linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/slab.h>
  30#include <linux/migrate.h>
  31#include <linux/ratelimit.h>
  32#include <linux/uuid.h>
  33#include <linux/semaphore.h>
  34#include <asm/unaligned.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "hash.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "print-tree.h"
  42#include "async-thread.h"
  43#include "locking.h"
  44#include "tree-log.h"
  45#include "free-space-cache.h"
  46#include "inode-map.h"
  47#include "check-integrity.h"
  48#include "rcu-string.h"
  49#include "dev-replace.h"
  50#include "raid56.h"
  51#include "sysfs.h"
  52#include "qgroup.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
  57
  58static struct extent_io_ops btree_extent_io_ops;
  59static void end_workqueue_fn(struct btrfs_work *work);
  60static void free_fs_root(struct btrfs_root *root);
  61static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  62                                    int read_only);
  63static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  64                                             struct btrfs_root *root);
  65static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67                                      struct btrfs_root *root);
  68static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70                                        struct extent_io_tree *dirty_pages,
  71                                        int mark);
  72static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73                                       struct extent_io_tree *pinned_extents);
  74static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75static void btrfs_error_commit_super(struct btrfs_root *root);
  76
  77/*
  78 * end_io_wq structs are used to do processing in task context when an IO is
  79 * complete.  This is used during reads to verify checksums, and it is used
  80 * by writes to insert metadata for new file extents after IO is complete.
  81 */
  82struct end_io_wq {
  83        struct bio *bio;
  84        bio_end_io_t *end_io;
  85        void *private;
  86        struct btrfs_fs_info *info;
  87        int error;
  88        int metadata;
  89        struct list_head list;
  90        struct btrfs_work work;
  91};
  92
  93/*
  94 * async submit bios are used to offload expensive checksumming
  95 * onto the worker threads.  They checksum file and metadata bios
  96 * just before they are sent down the IO stack.
  97 */
  98struct async_submit_bio {
  99        struct inode *inode;
 100        struct bio *bio;
 101        struct list_head list;
 102        extent_submit_bio_hook_t *submit_bio_start;
 103        extent_submit_bio_hook_t *submit_bio_done;
 104        int rw;
 105        int mirror_num;
 106        unsigned long bio_flags;
 107        /*
 108         * bio_offset is optional, can be used if the pages in the bio
 109         * can't tell us where in the file the bio should go
 110         */
 111        u64 bio_offset;
 112        struct btrfs_work work;
 113        int error;
 114};
 115
 116/*
 117 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 118 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 119 * the level the eb occupies in the tree.
 120 *
 121 * Different roots are used for different purposes and may nest inside each
 122 * other and they require separate keysets.  As lockdep keys should be
 123 * static, assign keysets according to the purpose of the root as indicated
 124 * by btrfs_root->objectid.  This ensures that all special purpose roots
 125 * have separate keysets.
 126 *
 127 * Lock-nesting across peer nodes is always done with the immediate parent
 128 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 129 * subclass to avoid triggering lockdep warning in such cases.
 130 *
 131 * The key is set by the readpage_end_io_hook after the buffer has passed
 132 * csum validation but before the pages are unlocked.  It is also set by
 133 * btrfs_init_new_buffer on freshly allocated blocks.
 134 *
 135 * We also add a check to make sure the highest level of the tree is the
 136 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 137 * needs update as well.
 138 */
 139#ifdef CONFIG_DEBUG_LOCK_ALLOC
 140# if BTRFS_MAX_LEVEL != 8
 141#  error
 142# endif
 143
 144static struct btrfs_lockdep_keyset {
 145        u64                     id;             /* root objectid */
 146        const char              *name_stem;     /* lock name stem */
 147        char                    names[BTRFS_MAX_LEVEL + 1][20];
 148        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 149} btrfs_lockdep_keysets[] = {
 150        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 151        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 152        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 153        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 154        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 155        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 156        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 157        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 158        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 159        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 160        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 161        { .id = 0,                              .name_stem = "tree"     },
 162};
 163
 164void __init btrfs_init_lockdep(void)
 165{
 166        int i, j;
 167
 168        /* initialize lockdep class names */
 169        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 170                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 171
 172                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 173                        snprintf(ks->names[j], sizeof(ks->names[j]),
 174                                 "btrfs-%s-%02d", ks->name_stem, j);
 175        }
 176}
 177
 178void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 179                                    int level)
 180{
 181        struct btrfs_lockdep_keyset *ks;
 182
 183        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 184
 185        /* find the matching keyset, id 0 is the default entry */
 186        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 187                if (ks->id == objectid)
 188                        break;
 189
 190        lockdep_set_class_and_name(&eb->lock,
 191                                   &ks->keys[level], ks->names[level]);
 192}
 193
 194#endif
 195
 196/*
 197 * extents on the btree inode are pretty simple, there's one extent
 198 * that covers the entire device
 199 */
 200static struct extent_map *btree_get_extent(struct inode *inode,
 201                struct page *page, size_t pg_offset, u64 start, u64 len,
 202                int create)
 203{
 204        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 205        struct extent_map *em;
 206        int ret;
 207
 208        read_lock(&em_tree->lock);
 209        em = lookup_extent_mapping(em_tree, start, len);
 210        if (em) {
 211                em->bdev =
 212                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 213                read_unlock(&em_tree->lock);
 214                goto out;
 215        }
 216        read_unlock(&em_tree->lock);
 217
 218        em = alloc_extent_map();
 219        if (!em) {
 220                em = ERR_PTR(-ENOMEM);
 221                goto out;
 222        }
 223        em->start = 0;
 224        em->len = (u64)-1;
 225        em->block_len = (u64)-1;
 226        em->block_start = 0;
 227        em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 228
 229        write_lock(&em_tree->lock);
 230        ret = add_extent_mapping(em_tree, em, 0);
 231        if (ret == -EEXIST) {
 232                free_extent_map(em);
 233                em = lookup_extent_mapping(em_tree, start, len);
 234                if (!em)
 235                        em = ERR_PTR(-EIO);
 236        } else if (ret) {
 237                free_extent_map(em);
 238                em = ERR_PTR(ret);
 239        }
 240        write_unlock(&em_tree->lock);
 241
 242out:
 243        return em;
 244}
 245
 246u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 247{
 248        return btrfs_crc32c(seed, data, len);
 249}
 250
 251void btrfs_csum_final(u32 crc, char *result)
 252{
 253        put_unaligned_le32(~crc, result);
 254}
 255
 256/*
 257 * compute the csum for a btree block, and either verify it or write it
 258 * into the csum field of the block.
 259 */
 260static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 261                           int verify)
 262{
 263        u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 264        char *result = NULL;
 265        unsigned long len;
 266        unsigned long cur_len;
 267        unsigned long offset = BTRFS_CSUM_SIZE;
 268        char *kaddr;
 269        unsigned long map_start;
 270        unsigned long map_len;
 271        int err;
 272        u32 crc = ~(u32)0;
 273        unsigned long inline_result;
 274
 275        len = buf->len - offset;
 276        while (len > 0) {
 277                err = map_private_extent_buffer(buf, offset, 32,
 278                                        &kaddr, &map_start, &map_len);
 279                if (err)
 280                        return 1;
 281                cur_len = min(len, map_len - (offset - map_start));
 282                crc = btrfs_csum_data(kaddr + offset - map_start,
 283                                      crc, cur_len);
 284                len -= cur_len;
 285                offset += cur_len;
 286        }
 287        if (csum_size > sizeof(inline_result)) {
 288                result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 289                if (!result)
 290                        return 1;
 291        } else {
 292                result = (char *)&inline_result;
 293        }
 294
 295        btrfs_csum_final(crc, result);
 296
 297        if (verify) {
 298                if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 299                        u32 val;
 300                        u32 found = 0;
 301                        memcpy(&found, result, csum_size);
 302
 303                        read_extent_buffer(buf, &val, 0, csum_size);
 304                        printk_ratelimited(KERN_INFO
 305                                "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
 306                                "level %d\n",
 307                                root->fs_info->sb->s_id, buf->start,
 308                                val, found, btrfs_header_level(buf));
 309                        if (result != (char *)&inline_result)
 310                                kfree(result);
 311                        return 1;
 312                }
 313        } else {
 314                write_extent_buffer(buf, result, 0, csum_size);
 315        }
 316        if (result != (char *)&inline_result)
 317                kfree(result);
 318        return 0;
 319}
 320
 321/*
 322 * we can't consider a given block up to date unless the transid of the
 323 * block matches the transid in the parent node's pointer.  This is how we
 324 * detect blocks that either didn't get written at all or got written
 325 * in the wrong place.
 326 */
 327static int verify_parent_transid(struct extent_io_tree *io_tree,
 328                                 struct extent_buffer *eb, u64 parent_transid,
 329                                 int atomic)
 330{
 331        struct extent_state *cached_state = NULL;
 332        int ret;
 333        bool need_lock = (current->journal_info ==
 334                          (void *)BTRFS_SEND_TRANS_STUB);
 335
 336        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 337                return 0;
 338
 339        if (atomic)
 340                return -EAGAIN;
 341
 342        if (need_lock) {
 343                btrfs_tree_read_lock(eb);
 344                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 345        }
 346
 347        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 348                         0, &cached_state);
 349        if (extent_buffer_uptodate(eb) &&
 350            btrfs_header_generation(eb) == parent_transid) {
 351                ret = 0;
 352                goto out;
 353        }
 354        printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 355                       "found %llu\n",
 356                       eb->start, parent_transid, btrfs_header_generation(eb));
 357        ret = 1;
 358
 359        /*
 360         * Things reading via commit roots that don't have normal protection,
 361         * like send, can have a really old block in cache that may point at a
 362         * block that has been free'd and re-allocated.  So don't clear uptodate
 363         * if we find an eb that is under IO (dirty/writeback) because we could
 364         * end up reading in the stale data and then writing it back out and
 365         * making everybody very sad.
 366         */
 367        if (!extent_buffer_under_io(eb))
 368                clear_extent_buffer_uptodate(eb);
 369out:
 370        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 371                             &cached_state, GFP_NOFS);
 372        if (need_lock)
 373                btrfs_tree_read_unlock_blocking(eb);
 374        return ret;
 375}
 376
 377/*
 378 * Return 0 if the superblock checksum type matches the checksum value of that
 379 * algorithm. Pass the raw disk superblock data.
 380 */
 381static int btrfs_check_super_csum(char *raw_disk_sb)
 382{
 383        struct btrfs_super_block *disk_sb =
 384                (struct btrfs_super_block *)raw_disk_sb;
 385        u16 csum_type = btrfs_super_csum_type(disk_sb);
 386        int ret = 0;
 387
 388        if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 389                u32 crc = ~(u32)0;
 390                const int csum_size = sizeof(crc);
 391                char result[csum_size];
 392
 393                /*
 394                 * The super_block structure does not span the whole
 395                 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 396                 * is filled with zeros and is included in the checkum.
 397                 */
 398                crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 399                                crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 400                btrfs_csum_final(crc, result);
 401
 402                if (memcmp(raw_disk_sb, result, csum_size))
 403                        ret = 1;
 404
 405                if (ret && btrfs_super_generation(disk_sb) < 10) {
 406                        printk(KERN_WARNING
 407                                "BTRFS: super block crcs don't match, older mkfs detected\n");
 408                        ret = 0;
 409                }
 410        }
 411
 412        if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 413                printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 414                                csum_type);
 415                ret = 1;
 416        }
 417
 418        return ret;
 419}
 420
 421/*
 422 * helper to read a given tree block, doing retries as required when
 423 * the checksums don't match and we have alternate mirrors to try.
 424 */
 425static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 426                                          struct extent_buffer *eb,
 427                                          u64 start, u64 parent_transid)
 428{
 429        struct extent_io_tree *io_tree;
 430        int failed = 0;
 431        int ret;
 432        int num_copies = 0;
 433        int mirror_num = 0;
 434        int failed_mirror = 0;
 435
 436        clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 437        io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 438        while (1) {
 439                ret = read_extent_buffer_pages(io_tree, eb, start,
 440                                               WAIT_COMPLETE,
 441                                               btree_get_extent, mirror_num);
 442                if (!ret) {
 443                        if (!verify_parent_transid(io_tree, eb,
 444                                                   parent_transid, 0))
 445                                break;
 446                        else
 447                                ret = -EIO;
 448                }
 449
 450                /*
 451                 * This buffer's crc is fine, but its contents are corrupted, so
 452                 * there is no reason to read the other copies, they won't be
 453                 * any less wrong.
 454                 */
 455                if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 456                        break;
 457
 458                num_copies = btrfs_num_copies(root->fs_info,
 459                                              eb->start, eb->len);
 460                if (num_copies == 1)
 461                        break;
 462
 463                if (!failed_mirror) {
 464                        failed = 1;
 465                        failed_mirror = eb->read_mirror;
 466                }
 467
 468                mirror_num++;
 469                if (mirror_num == failed_mirror)
 470                        mirror_num++;
 471
 472                if (mirror_num > num_copies)
 473                        break;
 474        }
 475
 476        if (failed && !ret && failed_mirror)
 477                repair_eb_io_failure(root, eb, failed_mirror);
 478
 479        return ret;
 480}
 481
 482/*
 483 * checksum a dirty tree block before IO.  This has extra checks to make sure
 484 * we only fill in the checksum field in the first page of a multi-page block
 485 */
 486
 487static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 488{
 489        u64 start = page_offset(page);
 490        u64 found_start;
 491        struct extent_buffer *eb;
 492
 493        eb = (struct extent_buffer *)page->private;
 494        if (page != eb->pages[0])
 495                return 0;
 496        found_start = btrfs_header_bytenr(eb);
 497        if (WARN_ON(found_start != start || !PageUptodate(page)))
 498                return 0;
 499        csum_tree_block(root, eb, 0);
 500        return 0;
 501}
 502
 503static int check_tree_block_fsid(struct btrfs_root *root,
 504                                 struct extent_buffer *eb)
 505{
 506        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 507        u8 fsid[BTRFS_UUID_SIZE];
 508        int ret = 1;
 509
 510        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 511        while (fs_devices) {
 512                if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 513                        ret = 0;
 514                        break;
 515                }
 516                fs_devices = fs_devices->seed;
 517        }
 518        return ret;
 519}
 520
 521#define CORRUPT(reason, eb, root, slot)                         \
 522        btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
 523                   "root=%llu, slot=%d", reason,                        \
 524               btrfs_header_bytenr(eb), root->objectid, slot)
 525
 526static noinline int check_leaf(struct btrfs_root *root,
 527                               struct extent_buffer *leaf)
 528{
 529        struct btrfs_key key;
 530        struct btrfs_key leaf_key;
 531        u32 nritems = btrfs_header_nritems(leaf);
 532        int slot;
 533
 534        if (nritems == 0)
 535                return 0;
 536
 537        /* Check the 0 item */
 538        if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 539            BTRFS_LEAF_DATA_SIZE(root)) {
 540                CORRUPT("invalid item offset size pair", leaf, root, 0);
 541                return -EIO;
 542        }
 543
 544        /*
 545         * Check to make sure each items keys are in the correct order and their
 546         * offsets make sense.  We only have to loop through nritems-1 because
 547         * we check the current slot against the next slot, which verifies the
 548         * next slot's offset+size makes sense and that the current's slot
 549         * offset is correct.
 550         */
 551        for (slot = 0; slot < nritems - 1; slot++) {
 552                btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 553                btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 554
 555                /* Make sure the keys are in the right order */
 556                if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 557                        CORRUPT("bad key order", leaf, root, slot);
 558                        return -EIO;
 559                }
 560
 561                /*
 562                 * Make sure the offset and ends are right, remember that the
 563                 * item data starts at the end of the leaf and grows towards the
 564                 * front.
 565                 */
 566                if (btrfs_item_offset_nr(leaf, slot) !=
 567                        btrfs_item_end_nr(leaf, slot + 1)) {
 568                        CORRUPT("slot offset bad", leaf, root, slot);
 569                        return -EIO;
 570                }
 571
 572                /*
 573                 * Check to make sure that we don't point outside of the leaf,
 574                 * just incase all the items are consistent to eachother, but
 575                 * all point outside of the leaf.
 576                 */
 577                if (btrfs_item_end_nr(leaf, slot) >
 578                    BTRFS_LEAF_DATA_SIZE(root)) {
 579                        CORRUPT("slot end outside of leaf", leaf, root, slot);
 580                        return -EIO;
 581                }
 582        }
 583
 584        return 0;
 585}
 586
 587static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 588                                      u64 phy_offset, struct page *page,
 589                                      u64 start, u64 end, int mirror)
 590{
 591        u64 found_start;
 592        int found_level;
 593        struct extent_buffer *eb;
 594        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 595        int ret = 0;
 596        int reads_done;
 597
 598        if (!page->private)
 599                goto out;
 600
 601        eb = (struct extent_buffer *)page->private;
 602
 603        /* the pending IO might have been the only thing that kept this buffer
 604         * in memory.  Make sure we have a ref for all this other checks
 605         */
 606        extent_buffer_get(eb);
 607
 608        reads_done = atomic_dec_and_test(&eb->io_pages);
 609        if (!reads_done)
 610                goto err;
 611
 612        eb->read_mirror = mirror;
 613        if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 614                ret = -EIO;
 615                goto err;
 616        }
 617
 618        found_start = btrfs_header_bytenr(eb);
 619        if (found_start != eb->start) {
 620                printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
 621                               "%llu %llu\n",
 622                               found_start, eb->start);
 623                ret = -EIO;
 624                goto err;
 625        }
 626        if (check_tree_block_fsid(root, eb)) {
 627                printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
 628                               eb->start);
 629                ret = -EIO;
 630                goto err;
 631        }
 632        found_level = btrfs_header_level(eb);
 633        if (found_level >= BTRFS_MAX_LEVEL) {
 634                btrfs_info(root->fs_info, "bad tree block level %d",
 635                           (int)btrfs_header_level(eb));
 636                ret = -EIO;
 637                goto err;
 638        }
 639
 640        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 641                                       eb, found_level);
 642
 643        ret = csum_tree_block(root, eb, 1);
 644        if (ret) {
 645                ret = -EIO;
 646                goto err;
 647        }
 648
 649        /*
 650         * If this is a leaf block and it is corrupt, set the corrupt bit so
 651         * that we don't try and read the other copies of this block, just
 652         * return -EIO.
 653         */
 654        if (found_level == 0 && check_leaf(root, eb)) {
 655                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 656                ret = -EIO;
 657        }
 658
 659        if (!ret)
 660                set_extent_buffer_uptodate(eb);
 661err:
 662        if (reads_done &&
 663            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 664                btree_readahead_hook(root, eb, eb->start, ret);
 665
 666        if (ret) {
 667                /*
 668                 * our io error hook is going to dec the io pages
 669                 * again, we have to make sure it has something
 670                 * to decrement
 671                 */
 672                atomic_inc(&eb->io_pages);
 673                clear_extent_buffer_uptodate(eb);
 674        }
 675        free_extent_buffer(eb);
 676out:
 677        return ret;
 678}
 679
 680static int btree_io_failed_hook(struct page *page, int failed_mirror)
 681{
 682        struct extent_buffer *eb;
 683        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 684
 685        eb = (struct extent_buffer *)page->private;
 686        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 687        eb->read_mirror = failed_mirror;
 688        atomic_dec(&eb->io_pages);
 689        if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 690                btree_readahead_hook(root, eb, eb->start, -EIO);
 691        return -EIO;    /* we fixed nothing */
 692}
 693
 694static void end_workqueue_bio(struct bio *bio, int err)
 695{
 696        struct end_io_wq *end_io_wq = bio->bi_private;
 697        struct btrfs_fs_info *fs_info;
 698
 699        fs_info = end_io_wq->info;
 700        end_io_wq->error = err;
 701        btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 702
 703        if (bio->bi_rw & REQ_WRITE) {
 704                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 705                        btrfs_queue_work(fs_info->endio_meta_write_workers,
 706                                         &end_io_wq->work);
 707                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 708                        btrfs_queue_work(fs_info->endio_freespace_worker,
 709                                         &end_io_wq->work);
 710                else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 711                        btrfs_queue_work(fs_info->endio_raid56_workers,
 712                                         &end_io_wq->work);
 713                else
 714                        btrfs_queue_work(fs_info->endio_write_workers,
 715                                         &end_io_wq->work);
 716        } else {
 717                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 718                        btrfs_queue_work(fs_info->endio_raid56_workers,
 719                                         &end_io_wq->work);
 720                else if (end_io_wq->metadata)
 721                        btrfs_queue_work(fs_info->endio_meta_workers,
 722                                         &end_io_wq->work);
 723                else
 724                        btrfs_queue_work(fs_info->endio_workers,
 725                                         &end_io_wq->work);
 726        }
 727}
 728
 729/*
 730 * For the metadata arg you want
 731 *
 732 * 0 - if data
 733 * 1 - if normal metadta
 734 * 2 - if writing to the free space cache area
 735 * 3 - raid parity work
 736 */
 737int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 738                        int metadata)
 739{
 740        struct end_io_wq *end_io_wq;
 741        end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 742        if (!end_io_wq)
 743                return -ENOMEM;
 744
 745        end_io_wq->private = bio->bi_private;
 746        end_io_wq->end_io = bio->bi_end_io;
 747        end_io_wq->info = info;
 748        end_io_wq->error = 0;
 749        end_io_wq->bio = bio;
 750        end_io_wq->metadata = metadata;
 751
 752        bio->bi_private = end_io_wq;
 753        bio->bi_end_io = end_workqueue_bio;
 754        return 0;
 755}
 756
 757unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 758{
 759        unsigned long limit = min_t(unsigned long,
 760                                    info->thread_pool_size,
 761                                    info->fs_devices->open_devices);
 762        return 256 * limit;
 763}
 764
 765static void run_one_async_start(struct btrfs_work *work)
 766{
 767        struct async_submit_bio *async;
 768        int ret;
 769
 770        async = container_of(work, struct  async_submit_bio, work);
 771        ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 772                                      async->mirror_num, async->bio_flags,
 773                                      async->bio_offset);
 774        if (ret)
 775                async->error = ret;
 776}
 777
 778static void run_one_async_done(struct btrfs_work *work)
 779{
 780        struct btrfs_fs_info *fs_info;
 781        struct async_submit_bio *async;
 782        int limit;
 783
 784        async = container_of(work, struct  async_submit_bio, work);
 785        fs_info = BTRFS_I(async->inode)->root->fs_info;
 786
 787        limit = btrfs_async_submit_limit(fs_info);
 788        limit = limit * 2 / 3;
 789
 790        if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 791            waitqueue_active(&fs_info->async_submit_wait))
 792                wake_up(&fs_info->async_submit_wait);
 793
 794        /* If an error occured we just want to clean up the bio and move on */
 795        if (async->error) {
 796                bio_endio(async->bio, async->error);
 797                return;
 798        }
 799
 800        async->submit_bio_done(async->inode, async->rw, async->bio,
 801                               async->mirror_num, async->bio_flags,
 802                               async->bio_offset);
 803}
 804
 805static void run_one_async_free(struct btrfs_work *work)
 806{
 807        struct async_submit_bio *async;
 808
 809        async = container_of(work, struct  async_submit_bio, work);
 810        kfree(async);
 811}
 812
 813int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 814                        int rw, struct bio *bio, int mirror_num,
 815                        unsigned long bio_flags,
 816                        u64 bio_offset,
 817                        extent_submit_bio_hook_t *submit_bio_start,
 818                        extent_submit_bio_hook_t *submit_bio_done)
 819{
 820        struct async_submit_bio *async;
 821
 822        async = kmalloc(sizeof(*async), GFP_NOFS);
 823        if (!async)
 824                return -ENOMEM;
 825
 826        async->inode = inode;
 827        async->rw = rw;
 828        async->bio = bio;
 829        async->mirror_num = mirror_num;
 830        async->submit_bio_start = submit_bio_start;
 831        async->submit_bio_done = submit_bio_done;
 832
 833        btrfs_init_work(&async->work, run_one_async_start,
 834                        run_one_async_done, run_one_async_free);
 835
 836        async->bio_flags = bio_flags;
 837        async->bio_offset = bio_offset;
 838
 839        async->error = 0;
 840
 841        atomic_inc(&fs_info->nr_async_submits);
 842
 843        if (rw & REQ_SYNC)
 844                btrfs_set_work_high_priority(&async->work);
 845
 846        btrfs_queue_work(fs_info->workers, &async->work);
 847
 848        while (atomic_read(&fs_info->async_submit_draining) &&
 849              atomic_read(&fs_info->nr_async_submits)) {
 850                wait_event(fs_info->async_submit_wait,
 851                           (atomic_read(&fs_info->nr_async_submits) == 0));
 852        }
 853
 854        return 0;
 855}
 856
 857static int btree_csum_one_bio(struct bio *bio)
 858{
 859        struct bio_vec *bvec;
 860        struct btrfs_root *root;
 861        int i, ret = 0;
 862
 863        bio_for_each_segment_all(bvec, bio, i) {
 864                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 865                ret = csum_dirty_buffer(root, bvec->bv_page);
 866                if (ret)
 867                        break;
 868        }
 869
 870        return ret;
 871}
 872
 873static int __btree_submit_bio_start(struct inode *inode, int rw,
 874                                    struct bio *bio, int mirror_num,
 875                                    unsigned long bio_flags,
 876                                    u64 bio_offset)
 877{
 878        /*
 879         * when we're called for a write, we're already in the async
 880         * submission context.  Just jump into btrfs_map_bio
 881         */
 882        return btree_csum_one_bio(bio);
 883}
 884
 885static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 886                                 int mirror_num, unsigned long bio_flags,
 887                                 u64 bio_offset)
 888{
 889        int ret;
 890
 891        /*
 892         * when we're called for a write, we're already in the async
 893         * submission context.  Just jump into btrfs_map_bio
 894         */
 895        ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 896        if (ret)
 897                bio_endio(bio, ret);
 898        return ret;
 899}
 900
 901static int check_async_write(struct inode *inode, unsigned long bio_flags)
 902{
 903        if (bio_flags & EXTENT_BIO_TREE_LOG)
 904                return 0;
 905#ifdef CONFIG_X86
 906        if (cpu_has_xmm4_2)
 907                return 0;
 908#endif
 909        return 1;
 910}
 911
 912static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 913                                 int mirror_num, unsigned long bio_flags,
 914                                 u64 bio_offset)
 915{
 916        int async = check_async_write(inode, bio_flags);
 917        int ret;
 918
 919        if (!(rw & REQ_WRITE)) {
 920                /*
 921                 * called for a read, do the setup so that checksum validation
 922                 * can happen in the async kernel threads
 923                 */
 924                ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 925                                          bio, 1);
 926                if (ret)
 927                        goto out_w_error;
 928                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 929                                    mirror_num, 0);
 930        } else if (!async) {
 931                ret = btree_csum_one_bio(bio);
 932                if (ret)
 933                        goto out_w_error;
 934                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 935                                    mirror_num, 0);
 936        } else {
 937                /*
 938                 * kthread helpers are used to submit writes so that
 939                 * checksumming can happen in parallel across all CPUs
 940                 */
 941                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 942                                          inode, rw, bio, mirror_num, 0,
 943                                          bio_offset,
 944                                          __btree_submit_bio_start,
 945                                          __btree_submit_bio_done);
 946        }
 947
 948        if (ret) {
 949out_w_error:
 950                bio_endio(bio, ret);
 951        }
 952        return ret;
 953}
 954
 955#ifdef CONFIG_MIGRATION
 956static int btree_migratepage(struct address_space *mapping,
 957                        struct page *newpage, struct page *page,
 958                        enum migrate_mode mode)
 959{
 960        /*
 961         * we can't safely write a btree page from here,
 962         * we haven't done the locking hook
 963         */
 964        if (PageDirty(page))
 965                return -EAGAIN;
 966        /*
 967         * Buffers may be managed in a filesystem specific way.
 968         * We must have no buffers or drop them.
 969         */
 970        if (page_has_private(page) &&
 971            !try_to_release_page(page, GFP_KERNEL))
 972                return -EAGAIN;
 973        return migrate_page(mapping, newpage, page, mode);
 974}
 975#endif
 976
 977
 978static int btree_writepages(struct address_space *mapping,
 979                            struct writeback_control *wbc)
 980{
 981        struct btrfs_fs_info *fs_info;
 982        int ret;
 983
 984        if (wbc->sync_mode == WB_SYNC_NONE) {
 985
 986                if (wbc->for_kupdate)
 987                        return 0;
 988
 989                fs_info = BTRFS_I(mapping->host)->root->fs_info;
 990                /* this is a bit racy, but that's ok */
 991                ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 992                                             BTRFS_DIRTY_METADATA_THRESH);
 993                if (ret < 0)
 994                        return 0;
 995        }
 996        return btree_write_cache_pages(mapping, wbc);
 997}
 998
 999static int btree_readpage(struct file *file, struct page *page)
1000{
1001        struct extent_io_tree *tree;
1002        tree = &BTRFS_I(page->mapping->host)->io_tree;
1003        return extent_read_full_page(tree, page, btree_get_extent, 0);
1004}
1005
1006static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1007{
1008        if (PageWriteback(page) || PageDirty(page))
1009                return 0;
1010
1011        return try_release_extent_buffer(page);
1012}
1013
1014static void btree_invalidatepage(struct page *page, unsigned int offset,
1015                                 unsigned int length)
1016{
1017        struct extent_io_tree *tree;
1018        tree = &BTRFS_I(page->mapping->host)->io_tree;
1019        extent_invalidatepage(tree, page, offset);
1020        btree_releasepage(page, GFP_NOFS);
1021        if (PagePrivate(page)) {
1022                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1023                           "page private not zero on page %llu",
1024                           (unsigned long long)page_offset(page));
1025                ClearPagePrivate(page);
1026                set_page_private(page, 0);
1027                page_cache_release(page);
1028        }
1029}
1030
1031static int btree_set_page_dirty(struct page *page)
1032{
1033#ifdef DEBUG
1034        struct extent_buffer *eb;
1035
1036        BUG_ON(!PagePrivate(page));
1037        eb = (struct extent_buffer *)page->private;
1038        BUG_ON(!eb);
1039        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040        BUG_ON(!atomic_read(&eb->refs));
1041        btrfs_assert_tree_locked(eb);
1042#endif
1043        return __set_page_dirty_nobuffers(page);
1044}
1045
1046static const struct address_space_operations btree_aops = {
1047        .readpage       = btree_readpage,
1048        .writepages     = btree_writepages,
1049        .releasepage    = btree_releasepage,
1050        .invalidatepage = btree_invalidatepage,
1051#ifdef CONFIG_MIGRATION
1052        .migratepage    = btree_migratepage,
1053#endif
1054        .set_page_dirty = btree_set_page_dirty,
1055};
1056
1057int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058                         u64 parent_transid)
1059{
1060        struct extent_buffer *buf = NULL;
1061        struct inode *btree_inode = root->fs_info->btree_inode;
1062        int ret = 0;
1063
1064        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065        if (!buf)
1066                return 0;
1067        read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068                                 buf, 0, WAIT_NONE, btree_get_extent, 0);
1069        free_extent_buffer(buf);
1070        return ret;
1071}
1072
1073int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074                         int mirror_num, struct extent_buffer **eb)
1075{
1076        struct extent_buffer *buf = NULL;
1077        struct inode *btree_inode = root->fs_info->btree_inode;
1078        struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079        int ret;
1080
1081        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082        if (!buf)
1083                return 0;
1084
1085        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087        ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088                                       btree_get_extent, mirror_num);
1089        if (ret) {
1090                free_extent_buffer(buf);
1091                return ret;
1092        }
1093
1094        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095                free_extent_buffer(buf);
1096                return -EIO;
1097        } else if (extent_buffer_uptodate(buf)) {
1098                *eb = buf;
1099        } else {
1100                free_extent_buffer(buf);
1101        }
1102        return 0;
1103}
1104
1105struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106                                            u64 bytenr, u32 blocksize)
1107{
1108        return find_extent_buffer(root->fs_info, bytenr);
1109}
1110
1111struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112                                                 u64 bytenr, u32 blocksize)
1113{
1114#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1115        if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1116                return alloc_test_extent_buffer(root->fs_info, bytenr,
1117                                                blocksize);
1118#endif
1119        return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1120}
1121
1122
1123int btrfs_write_tree_block(struct extent_buffer *buf)
1124{
1125        return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1126                                        buf->start + buf->len - 1);
1127}
1128
1129int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130{
1131        return filemap_fdatawait_range(buf->pages[0]->mapping,
1132                                       buf->start, buf->start + buf->len - 1);
1133}
1134
1135struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1136                                      u32 blocksize, u64 parent_transid)
1137{
1138        struct extent_buffer *buf = NULL;
1139        int ret;
1140
1141        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142        if (!buf)
1143                return NULL;
1144
1145        ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1146        if (ret) {
1147                free_extent_buffer(buf);
1148                return NULL;
1149        }
1150        return buf;
1151
1152}
1153
1154void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155                      struct extent_buffer *buf)
1156{
1157        struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159        if (btrfs_header_generation(buf) ==
1160            fs_info->running_transaction->transid) {
1161                btrfs_assert_tree_locked(buf);
1162
1163                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164                        __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165                                             -buf->len,
1166                                             fs_info->dirty_metadata_batch);
1167                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168                        btrfs_set_lock_blocking(buf);
1169                        clear_extent_buffer_dirty(buf);
1170                }
1171        }
1172}
1173
1174static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1175{
1176        struct btrfs_subvolume_writers *writers;
1177        int ret;
1178
1179        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1180        if (!writers)
1181                return ERR_PTR(-ENOMEM);
1182
1183        ret = percpu_counter_init(&writers->counter, 0);
1184        if (ret < 0) {
1185                kfree(writers);
1186                return ERR_PTR(ret);
1187        }
1188
1189        init_waitqueue_head(&writers->wait);
1190        return writers;
1191}
1192
1193static void
1194btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1195{
1196        percpu_counter_destroy(&writers->counter);
1197        kfree(writers);
1198}
1199
1200static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1201                         u32 stripesize, struct btrfs_root *root,
1202                         struct btrfs_fs_info *fs_info,
1203                         u64 objectid)
1204{
1205        root->node = NULL;
1206        root->commit_root = NULL;
1207        root->sectorsize = sectorsize;
1208        root->nodesize = nodesize;
1209        root->leafsize = leafsize;
1210        root->stripesize = stripesize;
1211        root->state = 0;
1212        root->orphan_cleanup_state = 0;
1213
1214        root->objectid = objectid;
1215        root->last_trans = 0;
1216        root->highest_objectid = 0;
1217        root->nr_delalloc_inodes = 0;
1218        root->nr_ordered_extents = 0;
1219        root->name = NULL;
1220        root->inode_tree = RB_ROOT;
1221        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1222        root->block_rsv = NULL;
1223        root->orphan_block_rsv = NULL;
1224
1225        INIT_LIST_HEAD(&root->dirty_list);
1226        INIT_LIST_HEAD(&root->root_list);
1227        INIT_LIST_HEAD(&root->delalloc_inodes);
1228        INIT_LIST_HEAD(&root->delalloc_root);
1229        INIT_LIST_HEAD(&root->ordered_extents);
1230        INIT_LIST_HEAD(&root->ordered_root);
1231        INIT_LIST_HEAD(&root->logged_list[0]);
1232        INIT_LIST_HEAD(&root->logged_list[1]);
1233        spin_lock_init(&root->orphan_lock);
1234        spin_lock_init(&root->inode_lock);
1235        spin_lock_init(&root->delalloc_lock);
1236        spin_lock_init(&root->ordered_extent_lock);
1237        spin_lock_init(&root->accounting_lock);
1238        spin_lock_init(&root->log_extents_lock[0]);
1239        spin_lock_init(&root->log_extents_lock[1]);
1240        mutex_init(&root->objectid_mutex);
1241        mutex_init(&root->log_mutex);
1242        mutex_init(&root->ordered_extent_mutex);
1243        mutex_init(&root->delalloc_mutex);
1244        init_waitqueue_head(&root->log_writer_wait);
1245        init_waitqueue_head(&root->log_commit_wait[0]);
1246        init_waitqueue_head(&root->log_commit_wait[1]);
1247        INIT_LIST_HEAD(&root->log_ctxs[0]);
1248        INIT_LIST_HEAD(&root->log_ctxs[1]);
1249        atomic_set(&root->log_commit[0], 0);
1250        atomic_set(&root->log_commit[1], 0);
1251        atomic_set(&root->log_writers, 0);
1252        atomic_set(&root->log_batch, 0);
1253        atomic_set(&root->orphan_inodes, 0);
1254        atomic_set(&root->refs, 1);
1255        atomic_set(&root->will_be_snapshoted, 0);
1256        root->log_transid = 0;
1257        root->log_transid_committed = -1;
1258        root->last_log_commit = 0;
1259        if (fs_info)
1260                extent_io_tree_init(&root->dirty_log_pages,
1261                                     fs_info->btree_inode->i_mapping);
1262
1263        memset(&root->root_key, 0, sizeof(root->root_key));
1264        memset(&root->root_item, 0, sizeof(root->root_item));
1265        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1266        memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1267        if (fs_info)
1268                root->defrag_trans_start = fs_info->generation;
1269        else
1270                root->defrag_trans_start = 0;
1271        init_completion(&root->kobj_unregister);
1272        root->root_key.objectid = objectid;
1273        root->anon_dev = 0;
1274
1275        spin_lock_init(&root->root_item_lock);
1276}
1277
1278static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1279{
1280        struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1281        if (root)
1282                root->fs_info = fs_info;
1283        return root;
1284}
1285
1286#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1287/* Should only be used by the testing infrastructure */
1288struct btrfs_root *btrfs_alloc_dummy_root(void)
1289{
1290        struct btrfs_root *root;
1291
1292        root = btrfs_alloc_root(NULL);
1293        if (!root)
1294                return ERR_PTR(-ENOMEM);
1295        __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1296        set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1297        root->alloc_bytenr = 0;
1298
1299        return root;
1300}
1301#endif
1302
1303struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1304                                     struct btrfs_fs_info *fs_info,
1305                                     u64 objectid)
1306{
1307        struct extent_buffer *leaf;
1308        struct btrfs_root *tree_root = fs_info->tree_root;
1309        struct btrfs_root *root;
1310        struct btrfs_key key;
1311        int ret = 0;
1312        uuid_le uuid;
1313
1314        root = btrfs_alloc_root(fs_info);
1315        if (!root)
1316                return ERR_PTR(-ENOMEM);
1317
1318        __setup_root(tree_root->nodesize, tree_root->leafsize,
1319                     tree_root->sectorsize, tree_root->stripesize,
1320                     root, fs_info, objectid);
1321        root->root_key.objectid = objectid;
1322        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323        root->root_key.offset = 0;
1324
1325        leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1326                                      0, objectid, NULL, 0, 0, 0);
1327        if (IS_ERR(leaf)) {
1328                ret = PTR_ERR(leaf);
1329                leaf = NULL;
1330                goto fail;
1331        }
1332
1333        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1334        btrfs_set_header_bytenr(leaf, leaf->start);
1335        btrfs_set_header_generation(leaf, trans->transid);
1336        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1337        btrfs_set_header_owner(leaf, objectid);
1338        root->node = leaf;
1339
1340        write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1341                            BTRFS_FSID_SIZE);
1342        write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1343                            btrfs_header_chunk_tree_uuid(leaf),
1344                            BTRFS_UUID_SIZE);
1345        btrfs_mark_buffer_dirty(leaf);
1346
1347        root->commit_root = btrfs_root_node(root);
1348        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1349
1350        root->root_item.flags = 0;
1351        root->root_item.byte_limit = 0;
1352        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353        btrfs_set_root_generation(&root->root_item, trans->transid);
1354        btrfs_set_root_level(&root->root_item, 0);
1355        btrfs_set_root_refs(&root->root_item, 1);
1356        btrfs_set_root_used(&root->root_item, leaf->len);
1357        btrfs_set_root_last_snapshot(&root->root_item, 0);
1358        btrfs_set_root_dirid(&root->root_item, 0);
1359        uuid_le_gen(&uuid);
1360        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1361        root->root_item.drop_level = 0;
1362
1363        key.objectid = objectid;
1364        key.type = BTRFS_ROOT_ITEM_KEY;
1365        key.offset = 0;
1366        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367        if (ret)
1368                goto fail;
1369
1370        btrfs_tree_unlock(leaf);
1371
1372        return root;
1373
1374fail:
1375        if (leaf) {
1376                btrfs_tree_unlock(leaf);
1377                free_extent_buffer(root->commit_root);
1378                free_extent_buffer(leaf);
1379        }
1380        kfree(root);
1381
1382        return ERR_PTR(ret);
1383}
1384
1385static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1386                                         struct btrfs_fs_info *fs_info)
1387{
1388        struct btrfs_root *root;
1389        struct btrfs_root *tree_root = fs_info->tree_root;
1390        struct extent_buffer *leaf;
1391
1392        root = btrfs_alloc_root(fs_info);
1393        if (!root)
1394                return ERR_PTR(-ENOMEM);
1395
1396        __setup_root(tree_root->nodesize, tree_root->leafsize,
1397                     tree_root->sectorsize, tree_root->stripesize,
1398                     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1399
1400        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1401        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1402        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1403
1404        /*
1405         * DON'T set REF_COWS for log trees
1406         *
1407         * log trees do not get reference counted because they go away
1408         * before a real commit is actually done.  They do store pointers
1409         * to file data extents, and those reference counts still get
1410         * updated (along with back refs to the log tree).
1411         */
1412
1413        leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1414                                      BTRFS_TREE_LOG_OBJECTID, NULL,
1415                                      0, 0, 0);
1416        if (IS_ERR(leaf)) {
1417                kfree(root);
1418                return ERR_CAST(leaf);
1419        }
1420
1421        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422        btrfs_set_header_bytenr(leaf, leaf->start);
1423        btrfs_set_header_generation(leaf, trans->transid);
1424        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425        btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1426        root->node = leaf;
1427
1428        write_extent_buffer(root->node, root->fs_info->fsid,
1429                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
1430        btrfs_mark_buffer_dirty(root->node);
1431        btrfs_tree_unlock(root->node);
1432        return root;
1433}
1434
1435int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1436                             struct btrfs_fs_info *fs_info)
1437{
1438        struct btrfs_root *log_root;
1439
1440        log_root = alloc_log_tree(trans, fs_info);
1441        if (IS_ERR(log_root))
1442                return PTR_ERR(log_root);
1443        WARN_ON(fs_info->log_root_tree);
1444        fs_info->log_root_tree = log_root;
1445        return 0;
1446}
1447
1448int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1449                       struct btrfs_root *root)
1450{
1451        struct btrfs_root *log_root;
1452        struct btrfs_inode_item *inode_item;
1453
1454        log_root = alloc_log_tree(trans, root->fs_info);
1455        if (IS_ERR(log_root))
1456                return PTR_ERR(log_root);
1457
1458        log_root->last_trans = trans->transid;
1459        log_root->root_key.offset = root->root_key.objectid;
1460
1461        inode_item = &log_root->root_item.inode;
1462        btrfs_set_stack_inode_generation(inode_item, 1);
1463        btrfs_set_stack_inode_size(inode_item, 3);
1464        btrfs_set_stack_inode_nlink(inode_item, 1);
1465        btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1466        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1467
1468        btrfs_set_root_node(&log_root->root_item, log_root->node);
1469
1470        WARN_ON(root->log_root);
1471        root->log_root = log_root;
1472        root->log_transid = 0;
1473        root->log_transid_committed = -1;
1474        root->last_log_commit = 0;
1475        return 0;
1476}
1477
1478static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1479                                               struct btrfs_key *key)
1480{
1481        struct btrfs_root *root;
1482        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1483        struct btrfs_path *path;
1484        u64 generation;
1485        u32 blocksize;
1486        int ret;
1487
1488        path = btrfs_alloc_path();
1489        if (!path)
1490                return ERR_PTR(-ENOMEM);
1491
1492        root = btrfs_alloc_root(fs_info);
1493        if (!root) {
1494                ret = -ENOMEM;
1495                goto alloc_fail;
1496        }
1497
1498        __setup_root(tree_root->nodesize, tree_root->leafsize,
1499                     tree_root->sectorsize, tree_root->stripesize,
1500                     root, fs_info, key->objectid);
1501
1502        ret = btrfs_find_root(tree_root, key, path,
1503                              &root->root_item, &root->root_key);
1504        if (ret) {
1505                if (ret > 0)
1506                        ret = -ENOENT;
1507                goto find_fail;
1508        }
1509
1510        generation = btrfs_root_generation(&root->root_item);
1511        blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1512        root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1513                                     blocksize, generation);
1514        if (!root->node) {
1515                ret = -ENOMEM;
1516                goto find_fail;
1517        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1518                ret = -EIO;
1519                goto read_fail;
1520        }
1521        root->commit_root = btrfs_root_node(root);
1522out:
1523        btrfs_free_path(path);
1524        return root;
1525
1526read_fail:
1527        free_extent_buffer(root->node);
1528find_fail:
1529        kfree(root);
1530alloc_fail:
1531        root = ERR_PTR(ret);
1532        goto out;
1533}
1534
1535struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1536                                      struct btrfs_key *location)
1537{
1538        struct btrfs_root *root;
1539
1540        root = btrfs_read_tree_root(tree_root, location);
1541        if (IS_ERR(root))
1542                return root;
1543
1544        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1545                set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1546                btrfs_check_and_init_root_item(&root->root_item);
1547        }
1548
1549        return root;
1550}
1551
1552int btrfs_init_fs_root(struct btrfs_root *root)
1553{
1554        int ret;
1555        struct btrfs_subvolume_writers *writers;
1556
1557        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1558        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1559                                        GFP_NOFS);
1560        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1561                ret = -ENOMEM;
1562                goto fail;
1563        }
1564
1565        writers = btrfs_alloc_subvolume_writers();
1566        if (IS_ERR(writers)) {
1567                ret = PTR_ERR(writers);
1568                goto fail;
1569        }
1570        root->subv_writers = writers;
1571
1572        btrfs_init_free_ino_ctl(root);
1573        spin_lock_init(&root->cache_lock);
1574        init_waitqueue_head(&root->cache_wait);
1575
1576        ret = get_anon_bdev(&root->anon_dev);
1577        if (ret)
1578                goto free_writers;
1579        return 0;
1580
1581free_writers:
1582        btrfs_free_subvolume_writers(root->subv_writers);
1583fail:
1584        kfree(root->free_ino_ctl);
1585        kfree(root->free_ino_pinned);
1586        return ret;
1587}
1588
1589static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1590                                               u64 root_id)
1591{
1592        struct btrfs_root *root;
1593
1594        spin_lock(&fs_info->fs_roots_radix_lock);
1595        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1596                                 (unsigned long)root_id);
1597        spin_unlock(&fs_info->fs_roots_radix_lock);
1598        return root;
1599}
1600
1601int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1602                         struct btrfs_root *root)
1603{
1604        int ret;
1605
1606        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1607        if (ret)
1608                return ret;
1609
1610        spin_lock(&fs_info->fs_roots_radix_lock);
1611        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1612                                (unsigned long)root->root_key.objectid,
1613                                root);
1614        if (ret == 0)
1615                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1616        spin_unlock(&fs_info->fs_roots_radix_lock);
1617        radix_tree_preload_end();
1618
1619        return ret;
1620}
1621
1622struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1623                                     struct btrfs_key *location,
1624                                     bool check_ref)
1625{
1626        struct btrfs_root *root;
1627        int ret;
1628
1629        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1630                return fs_info->tree_root;
1631        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1632                return fs_info->extent_root;
1633        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1634                return fs_info->chunk_root;
1635        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1636                return fs_info->dev_root;
1637        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1638                return fs_info->csum_root;
1639        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1640                return fs_info->quota_root ? fs_info->quota_root :
1641                                             ERR_PTR(-ENOENT);
1642        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1643                return fs_info->uuid_root ? fs_info->uuid_root :
1644                                            ERR_PTR(-ENOENT);
1645again:
1646        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1647        if (root) {
1648                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1649                        return ERR_PTR(-ENOENT);
1650                return root;
1651        }
1652
1653        root = btrfs_read_fs_root(fs_info->tree_root, location);
1654        if (IS_ERR(root))
1655                return root;
1656
1657        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1658                ret = -ENOENT;
1659                goto fail;
1660        }
1661
1662        ret = btrfs_init_fs_root(root);
1663        if (ret)
1664                goto fail;
1665
1666        ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1667                        location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1668        if (ret < 0)
1669                goto fail;
1670        if (ret == 0)
1671                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1672
1673        ret = btrfs_insert_fs_root(fs_info, root);
1674        if (ret) {
1675                if (ret == -EEXIST) {
1676                        free_fs_root(root);
1677                        goto again;
1678                }
1679                goto fail;
1680        }
1681        return root;
1682fail:
1683        free_fs_root(root);
1684        return ERR_PTR(ret);
1685}
1686
1687static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1688{
1689        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1690        int ret = 0;
1691        struct btrfs_device *device;
1692        struct backing_dev_info *bdi;
1693
1694        rcu_read_lock();
1695        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1696                if (!device->bdev)
1697                        continue;
1698                bdi = blk_get_backing_dev_info(device->bdev);
1699                if (bdi && bdi_congested(bdi, bdi_bits)) {
1700                        ret = 1;
1701                        break;
1702                }
1703        }
1704        rcu_read_unlock();
1705        return ret;
1706}
1707
1708/*
1709 * If this fails, caller must call bdi_destroy() to get rid of the
1710 * bdi again.
1711 */
1712static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1713{
1714        int err;
1715
1716        bdi->capabilities = BDI_CAP_MAP_COPY;
1717        err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1718        if (err)
1719                return err;
1720
1721        bdi->ra_pages   = default_backing_dev_info.ra_pages;
1722        bdi->congested_fn       = btrfs_congested_fn;
1723        bdi->congested_data     = info;
1724        return 0;
1725}
1726
1727/*
1728 * called by the kthread helper functions to finally call the bio end_io
1729 * functions.  This is where read checksum verification actually happens
1730 */
1731static void end_workqueue_fn(struct btrfs_work *work)
1732{
1733        struct bio *bio;
1734        struct end_io_wq *end_io_wq;
1735        int error;
1736
1737        end_io_wq = container_of(work, struct end_io_wq, work);
1738        bio = end_io_wq->bio;
1739
1740        error = end_io_wq->error;
1741        bio->bi_private = end_io_wq->private;
1742        bio->bi_end_io = end_io_wq->end_io;
1743        kfree(end_io_wq);
1744        bio_endio_nodec(bio, error);
1745}
1746
1747static int cleaner_kthread(void *arg)
1748{
1749        struct btrfs_root *root = arg;
1750        int again;
1751
1752        do {
1753                again = 0;
1754
1755                /* Make the cleaner go to sleep early. */
1756                if (btrfs_need_cleaner_sleep(root))
1757                        goto sleep;
1758
1759                if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1760                        goto sleep;
1761
1762                /*
1763                 * Avoid the problem that we change the status of the fs
1764                 * during the above check and trylock.
1765                 */
1766                if (btrfs_need_cleaner_sleep(root)) {
1767                        mutex_unlock(&root->fs_info->cleaner_mutex);
1768                        goto sleep;
1769                }
1770
1771                btrfs_run_delayed_iputs(root);
1772                again = btrfs_clean_one_deleted_snapshot(root);
1773                mutex_unlock(&root->fs_info->cleaner_mutex);
1774
1775                /*
1776                 * The defragger has dealt with the R/O remount and umount,
1777                 * needn't do anything special here.
1778                 */
1779                btrfs_run_defrag_inodes(root->fs_info);
1780sleep:
1781                if (!try_to_freeze() && !again) {
1782                        set_current_state(TASK_INTERRUPTIBLE);
1783                        if (!kthread_should_stop())
1784                                schedule();
1785                        __set_current_state(TASK_RUNNING);
1786                }
1787        } while (!kthread_should_stop());
1788        return 0;
1789}
1790
1791static int transaction_kthread(void *arg)
1792{
1793        struct btrfs_root *root = arg;
1794        struct btrfs_trans_handle *trans;
1795        struct btrfs_transaction *cur;
1796        u64 transid;
1797        unsigned long now;
1798        unsigned long delay;
1799        bool cannot_commit;
1800
1801        do {
1802                cannot_commit = false;
1803                delay = HZ * root->fs_info->commit_interval;
1804                mutex_lock(&root->fs_info->transaction_kthread_mutex);
1805
1806                spin_lock(&root->fs_info->trans_lock);
1807                cur = root->fs_info->running_transaction;
1808                if (!cur) {
1809                        spin_unlock(&root->fs_info->trans_lock);
1810                        goto sleep;
1811                }
1812
1813                now = get_seconds();
1814                if (cur->state < TRANS_STATE_BLOCKED &&
1815                    (now < cur->start_time ||
1816                     now - cur->start_time < root->fs_info->commit_interval)) {
1817                        spin_unlock(&root->fs_info->trans_lock);
1818                        delay = HZ * 5;
1819                        goto sleep;
1820                }
1821                transid = cur->transid;
1822                spin_unlock(&root->fs_info->trans_lock);
1823
1824                /* If the file system is aborted, this will always fail. */
1825                trans = btrfs_attach_transaction(root);
1826                if (IS_ERR(trans)) {
1827                        if (PTR_ERR(trans) != -ENOENT)
1828                                cannot_commit = true;
1829                        goto sleep;
1830                }
1831                if (transid == trans->transid) {
1832                        btrfs_commit_transaction(trans, root);
1833                } else {
1834                        btrfs_end_transaction(trans, root);
1835                }
1836sleep:
1837                wake_up_process(root->fs_info->cleaner_kthread);
1838                mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1839
1840                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841                                      &root->fs_info->fs_state)))
1842                        btrfs_cleanup_transaction(root);
1843                if (!try_to_freeze()) {
1844                        set_current_state(TASK_INTERRUPTIBLE);
1845                        if (!kthread_should_stop() &&
1846                            (!btrfs_transaction_blocked(root->fs_info) ||
1847                             cannot_commit))
1848                                schedule_timeout(delay);
1849                        __set_current_state(TASK_RUNNING);
1850                }
1851        } while (!kthread_should_stop());
1852        return 0;
1853}
1854
1855/*
1856 * this will find the highest generation in the array of
1857 * root backups.  The index of the highest array is returned,
1858 * or -1 if we can't find anything.
1859 *
1860 * We check to make sure the array is valid by comparing the
1861 * generation of the latest  root in the array with the generation
1862 * in the super block.  If they don't match we pitch it.
1863 */
1864static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1865{
1866        u64 cur;
1867        int newest_index = -1;
1868        struct btrfs_root_backup *root_backup;
1869        int i;
1870
1871        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872                root_backup = info->super_copy->super_roots + i;
1873                cur = btrfs_backup_tree_root_gen(root_backup);
1874                if (cur == newest_gen)
1875                        newest_index = i;
1876        }
1877
1878        /* check to see if we actually wrapped around */
1879        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880                root_backup = info->super_copy->super_roots;
1881                cur = btrfs_backup_tree_root_gen(root_backup);
1882                if (cur == newest_gen)
1883                        newest_index = 0;
1884        }
1885        return newest_index;
1886}
1887
1888
1889/*
1890 * find the oldest backup so we know where to store new entries
1891 * in the backup array.  This will set the backup_root_index
1892 * field in the fs_info struct
1893 */
1894static void find_oldest_super_backup(struct btrfs_fs_info *info,
1895                                     u64 newest_gen)
1896{
1897        int newest_index = -1;
1898
1899        newest_index = find_newest_super_backup(info, newest_gen);
1900        /* if there was garbage in there, just move along */
1901        if (newest_index == -1) {
1902                info->backup_root_index = 0;
1903        } else {
1904                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905        }
1906}
1907
1908/*
1909 * copy all the root pointers into the super backup array.
1910 * this will bump the backup pointer by one when it is
1911 * done
1912 */
1913static void backup_super_roots(struct btrfs_fs_info *info)
1914{
1915        int next_backup;
1916        struct btrfs_root_backup *root_backup;
1917        int last_backup;
1918
1919        next_backup = info->backup_root_index;
1920        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921                BTRFS_NUM_BACKUP_ROOTS;
1922
1923        /*
1924         * just overwrite the last backup if we're at the same generation
1925         * this happens only at umount
1926         */
1927        root_backup = info->super_for_commit->super_roots + last_backup;
1928        if (btrfs_backup_tree_root_gen(root_backup) ==
1929            btrfs_header_generation(info->tree_root->node))
1930                next_backup = last_backup;
1931
1932        root_backup = info->super_for_commit->super_roots + next_backup;
1933
1934        /*
1935         * make sure all of our padding and empty slots get zero filled
1936         * regardless of which ones we use today
1937         */
1938        memset(root_backup, 0, sizeof(*root_backup));
1939
1940        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1941
1942        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943        btrfs_set_backup_tree_root_gen(root_backup,
1944                               btrfs_header_generation(info->tree_root->node));
1945
1946        btrfs_set_backup_tree_root_level(root_backup,
1947                               btrfs_header_level(info->tree_root->node));
1948
1949        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950        btrfs_set_backup_chunk_root_gen(root_backup,
1951                               btrfs_header_generation(info->chunk_root->node));
1952        btrfs_set_backup_chunk_root_level(root_backup,
1953                               btrfs_header_level(info->chunk_root->node));
1954
1955        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956        btrfs_set_backup_extent_root_gen(root_backup,
1957                               btrfs_header_generation(info->extent_root->node));
1958        btrfs_set_backup_extent_root_level(root_backup,
1959                               btrfs_header_level(info->extent_root->node));
1960
1961        /*
1962         * we might commit during log recovery, which happens before we set
1963         * the fs_root.  Make sure it is valid before we fill it in.
1964         */
1965        if (info->fs_root && info->fs_root->node) {
1966                btrfs_set_backup_fs_root(root_backup,
1967                                         info->fs_root->node->start);
1968                btrfs_set_backup_fs_root_gen(root_backup,
1969                               btrfs_header_generation(info->fs_root->node));
1970                btrfs_set_backup_fs_root_level(root_backup,
1971                               btrfs_header_level(info->fs_root->node));
1972        }
1973
1974        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975        btrfs_set_backup_dev_root_gen(root_backup,
1976                               btrfs_header_generation(info->dev_root->node));
1977        btrfs_set_backup_dev_root_level(root_backup,
1978                                       btrfs_header_level(info->dev_root->node));
1979
1980        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981        btrfs_set_backup_csum_root_gen(root_backup,
1982                               btrfs_header_generation(info->csum_root->node));
1983        btrfs_set_backup_csum_root_level(root_backup,
1984                               btrfs_header_level(info->csum_root->node));
1985
1986        btrfs_set_backup_total_bytes(root_backup,
1987                             btrfs_super_total_bytes(info->super_copy));
1988        btrfs_set_backup_bytes_used(root_backup,
1989                             btrfs_super_bytes_used(info->super_copy));
1990        btrfs_set_backup_num_devices(root_backup,
1991                             btrfs_super_num_devices(info->super_copy));
1992
1993        /*
1994         * if we don't copy this out to the super_copy, it won't get remembered
1995         * for the next commit
1996         */
1997        memcpy(&info->super_copy->super_roots,
1998               &info->super_for_commit->super_roots,
1999               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2000}
2001
2002/*
2003 * this copies info out of the root backup array and back into
2004 * the in-memory super block.  It is meant to help iterate through
2005 * the array, so you send it the number of backups you've already
2006 * tried and the last backup index you used.
2007 *
2008 * this returns -1 when it has tried all the backups
2009 */
2010static noinline int next_root_backup(struct btrfs_fs_info *info,
2011                                     struct btrfs_super_block *super,
2012                                     int *num_backups_tried, int *backup_index)
2013{
2014        struct btrfs_root_backup *root_backup;
2015        int newest = *backup_index;
2016
2017        if (*num_backups_tried == 0) {
2018                u64 gen = btrfs_super_generation(super);
2019
2020                newest = find_newest_super_backup(info, gen);
2021                if (newest == -1)
2022                        return -1;
2023
2024                *backup_index = newest;
2025                *num_backups_tried = 1;
2026        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027                /* we've tried all the backups, all done */
2028                return -1;
2029        } else {
2030                /* jump to the next oldest backup */
2031                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032                        BTRFS_NUM_BACKUP_ROOTS;
2033                *backup_index = newest;
2034                *num_backups_tried += 1;
2035        }
2036        root_backup = super->super_roots + newest;
2037
2038        btrfs_set_super_generation(super,
2039                                   btrfs_backup_tree_root_gen(root_backup));
2040        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041        btrfs_set_super_root_level(super,
2042                                   btrfs_backup_tree_root_level(root_backup));
2043        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2044
2045        /*
2046         * fixme: the total bytes and num_devices need to match or we should
2047         * need a fsck
2048         */
2049        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2051        return 0;
2052}
2053
2054/* helper to cleanup workers */
2055static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2056{
2057        btrfs_destroy_workqueue(fs_info->fixup_workers);
2058        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2059        btrfs_destroy_workqueue(fs_info->workers);
2060        btrfs_destroy_workqueue(fs_info->endio_workers);
2061        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2063        btrfs_destroy_workqueue(fs_info->rmw_workers);
2064        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2065        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2066        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2067        btrfs_destroy_workqueue(fs_info->submit_workers);
2068        btrfs_destroy_workqueue(fs_info->delayed_workers);
2069        btrfs_destroy_workqueue(fs_info->caching_workers);
2070        btrfs_destroy_workqueue(fs_info->readahead_workers);
2071        btrfs_destroy_workqueue(fs_info->flush_workers);
2072        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2073        btrfs_destroy_workqueue(fs_info->extent_workers);
2074}
2075
2076static void free_root_extent_buffers(struct btrfs_root *root)
2077{
2078        if (root) {
2079                free_extent_buffer(root->node);
2080                free_extent_buffer(root->commit_root);
2081                root->node = NULL;
2082                root->commit_root = NULL;
2083        }
2084}
2085
2086/* helper to cleanup tree roots */
2087static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2088{
2089        free_root_extent_buffers(info->tree_root);
2090
2091        free_root_extent_buffers(info->dev_root);
2092        free_root_extent_buffers(info->extent_root);
2093        free_root_extent_buffers(info->csum_root);
2094        free_root_extent_buffers(info->quota_root);
2095        free_root_extent_buffers(info->uuid_root);
2096        if (chunk_root)
2097                free_root_extent_buffers(info->chunk_root);
2098}
2099
2100void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2101{
2102        int ret;
2103        struct btrfs_root *gang[8];
2104        int i;
2105
2106        while (!list_empty(&fs_info->dead_roots)) {
2107                gang[0] = list_entry(fs_info->dead_roots.next,
2108                                     struct btrfs_root, root_list);
2109                list_del(&gang[0]->root_list);
2110
2111                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2112                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2113                } else {
2114                        free_extent_buffer(gang[0]->node);
2115                        free_extent_buffer(gang[0]->commit_root);
2116                        btrfs_put_fs_root(gang[0]);
2117                }
2118        }
2119
2120        while (1) {
2121                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2122                                             (void **)gang, 0,
2123                                             ARRAY_SIZE(gang));
2124                if (!ret)
2125                        break;
2126                for (i = 0; i < ret; i++)
2127                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2128        }
2129
2130        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2131                btrfs_free_log_root_tree(NULL, fs_info);
2132                btrfs_destroy_pinned_extent(fs_info->tree_root,
2133                                            fs_info->pinned_extents);
2134        }
2135}
2136
2137int open_ctree(struct super_block *sb,
2138               struct btrfs_fs_devices *fs_devices,
2139               char *options)
2140{
2141        u32 sectorsize;
2142        u32 nodesize;
2143        u32 leafsize;
2144        u32 blocksize;
2145        u32 stripesize;
2146        u64 generation;
2147        u64 features;
2148        struct btrfs_key location;
2149        struct buffer_head *bh;
2150        struct btrfs_super_block *disk_super;
2151        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2152        struct btrfs_root *tree_root;
2153        struct btrfs_root *extent_root;
2154        struct btrfs_root *csum_root;
2155        struct btrfs_root *chunk_root;
2156        struct btrfs_root *dev_root;
2157        struct btrfs_root *quota_root;
2158        struct btrfs_root *uuid_root;
2159        struct btrfs_root *log_tree_root;
2160        int ret;
2161        int err = -EINVAL;
2162        int num_backups_tried = 0;
2163        int backup_index = 0;
2164        int max_active;
2165        int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2166        bool create_uuid_tree;
2167        bool check_uuid_tree;
2168
2169        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2170        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2171        if (!tree_root || !chunk_root) {
2172                err = -ENOMEM;
2173                goto fail;
2174        }
2175
2176        ret = init_srcu_struct(&fs_info->subvol_srcu);
2177        if (ret) {
2178                err = ret;
2179                goto fail;
2180        }
2181
2182        ret = setup_bdi(fs_info, &fs_info->bdi);
2183        if (ret) {
2184                err = ret;
2185                goto fail_srcu;
2186        }
2187
2188        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2189        if (ret) {
2190                err = ret;
2191                goto fail_bdi;
2192        }
2193        fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2194                                        (1 + ilog2(nr_cpu_ids));
2195
2196        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2197        if (ret) {
2198                err = ret;
2199                goto fail_dirty_metadata_bytes;
2200        }
2201
2202        ret = percpu_counter_init(&fs_info->bio_counter, 0);
2203        if (ret) {
2204                err = ret;
2205                goto fail_delalloc_bytes;
2206        }
2207
2208        fs_info->btree_inode = new_inode(sb);
2209        if (!fs_info->btree_inode) {
2210                err = -ENOMEM;
2211                goto fail_bio_counter;
2212        }
2213
2214        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2215
2216        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2217        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2218        INIT_LIST_HEAD(&fs_info->trans_list);
2219        INIT_LIST_HEAD(&fs_info->dead_roots);
2220        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2221        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2222        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2223        spin_lock_init(&fs_info->delalloc_root_lock);
2224        spin_lock_init(&fs_info->trans_lock);
2225        spin_lock_init(&fs_info->fs_roots_radix_lock);
2226        spin_lock_init(&fs_info->delayed_iput_lock);
2227        spin_lock_init(&fs_info->defrag_inodes_lock);
2228        spin_lock_init(&fs_info->free_chunk_lock);
2229        spin_lock_init(&fs_info->tree_mod_seq_lock);
2230        spin_lock_init(&fs_info->super_lock);
2231        spin_lock_init(&fs_info->qgroup_op_lock);
2232        spin_lock_init(&fs_info->buffer_lock);
2233        rwlock_init(&fs_info->tree_mod_log_lock);
2234        mutex_init(&fs_info->reloc_mutex);
2235        mutex_init(&fs_info->delalloc_root_mutex);
2236        seqlock_init(&fs_info->profiles_lock);
2237
2238        init_completion(&fs_info->kobj_unregister);
2239        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2240        INIT_LIST_HEAD(&fs_info->space_info);
2241        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2242        btrfs_mapping_init(&fs_info->mapping_tree);
2243        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2244                             BTRFS_BLOCK_RSV_GLOBAL);
2245        btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2246                             BTRFS_BLOCK_RSV_DELALLOC);
2247        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2248        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2249        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2250        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2251                             BTRFS_BLOCK_RSV_DELOPS);
2252        atomic_set(&fs_info->nr_async_submits, 0);
2253        atomic_set(&fs_info->async_delalloc_pages, 0);
2254        atomic_set(&fs_info->async_submit_draining, 0);
2255        atomic_set(&fs_info->nr_async_bios, 0);
2256        atomic_set(&fs_info->defrag_running, 0);
2257        atomic_set(&fs_info->qgroup_op_seq, 0);
2258        atomic64_set(&fs_info->tree_mod_seq, 0);
2259        fs_info->sb = sb;
2260        fs_info->max_inline = 8192 * 1024;
2261        fs_info->metadata_ratio = 0;
2262        fs_info->defrag_inodes = RB_ROOT;
2263        fs_info->free_chunk_space = 0;
2264        fs_info->tree_mod_log = RB_ROOT;
2265        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2266        fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2267        /* readahead state */
2268        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2269        spin_lock_init(&fs_info->reada_lock);
2270
2271        fs_info->thread_pool_size = min_t(unsigned long,
2272                                          num_online_cpus() + 2, 8);
2273
2274        INIT_LIST_HEAD(&fs_info->ordered_roots);
2275        spin_lock_init(&fs_info->ordered_root_lock);
2276        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2277                                        GFP_NOFS);
2278        if (!fs_info->delayed_root) {
2279                err = -ENOMEM;
2280                goto fail_iput;
2281        }
2282        btrfs_init_delayed_root(fs_info->delayed_root);
2283
2284        mutex_init(&fs_info->scrub_lock);
2285        atomic_set(&fs_info->scrubs_running, 0);
2286        atomic_set(&fs_info->scrub_pause_req, 0);
2287        atomic_set(&fs_info->scrubs_paused, 0);
2288        atomic_set(&fs_info->scrub_cancel_req, 0);
2289        init_waitqueue_head(&fs_info->replace_wait);
2290        init_waitqueue_head(&fs_info->scrub_pause_wait);
2291        fs_info->scrub_workers_refcnt = 0;
2292#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2293        fs_info->check_integrity_print_mask = 0;
2294#endif
2295
2296        spin_lock_init(&fs_info->balance_lock);
2297        mutex_init(&fs_info->balance_mutex);
2298        atomic_set(&fs_info->balance_running, 0);
2299        atomic_set(&fs_info->balance_pause_req, 0);
2300        atomic_set(&fs_info->balance_cancel_req, 0);
2301        fs_info->balance_ctl = NULL;
2302        init_waitqueue_head(&fs_info->balance_wait_q);
2303        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2304
2305        sb->s_blocksize = 4096;
2306        sb->s_blocksize_bits = blksize_bits(4096);
2307        sb->s_bdi = &fs_info->bdi;
2308
2309        fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2310        set_nlink(fs_info->btree_inode, 1);
2311        /*
2312         * we set the i_size on the btree inode to the max possible int.
2313         * the real end of the address space is determined by all of
2314         * the devices in the system
2315         */
2316        fs_info->btree_inode->i_size = OFFSET_MAX;
2317        fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2318        fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2319
2320        RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2321        extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2322                             fs_info->btree_inode->i_mapping);
2323        BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2324        extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2325
2326        BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2327
2328        BTRFS_I(fs_info->btree_inode)->root = tree_root;
2329        memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2330               sizeof(struct btrfs_key));
2331        set_bit(BTRFS_INODE_DUMMY,
2332                &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2333        btrfs_insert_inode_hash(fs_info->btree_inode);
2334
2335        spin_lock_init(&fs_info->block_group_cache_lock);
2336        fs_info->block_group_cache_tree = RB_ROOT;
2337        fs_info->first_logical_byte = (u64)-1;
2338
2339        extent_io_tree_init(&fs_info->freed_extents[0],
2340                             fs_info->btree_inode->i_mapping);
2341        extent_io_tree_init(&fs_info->freed_extents[1],
2342                             fs_info->btree_inode->i_mapping);
2343        fs_info->pinned_extents = &fs_info->freed_extents[0];
2344        fs_info->do_barriers = 1;
2345
2346
2347        mutex_init(&fs_info->ordered_operations_mutex);
2348        mutex_init(&fs_info->ordered_extent_flush_mutex);
2349        mutex_init(&fs_info->tree_log_mutex);
2350        mutex_init(&fs_info->chunk_mutex);
2351        mutex_init(&fs_info->transaction_kthread_mutex);
2352        mutex_init(&fs_info->cleaner_mutex);
2353        mutex_init(&fs_info->volume_mutex);
2354        init_rwsem(&fs_info->commit_root_sem);
2355        init_rwsem(&fs_info->cleanup_work_sem);
2356        init_rwsem(&fs_info->subvol_sem);
2357        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2358        fs_info->dev_replace.lock_owner = 0;
2359        atomic_set(&fs_info->dev_replace.nesting_level, 0);
2360        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2361        mutex_init(&fs_info->dev_replace.lock_management_lock);
2362        mutex_init(&fs_info->dev_replace.lock);
2363
2364        spin_lock_init(&fs_info->qgroup_lock);
2365        mutex_init(&fs_info->qgroup_ioctl_lock);
2366        fs_info->qgroup_tree = RB_ROOT;
2367        fs_info->qgroup_op_tree = RB_ROOT;
2368        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2369        fs_info->qgroup_seq = 1;
2370        fs_info->quota_enabled = 0;
2371        fs_info->pending_quota_state = 0;
2372        fs_info->qgroup_ulist = NULL;
2373        mutex_init(&fs_info->qgroup_rescan_lock);
2374
2375        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2376        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2377
2378        init_waitqueue_head(&fs_info->transaction_throttle);
2379        init_waitqueue_head(&fs_info->transaction_wait);
2380        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2381        init_waitqueue_head(&fs_info->async_submit_wait);
2382
2383        ret = btrfs_alloc_stripe_hash_table(fs_info);
2384        if (ret) {
2385                err = ret;
2386                goto fail_alloc;
2387        }
2388
2389        __setup_root(4096, 4096, 4096, 4096, tree_root,
2390                     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2391
2392        invalidate_bdev(fs_devices->latest_bdev);
2393
2394        /*
2395         * Read super block and check the signature bytes only
2396         */
2397        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2398        if (!bh) {
2399                err = -EINVAL;
2400                goto fail_alloc;
2401        }
2402
2403        /*
2404         * We want to check superblock checksum, the type is stored inside.
2405         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2406         */
2407        if (btrfs_check_super_csum(bh->b_data)) {
2408                printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2409                err = -EINVAL;
2410                goto fail_alloc;
2411        }
2412
2413        /*
2414         * super_copy is zeroed at allocation time and we never touch the
2415         * following bytes up to INFO_SIZE, the checksum is calculated from
2416         * the whole block of INFO_SIZE
2417         */
2418        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2419        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2420               sizeof(*fs_info->super_for_commit));
2421        brelse(bh);
2422
2423        memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2424
2425        ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2426        if (ret) {
2427                printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2428                err = -EINVAL;
2429                goto fail_alloc;
2430        }
2431
2432        disk_super = fs_info->super_copy;
2433        if (!btrfs_super_root(disk_super))
2434                goto fail_alloc;
2435
2436        /* check FS state, whether FS is broken. */
2437        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2438                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2439
2440        /*
2441         * run through our array of backup supers and setup
2442         * our ring pointer to the oldest one
2443         */
2444        generation = btrfs_super_generation(disk_super);
2445        find_oldest_super_backup(fs_info, generation);
2446
2447        /*
2448         * In the long term, we'll store the compression type in the super
2449         * block, and it'll be used for per file compression control.
2450         */
2451        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2452
2453        ret = btrfs_parse_options(tree_root, options);
2454        if (ret) {
2455                err = ret;
2456                goto fail_alloc;
2457        }
2458
2459        features = btrfs_super_incompat_flags(disk_super) &
2460                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2461        if (features) {
2462                printk(KERN_ERR "BTRFS: couldn't mount because of "
2463                       "unsupported optional features (%Lx).\n",
2464                       features);
2465                err = -EINVAL;
2466                goto fail_alloc;
2467        }
2468
2469        if (btrfs_super_leafsize(disk_super) !=
2470            btrfs_super_nodesize(disk_super)) {
2471                printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472                       "blocksizes don't match.  node %d leaf %d\n",
2473                       btrfs_super_nodesize(disk_super),
2474                       btrfs_super_leafsize(disk_super));
2475                err = -EINVAL;
2476                goto fail_alloc;
2477        }
2478        if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2479                printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2480                       "blocksize (%d) was too large\n",
2481                       btrfs_super_leafsize(disk_super));
2482                err = -EINVAL;
2483                goto fail_alloc;
2484        }
2485
2486        features = btrfs_super_incompat_flags(disk_super);
2487        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2488        if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2489                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2490
2491        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2492                printk(KERN_ERR "BTRFS: has skinny extents\n");
2493
2494        /*
2495         * flag our filesystem as having big metadata blocks if
2496         * they are bigger than the page size
2497         */
2498        if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2499                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2500                        printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2501                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2502        }
2503
2504        nodesize = btrfs_super_nodesize(disk_super);
2505        leafsize = btrfs_super_leafsize(disk_super);
2506        sectorsize = btrfs_super_sectorsize(disk_super);
2507        stripesize = btrfs_super_stripesize(disk_super);
2508        fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2509        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2510
2511        /*
2512         * mixed block groups end up with duplicate but slightly offset
2513         * extent buffers for the same range.  It leads to corruptions
2514         */
2515        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2516            (sectorsize != leafsize)) {
2517                printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2518                                "are not allowed for mixed block groups on %s\n",
2519                                sb->s_id);
2520                goto fail_alloc;
2521        }
2522
2523        /*
2524         * Needn't use the lock because there is no other task which will
2525         * update the flag.
2526         */
2527        btrfs_set_super_incompat_flags(disk_super, features);
2528
2529        features = btrfs_super_compat_ro_flags(disk_super) &
2530                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2531        if (!(sb->s_flags & MS_RDONLY) && features) {
2532                printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2533                       "unsupported option features (%Lx).\n",
2534                       features);
2535                err = -EINVAL;
2536                goto fail_alloc;
2537        }
2538
2539        max_active = fs_info->thread_pool_size;
2540
2541        fs_info->workers =
2542                btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2543                                      max_active, 16);
2544
2545        fs_info->delalloc_workers =
2546                btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2547
2548        fs_info->flush_workers =
2549                btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2550
2551        fs_info->caching_workers =
2552                btrfs_alloc_workqueue("cache", flags, max_active, 0);
2553
2554        /*
2555         * a higher idle thresh on the submit workers makes it much more
2556         * likely that bios will be send down in a sane order to the
2557         * devices
2558         */
2559        fs_info->submit_workers =
2560                btrfs_alloc_workqueue("submit", flags,
2561                                      min_t(u64, fs_devices->num_devices,
2562                                            max_active), 64);
2563
2564        fs_info->fixup_workers =
2565                btrfs_alloc_workqueue("fixup", flags, 1, 0);
2566
2567        /*
2568         * endios are largely parallel and should have a very
2569         * low idle thresh
2570         */
2571        fs_info->endio_workers =
2572                btrfs_alloc_workqueue("endio", flags, max_active, 4);
2573        fs_info->endio_meta_workers =
2574                btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2575        fs_info->endio_meta_write_workers =
2576                btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2577        fs_info->endio_raid56_workers =
2578                btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2579        fs_info->rmw_workers =
2580                btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2581        fs_info->endio_write_workers =
2582                btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2583        fs_info->endio_freespace_worker =
2584                btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2585        fs_info->delayed_workers =
2586                btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2587        fs_info->readahead_workers =
2588                btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2589        fs_info->qgroup_rescan_workers =
2590                btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2591        fs_info->extent_workers =
2592                btrfs_alloc_workqueue("extent-refs", flags,
2593                                      min_t(u64, fs_devices->num_devices,
2594                                            max_active), 8);
2595
2596        if (!(fs_info->workers && fs_info->delalloc_workers &&
2597              fs_info->submit_workers && fs_info->flush_workers &&
2598              fs_info->endio_workers && fs_info->endio_meta_workers &&
2599              fs_info->endio_meta_write_workers &&
2600              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2601              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2602              fs_info->caching_workers && fs_info->readahead_workers &&
2603              fs_info->fixup_workers && fs_info->delayed_workers &&
2604              fs_info->fixup_workers && fs_info->extent_workers &&
2605              fs_info->qgroup_rescan_workers)) {
2606                err = -ENOMEM;
2607                goto fail_sb_buffer;
2608        }
2609
2610        fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2611        fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2612                                    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2613
2614        tree_root->nodesize = nodesize;
2615        tree_root->leafsize = leafsize;
2616        tree_root->sectorsize = sectorsize;
2617        tree_root->stripesize = stripesize;
2618
2619        sb->s_blocksize = sectorsize;
2620        sb->s_blocksize_bits = blksize_bits(sectorsize);
2621
2622        if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2623                printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2624                goto fail_sb_buffer;
2625        }
2626
2627        if (sectorsize != PAGE_SIZE) {
2628                printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2629                       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2630                goto fail_sb_buffer;
2631        }
2632
2633        mutex_lock(&fs_info->chunk_mutex);
2634        ret = btrfs_read_sys_array(tree_root);
2635        mutex_unlock(&fs_info->chunk_mutex);
2636        if (ret) {
2637                printk(KERN_WARNING "BTRFS: failed to read the system "
2638                       "array on %s\n", sb->s_id);
2639                goto fail_sb_buffer;
2640        }
2641
2642        blocksize = btrfs_level_size(tree_root,
2643                                     btrfs_super_chunk_root_level(disk_super));
2644        generation = btrfs_super_chunk_root_generation(disk_super);
2645
2646        __setup_root(nodesize, leafsize, sectorsize, stripesize,
2647                     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2648
2649        chunk_root->node = read_tree_block(chunk_root,
2650                                           btrfs_super_chunk_root(disk_super),
2651                                           blocksize, generation);
2652        if (!chunk_root->node ||
2653            !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2654                printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2655                       sb->s_id);
2656                goto fail_tree_roots;
2657        }
2658        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2659        chunk_root->commit_root = btrfs_root_node(chunk_root);
2660
2661        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2662           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2663
2664        ret = btrfs_read_chunk_tree(chunk_root);
2665        if (ret) {
2666                printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2667                       sb->s_id);
2668                goto fail_tree_roots;
2669        }
2670
2671        /*
2672         * keep the device that is marked to be the target device for the
2673         * dev_replace procedure
2674         */
2675        btrfs_close_extra_devices(fs_info, fs_devices, 0);
2676
2677        if (!fs_devices->latest_bdev) {
2678                printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2679                       sb->s_id);
2680                goto fail_tree_roots;
2681        }
2682
2683retry_root_backup:
2684        blocksize = btrfs_level_size(tree_root,
2685                                     btrfs_super_root_level(disk_super));
2686        generation = btrfs_super_generation(disk_super);
2687
2688        tree_root->node = read_tree_block(tree_root,
2689                                          btrfs_super_root(disk_super),
2690                                          blocksize, generation);
2691        if (!tree_root->node ||
2692            !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2693                printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2694                       sb->s_id);
2695
2696                goto recovery_tree_root;
2697        }
2698
2699        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2700        tree_root->commit_root = btrfs_root_node(tree_root);
2701        btrfs_set_root_refs(&tree_root->root_item, 1);
2702
2703        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2704        location.type = BTRFS_ROOT_ITEM_KEY;
2705        location.offset = 0;
2706
2707        extent_root = btrfs_read_tree_root(tree_root, &location);
2708        if (IS_ERR(extent_root)) {
2709                ret = PTR_ERR(extent_root);
2710                goto recovery_tree_root;
2711        }
2712        set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2713        fs_info->extent_root = extent_root;
2714
2715        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2716        dev_root = btrfs_read_tree_root(tree_root, &location);
2717        if (IS_ERR(dev_root)) {
2718                ret = PTR_ERR(dev_root);
2719                goto recovery_tree_root;
2720        }
2721        set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2722        fs_info->dev_root = dev_root;
2723        btrfs_init_devices_late(fs_info);
2724
2725        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2726        csum_root = btrfs_read_tree_root(tree_root, &location);
2727        if (IS_ERR(csum_root)) {
2728                ret = PTR_ERR(csum_root);
2729                goto recovery_tree_root;
2730        }
2731        set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2732        fs_info->csum_root = csum_root;
2733
2734        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2735        quota_root = btrfs_read_tree_root(tree_root, &location);
2736        if (!IS_ERR(quota_root)) {
2737                set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2738                fs_info->quota_enabled = 1;
2739                fs_info->pending_quota_state = 1;
2740                fs_info->quota_root = quota_root;
2741        }
2742
2743        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2744        uuid_root = btrfs_read_tree_root(tree_root, &location);
2745        if (IS_ERR(uuid_root)) {
2746                ret = PTR_ERR(uuid_root);
2747                if (ret != -ENOENT)
2748                        goto recovery_tree_root;
2749                create_uuid_tree = true;
2750                check_uuid_tree = false;
2751        } else {
2752                set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2753                fs_info->uuid_root = uuid_root;
2754                create_uuid_tree = false;
2755                check_uuid_tree =
2756                    generation != btrfs_super_uuid_tree_generation(disk_super);
2757        }
2758
2759        fs_info->generation = generation;
2760        fs_info->last_trans_committed = generation;
2761
2762        ret = btrfs_recover_balance(fs_info);
2763        if (ret) {
2764                printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2765                goto fail_block_groups;
2766        }
2767
2768        ret = btrfs_init_dev_stats(fs_info);
2769        if (ret) {
2770                printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2771                       ret);
2772                goto fail_block_groups;
2773        }
2774
2775        ret = btrfs_init_dev_replace(fs_info);
2776        if (ret) {
2777                pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2778                goto fail_block_groups;
2779        }
2780
2781        btrfs_close_extra_devices(fs_info, fs_devices, 1);
2782
2783        ret = btrfs_sysfs_add_one(fs_info);
2784        if (ret) {
2785                pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2786                goto fail_block_groups;
2787        }
2788
2789        ret = btrfs_init_space_info(fs_info);
2790        if (ret) {
2791                printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2792                goto fail_sysfs;
2793        }
2794
2795        ret = btrfs_read_block_groups(extent_root);
2796        if (ret) {
2797                printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2798                goto fail_sysfs;
2799        }
2800        fs_info->num_tolerated_disk_barrier_failures =
2801                btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2802        if (fs_info->fs_devices->missing_devices >
2803             fs_info->num_tolerated_disk_barrier_failures &&
2804            !(sb->s_flags & MS_RDONLY)) {
2805                printk(KERN_WARNING "BTRFS: "
2806                        "too many missing devices, writeable mount is not allowed\n");
2807                goto fail_sysfs;
2808        }
2809
2810        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2811                                               "btrfs-cleaner");
2812        if (IS_ERR(fs_info->cleaner_kthread))
2813                goto fail_sysfs;
2814
2815        fs_info->transaction_kthread = kthread_run(transaction_kthread,
2816                                                   tree_root,
2817                                                   "btrfs-transaction");
2818        if (IS_ERR(fs_info->transaction_kthread))
2819                goto fail_cleaner;
2820
2821        if (!btrfs_test_opt(tree_root, SSD) &&
2822            !btrfs_test_opt(tree_root, NOSSD) &&
2823            !fs_info->fs_devices->rotating) {
2824                printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2825                       "mode\n");
2826                btrfs_set_opt(fs_info->mount_opt, SSD);
2827        }
2828
2829        /* Set the real inode map cache flag */
2830        if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2831                btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2832
2833#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2834        if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2835                ret = btrfsic_mount(tree_root, fs_devices,
2836                                    btrfs_test_opt(tree_root,
2837                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2838                                    1 : 0,
2839                                    fs_info->check_integrity_print_mask);
2840                if (ret)
2841                        printk(KERN_WARNING "BTRFS: failed to initialize"
2842                               " integrity check module %s\n", sb->s_id);
2843        }
2844#endif
2845        ret = btrfs_read_qgroup_config(fs_info);
2846        if (ret)
2847                goto fail_trans_kthread;
2848
2849        /* do not make disk changes in broken FS */
2850        if (btrfs_super_log_root(disk_super) != 0) {
2851                u64 bytenr = btrfs_super_log_root(disk_super);
2852
2853                if (fs_devices->rw_devices == 0) {
2854                        printk(KERN_WARNING "BTRFS: log replay required "
2855                               "on RO media\n");
2856                        err = -EIO;
2857                        goto fail_qgroup;
2858                }
2859                blocksize =
2860                     btrfs_level_size(tree_root,
2861                                      btrfs_super_log_root_level(disk_super));
2862
2863                log_tree_root = btrfs_alloc_root(fs_info);
2864                if (!log_tree_root) {
2865                        err = -ENOMEM;
2866                        goto fail_qgroup;
2867                }
2868
2869                __setup_root(nodesize, leafsize, sectorsize, stripesize,
2870                             log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2871
2872                log_tree_root->node = read_tree_block(tree_root, bytenr,
2873                                                      blocksize,
2874                                                      generation + 1);
2875                if (!log_tree_root->node ||
2876                    !extent_buffer_uptodate(log_tree_root->node)) {
2877                        printk(KERN_ERR "BTRFS: failed to read log tree\n");
2878                        free_extent_buffer(log_tree_root->node);
2879                        kfree(log_tree_root);
2880                        goto fail_qgroup;
2881                }
2882                /* returns with log_tree_root freed on success */
2883                ret = btrfs_recover_log_trees(log_tree_root);
2884                if (ret) {
2885                        btrfs_error(tree_root->fs_info, ret,
2886                                    "Failed to recover log tree");
2887                        free_extent_buffer(log_tree_root->node);
2888                        kfree(log_tree_root);
2889                        goto fail_qgroup;
2890                }
2891
2892                if (sb->s_flags & MS_RDONLY) {
2893                        ret = btrfs_commit_super(tree_root);
2894                        if (ret)
2895                                goto fail_qgroup;
2896                }
2897        }
2898
2899        ret = btrfs_find_orphan_roots(tree_root);
2900        if (ret)
2901                goto fail_qgroup;
2902
2903        if (!(sb->s_flags & MS_RDONLY)) {
2904                ret = btrfs_cleanup_fs_roots(fs_info);
2905                if (ret)
2906                        goto fail_qgroup;
2907
2908                mutex_lock(&fs_info->cleaner_mutex);
2909                ret = btrfs_recover_relocation(tree_root);
2910                mutex_unlock(&fs_info->cleaner_mutex);
2911                if (ret < 0) {
2912                        printk(KERN_WARNING
2913                               "BTRFS: failed to recover relocation\n");
2914                        err = -EINVAL;
2915                        goto fail_qgroup;
2916                }
2917        }
2918
2919        location.objectid = BTRFS_FS_TREE_OBJECTID;
2920        location.type = BTRFS_ROOT_ITEM_KEY;
2921        location.offset = 0;
2922
2923        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2924        if (IS_ERR(fs_info->fs_root)) {
2925                err = PTR_ERR(fs_info->fs_root);
2926                goto fail_qgroup;
2927        }
2928
2929        if (sb->s_flags & MS_RDONLY)
2930                return 0;
2931
2932        down_read(&fs_info->cleanup_work_sem);
2933        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2934            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2935                up_read(&fs_info->cleanup_work_sem);
2936                close_ctree(tree_root);
2937                return ret;
2938        }
2939        up_read(&fs_info->cleanup_work_sem);
2940
2941        ret = btrfs_resume_balance_async(fs_info);
2942        if (ret) {
2943                printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2944                close_ctree(tree_root);
2945                return ret;
2946        }
2947
2948        ret = btrfs_resume_dev_replace_async(fs_info);
2949        if (ret) {
2950                pr_warn("BTRFS: failed to resume dev_replace\n");
2951                close_ctree(tree_root);
2952                return ret;
2953        }
2954
2955        btrfs_qgroup_rescan_resume(fs_info);
2956
2957        if (create_uuid_tree) {
2958                pr_info("BTRFS: creating UUID tree\n");
2959                ret = btrfs_create_uuid_tree(fs_info);
2960                if (ret) {
2961                        pr_warn("BTRFS: failed to create the UUID tree %d\n",
2962                                ret);
2963                        close_ctree(tree_root);
2964                        return ret;
2965                }
2966        } else if (check_uuid_tree ||
2967                   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2968                pr_info("BTRFS: checking UUID tree\n");
2969                ret = btrfs_check_uuid_tree(fs_info);
2970                if (ret) {
2971                        pr_warn("BTRFS: failed to check the UUID tree %d\n",
2972                                ret);
2973                        close_ctree(tree_root);
2974                        return ret;
2975                }
2976        } else {
2977                fs_info->update_uuid_tree_gen = 1;
2978        }
2979
2980        return 0;
2981
2982fail_qgroup:
2983        btrfs_free_qgroup_config(fs_info);
2984fail_trans_kthread:
2985        kthread_stop(fs_info->transaction_kthread);
2986        btrfs_cleanup_transaction(fs_info->tree_root);
2987        btrfs_free_fs_roots(fs_info);
2988fail_cleaner:
2989        kthread_stop(fs_info->cleaner_kthread);
2990
2991        /*
2992         * make sure we're done with the btree inode before we stop our
2993         * kthreads
2994         */
2995        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2996
2997fail_sysfs:
2998        btrfs_sysfs_remove_one(fs_info);
2999
3000fail_block_groups:
3001        btrfs_put_block_group_cache(fs_info);
3002        btrfs_free_block_groups(fs_info);
3003
3004fail_tree_roots:
3005        free_root_pointers(fs_info, 1);
3006        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3007
3008fail_sb_buffer:
3009        btrfs_stop_all_workers(fs_info);
3010fail_alloc:
3011fail_iput:
3012        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3013
3014        iput(fs_info->btree_inode);
3015fail_bio_counter:
3016        percpu_counter_destroy(&fs_info->bio_counter);
3017fail_delalloc_bytes:
3018        percpu_counter_destroy(&fs_info->delalloc_bytes);
3019fail_dirty_metadata_bytes:
3020        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3021fail_bdi:
3022        bdi_destroy(&fs_info->bdi);
3023fail_srcu:
3024        cleanup_srcu_struct(&fs_info->subvol_srcu);
3025fail:
3026        btrfs_free_stripe_hash_table(fs_info);
3027        btrfs_close_devices(fs_info->fs_devices);
3028        return err;
3029
3030recovery_tree_root:
3031        if (!btrfs_test_opt(tree_root, RECOVERY))
3032                goto fail_tree_roots;
3033
3034        free_root_pointers(fs_info, 0);
3035
3036        /* don't use the log in recovery mode, it won't be valid */
3037        btrfs_set_super_log_root(disk_super, 0);
3038
3039        /* we can't trust the free space cache either */
3040        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3041
3042        ret = next_root_backup(fs_info, fs_info->super_copy,
3043                               &num_backups_tried, &backup_index);
3044        if (ret == -1)
3045                goto fail_block_groups;
3046        goto retry_root_backup;
3047}
3048
3049static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3050{
3051        if (uptodate) {
3052                set_buffer_uptodate(bh);
3053        } else {
3054                struct btrfs_device *device = (struct btrfs_device *)
3055                        bh->b_private;
3056
3057                printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3058                                          "I/O error on %s\n",
3059                                          rcu_str_deref(device->name));
3060                /* note, we dont' set_buffer_write_io_error because we have
3061                 * our own ways of dealing with the IO errors
3062                 */
3063                clear_buffer_uptodate(bh);
3064                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3065        }
3066        unlock_buffer(bh);
3067        put_bh(bh);
3068}
3069
3070struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3071{
3072        struct buffer_head *bh;
3073        struct buffer_head *latest = NULL;
3074        struct btrfs_super_block *super;
3075        int i;
3076        u64 transid = 0;
3077        u64 bytenr;
3078
3079        /* we would like to check all the supers, but that would make
3080         * a btrfs mount succeed after a mkfs from a different FS.
3081         * So, we need to add a special mount option to scan for
3082         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3083         */
3084        for (i = 0; i < 1; i++) {
3085                bytenr = btrfs_sb_offset(i);
3086                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3087                                        i_size_read(bdev->bd_inode))
3088                        break;
3089                bh = __bread(bdev, bytenr / 4096,
3090                                        BTRFS_SUPER_INFO_SIZE);
3091                if (!bh)
3092                        continue;
3093
3094                super = (struct btrfs_super_block *)bh->b_data;
3095                if (btrfs_super_bytenr(super) != bytenr ||
3096                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3097                        brelse(bh);
3098                        continue;
3099                }
3100
3101                if (!latest || btrfs_super_generation(super) > transid) {
3102                        brelse(latest);
3103                        latest = bh;
3104                        transid = btrfs_super_generation(super);
3105                } else {
3106                        brelse(bh);
3107                }
3108        }
3109        return latest;
3110}
3111
3112/*
3113 * this should be called twice, once with wait == 0 and
3114 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3115 * we write are pinned.
3116 *
3117 * They are released when wait == 1 is done.
3118 * max_mirrors must be the same for both runs, and it indicates how
3119 * many supers on this one device should be written.
3120 *
3121 * max_mirrors == 0 means to write them all.
3122 */
3123static int write_dev_supers(struct btrfs_device *device,
3124                            struct btrfs_super_block *sb,
3125                            int do_barriers, int wait, int max_mirrors)
3126{
3127        struct buffer_head *bh;
3128        int i;
3129        int ret;
3130        int errors = 0;
3131        u32 crc;
3132        u64 bytenr;
3133
3134        if (max_mirrors == 0)
3135                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3136
3137        for (i = 0; i < max_mirrors; i++) {
3138                bytenr = btrfs_sb_offset(i);
3139                if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3140                        break;
3141
3142                if (wait) {
3143                        bh = __find_get_block(device->bdev, bytenr / 4096,
3144                                              BTRFS_SUPER_INFO_SIZE);
3145                        if (!bh) {
3146                                errors++;
3147                                continue;
3148                        }
3149                        wait_on_buffer(bh);
3150                        if (!buffer_uptodate(bh))
3151                                errors++;
3152
3153                        /* drop our reference */
3154                        brelse(bh);
3155
3156                        /* drop the reference from the wait == 0 run */
3157                        brelse(bh);
3158                        continue;
3159                } else {
3160                        btrfs_set_super_bytenr(sb, bytenr);
3161
3162                        crc = ~(u32)0;
3163                        crc = btrfs_csum_data((char *)sb +
3164                                              BTRFS_CSUM_SIZE, crc,
3165                                              BTRFS_SUPER_INFO_SIZE -
3166                                              BTRFS_CSUM_SIZE);
3167                        btrfs_csum_final(crc, sb->csum);
3168
3169                        /*
3170                         * one reference for us, and we leave it for the
3171                         * caller
3172                         */
3173                        bh = __getblk(device->bdev, bytenr / 4096,
3174                                      BTRFS_SUPER_INFO_SIZE);
3175                        if (!bh) {
3176                                printk(KERN_ERR "BTRFS: couldn't get super "
3177                                       "buffer head for bytenr %Lu\n", bytenr);
3178                                errors++;
3179                                continue;
3180                        }
3181
3182                        memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3183
3184                        /* one reference for submit_bh */
3185                        get_bh(bh);
3186
3187                        set_buffer_uptodate(bh);
3188                        lock_buffer(bh);
3189                        bh->b_end_io = btrfs_end_buffer_write_sync;
3190                        bh->b_private = device;
3191                }
3192
3193                /*
3194                 * we fua the first super.  The others we allow
3195                 * to go down lazy.
3196                 */
3197                if (i == 0)
3198                        ret = btrfsic_submit_bh(WRITE_FUA, bh);
3199                else
3200                        ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3201                if (ret)
3202                        errors++;
3203        }
3204        return errors < i ? 0 : -1;
3205}
3206
3207/*
3208 * endio for the write_dev_flush, this will wake anyone waiting
3209 * for the barrier when it is done
3210 */
3211static void btrfs_end_empty_barrier(struct bio *bio, int err)
3212{
3213        if (err) {
3214                if (err == -EOPNOTSUPP)
3215                        set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3216                clear_bit(BIO_UPTODATE, &bio->bi_flags);
3217        }
3218        if (bio->bi_private)
3219                complete(bio->bi_private);
3220        bio_put(bio);
3221}
3222
3223/*
3224 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3225 * sent down.  With wait == 1, it waits for the previous flush.
3226 *
3227 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3228 * capable
3229 */
3230static int write_dev_flush(struct btrfs_device *device, int wait)
3231{
3232        struct bio *bio;
3233        int ret = 0;
3234
3235        if (device->nobarriers)
3236                return 0;
3237
3238        if (wait) {
3239                bio = device->flush_bio;
3240                if (!bio)
3241                        return 0;
3242
3243                wait_for_completion(&device->flush_wait);
3244
3245                if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3246                        printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3247                                      rcu_str_deref(device->name));
3248                        device->nobarriers = 1;
3249                } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3250                        ret = -EIO;
3251                        btrfs_dev_stat_inc_and_print(device,
3252                                BTRFS_DEV_STAT_FLUSH_ERRS);
3253                }
3254
3255                /* drop the reference from the wait == 0 run */
3256                bio_put(bio);
3257                device->flush_bio = NULL;
3258
3259                return ret;
3260        }
3261
3262        /*
3263         * one reference for us, and we leave it for the
3264         * caller
3265         */
3266        device->flush_bio = NULL;
3267        bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3268        if (!bio)
3269                return -ENOMEM;
3270
3271        bio->bi_end_io = btrfs_end_empty_barrier;
3272        bio->bi_bdev = device->bdev;
3273        init_completion(&device->flush_wait);
3274        bio->bi_private = &device->flush_wait;
3275        device->flush_bio = bio;
3276
3277        bio_get(bio);
3278        btrfsic_submit_bio(WRITE_FLUSH, bio);
3279
3280        return 0;
3281}
3282
3283/*
3284 * send an empty flush down to each device in parallel,
3285 * then wait for them
3286 */
3287static int barrier_all_devices(struct btrfs_fs_info *info)
3288{
3289        struct list_head *head;
3290        struct btrfs_device *dev;
3291        int errors_send = 0;
3292        int errors_wait = 0;
3293        int ret;
3294
3295        /* send down all the barriers */
3296        head = &info->fs_devices->devices;
3297        list_for_each_entry_rcu(dev, head, dev_list) {
3298                if (dev->missing)
3299                        continue;
3300                if (!dev->bdev) {
3301                        errors_send++;
3302                        continue;
3303                }
3304                if (!dev->in_fs_metadata || !dev->writeable)
3305                        continue;
3306
3307                ret = write_dev_flush(dev, 0);
3308                if (ret)
3309                        errors_send++;
3310        }
3311
3312        /* wait for all the barriers */
3313        list_for_each_entry_rcu(dev, head, dev_list) {
3314                if (dev->missing)
3315                        continue;
3316                if (!dev->bdev) {
3317                        errors_wait++;
3318                        continue;
3319                }
3320                if (!dev->in_fs_metadata || !dev->writeable)
3321                        continue;
3322
3323                ret = write_dev_flush(dev, 1);
3324                if (ret)
3325                        errors_wait++;
3326        }
3327        if (errors_send > info->num_tolerated_disk_barrier_failures ||
3328            errors_wait > info->num_tolerated_disk_barrier_failures)
3329                return -EIO;
3330        return 0;
3331}
3332
3333int btrfs_calc_num_tolerated_disk_barrier_failures(
3334        struct btrfs_fs_info *fs_info)
3335{
3336        struct btrfs_ioctl_space_info space;
3337        struct btrfs_space_info *sinfo;
3338        u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3339                       BTRFS_BLOCK_GROUP_SYSTEM,
3340                       BTRFS_BLOCK_GROUP_METADATA,
3341                       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3342        int num_types = 4;
3343        int i;
3344        int c;
3345        int num_tolerated_disk_barrier_failures =
3346                (int)fs_info->fs_devices->num_devices;
3347
3348        for (i = 0; i < num_types; i++) {
3349                struct btrfs_space_info *tmp;
3350
3351                sinfo = NULL;
3352                rcu_read_lock();
3353                list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3354                        if (tmp->flags == types[i]) {
3355                                sinfo = tmp;
3356                                break;
3357                        }
3358                }
3359                rcu_read_unlock();
3360
3361                if (!sinfo)
3362                        continue;
3363
3364                down_read(&sinfo->groups_sem);
3365                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3366                        if (!list_empty(&sinfo->block_groups[c])) {
3367                                u64 flags;
3368
3369                                btrfs_get_block_group_info(
3370                                        &sinfo->block_groups[c], &space);
3371                                if (space.total_bytes == 0 ||
3372                                    space.used_bytes == 0)
3373                                        continue;
3374                                flags = space.flags;
3375                                /*
3376                                 * return
3377                                 * 0: if dup, single or RAID0 is configured for
3378                                 *    any of metadata, system or data, else
3379                                 * 1: if RAID5 is configured, or if RAID1 or
3380                                 *    RAID10 is configured and only two mirrors
3381                                 *    are used, else
3382                                 * 2: if RAID6 is configured, else
3383                                 * num_mirrors - 1: if RAID1 or RAID10 is
3384                                 *                  configured and more than
3385                                 *                  2 mirrors are used.
3386                                 */
3387                                if (num_tolerated_disk_barrier_failures > 0 &&
3388                                    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3389                                               BTRFS_BLOCK_GROUP_RAID0)) ||
3390                                     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3391                                      == 0)))
3392                                        num_tolerated_disk_barrier_failures = 0;
3393                                else if (num_tolerated_disk_barrier_failures > 1) {
3394                                        if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3395                                            BTRFS_BLOCK_GROUP_RAID5 |
3396                                            BTRFS_BLOCK_GROUP_RAID10)) {
3397                                                num_tolerated_disk_barrier_failures = 1;
3398                                        } else if (flags &
3399                                                   BTRFS_BLOCK_GROUP_RAID6) {
3400                                                num_tolerated_disk_barrier_failures = 2;
3401                                        }
3402                                }
3403                        }
3404                }
3405                up_read(&sinfo->groups_sem);
3406        }
3407
3408        return num_tolerated_disk_barrier_failures;
3409}
3410
3411static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3412{
3413        struct list_head *head;
3414        struct btrfs_device *dev;
3415        struct btrfs_super_block *sb;
3416        struct btrfs_dev_item *dev_item;
3417        int ret;
3418        int do_barriers;
3419        int max_errors;
3420        int total_errors = 0;
3421        u64 flags;
3422
3423        do_barriers = !btrfs_test_opt(root, NOBARRIER);
3424        backup_super_roots(root->fs_info);
3425
3426        sb = root->fs_info->super_for_commit;
3427        dev_item = &sb->dev_item;
3428
3429        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3430        head = &root->fs_info->fs_devices->devices;
3431        max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3432
3433        if (do_barriers) {
3434                ret = barrier_all_devices(root->fs_info);
3435                if (ret) {
3436                        mutex_unlock(
3437                                &root->fs_info->fs_devices->device_list_mutex);
3438                        btrfs_error(root->fs_info, ret,
3439                                    "errors while submitting device barriers.");
3440                        return ret;
3441                }
3442        }
3443
3444        list_for_each_entry_rcu(dev, head, dev_list) {
3445                if (!dev->bdev) {
3446                        total_errors++;
3447                        continue;
3448                }
3449                if (!dev->in_fs_metadata || !dev->writeable)
3450                        continue;
3451
3452                btrfs_set_stack_device_generation(dev_item, 0);
3453                btrfs_set_stack_device_type(dev_item, dev->type);
3454                btrfs_set_stack_device_id(dev_item, dev->devid);
3455                btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3456                btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3457                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3458                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3459                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3460                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3461                memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3462
3463                flags = btrfs_super_flags(sb);
3464                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3465
3466                ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3467                if (ret)
3468                        total_errors++;
3469        }
3470        if (total_errors > max_errors) {
3471                btrfs_err(root->fs_info, "%d errors while writing supers",
3472                       total_errors);
3473                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3474
3475                /* FUA is masked off if unsupported and can't be the reason */
3476                btrfs_error(root->fs_info, -EIO,
3477                            "%d errors while writing supers", total_errors);
3478                return -EIO;
3479        }
3480
3481        total_errors = 0;
3482        list_for_each_entry_rcu(dev, head, dev_list) {
3483                if (!dev->bdev)
3484                        continue;
3485                if (!dev->in_fs_metadata || !dev->writeable)
3486                        continue;
3487
3488                ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3489                if (ret)
3490                        total_errors++;
3491        }
3492        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3493        if (total_errors > max_errors) {
3494                btrfs_error(root->fs_info, -EIO,
3495                            "%d errors while writing supers", total_errors);
3496                return -EIO;
3497        }
3498        return 0;
3499}
3500
3501int write_ctree_super(struct btrfs_trans_handle *trans,
3502                      struct btrfs_root *root, int max_mirrors)
3503{
3504        return write_all_supers(root, max_mirrors);
3505}
3506
3507/* Drop a fs root from the radix tree and free it. */
3508void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3509                                  struct btrfs_root *root)
3510{
3511        spin_lock(&fs_info->fs_roots_radix_lock);
3512        radix_tree_delete(&fs_info->fs_roots_radix,
3513                          (unsigned long)root->root_key.objectid);
3514        spin_unlock(&fs_info->fs_roots_radix_lock);
3515
3516        if (btrfs_root_refs(&root->root_item) == 0)
3517                synchronize_srcu(&fs_info->subvol_srcu);
3518
3519        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3520                btrfs_free_log(NULL, root);
3521
3522        if (root->free_ino_pinned)
3523                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3524        if (root->free_ino_ctl)
3525                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3526        free_fs_root(root);
3527}
3528
3529static void free_fs_root(struct btrfs_root *root)
3530{
3531        iput(root->cache_inode);
3532        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3533        btrfs_free_block_rsv(root, root->orphan_block_rsv);
3534        root->orphan_block_rsv = NULL;
3535        if (root->anon_dev)
3536                free_anon_bdev(root->anon_dev);
3537        if (root->subv_writers)
3538                btrfs_free_subvolume_writers(root->subv_writers);
3539        free_extent_buffer(root->node);
3540        free_extent_buffer(root->commit_root);
3541        kfree(root->free_ino_ctl);
3542        kfree(root->free_ino_pinned);
3543        kfree(root->name);
3544        btrfs_put_fs_root(root);
3545}
3546
3547void btrfs_free_fs_root(struct btrfs_root *root)
3548{
3549        free_fs_root(root);
3550}
3551
3552int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3553{
3554        u64 root_objectid = 0;
3555        struct btrfs_root *gang[8];
3556        int i = 0;
3557        int err = 0;
3558        unsigned int ret = 0;
3559        int index;
3560
3561        while (1) {
3562                index = srcu_read_lock(&fs_info->subvol_srcu);
3563                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3564                                             (void **)gang, root_objectid,
3565                                             ARRAY_SIZE(gang));
3566                if (!ret) {
3567                        srcu_read_unlock(&fs_info->subvol_srcu, index);
3568                        break;
3569                }
3570                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3571
3572                for (i = 0; i < ret; i++) {
3573                        /* Avoid to grab roots in dead_roots */
3574                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3575                                gang[i] = NULL;
3576                                continue;
3577                        }
3578                        /* grab all the search result for later use */
3579                        gang[i] = btrfs_grab_fs_root(gang[i]);
3580                }
3581                srcu_read_unlock(&fs_info->subvol_srcu, index);
3582
3583                for (i = 0; i < ret; i++) {
3584                        if (!gang[i])
3585                                continue;
3586                        root_objectid = gang[i]->root_key.objectid;
3587                        err = btrfs_orphan_cleanup(gang[i]);
3588                        if (err)
3589                                break;
3590                        btrfs_put_fs_root(gang[i]);
3591                }
3592                root_objectid++;
3593        }
3594
3595        /* release the uncleaned roots due to error */
3596        for (; i < ret; i++) {
3597                if (gang[i])
3598                        btrfs_put_fs_root(gang[i]);
3599        }
3600        return err;
3601}
3602
3603int btrfs_commit_super(struct btrfs_root *root)
3604{
3605        struct btrfs_trans_handle *trans;
3606
3607        mutex_lock(&root->fs_info->cleaner_mutex);
3608        btrfs_run_delayed_iputs(root);
3609        mutex_unlock(&root->fs_info->cleaner_mutex);
3610        wake_up_process(root->fs_info->cleaner_kthread);
3611
3612        /* wait until ongoing cleanup work done */
3613        down_write(&root->fs_info->cleanup_work_sem);
3614        up_write(&root->fs_info->cleanup_work_sem);
3615
3616        trans = btrfs_join_transaction(root);
3617        if (IS_ERR(trans))
3618                return PTR_ERR(trans);
3619        return btrfs_commit_transaction(trans, root);
3620}
3621
3622int close_ctree(struct btrfs_root *root)
3623{
3624        struct btrfs_fs_info *fs_info = root->fs_info;
3625        int ret;
3626
3627        fs_info->closing = 1;
3628        smp_mb();
3629
3630        /* wait for the uuid_scan task to finish */
3631        down(&fs_info->uuid_tree_rescan_sem);
3632        /* avoid complains from lockdep et al., set sem back to initial state */
3633        up(&fs_info->uuid_tree_rescan_sem);
3634
3635        /* pause restriper - we want to resume on mount */
3636        btrfs_pause_balance(fs_info);
3637
3638        btrfs_dev_replace_suspend_for_unmount(fs_info);
3639
3640        btrfs_scrub_cancel(fs_info);
3641
3642        /* wait for any defraggers to finish */
3643        wait_event(fs_info->transaction_wait,
3644                   (atomic_read(&fs_info->defrag_running) == 0));
3645
3646        /* clear out the rbtree of defraggable inodes */
3647        btrfs_cleanup_defrag_inodes(fs_info);
3648
3649        cancel_work_sync(&fs_info->async_reclaim_work);
3650
3651        if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3652                ret = btrfs_commit_super(root);
3653                if (ret)
3654                        btrfs_err(root->fs_info, "commit super ret %d", ret);
3655        }
3656
3657        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3658                btrfs_error_commit_super(root);
3659
3660        kthread_stop(fs_info->transaction_kthread);
3661        kthread_stop(fs_info->cleaner_kthread);
3662
3663        fs_info->closing = 2;
3664        smp_mb();
3665
3666        btrfs_free_qgroup_config(root->fs_info);
3667
3668        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3669                btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3670                       percpu_counter_sum(&fs_info->delalloc_bytes));
3671        }
3672
3673        btrfs_sysfs_remove_one(fs_info);
3674
3675        btrfs_free_fs_roots(fs_info);
3676
3677        btrfs_put_block_group_cache(fs_info);
3678
3679        btrfs_free_block_groups(fs_info);
3680
3681        /*
3682         * we must make sure there is not any read request to
3683         * submit after we stopping all workers.
3684         */
3685        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3686        btrfs_stop_all_workers(fs_info);
3687
3688        free_root_pointers(fs_info, 1);
3689
3690        iput(fs_info->btree_inode);
3691
3692#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3693        if (btrfs_test_opt(root, CHECK_INTEGRITY))
3694                btrfsic_unmount(root, fs_info->fs_devices);
3695#endif
3696
3697        btrfs_close_devices(fs_info->fs_devices);
3698        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3699
3700        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3701        percpu_counter_destroy(&fs_info->delalloc_bytes);
3702        percpu_counter_destroy(&fs_info->bio_counter);
3703        bdi_destroy(&fs_info->bdi);
3704        cleanup_srcu_struct(&fs_info->subvol_srcu);
3705
3706        btrfs_free_stripe_hash_table(fs_info);
3707
3708        btrfs_free_block_rsv(root, root->orphan_block_rsv);
3709        root->orphan_block_rsv = NULL;
3710
3711        return 0;
3712}
3713
3714int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3715                          int atomic)
3716{
3717        int ret;
3718        struct inode *btree_inode = buf->pages[0]->mapping->host;
3719
3720        ret = extent_buffer_uptodate(buf);
3721        if (!ret)
3722                return ret;
3723
3724        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3725                                    parent_transid, atomic);
3726        if (ret == -EAGAIN)
3727                return ret;
3728        return !ret;
3729}
3730
3731int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3732{
3733        return set_extent_buffer_uptodate(buf);
3734}
3735
3736void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3737{
3738        struct btrfs_root *root;
3739        u64 transid = btrfs_header_generation(buf);
3740        int was_dirty;
3741
3742#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3743        /*
3744         * This is a fast path so only do this check if we have sanity tests
3745         * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3746         * outside of the sanity tests.
3747         */
3748        if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3749                return;
3750#endif
3751        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3752        btrfs_assert_tree_locked(buf);
3753        if (transid != root->fs_info->generation)
3754                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3755                       "found %llu running %llu\n",
3756                        buf->start, transid, root->fs_info->generation);
3757        was_dirty = set_extent_buffer_dirty(buf);
3758        if (!was_dirty)
3759                __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3760                                     buf->len,
3761                                     root->fs_info->dirty_metadata_batch);
3762#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3763        if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3764                btrfs_print_leaf(root, buf);
3765                ASSERT(0);
3766        }
3767#endif
3768}
3769
3770static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3771                                        int flush_delayed)
3772{
3773        /*
3774         * looks as though older kernels can get into trouble with
3775         * this code, they end up stuck in balance_dirty_pages forever
3776         */
3777        int ret;
3778
3779        if (current->flags & PF_MEMALLOC)
3780                return;
3781
3782        if (flush_delayed)
3783                btrfs_balance_delayed_items(root);
3784
3785        ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3786                                     BTRFS_DIRTY_METADATA_THRESH);
3787        if (ret > 0) {
3788                balance_dirty_pages_ratelimited(
3789                                   root->fs_info->btree_inode->i_mapping);
3790        }
3791        return;
3792}
3793
3794void btrfs_btree_balance_dirty(struct btrfs_root *root)
3795{
3796        __btrfs_btree_balance_dirty(root, 1);
3797}
3798
3799void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3800{
3801        __btrfs_btree_balance_dirty(root, 0);
3802}
3803
3804int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3805{
3806        struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3807        return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3808}
3809
3810static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3811                              int read_only)
3812{
3813        /*
3814         * Placeholder for checks
3815         */
3816        return 0;
3817}
3818
3819static void btrfs_error_commit_super(struct btrfs_root *root)
3820{
3821        mutex_lock(&root->fs_info->cleaner_mutex);
3822        btrfs_run_delayed_iputs(root);
3823        mutex_unlock(&root->fs_info->cleaner_mutex);
3824
3825        down_write(&root->fs_info->cleanup_work_sem);
3826        up_write(&root->fs_info->cleanup_work_sem);
3827
3828        /* cleanup FS via transaction */
3829        btrfs_cleanup_transaction(root);
3830}
3831
3832static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3833                                             struct btrfs_root *root)
3834{
3835        struct btrfs_inode *btrfs_inode;
3836        struct list_head splice;
3837
3838        INIT_LIST_HEAD(&splice);
3839
3840        mutex_lock(&root->fs_info->ordered_operations_mutex);
3841        spin_lock(&root->fs_info->ordered_root_lock);
3842
3843        list_splice_init(&t->ordered_operations, &splice);
3844        while (!list_empty(&splice)) {
3845                btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3846                                         ordered_operations);
3847
3848                list_del_init(&btrfs_inode->ordered_operations);
3849                spin_unlock(&root->fs_info->ordered_root_lock);
3850
3851                btrfs_invalidate_inodes(btrfs_inode->root);
3852
3853                spin_lock(&root->fs_info->ordered_root_lock);
3854        }
3855
3856        spin_unlock(&root->fs_info->ordered_root_lock);
3857        mutex_unlock(&root->fs_info->ordered_operations_mutex);
3858}
3859
3860static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3861{
3862        struct btrfs_ordered_extent *ordered;
3863
3864        spin_lock(&root->ordered_extent_lock);
3865        /*
3866         * This will just short circuit the ordered completion stuff which will
3867         * make sure the ordered extent gets properly cleaned up.
3868         */
3869        list_for_each_entry(ordered, &root->ordered_extents,
3870                            root_extent_list)
3871                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3872        spin_unlock(&root->ordered_extent_lock);
3873}
3874
3875static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3876{
3877        struct btrfs_root *root;
3878        struct list_head splice;
3879
3880        INIT_LIST_HEAD(&splice);
3881
3882        spin_lock(&fs_info->ordered_root_lock);
3883        list_splice_init(&fs_info->ordered_roots, &splice);
3884        while (!list_empty(&splice)) {
3885                root = list_first_entry(&splice, struct btrfs_root,
3886                                        ordered_root);
3887                list_move_tail(&root->ordered_root,
3888                               &fs_info->ordered_roots);
3889
3890                spin_unlock(&fs_info->ordered_root_lock);
3891                btrfs_destroy_ordered_extents(root);
3892
3893                cond_resched();
3894                spin_lock(&fs_info->ordered_root_lock);
3895        }
3896        spin_unlock(&fs_info->ordered_root_lock);
3897}
3898
3899static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3900                                      struct btrfs_root *root)
3901{
3902        struct rb_node *node;
3903        struct btrfs_delayed_ref_root *delayed_refs;
3904        struct btrfs_delayed_ref_node *ref;
3905        int ret = 0;
3906
3907        delayed_refs = &trans->delayed_refs;
3908
3909        spin_lock(&delayed_refs->lock);
3910        if (atomic_read(&delayed_refs->num_entries) == 0) {
3911                spin_unlock(&delayed_refs->lock);
3912                btrfs_info(root->fs_info, "delayed_refs has NO entry");
3913                return ret;
3914        }
3915
3916        while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3917                struct btrfs_delayed_ref_head *head;
3918                bool pin_bytes = false;
3919
3920                head = rb_entry(node, struct btrfs_delayed_ref_head,
3921                                href_node);
3922                if (!mutex_trylock(&head->mutex)) {
3923                        atomic_inc(&head->node.refs);
3924                        spin_unlock(&delayed_refs->lock);
3925
3926                        mutex_lock(&head->mutex);
3927                        mutex_unlock(&head->mutex);
3928                        btrfs_put_delayed_ref(&head->node);
3929                        spin_lock(&delayed_refs->lock);
3930                        continue;
3931                }
3932                spin_lock(&head->lock);
3933                while ((node = rb_first(&head->ref_root)) != NULL) {
3934                        ref = rb_entry(node, struct btrfs_delayed_ref_node,
3935                                       rb_node);
3936                        ref->in_tree = 0;
3937                        rb_erase(&ref->rb_node, &head->ref_root);
3938                        atomic_dec(&delayed_refs->num_entries);
3939                        btrfs_put_delayed_ref(ref);
3940                }
3941                if (head->must_insert_reserved)
3942                        pin_bytes = true;
3943                btrfs_free_delayed_extent_op(head->extent_op);
3944                delayed_refs->num_heads--;
3945                if (head->processing == 0)
3946                        delayed_refs->num_heads_ready--;
3947                atomic_dec(&delayed_refs->num_entries);
3948                head->node.in_tree = 0;
3949                rb_erase(&head->href_node, &delayed_refs->href_root);
3950                spin_unlock(&head->lock);
3951                spin_unlock(&delayed_refs->lock);
3952                mutex_unlock(&head->mutex);
3953
3954                if (pin_bytes)
3955                        btrfs_pin_extent(root, head->node.bytenr,
3956                                         head->node.num_bytes, 1);
3957                btrfs_put_delayed_ref(&head->node);
3958                cond_resched();
3959                spin_lock(&delayed_refs->lock);
3960        }
3961
3962        spin_unlock(&delayed_refs->lock);
3963
3964        return ret;
3965}
3966
3967static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3968{
3969        struct btrfs_inode *btrfs_inode;
3970        struct list_head splice;
3971
3972        INIT_LIST_HEAD(&splice);
3973
3974        spin_lock(&root->delalloc_lock);
3975        list_splice_init(&root->delalloc_inodes, &splice);
3976
3977        while (!list_empty(&splice)) {
3978                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3979                                               delalloc_inodes);
3980
3981                list_del_init(&btrfs_inode->delalloc_inodes);
3982                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3983                          &btrfs_inode->runtime_flags);
3984                spin_unlock(&root->delalloc_lock);
3985
3986                btrfs_invalidate_inodes(btrfs_inode->root);
3987
3988                spin_lock(&root->delalloc_lock);
3989        }
3990
3991        spin_unlock(&root->delalloc_lock);
3992}
3993
3994static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3995{
3996        struct btrfs_root *root;
3997        struct list_head splice;
3998
3999        INIT_LIST_HEAD(&splice);
4000
4001        spin_lock(&fs_info->delalloc_root_lock);
4002        list_splice_init(&fs_info->delalloc_roots, &splice);
4003        while (!list_empty(&splice)) {
4004                root = list_first_entry(&splice, struct btrfs_root,
4005                                         delalloc_root);
4006                list_del_init(&root->delalloc_root);
4007                root = btrfs_grab_fs_root(root);
4008                BUG_ON(!root);
4009                spin_unlock(&fs_info->delalloc_root_lock);
4010
4011                btrfs_destroy_delalloc_inodes(root);
4012                btrfs_put_fs_root(root);
4013
4014                spin_lock(&fs_info->delalloc_root_lock);
4015        }
4016        spin_unlock(&fs_info->delalloc_root_lock);
4017}
4018
4019static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4020                                        struct extent_io_tree *dirty_pages,
4021                                        int mark)
4022{
4023        int ret;
4024        struct extent_buffer *eb;
4025        u64 start = 0;
4026        u64 end;
4027
4028        while (1) {
4029                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4030                                            mark, NULL);
4031                if (ret)
4032                        break;
4033
4034                clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4035                while (start <= end) {
4036                        eb = btrfs_find_tree_block(root, start,
4037                                                   root->leafsize);
4038                        start += root->leafsize;
4039                        if (!eb)
4040                                continue;
4041                        wait_on_extent_buffer_writeback(eb);
4042
4043                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4044                                               &eb->bflags))
4045                                clear_extent_buffer_dirty(eb);
4046                        free_extent_buffer_stale(eb);
4047                }
4048        }
4049
4050        return ret;
4051}
4052
4053static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4054                                       struct extent_io_tree *pinned_extents)
4055{
4056        struct extent_io_tree *unpin;
4057        u64 start;
4058        u64 end;
4059        int ret;
4060        bool loop = true;
4061
4062        unpin = pinned_extents;
4063again:
4064        while (1) {
4065                ret = find_first_extent_bit(unpin, 0, &start, &end,
4066                                            EXTENT_DIRTY, NULL);
4067                if (ret)
4068                        break;
4069
4070                /* opt_discard */
4071                if (btrfs_test_opt(root, DISCARD))
4072                        ret = btrfs_error_discard_extent(root, start,
4073                                                         end + 1 - start,
4074                                                         NULL);
4075
4076                clear_extent_dirty(unpin, start, end, GFP_NOFS);
4077                btrfs_error_unpin_extent_range(root, start, end);
4078                cond_resched();
4079        }
4080
4081        if (loop) {
4082                if (unpin == &root->fs_info->freed_extents[0])
4083                        unpin = &root->fs_info->freed_extents[1];
4084                else
4085                        unpin = &root->fs_info->freed_extents[0];
4086                loop = false;
4087                goto again;
4088        }
4089
4090        return 0;
4091}
4092
4093void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4094                                   struct btrfs_root *root)
4095{
4096        btrfs_destroy_ordered_operations(cur_trans, root);
4097
4098        btrfs_destroy_delayed_refs(cur_trans, root);
4099
4100        cur_trans->state = TRANS_STATE_COMMIT_START;
4101        wake_up(&root->fs_info->transaction_blocked_wait);
4102
4103        cur_trans->state = TRANS_STATE_UNBLOCKED;
4104        wake_up(&root->fs_info->transaction_wait);
4105
4106        btrfs_destroy_delayed_inodes(root);
4107        btrfs_assert_delayed_root_empty(root);
4108
4109        btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4110                                     EXTENT_DIRTY);
4111        btrfs_destroy_pinned_extent(root,
4112                                    root->fs_info->pinned_extents);
4113
4114        cur_trans->state =TRANS_STATE_COMPLETED;
4115        wake_up(&cur_trans->commit_wait);
4116
4117        /*
4118        memset(cur_trans, 0, sizeof(*cur_trans));
4119        kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4120        */
4121}
4122
4123static int btrfs_cleanup_transaction(struct btrfs_root *root)
4124{
4125        struct btrfs_transaction *t;
4126
4127        mutex_lock(&root->fs_info->transaction_kthread_mutex);
4128
4129        spin_lock(&root->fs_info->trans_lock);
4130        while (!list_empty(&root->fs_info->trans_list)) {
4131                t = list_first_entry(&root->fs_info->trans_list,
4132                                     struct btrfs_transaction, list);
4133                if (t->state >= TRANS_STATE_COMMIT_START) {
4134                        atomic_inc(&t->use_count);
4135                        spin_unlock(&root->fs_info->trans_lock);
4136                        btrfs_wait_for_commit(root, t->transid);
4137                        btrfs_put_transaction(t);
4138                        spin_lock(&root->fs_info->trans_lock);
4139                        continue;
4140                }
4141                if (t == root->fs_info->running_transaction) {
4142                        t->state = TRANS_STATE_COMMIT_DOING;
4143                        spin_unlock(&root->fs_info->trans_lock);
4144                        /*
4145                         * We wait for 0 num_writers since we don't hold a trans
4146                         * handle open currently for this transaction.
4147                         */
4148                        wait_event(t->writer_wait,
4149                                   atomic_read(&t->num_writers) == 0);
4150                } else {
4151                        spin_unlock(&root->fs_info->trans_lock);
4152                }
4153                btrfs_cleanup_one_transaction(t, root);
4154
4155                spin_lock(&root->fs_info->trans_lock);
4156                if (t == root->fs_info->running_transaction)
4157                        root->fs_info->running_transaction = NULL;
4158                list_del_init(&t->list);
4159                spin_unlock(&root->fs_info->trans_lock);
4160
4161                btrfs_put_transaction(t);
4162                trace_btrfs_transaction_commit(root);
4163                spin_lock(&root->fs_info->trans_lock);
4164        }
4165        spin_unlock(&root->fs_info->trans_lock);
4166        btrfs_destroy_all_ordered_extents(root->fs_info);
4167        btrfs_destroy_delayed_inodes(root);
4168        btrfs_assert_delayed_root_empty(root);
4169        btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4170        btrfs_destroy_all_delalloc_inodes(root->fs_info);
4171        mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4172
4173        return 0;
4174}
4175
4176static struct extent_io_ops btree_extent_io_ops = {
4177        .readpage_end_io_hook = btree_readpage_end_io_hook,
4178        .readpage_io_failed_hook = btree_io_failed_hook,
4179        .submit_bio_hook = btree_submit_bio_hook,
4180        /* note we're sharing with inode.c for the merge bio hook */
4181        .merge_bio_hook = btrfs_merge_bio_hook,
4182};
4183