->mii_bus) {
4658                dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4659                goto err_mem_free;
4660        }
4661
4662        adapter->mii_bus->name = "et131x_eth_mii";
4663        snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4664                (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4665        adapter->mii_bus->priv = netdev;
4666        adapter->mii_bus->read = et131x_mdio_read;
4667        adapter->mii_bus->write = et131x_mdio_write;
4668        adapter->mii_bus->reset = et131x_mdio_reset;
4669        adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4670                                              GFP_KERNEL);
4671        if (!adapter->mii_bus->irq)
4672                goto err_mdio_free;
4673
4674        for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4675                adapter->mii_bus->irq[ii] = PHY_POLL;
4676
4677        rc = mdiobus_register(adapter->mii_bus);
4678        if (rc < 0) {
4679                dev_err(&pdev->dev, "failed to register MII bus\n");
4680                goto err_mdio_free_irq;
4681        }
4682
4683        rc = et131x_mii_probe(netdev);
4684        if (rc < 0) {
4685                dev_err(&pdev->dev, "failed to probe MII bus\n");
4686                goto err_mdio_unregister;
4687        }
4688
4689        /* Setup et1310 as per the documentation */
4690        et131x_adapter_setup(adapter);
4691
4692        /* We can enable interrupts now
4693         *
4694         *  NOTE - Because registration of interrupt handler is done in the
4695         *         device's open(), defer enabling device interrupts to that
4696         *         point
4697         */
4698
4699        /* Register the net_device struct with the Linux network layer */
4700        rc = register_netdev(netdev);
4701        if (rc < 0) {
4702                dev_err(&pdev->dev, "register_netdev() failed\n");
4703                goto err_phy_disconnect;
4704        }
4705
4706        /* Register the net_device struct with the PCI subsystem. Save a copy
4707         * of the PCI config space for this device now that the device has
4708         * been initialized, just in case it needs to be quickly restored.
4709         */
4710        pci_set_drvdata(pdev, netdev);
4711out:
4712        return rc;
4713
4714err_phy_disconnect:
4715        phy_disconnect(adapter->phydev);
4716err_mdio_unregister:
4717        mdiobus_unregister(adapter->mii_bus);
4718err_mdio_free_irq:
4719        kfree(adapter->mii_bus->irq);
4720err_mdio_free:
4721        mdiobus_free(adapter->mii_bus);
4722err_mem_free:
4723        et131x_adapter_memory_free(adapter);
4724err_iounmap:
4725        iounmap(adapter->regs);
4726err_free_dev:
4727        pci_dev_put(pdev);
4728        free_netdev(netdev);
4729err_release_res:
4730        pci_release_regions(pdev);
4731err_disable:
4732        pci_disable_device(pdev);
4733        goto out;
4734}
4735
4736static const struct pci_device_id et131x_pci_table[] = {
4737        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4738        { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4739        {0,}
4740};
4741MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4742
4743static struct pci_driver et131x_driver = {
4744        .name           = DRIVER_NAME,
4745        .id_table       = et131x_pci_table,
4746        .probe          = et131x_pci_setup,
4747        .remove         = et131x_pci_remove,
4748        .driver.pm      = ET131X_PM_OPS,
4749};
4750
4751module_pci_driver(et131x_driver);
4752