linux/fs/btrfs/send.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/bsearch.h>
  20#include <linux/fs.h>
  21#include <linux/file.h>
  22#include <linux/sort.h>
  23#include <linux/mount.h>
  24#include <linux/xattr.h>
  25#include <linux/posix_acl_xattr.h>
  26#include <linux/radix-tree.h>
  27#include <linux/vmalloc.h>
  28#include <linux/string.h>
  29
  30#include "send.h"
  31#include "backref.h"
  32#include "hash.h"
  33#include "locking.h"
  34#include "disk-io.h"
  35#include "btrfs_inode.h"
  36#include "transaction.h"
  37
  38static int g_verbose = 0;
  39
  40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
  41
  42/*
  43 * A fs_path is a helper to dynamically build path names with unknown size.
  44 * It reallocates the internal buffer on demand.
  45 * It allows fast adding of path elements on the right side (normal path) and
  46 * fast adding to the left side (reversed path). A reversed path can also be
  47 * unreversed if needed.
  48 */
  49struct fs_path {
  50        union {
  51                struct {
  52                        char *start;
  53                        char *end;
  54
  55                        char *buf;
  56                        unsigned short buf_len:15;
  57                        unsigned short reversed:1;
  58                        char inline_buf[];
  59                };
  60                /*
  61                 * Average path length does not exceed 200 bytes, we'll have
  62                 * better packing in the slab and higher chance to satisfy
  63                 * a allocation later during send.
  64                 */
  65                char pad[256];
  66        };
  67};
  68#define FS_PATH_INLINE_SIZE \
  69        (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  70
  71
  72/* reused for each extent */
  73struct clone_root {
  74        struct btrfs_root *root;
  75        u64 ino;
  76        u64 offset;
  77
  78        u64 found_refs;
  79};
  80
  81#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  82#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  83
  84struct send_ctx {
  85        struct file *send_filp;
  86        loff_t send_off;
  87        char *send_buf;
  88        u32 send_size;
  89        u32 send_max_size;
  90        u64 total_send_size;
  91        u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  92        u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
  93
  94        struct btrfs_root *send_root;
  95        struct btrfs_root *parent_root;
  96        struct clone_root *clone_roots;
  97        int clone_roots_cnt;
  98
  99        /* current state of the compare_tree call */
 100        struct btrfs_path *left_path;
 101        struct btrfs_path *right_path;
 102        struct btrfs_key *cmp_key;
 103
 104        /*
 105         * infos of the currently processed inode. In case of deleted inodes,
 106         * these are the values from the deleted inode.
 107         */
 108        u64 cur_ino;
 109        u64 cur_inode_gen;
 110        int cur_inode_new;
 111        int cur_inode_new_gen;
 112        int cur_inode_deleted;
 113        u64 cur_inode_size;
 114        u64 cur_inode_mode;
 115        u64 cur_inode_rdev;
 116        u64 cur_inode_last_extent;
 117
 118        u64 send_progress;
 119
 120        struct list_head new_refs;
 121        struct list_head deleted_refs;
 122
 123        struct radix_tree_root name_cache;
 124        struct list_head name_cache_list;
 125        int name_cache_size;
 126
 127        struct file_ra_state ra;
 128
 129        char *read_buf;
 130
 131        /*
 132         * We process inodes by their increasing order, so if before an
 133         * incremental send we reverse the parent/child relationship of
 134         * directories such that a directory with a lower inode number was
 135         * the parent of a directory with a higher inode number, and the one
 136         * becoming the new parent got renamed too, we can't rename/move the
 137         * directory with lower inode number when we finish processing it - we
 138         * must process the directory with higher inode number first, then
 139         * rename/move it and then rename/move the directory with lower inode
 140         * number. Example follows.
 141         *
 142         * Tree state when the first send was performed:
 143         *
 144         * .
 145         * |-- a                   (ino 257)
 146         *     |-- b               (ino 258)
 147         *         |
 148         *         |
 149         *         |-- c           (ino 259)
 150         *         |   |-- d       (ino 260)
 151         *         |
 152         *         |-- c2          (ino 261)
 153         *
 154         * Tree state when the second (incremental) send is performed:
 155         *
 156         * .
 157         * |-- a                   (ino 257)
 158         *     |-- b               (ino 258)
 159         *         |-- c2          (ino 261)
 160         *             |-- d2      (ino 260)
 161         *                 |-- cc  (ino 259)
 162         *
 163         * The sequence of steps that lead to the second state was:
 164         *
 165         * mv /a/b/c/d /a/b/c2/d2
 166         * mv /a/b/c /a/b/c2/d2/cc
 167         *
 168         * "c" has lower inode number, but we can't move it (2nd mv operation)
 169         * before we move "d", which has higher inode number.
 170         *
 171         * So we just memorize which move/rename operations must be performed
 172         * later when their respective parent is processed and moved/renamed.
 173         */
 174
 175        /* Indexed by parent directory inode number. */
 176        struct rb_root pending_dir_moves;
 177
 178        /*
 179         * Reverse index, indexed by the inode number of a directory that
 180         * is waiting for the move/rename of its immediate parent before its
 181         * own move/rename can be performed.
 182         */
 183        struct rb_root waiting_dir_moves;
 184
 185        /*
 186         * A directory that is going to be rm'ed might have a child directory
 187         * which is in the pending directory moves index above. In this case,
 188         * the directory can only be removed after the move/rename of its child
 189         * is performed. Example:
 190         *
 191         * Parent snapshot:
 192         *
 193         * .                        (ino 256)
 194         * |-- a/                   (ino 257)
 195         *     |-- b/               (ino 258)
 196         *         |-- c/           (ino 259)
 197         *         |   |-- x/       (ino 260)
 198         *         |
 199         *         |-- y/           (ino 261)
 200         *
 201         * Send snapshot:
 202         *
 203         * .                        (ino 256)
 204         * |-- a/                   (ino 257)
 205         *     |-- b/               (ino 258)
 206         *         |-- YY/          (ino 261)
 207         *              |-- x/      (ino 260)
 208         *
 209         * Sequence of steps that lead to the send snapshot:
 210         * rm -f /a/b/c/foo.txt
 211         * mv /a/b/y /a/b/YY
 212         * mv /a/b/c/x /a/b/YY
 213         * rmdir /a/b/c
 214         *
 215         * When the child is processed, its move/rename is delayed until its
 216         * parent is processed (as explained above), but all other operations
 217         * like update utimes, chown, chgrp, etc, are performed and the paths
 218         * that it uses for those operations must use the orphanized name of
 219         * its parent (the directory we're going to rm later), so we need to
 220         * memorize that name.
 221         *
 222         * Indexed by the inode number of the directory to be deleted.
 223         */
 224        struct rb_root orphan_dirs;
 225};
 226
 227struct pending_dir_move {
 228        struct rb_node node;
 229        struct list_head list;
 230        u64 parent_ino;
 231        u64 ino;
 232        u64 gen;
 233        struct list_head update_refs;
 234};
 235
 236struct waiting_dir_move {
 237        struct rb_node node;
 238        u64 ino;
 239        /*
 240         * There might be some directory that could not be removed because it
 241         * was waiting for this directory inode to be moved first. Therefore
 242         * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 243         */
 244        u64 rmdir_ino;
 245};
 246
 247struct orphan_dir_info {
 248        struct rb_node node;
 249        u64 ino;
 250        u64 gen;
 251};
 252
 253struct name_cache_entry {
 254        struct list_head list;
 255        /*
 256         * radix_tree has only 32bit entries but we need to handle 64bit inums.
 257         * We use the lower 32bit of the 64bit inum to store it in the tree. If
 258         * more then one inum would fall into the same entry, we use radix_list
 259         * to store the additional entries. radix_list is also used to store
 260         * entries where two entries have the same inum but different
 261         * generations.
 262         */
 263        struct list_head radix_list;
 264        u64 ino;
 265        u64 gen;
 266        u64 parent_ino;
 267        u64 parent_gen;
 268        int ret;
 269        int need_later_update;
 270        int name_len;
 271        char name[];
 272};
 273
 274static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 275
 276static struct waiting_dir_move *
 277get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 278
 279static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
 280
 281static int need_send_hole(struct send_ctx *sctx)
 282{
 283        return (sctx->parent_root && !sctx->cur_inode_new &&
 284                !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 285                S_ISREG(sctx->cur_inode_mode));
 286}
 287
 288static void fs_path_reset(struct fs_path *p)
 289{
 290        if (p->reversed) {
 291                p->start = p->buf + p->buf_len - 1;
 292                p->end = p->start;
 293                *p->start = 0;
 294        } else {
 295                p->start = p->buf;
 296                p->end = p->start;
 297                *p->start = 0;
 298        }
 299}
 300
 301static struct fs_path *fs_path_alloc(void)
 302{
 303        struct fs_path *p;
 304
 305        p = kmalloc(sizeof(*p), GFP_NOFS);
 306        if (!p)
 307                return NULL;
 308        p->reversed = 0;
 309        p->buf = p->inline_buf;
 310        p->buf_len = FS_PATH_INLINE_SIZE;
 311        fs_path_reset(p);
 312        return p;
 313}
 314
 315static struct fs_path *fs_path_alloc_reversed(void)
 316{
 317        struct fs_path *p;
 318
 319        p = fs_path_alloc();
 320        if (!p)
 321                return NULL;
 322        p->reversed = 1;
 323        fs_path_reset(p);
 324        return p;
 325}
 326
 327static void fs_path_free(struct fs_path *p)
 328{
 329        if (!p)
 330                return;
 331        if (p->buf != p->inline_buf)
 332                kfree(p->buf);
 333        kfree(p);
 334}
 335
 336static int fs_path_len(struct fs_path *p)
 337{
 338        return p->end - p->start;
 339}
 340
 341static int fs_path_ensure_buf(struct fs_path *p, int len)
 342{
 343        char *tmp_buf;
 344        int path_len;
 345        int old_buf_len;
 346
 347        len++;
 348
 349        if (p->buf_len >= len)
 350                return 0;
 351
 352        if (len > PATH_MAX) {
 353                WARN_ON(1);
 354                return -ENOMEM;
 355        }
 356
 357        path_len = p->end - p->start;
 358        old_buf_len = p->buf_len;
 359
 360        /*
 361         * First time the inline_buf does not suffice
 362         */
 363        if (p->buf == p->inline_buf) {
 364                tmp_buf = kmalloc(len, GFP_NOFS);
 365                if (tmp_buf)
 366                        memcpy(tmp_buf, p->buf, old_buf_len);
 367        } else {
 368                tmp_buf = krealloc(p->buf, len, GFP_NOFS);
 369        }
 370        if (!tmp_buf)
 371                return -ENOMEM;
 372        p->buf = tmp_buf;
 373        /*
 374         * The real size of the buffer is bigger, this will let the fast path
 375         * happen most of the time
 376         */
 377        p->buf_len = ksize(p->buf);
 378
 379        if (p->reversed) {
 380                tmp_buf = p->buf + old_buf_len - path_len - 1;
 381                p->end = p->buf + p->buf_len - 1;
 382                p->start = p->end - path_len;
 383                memmove(p->start, tmp_buf, path_len + 1);
 384        } else {
 385                p->start = p->buf;
 386                p->end = p->start + path_len;
 387        }
 388        return 0;
 389}
 390
 391static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 392                                   char **prepared)
 393{
 394        int ret;
 395        int new_len;
 396
 397        new_len = p->end - p->start + name_len;
 398        if (p->start != p->end)
 399                new_len++;
 400        ret = fs_path_ensure_buf(p, new_len);
 401        if (ret < 0)
 402                goto out;
 403
 404        if (p->reversed) {
 405                if (p->start != p->end)
 406                        *--p->start = '/';
 407                p->start -= name_len;
 408                *prepared = p->start;
 409        } else {
 410                if (p->start != p->end)
 411                        *p->end++ = '/';
 412                *prepared = p->end;
 413                p->end += name_len;
 414                *p->end = 0;
 415        }
 416
 417out:
 418        return ret;
 419}
 420
 421static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 422{
 423        int ret;
 424        char *prepared;
 425
 426        ret = fs_path_prepare_for_add(p, name_len, &prepared);
 427        if (ret < 0)
 428                goto out;
 429        memcpy(prepared, name, name_len);
 430
 431out:
 432        return ret;
 433}
 434
 435static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 436{
 437        int ret;
 438        char *prepared;
 439
 440        ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 441        if (ret < 0)
 442                goto out;
 443        memcpy(prepared, p2->start, p2->end - p2->start);
 444
 445out:
 446        return ret;
 447}
 448
 449static int fs_path_add_from_extent_buffer(struct fs_path *p,
 450                                          struct extent_buffer *eb,
 451                                          unsigned long off, int len)
 452{
 453        int ret;
 454        char *prepared;
 455
 456        ret = fs_path_prepare_for_add(p, len, &prepared);
 457        if (ret < 0)
 458                goto out;
 459
 460        read_extent_buffer(eb, prepared, off, len);
 461
 462out:
 463        return ret;
 464}
 465
 466static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 467{
 468        int ret;
 469
 470        p->reversed = from->reversed;
 471        fs_path_reset(p);
 472
 473        ret = fs_path_add_path(p, from);
 474
 475        return ret;
 476}
 477
 478
 479static void fs_path_unreverse(struct fs_path *p)
 480{
 481        char *tmp;
 482        int len;
 483
 484        if (!p->reversed)
 485                return;
 486
 487        tmp = p->start;
 488        len = p->end - p->start;
 489        p->start = p->buf;
 490        p->end = p->start + len;
 491        memmove(p->start, tmp, len + 1);
 492        p->reversed = 0;
 493}
 494
 495static struct btrfs_path *alloc_path_for_send(void)
 496{
 497        struct btrfs_path *path;
 498
 499        path = btrfs_alloc_path();
 500        if (!path)
 501                return NULL;
 502        path->search_commit_root = 1;
 503        path->skip_locking = 1;
 504        path->need_commit_sem = 1;
 505        return path;
 506}
 507
 508static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 509{
 510        int ret;
 511        mm_segment_t old_fs;
 512        u32 pos = 0;
 513
 514        old_fs = get_fs();
 515        set_fs(KERNEL_DS);
 516
 517        while (pos < len) {
 518                ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
 519                /* TODO handle that correctly */
 520                /*if (ret == -ERESTARTSYS) {
 521                        continue;
 522                }*/
 523                if (ret < 0)
 524                        goto out;
 525                if (ret == 0) {
 526                        ret = -EIO;
 527                        goto out;
 528                }
 529                pos += ret;
 530        }
 531
 532        ret = 0;
 533
 534out:
 535        set_fs(old_fs);
 536        return ret;
 537}
 538
 539static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 540{
 541        struct btrfs_tlv_header *hdr;
 542        int total_len = sizeof(*hdr) + len;
 543        int left = sctx->send_max_size - sctx->send_size;
 544
 545        if (unlikely(left < total_len))
 546                return -EOVERFLOW;
 547
 548        hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 549        hdr->tlv_type = cpu_to_le16(attr);
 550        hdr->tlv_len = cpu_to_le16(len);
 551        memcpy(hdr + 1, data, len);
 552        sctx->send_size += total_len;
 553
 554        return 0;
 555}
 556
 557#define TLV_PUT_DEFINE_INT(bits) \
 558        static int tlv_put_u##bits(struct send_ctx *sctx,               \
 559                        u##bits attr, u##bits value)                    \
 560        {                                                               \
 561                __le##bits __tmp = cpu_to_le##bits(value);              \
 562                return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
 563        }
 564
 565TLV_PUT_DEFINE_INT(64)
 566
 567static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 568                          const char *str, int len)
 569{
 570        if (len == -1)
 571                len = strlen(str);
 572        return tlv_put(sctx, attr, str, len);
 573}
 574
 575static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 576                        const u8 *uuid)
 577{
 578        return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 579}
 580
 581static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 582                                  struct extent_buffer *eb,
 583                                  struct btrfs_timespec *ts)
 584{
 585        struct btrfs_timespec bts;
 586        read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 587        return tlv_put(sctx, attr, &bts, sizeof(bts));
 588}
 589
 590
 591#define TLV_PUT(sctx, attrtype, attrlen, data) \
 592        do { \
 593                ret = tlv_put(sctx, attrtype, attrlen, data); \
 594                if (ret < 0) \
 595                        goto tlv_put_failure; \
 596        } while (0)
 597
 598#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 599        do { \
 600                ret = tlv_put_u##bits(sctx, attrtype, value); \
 601                if (ret < 0) \
 602                        goto tlv_put_failure; \
 603        } while (0)
 604
 605#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 606#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 607#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 608#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 609#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 610        do { \
 611                ret = tlv_put_string(sctx, attrtype, str, len); \
 612                if (ret < 0) \
 613                        goto tlv_put_failure; \
 614        } while (0)
 615#define TLV_PUT_PATH(sctx, attrtype, p) \
 616        do { \
 617                ret = tlv_put_string(sctx, attrtype, p->start, \
 618                        p->end - p->start); \
 619                if (ret < 0) \
 620                        goto tlv_put_failure; \
 621        } while(0)
 622#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 623        do { \
 624                ret = tlv_put_uuid(sctx, attrtype, uuid); \
 625                if (ret < 0) \
 626                        goto tlv_put_failure; \
 627        } while (0)
 628#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 629        do { \
 630                ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 631                if (ret < 0) \
 632                        goto tlv_put_failure; \
 633        } while (0)
 634
 635static int send_header(struct send_ctx *sctx)
 636{
 637        struct btrfs_stream_header hdr;
 638
 639        strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 640        hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 641
 642        return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 643                                        &sctx->send_off);
 644}
 645
 646/*
 647 * For each command/item we want to send to userspace, we call this function.
 648 */
 649static int begin_cmd(struct send_ctx *sctx, int cmd)
 650{
 651        struct btrfs_cmd_header *hdr;
 652
 653        if (WARN_ON(!sctx->send_buf))
 654                return -EINVAL;
 655
 656        BUG_ON(sctx->send_size);
 657
 658        sctx->send_size += sizeof(*hdr);
 659        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 660        hdr->cmd = cpu_to_le16(cmd);
 661
 662        return 0;
 663}
 664
 665static int send_cmd(struct send_ctx *sctx)
 666{
 667        int ret;
 668        struct btrfs_cmd_header *hdr;
 669        u32 crc;
 670
 671        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 672        hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
 673        hdr->crc = 0;
 674
 675        crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 676        hdr->crc = cpu_to_le32(crc);
 677
 678        ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 679                                        &sctx->send_off);
 680
 681        sctx->total_send_size += sctx->send_size;
 682        sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
 683        sctx->send_size = 0;
 684
 685        return ret;
 686}
 687
 688/*
 689 * Sends a move instruction to user space
 690 */
 691static int send_rename(struct send_ctx *sctx,
 692                     struct fs_path *from, struct fs_path *to)
 693{
 694        int ret;
 695
 696verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
 697
 698        ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 699        if (ret < 0)
 700                goto out;
 701
 702        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 703        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 704
 705        ret = send_cmd(sctx);
 706
 707tlv_put_failure:
 708out:
 709        return ret;
 710}
 711
 712/*
 713 * Sends a link instruction to user space
 714 */
 715static int send_link(struct send_ctx *sctx,
 716                     struct fs_path *path, struct fs_path *lnk)
 717{
 718        int ret;
 719
 720verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
 721
 722        ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 723        if (ret < 0)
 724                goto out;
 725
 726        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 727        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 728
 729        ret = send_cmd(sctx);
 730
 731tlv_put_failure:
 732out:
 733        return ret;
 734}
 735
 736/*
 737 * Sends an unlink instruction to user space
 738 */
 739static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 740{
 741        int ret;
 742
 743verbose_printk("btrfs: send_unlink %s\n", path->start);
 744
 745        ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 746        if (ret < 0)
 747                goto out;
 748
 749        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 750
 751        ret = send_cmd(sctx);
 752
 753tlv_put_failure:
 754out:
 755        return ret;
 756}
 757
 758/*
 759 * Sends a rmdir instruction to user space
 760 */
 761static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 762{
 763        int ret;
 764
 765verbose_printk("btrfs: send_rmdir %s\n", path->start);
 766
 767        ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 768        if (ret < 0)
 769                goto out;
 770
 771        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 772
 773        ret = send_cmd(sctx);
 774
 775tlv_put_failure:
 776out:
 777        return ret;
 778}
 779
 780/*
 781 * Helper function to retrieve some fields from an inode item.
 782 */
 783static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 784                          u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 785                          u64 *gid, u64 *rdev)
 786{
 787        int ret;
 788        struct btrfs_inode_item *ii;
 789        struct btrfs_key key;
 790
 791        key.objectid = ino;
 792        key.type = BTRFS_INODE_ITEM_KEY;
 793        key.offset = 0;
 794        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 795        if (ret) {
 796                if (ret > 0)
 797                        ret = -ENOENT;
 798                return ret;
 799        }
 800
 801        ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 802                        struct btrfs_inode_item);
 803        if (size)
 804                *size = btrfs_inode_size(path->nodes[0], ii);
 805        if (gen)
 806                *gen = btrfs_inode_generation(path->nodes[0], ii);
 807        if (mode)
 808                *mode = btrfs_inode_mode(path->nodes[0], ii);
 809        if (uid)
 810                *uid = btrfs_inode_uid(path->nodes[0], ii);
 811        if (gid)
 812                *gid = btrfs_inode_gid(path->nodes[0], ii);
 813        if (rdev)
 814                *rdev = btrfs_inode_rdev(path->nodes[0], ii);
 815
 816        return ret;
 817}
 818
 819static int get_inode_info(struct btrfs_root *root,
 820                          u64 ino, u64 *size, u64 *gen,
 821                          u64 *mode, u64 *uid, u64 *gid,
 822                          u64 *rdev)
 823{
 824        struct btrfs_path *path;
 825        int ret;
 826
 827        path = alloc_path_for_send();
 828        if (!path)
 829                return -ENOMEM;
 830        ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 831                               rdev);
 832        btrfs_free_path(path);
 833        return ret;
 834}
 835
 836typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 837                                   struct fs_path *p,
 838                                   void *ctx);
 839
 840/*
 841 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 842 * btrfs_inode_extref.
 843 * The iterate callback may return a non zero value to stop iteration. This can
 844 * be a negative value for error codes or 1 to simply stop it.
 845 *
 846 * path must point to the INODE_REF or INODE_EXTREF when called.
 847 */
 848static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 849                             struct btrfs_key *found_key, int resolve,
 850                             iterate_inode_ref_t iterate, void *ctx)
 851{
 852        struct extent_buffer *eb = path->nodes[0];
 853        struct btrfs_item *item;
 854        struct btrfs_inode_ref *iref;
 855        struct btrfs_inode_extref *extref;
 856        struct btrfs_path *tmp_path;
 857        struct fs_path *p;
 858        u32 cur = 0;
 859        u32 total;
 860        int slot = path->slots[0];
 861        u32 name_len;
 862        char *start;
 863        int ret = 0;
 864        int num = 0;
 865        int index;
 866        u64 dir;
 867        unsigned long name_off;
 868        unsigned long elem_size;
 869        unsigned long ptr;
 870
 871        p = fs_path_alloc_reversed();
 872        if (!p)
 873                return -ENOMEM;
 874
 875        tmp_path = alloc_path_for_send();
 876        if (!tmp_path) {
 877                fs_path_free(p);
 878                return -ENOMEM;
 879        }
 880
 881
 882        if (found_key->type == BTRFS_INODE_REF_KEY) {
 883                ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 884                                                    struct btrfs_inode_ref);
 885                item = btrfs_item_nr(slot);
 886                total = btrfs_item_size(eb, item);
 887                elem_size = sizeof(*iref);
 888        } else {
 889                ptr = btrfs_item_ptr_offset(eb, slot);
 890                total = btrfs_item_size_nr(eb, slot);
 891                elem_size = sizeof(*extref);
 892        }
 893
 894        while (cur < total) {
 895                fs_path_reset(p);
 896
 897                if (found_key->type == BTRFS_INODE_REF_KEY) {
 898                        iref = (struct btrfs_inode_ref *)(ptr + cur);
 899                        name_len = btrfs_inode_ref_name_len(eb, iref);
 900                        name_off = (unsigned long)(iref + 1);
 901                        index = btrfs_inode_ref_index(eb, iref);
 902                        dir = found_key->offset;
 903                } else {
 904                        extref = (struct btrfs_inode_extref *)(ptr + cur);
 905                        name_len = btrfs_inode_extref_name_len(eb, extref);
 906                        name_off = (unsigned long)&extref->name;
 907                        index = btrfs_inode_extref_index(eb, extref);
 908                        dir = btrfs_inode_extref_parent(eb, extref);
 909                }
 910
 911                if (resolve) {
 912                        start = btrfs_ref_to_path(root, tmp_path, name_len,
 913                                                  name_off, eb, dir,
 914                                                  p->buf, p->buf_len);
 915                        if (IS_ERR(start)) {
 916                                ret = PTR_ERR(start);
 917                                goto out;
 918                        }
 919                        if (start < p->buf) {
 920                                /* overflow , try again with larger buffer */
 921                                ret = fs_path_ensure_buf(p,
 922                                                p->buf_len + p->buf - start);
 923                                if (ret < 0)
 924                                        goto out;
 925                                start = btrfs_ref_to_path(root, tmp_path,
 926                                                          name_len, name_off,
 927                                                          eb, dir,
 928                                                          p->buf, p->buf_len);
 929                                if (IS_ERR(start)) {
 930                                        ret = PTR_ERR(start);
 931                                        goto out;
 932                                }
 933                                BUG_ON(start < p->buf);
 934                        }
 935                        p->start = start;
 936                } else {
 937                        ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 938                                                             name_len);
 939                        if (ret < 0)
 940                                goto out;
 941                }
 942
 943                cur += elem_size + name_len;
 944                ret = iterate(num, dir, index, p, ctx);
 945                if (ret)
 946                        goto out;
 947                num++;
 948        }
 949
 950out:
 951        btrfs_free_path(tmp_path);
 952        fs_path_free(p);
 953        return ret;
 954}
 955
 956typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 957                                  const char *name, int name_len,
 958                                  const char *data, int data_len,
 959                                  u8 type, void *ctx);
 960
 961/*
 962 * Helper function to iterate the entries in ONE btrfs_dir_item.
 963 * The iterate callback may return a non zero value to stop iteration. This can
 964 * be a negative value for error codes or 1 to simply stop it.
 965 *
 966 * path must point to the dir item when called.
 967 */
 968static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
 969                            struct btrfs_key *found_key,
 970                            iterate_dir_item_t iterate, void *ctx)
 971{
 972        int ret = 0;
 973        struct extent_buffer *eb;
 974        struct btrfs_item *item;
 975        struct btrfs_dir_item *di;
 976        struct btrfs_key di_key;
 977        char *buf = NULL;
 978        int buf_len;
 979        u32 name_len;
 980        u32 data_len;
 981        u32 cur;
 982        u32 len;
 983        u32 total;
 984        int slot;
 985        int num;
 986        u8 type;
 987
 988        if (found_key->type == BTRFS_XATTR_ITEM_KEY)
 989                buf_len = BTRFS_MAX_XATTR_SIZE(root);
 990        else
 991                buf_len = PATH_MAX;
 992
 993        buf = kmalloc(buf_len, GFP_NOFS);
 994        if (!buf) {
 995                ret = -ENOMEM;
 996                goto out;
 997        }
 998
 999        eb = path->nodes[0];
1000        slot = path->slots[0];
1001        item = btrfs_item_nr(slot);
1002        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1003        cur = 0;
1004        len = 0;
1005        total = btrfs_item_size(eb, item);
1006
1007        num = 0;
1008        while (cur < total) {
1009                name_len = btrfs_dir_name_len(eb, di);
1010                data_len = btrfs_dir_data_len(eb, di);
1011                type = btrfs_dir_type(eb, di);
1012                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1013
1014                if (type == BTRFS_FT_XATTR) {
1015                        if (name_len > XATTR_NAME_MAX) {
1016                                ret = -ENAMETOOLONG;
1017                                goto out;
1018                        }
1019                        if (name_len + data_len > buf_len) {
1020                                ret = -E2BIG;
1021                                goto out;
1022                        }
1023                } else {
1024                        /*
1025                         * Path too long
1026                         */
1027                        if (name_len + data_len > buf_len) {
1028                                ret = -ENAMETOOLONG;
1029                                goto out;
1030                        }
1031                }
1032
1033                read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1034                                name_len + data_len);
1035
1036                len = sizeof(*di) + name_len + data_len;
1037                di = (struct btrfs_dir_item *)((char *)di + len);
1038                cur += len;
1039
1040                ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1041                                data_len, type, ctx);
1042                if (ret < 0)
1043                        goto out;
1044                if (ret) {
1045                        ret = 0;
1046                        goto out;
1047                }
1048
1049                num++;
1050        }
1051
1052out:
1053        kfree(buf);
1054        return ret;
1055}
1056
1057static int __copy_first_ref(int num, u64 dir, int index,
1058                            struct fs_path *p, void *ctx)
1059{
1060        int ret;
1061        struct fs_path *pt = ctx;
1062
1063        ret = fs_path_copy(pt, p);
1064        if (ret < 0)
1065                return ret;
1066
1067        /* we want the first only */
1068        return 1;
1069}
1070
1071/*
1072 * Retrieve the first path of an inode. If an inode has more then one
1073 * ref/hardlink, this is ignored.
1074 */
1075static int get_inode_path(struct btrfs_root *root,
1076                          u64 ino, struct fs_path *path)
1077{
1078        int ret;
1079        struct btrfs_key key, found_key;
1080        struct btrfs_path *p;
1081
1082        p = alloc_path_for_send();
1083        if (!p)
1084                return -ENOMEM;
1085
1086        fs_path_reset(path);
1087
1088        key.objectid = ino;
1089        key.type = BTRFS_INODE_REF_KEY;
1090        key.offset = 0;
1091
1092        ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1093        if (ret < 0)
1094                goto out;
1095        if (ret) {
1096                ret = 1;
1097                goto out;
1098        }
1099        btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1100        if (found_key.objectid != ino ||
1101            (found_key.type != BTRFS_INODE_REF_KEY &&
1102             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1103                ret = -ENOENT;
1104                goto out;
1105        }
1106
1107        ret = iterate_inode_ref(root, p, &found_key, 1,
1108                                __copy_first_ref, path);
1109        if (ret < 0)
1110                goto out;
1111        ret = 0;
1112
1113out:
1114        btrfs_free_path(p);
1115        return ret;
1116}
1117
1118struct backref_ctx {
1119        struct send_ctx *sctx;
1120
1121        struct btrfs_path *path;
1122        /* number of total found references */
1123        u64 found;
1124
1125        /*
1126         * used for clones found in send_root. clones found behind cur_objectid
1127         * and cur_offset are not considered as allowed clones.
1128         */
1129        u64 cur_objectid;
1130        u64 cur_offset;
1131
1132        /* may be truncated in case it's the last extent in a file */
1133        u64 extent_len;
1134
1135        /* Just to check for bugs in backref resolving */
1136        int found_itself;
1137};
1138
1139static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1140{
1141        u64 root = (u64)(uintptr_t)key;
1142        struct clone_root *cr = (struct clone_root *)elt;
1143
1144        if (root < cr->root->objectid)
1145                return -1;
1146        if (root > cr->root->objectid)
1147                return 1;
1148        return 0;
1149}
1150
1151static int __clone_root_cmp_sort(const void *e1, const void *e2)
1152{
1153        struct clone_root *cr1 = (struct clone_root *)e1;
1154        struct clone_root *cr2 = (struct clone_root *)e2;
1155
1156        if (cr1->root->objectid < cr2->root->objectid)
1157                return -1;
1158        if (cr1->root->objectid > cr2->root->objectid)
1159                return 1;
1160        return 0;
1161}
1162
1163/*
1164 * Called for every backref that is found for the current extent.
1165 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1166 */
1167static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1168{
1169        struct backref_ctx *bctx = ctx_;
1170        struct clone_root *found;
1171        int ret;
1172        u64 i_size;
1173
1174        /* First check if the root is in the list of accepted clone sources */
1175        found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1176                        bctx->sctx->clone_roots_cnt,
1177                        sizeof(struct clone_root),
1178                        __clone_root_cmp_bsearch);
1179        if (!found)
1180                return 0;
1181
1182        if (found->root == bctx->sctx->send_root &&
1183            ino == bctx->cur_objectid &&
1184            offset == bctx->cur_offset) {
1185                bctx->found_itself = 1;
1186        }
1187
1188        /*
1189         * There are inodes that have extents that lie behind its i_size. Don't
1190         * accept clones from these extents.
1191         */
1192        ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1193                               NULL, NULL, NULL);
1194        btrfs_release_path(bctx->path);
1195        if (ret < 0)
1196                return ret;
1197
1198        if (offset + bctx->extent_len > i_size)
1199                return 0;
1200
1201        /*
1202         * Make sure we don't consider clones from send_root that are
1203         * behind the current inode/offset.
1204         */
1205        if (found->root == bctx->sctx->send_root) {
1206                /*
1207                 * TODO for the moment we don't accept clones from the inode
1208                 * that is currently send. We may change this when
1209                 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1210                 * file.
1211                 */
1212                if (ino >= bctx->cur_objectid)
1213                        return 0;
1214#if 0
1215                if (ino > bctx->cur_objectid)
1216                        return 0;
1217                if (offset + bctx->extent_len > bctx->cur_offset)
1218                        return 0;
1219#endif
1220        }
1221
1222        bctx->found++;
1223        found->found_refs++;
1224        if (ino < found->ino) {
1225                found->ino = ino;
1226                found->offset = offset;
1227        } else if (found->ino == ino) {
1228                /*
1229                 * same extent found more then once in the same file.
1230                 */
1231                if (found->offset > offset + bctx->extent_len)
1232                        found->offset = offset;
1233        }
1234
1235        return 0;
1236}
1237
1238/*
1239 * Given an inode, offset and extent item, it finds a good clone for a clone
1240 * instruction. Returns -ENOENT when none could be found. The function makes
1241 * sure that the returned clone is usable at the point where sending is at the
1242 * moment. This means, that no clones are accepted which lie behind the current
1243 * inode+offset.
1244 *
1245 * path must point to the extent item when called.
1246 */
1247static int find_extent_clone(struct send_ctx *sctx,
1248                             struct btrfs_path *path,
1249                             u64 ino, u64 data_offset,
1250                             u64 ino_size,
1251                             struct clone_root **found)
1252{
1253        int ret;
1254        int extent_type;
1255        u64 logical;
1256        u64 disk_byte;
1257        u64 num_bytes;
1258        u64 extent_item_pos;
1259        u64 flags = 0;
1260        struct btrfs_file_extent_item *fi;
1261        struct extent_buffer *eb = path->nodes[0];
1262        struct backref_ctx *backref_ctx = NULL;
1263        struct clone_root *cur_clone_root;
1264        struct btrfs_key found_key;
1265        struct btrfs_path *tmp_path;
1266        int compressed;
1267        u32 i;
1268
1269        tmp_path = alloc_path_for_send();
1270        if (!tmp_path)
1271                return -ENOMEM;
1272
1273        /* We only use this path under the commit sem */
1274        tmp_path->need_commit_sem = 0;
1275
1276        backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1277        if (!backref_ctx) {
1278                ret = -ENOMEM;
1279                goto out;
1280        }
1281
1282        backref_ctx->path = tmp_path;
1283
1284        if (data_offset >= ino_size) {
1285                /*
1286                 * There may be extents that lie behind the file's size.
1287                 * I at least had this in combination with snapshotting while
1288                 * writing large files.
1289                 */
1290                ret = 0;
1291                goto out;
1292        }
1293
1294        fi = btrfs_item_ptr(eb, path->slots[0],
1295                        struct btrfs_file_extent_item);
1296        extent_type = btrfs_file_extent_type(eb, fi);
1297        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1298                ret = -ENOENT;
1299                goto out;
1300        }
1301        compressed = btrfs_file_extent_compression(eb, fi);
1302
1303        num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1304        disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1305        if (disk_byte == 0) {
1306                ret = -ENOENT;
1307                goto out;
1308        }
1309        logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1310
1311        down_read(&sctx->send_root->fs_info->commit_root_sem);
1312        ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1313                                  &found_key, &flags);
1314        up_read(&sctx->send_root->fs_info->commit_root_sem);
1315        btrfs_release_path(tmp_path);
1316
1317        if (ret < 0)
1318                goto out;
1319        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1320                ret = -EIO;
1321                goto out;
1322        }
1323
1324        /*
1325         * Setup the clone roots.
1326         */
1327        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1328                cur_clone_root = sctx->clone_roots + i;
1329                cur_clone_root->ino = (u64)-1;
1330                cur_clone_root->offset = 0;
1331                cur_clone_root->found_refs = 0;
1332        }
1333
1334        backref_ctx->sctx = sctx;
1335        backref_ctx->found = 0;
1336        backref_ctx->cur_objectid = ino;
1337        backref_ctx->cur_offset = data_offset;
1338        backref_ctx->found_itself = 0;
1339        backref_ctx->extent_len = num_bytes;
1340
1341        /*
1342         * The last extent of a file may be too large due to page alignment.
1343         * We need to adjust extent_len in this case so that the checks in
1344         * __iterate_backrefs work.
1345         */
1346        if (data_offset + num_bytes >= ino_size)
1347                backref_ctx->extent_len = ino_size - data_offset;
1348
1349        /*
1350         * Now collect all backrefs.
1351         */
1352        if (compressed == BTRFS_COMPRESS_NONE)
1353                extent_item_pos = logical - found_key.objectid;
1354        else
1355                extent_item_pos = 0;
1356        ret = iterate_extent_inodes(sctx->send_root->fs_info,
1357                                        found_key.objectid, extent_item_pos, 1,
1358                                        __iterate_backrefs, backref_ctx);
1359
1360        if (ret < 0)
1361                goto out;
1362
1363        if (!backref_ctx->found_itself) {
1364                /* found a bug in backref code? */
1365                ret = -EIO;
1366                btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1367                                "send_root. inode=%llu, offset=%llu, "
1368                                "disk_byte=%llu found extent=%llu",
1369                                ino, data_offset, disk_byte, found_key.objectid);
1370                goto out;
1371        }
1372
1373verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1374                "ino=%llu, "
1375                "num_bytes=%llu, logical=%llu\n",
1376                data_offset, ino, num_bytes, logical);
1377
1378        if (!backref_ctx->found)
1379                verbose_printk("btrfs:    no clones found\n");
1380
1381        cur_clone_root = NULL;
1382        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383                if (sctx->clone_roots[i].found_refs) {
1384                        if (!cur_clone_root)
1385                                cur_clone_root = sctx->clone_roots + i;
1386                        else if (sctx->clone_roots[i].root == sctx->send_root)
1387                                /* prefer clones from send_root over others */
1388                                cur_clone_root = sctx->clone_roots + i;
1389                }
1390
1391        }
1392
1393        if (cur_clone_root) {
1394                if (compressed != BTRFS_COMPRESS_NONE) {
1395                        /*
1396                         * Offsets given by iterate_extent_inodes() are relative
1397                         * to the start of the extent, we need to add logical
1398                         * offset from the file extent item.
1399                         * (See why at backref.c:check_extent_in_eb())
1400                         */
1401                        cur_clone_root->offset += btrfs_file_extent_offset(eb,
1402                                                                           fi);
1403                }
1404                *found = cur_clone_root;
1405                ret = 0;
1406        } else {
1407                ret = -ENOENT;
1408        }
1409
1410out:
1411        btrfs_free_path(tmp_path);
1412        kfree(backref_ctx);
1413        return ret;
1414}
1415
1416static int read_symlink(struct btrfs_root *root,
1417                        u64 ino,
1418                        struct fs_path *dest)
1419{
1420        int ret;
1421        struct btrfs_path *path;
1422        struct btrfs_key key;
1423        struct btrfs_file_extent_item *ei;
1424        u8 type;
1425        u8 compression;
1426        unsigned long off;
1427        int len;
1428
1429        path = alloc_path_for_send();
1430        if (!path)
1431                return -ENOMEM;
1432
1433        key.objectid = ino;
1434        key.type = BTRFS_EXTENT_DATA_KEY;
1435        key.offset = 0;
1436        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1437        if (ret < 0)
1438                goto out;
1439        BUG_ON(ret);
1440
1441        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1442                        struct btrfs_file_extent_item);
1443        type = btrfs_file_extent_type(path->nodes[0], ei);
1444        compression = btrfs_file_extent_compression(path->nodes[0], ei);
1445        BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1446        BUG_ON(compression);
1447
1448        off = btrfs_file_extent_inline_start(ei);
1449        len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1450
1451        ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1452
1453out:
1454        btrfs_free_path(path);
1455        return ret;
1456}
1457
1458/*
1459 * Helper function to generate a file name that is unique in the root of
1460 * send_root and parent_root. This is used to generate names for orphan inodes.
1461 */
1462static int gen_unique_name(struct send_ctx *sctx,
1463                           u64 ino, u64 gen,
1464                           struct fs_path *dest)
1465{
1466        int ret = 0;
1467        struct btrfs_path *path;
1468        struct btrfs_dir_item *di;
1469        char tmp[64];
1470        int len;
1471        u64 idx = 0;
1472
1473        path = alloc_path_for_send();
1474        if (!path)
1475                return -ENOMEM;
1476
1477        while (1) {
1478                len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1479                                ino, gen, idx);
1480                ASSERT(len < sizeof(tmp));
1481
1482                di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1483                                path, BTRFS_FIRST_FREE_OBJECTID,
1484                                tmp, strlen(tmp), 0);
1485                btrfs_release_path(path);
1486                if (IS_ERR(di)) {
1487                        ret = PTR_ERR(di);
1488                        goto out;
1489                }
1490                if (di) {
1491                        /* not unique, try again */
1492                        idx++;
1493                        continue;
1494                }
1495
1496                if (!sctx->parent_root) {
1497                        /* unique */
1498                        ret = 0;
1499                        break;
1500                }
1501
1502                di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1503                                path, BTRFS_FIRST_FREE_OBJECTID,
1504                                tmp, strlen(tmp), 0);
1505                btrfs_release_path(path);
1506                if (IS_ERR(di)) {
1507                        ret = PTR_ERR(di);
1508                        goto out;
1509                }
1510                if (di) {
1511                        /* not unique, try again */
1512                        idx++;
1513                        continue;
1514                }
1515                /* unique */
1516                break;
1517        }
1518
1519        ret = fs_path_add(dest, tmp, strlen(tmp));
1520
1521out:
1522        btrfs_free_path(path);
1523        return ret;
1524}
1525
1526enum inode_state {
1527        inode_state_no_change,
1528        inode_state_will_create,
1529        inode_state_did_create,
1530        inode_state_will_delete,
1531        inode_state_did_delete,
1532};
1533
1534static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1535{
1536        int ret;
1537        int left_ret;
1538        int right_ret;
1539        u64 left_gen;
1540        u64 right_gen;
1541
1542        ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1543                        NULL, NULL);
1544        if (ret < 0 && ret != -ENOENT)
1545                goto out;
1546        left_ret = ret;
1547
1548        if (!sctx->parent_root) {
1549                right_ret = -ENOENT;
1550        } else {
1551                ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1552                                NULL, NULL, NULL, NULL);
1553                if (ret < 0 && ret != -ENOENT)
1554                        goto out;
1555                right_ret = ret;
1556        }
1557
1558        if (!left_ret && !right_ret) {
1559                if (left_gen == gen && right_gen == gen) {
1560                        ret = inode_state_no_change;
1561                } else if (left_gen == gen) {
1562                        if (ino < sctx->send_progress)
1563                                ret = inode_state_did_create;
1564                        else
1565                                ret = inode_state_will_create;
1566                } else if (right_gen == gen) {
1567                        if (ino < sctx->send_progress)
1568                                ret = inode_state_did_delete;
1569                        else
1570                                ret = inode_state_will_delete;
1571                } else  {
1572                        ret = -ENOENT;
1573                }
1574        } else if (!left_ret) {
1575                if (left_gen == gen) {
1576                        if (ino < sctx->send_progress)
1577                                ret = inode_state_did_create;
1578                        else
1579                                ret = inode_state_will_create;
1580                } else {
1581                        ret = -ENOENT;
1582                }
1583        } else if (!right_ret) {
1584                if (right_gen == gen) {
1585                        if (ino < sctx->send_progress)
1586                                ret = inode_state_did_delete;
1587                        else
1588                                ret = inode_state_will_delete;
1589                } else {
1590                        ret = -ENOENT;
1591                }
1592        } else {
1593                ret = -ENOENT;
1594        }
1595
1596out:
1597        return ret;
1598}
1599
1600static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1601{
1602        int ret;
1603
1604        ret = get_cur_inode_state(sctx, ino, gen);
1605        if (ret < 0)
1606                goto out;
1607
1608        if (ret == inode_state_no_change ||
1609            ret == inode_state_did_create ||
1610            ret == inode_state_will_delete)
1611                ret = 1;
1612        else
1613                ret = 0;
1614
1615out:
1616        return ret;
1617}
1618
1619/*
1620 * Helper function to lookup a dir item in a dir.
1621 */
1622static int lookup_dir_item_inode(struct btrfs_root *root,
1623                                 u64 dir, const char *name, int name_len,
1624                                 u64 *found_inode,
1625                                 u8 *found_type)
1626{
1627        int ret = 0;
1628        struct btrfs_dir_item *di;
1629        struct btrfs_key key;
1630        struct btrfs_path *path;
1631
1632        path = alloc_path_for_send();
1633        if (!path)
1634                return -ENOMEM;
1635
1636        di = btrfs_lookup_dir_item(NULL, root, path,
1637                        dir, name, name_len, 0);
1638        if (!di) {
1639                ret = -ENOENT;
1640                goto out;
1641        }
1642        if (IS_ERR(di)) {
1643                ret = PTR_ERR(di);
1644                goto out;
1645        }
1646        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1647        if (key.type == BTRFS_ROOT_ITEM_KEY) {
1648                ret = -ENOENT;
1649                goto out;
1650        }
1651        *found_inode = key.objectid;
1652        *found_type = btrfs_dir_type(path->nodes[0], di);
1653
1654out:
1655        btrfs_free_path(path);
1656        return ret;
1657}
1658
1659/*
1660 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1661 * generation of the parent dir and the name of the dir entry.
1662 */
1663static int get_first_ref(struct btrfs_root *root, u64 ino,
1664                         u64 *dir, u64 *dir_gen, struct fs_path *name)
1665{
1666        int ret;
1667        struct btrfs_key key;
1668        struct btrfs_key found_key;
1669        struct btrfs_path *path;
1670        int len;
1671        u64 parent_dir;
1672
1673        path = alloc_path_for_send();
1674        if (!path)
1675                return -ENOMEM;
1676
1677        key.objectid = ino;
1678        key.type = BTRFS_INODE_REF_KEY;
1679        key.offset = 0;
1680
1681        ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1682        if (ret < 0)
1683                goto out;
1684        if (!ret)
1685                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1686                                path->slots[0]);
1687        if (ret || found_key.objectid != ino ||
1688            (found_key.type != BTRFS_INODE_REF_KEY &&
1689             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1690                ret = -ENOENT;
1691                goto out;
1692        }
1693
1694        if (found_key.type == BTRFS_INODE_REF_KEY) {
1695                struct btrfs_inode_ref *iref;
1696                iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1697                                      struct btrfs_inode_ref);
1698                len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1699                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1700                                                     (unsigned long)(iref + 1),
1701                                                     len);
1702                parent_dir = found_key.offset;
1703        } else {
1704                struct btrfs_inode_extref *extref;
1705                extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1706                                        struct btrfs_inode_extref);
1707                len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1708                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1709                                        (unsigned long)&extref->name, len);
1710                parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1711        }
1712        if (ret < 0)
1713                goto out;
1714        btrfs_release_path(path);
1715
1716        if (dir_gen) {
1717                ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1718                                     NULL, NULL, NULL);
1719                if (ret < 0)
1720                        goto out;
1721        }
1722
1723        *dir = parent_dir;
1724
1725out:
1726        btrfs_free_path(path);
1727        return ret;
1728}
1729
1730static int is_first_ref(struct btrfs_root *root,
1731                        u64 ino, u64 dir,
1732                        const char *name, int name_len)
1733{
1734        int ret;
1735        struct fs_path *tmp_name;
1736        u64 tmp_dir;
1737
1738        tmp_name = fs_path_alloc();
1739        if (!tmp_name)
1740                return -ENOMEM;
1741
1742        ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1743        if (ret < 0)
1744                goto out;
1745
1746        if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1747                ret = 0;
1748                goto out;
1749        }
1750
1751        ret = !memcmp(tmp_name->start, name, name_len);
1752
1753out:
1754        fs_path_free(tmp_name);
1755        return ret;
1756}
1757
1758/*
1759 * Used by process_recorded_refs to determine if a new ref would overwrite an
1760 * already existing ref. In case it detects an overwrite, it returns the
1761 * inode/gen in who_ino/who_gen.
1762 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1763 * to make sure later references to the overwritten inode are possible.
1764 * Orphanizing is however only required for the first ref of an inode.
1765 * process_recorded_refs does an additional is_first_ref check to see if
1766 * orphanizing is really required.
1767 */
1768static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1769                              const char *name, int name_len,
1770                              u64 *who_ino, u64 *who_gen)
1771{
1772        int ret = 0;
1773        u64 gen;
1774        u64 other_inode = 0;
1775        u8 other_type = 0;
1776
1777        if (!sctx->parent_root)
1778                goto out;
1779
1780        ret = is_inode_existent(sctx, dir, dir_gen);
1781        if (ret <= 0)
1782                goto out;
1783
1784        /*
1785         * If we have a parent root we need to verify that the parent dir was
1786         * not delted and then re-created, if it was then we have no overwrite
1787         * and we can just unlink this entry.
1788         */
1789        if (sctx->parent_root) {
1790                ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1791                                     NULL, NULL, NULL);
1792                if (ret < 0 && ret != -ENOENT)
1793                        goto out;
1794                if (ret) {
1795                        ret = 0;
1796                        goto out;
1797                }
1798                if (gen != dir_gen)
1799                        goto out;
1800        }
1801
1802        ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1803                        &other_inode, &other_type);
1804        if (ret < 0 && ret != -ENOENT)
1805                goto out;
1806        if (ret) {
1807                ret = 0;
1808                goto out;
1809        }
1810
1811        /*
1812         * Check if the overwritten ref was already processed. If yes, the ref
1813         * was already unlinked/moved, so we can safely assume that we will not
1814         * overwrite anything at this point in time.
1815         */
1816        if (other_inode > sctx->send_progress) {
1817                ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1818                                who_gen, NULL, NULL, NULL, NULL);
1819                if (ret < 0)
1820                        goto out;
1821
1822                ret = 1;
1823                *who_ino = other_inode;
1824        } else {
1825                ret = 0;
1826        }
1827
1828out:
1829        return ret;
1830}
1831
1832/*
1833 * Checks if the ref was overwritten by an already processed inode. This is
1834 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1835 * thus the orphan name needs be used.
1836 * process_recorded_refs also uses it to avoid unlinking of refs that were
1837 * overwritten.
1838 */
1839static int did_overwrite_ref(struct send_ctx *sctx,
1840                            u64 dir, u64 dir_gen,
1841                            u64 ino, u64 ino_gen,
1842                            const char *name, int name_len)
1843{
1844        int ret = 0;
1845        u64 gen;
1846        u64 ow_inode;
1847        u8 other_type;
1848
1849        if (!sctx->parent_root)
1850                goto out;
1851
1852        ret = is_inode_existent(sctx, dir, dir_gen);
1853        if (ret <= 0)
1854                goto out;
1855
1856        /* check if the ref was overwritten by another ref */
1857        ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1858                        &ow_inode, &other_type);
1859        if (ret < 0 && ret != -ENOENT)
1860                goto out;
1861        if (ret) {
1862                /* was never and will never be overwritten */
1863                ret = 0;
1864                goto out;
1865        }
1866
1867        ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1868                        NULL, NULL);
1869        if (ret < 0)
1870                goto out;
1871
1872        if (ow_inode == ino && gen == ino_gen) {
1873                ret = 0;
1874                goto out;
1875        }
1876
1877        /* we know that it is or will be overwritten. check this now */
1878        if (ow_inode < sctx->send_progress)
1879                ret = 1;
1880        else
1881                ret = 0;
1882
1883out:
1884        return ret;
1885}
1886
1887/*
1888 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1889 * that got overwritten. This is used by process_recorded_refs to determine
1890 * if it has to use the path as returned by get_cur_path or the orphan name.
1891 */
1892static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1893{
1894        int ret = 0;
1895        struct fs_path *name = NULL;
1896        u64 dir;
1897        u64 dir_gen;
1898
1899        if (!sctx->parent_root)
1900                goto out;
1901
1902        name = fs_path_alloc();
1903        if (!name)
1904                return -ENOMEM;
1905
1906        ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1907        if (ret < 0)
1908                goto out;
1909
1910        ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1911                        name->start, fs_path_len(name));
1912
1913out:
1914        fs_path_free(name);
1915        return ret;
1916}
1917
1918/*
1919 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1920 * so we need to do some special handling in case we have clashes. This function
1921 * takes care of this with the help of name_cache_entry::radix_list.
1922 * In case of error, nce is kfreed.
1923 */
1924static int name_cache_insert(struct send_ctx *sctx,
1925                             struct name_cache_entry *nce)
1926{
1927        int ret = 0;
1928        struct list_head *nce_head;
1929
1930        nce_head = radix_tree_lookup(&sctx->name_cache,
1931                        (unsigned long)nce->ino);
1932        if (!nce_head) {
1933                nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1934                if (!nce_head) {
1935                        kfree(nce);
1936                        return -ENOMEM;
1937                }
1938                INIT_LIST_HEAD(nce_head);
1939
1940                ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1941                if (ret < 0) {
1942                        kfree(nce_head);
1943                        kfree(nce);
1944                        return ret;
1945                }
1946        }
1947        list_add_tail(&nce->radix_list, nce_head);
1948        list_add_tail(&nce->list, &sctx->name_cache_list);
1949        sctx->name_cache_size++;
1950
1951        return ret;
1952}
1953
1954static void name_cache_delete(struct send_ctx *sctx,
1955                              struct name_cache_entry *nce)
1956{
1957        struct list_head *nce_head;
1958
1959        nce_head = radix_tree_lookup(&sctx->name_cache,
1960                        (unsigned long)nce->ino);
1961        if (!nce_head) {
1962                btrfs_err(sctx->send_root->fs_info,
1963              "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1964                        nce->ino, sctx->name_cache_size);
1965        }
1966
1967        list_del(&nce->radix_list);
1968        list_del(&nce->list);
1969        sctx->name_cache_size--;
1970
1971        /*
1972         * We may not get to the final release of nce_head if the lookup fails
1973         */
1974        if (nce_head && list_empty(nce_head)) {
1975                radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1976                kfree(nce_head);
1977        }
1978}
1979
1980static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1981                                                    u64 ino, u64 gen)
1982{
1983        struct list_head *nce_head;
1984        struct name_cache_entry *cur;
1985
1986        nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1987        if (!nce_head)
1988                return NULL;
1989
1990        list_for_each_entry(cur, nce_head, radix_list) {
1991                if (cur->ino == ino && cur->gen == gen)
1992                        return cur;
1993        }
1994        return NULL;
1995}
1996
1997/*
1998 * Removes the entry from the list and adds it back to the end. This marks the
1999 * entry as recently used so that name_cache_clean_unused does not remove it.
2000 */
2001static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2002{
2003        list_del(&nce->list);
2004        list_add_tail(&nce->list, &sctx->name_cache_list);
2005}
2006
2007/*
2008 * Remove some entries from the beginning of name_cache_list.
2009 */
2010static void name_cache_clean_unused(struct send_ctx *sctx)
2011{
2012        struct name_cache_entry *nce;
2013
2014        if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2015                return;
2016
2017        while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2018                nce = list_entry(sctx->name_cache_list.next,
2019                                struct name_cache_entry, list);
2020                name_cache_delete(sctx, nce);
2021                kfree(nce);
2022        }
2023}
2024
2025static void name_cache_free(struct send_ctx *sctx)
2026{
2027        struct name_cache_entry *nce;
2028
2029        while (!list_empty(&sctx->name_cache_list)) {
2030                nce = list_entry(sctx->name_cache_list.next,
2031                                struct name_cache_entry, list);
2032                name_cache_delete(sctx, nce);
2033                kfree(nce);
2034        }
2035}
2036
2037/*
2038 * Used by get_cur_path for each ref up to the root.
2039 * Returns 0 if it succeeded.
2040 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2041 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2042 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2043 * Returns <0 in case of error.
2044 */
2045static int __get_cur_name_and_parent(struct send_ctx *sctx,
2046                                     u64 ino, u64 gen,
2047                                     u64 *parent_ino,
2048                                     u64 *parent_gen,
2049                                     struct fs_path *dest)
2050{
2051        int ret;
2052        int nce_ret;
2053        struct name_cache_entry *nce = NULL;
2054
2055        /*
2056         * First check if we already did a call to this function with the same
2057         * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2058         * return the cached result.
2059         */
2060        nce = name_cache_search(sctx, ino, gen);
2061        if (nce) {
2062                if (ino < sctx->send_progress && nce->need_later_update) {
2063                        name_cache_delete(sctx, nce);
2064                        kfree(nce);
2065                        nce = NULL;
2066                } else {
2067                        name_cache_used(sctx, nce);
2068                        *parent_ino = nce->parent_ino;
2069                        *parent_gen = nce->parent_gen;
2070                        ret = fs_path_add(dest, nce->name, nce->name_len);
2071                        if (ret < 0)
2072                                goto out;
2073                        ret = nce->ret;
2074                        goto out;
2075                }
2076        }
2077
2078        /*
2079         * If the inode is not existent yet, add the orphan name and return 1.
2080         * This should only happen for the parent dir that we determine in
2081         * __record_new_ref
2082         */
2083        ret = is_inode_existent(sctx, ino, gen);
2084        if (ret < 0)
2085                goto out;
2086
2087        if (!ret) {
2088                ret = gen_unique_name(sctx, ino, gen, dest);
2089                if (ret < 0)
2090                        goto out;
2091                ret = 1;
2092                goto out_cache;
2093        }
2094
2095        /*
2096         * Depending on whether the inode was already processed or not, use
2097         * send_root or parent_root for ref lookup.
2098         */
2099        if (ino < sctx->send_progress)
2100                ret = get_first_ref(sctx->send_root, ino,
2101                                    parent_ino, parent_gen, dest);
2102        else
2103                ret = get_first_ref(sctx->parent_root, ino,
2104                                    parent_ino, parent_gen, dest);
2105        if (ret < 0)
2106                goto out;
2107
2108        /*
2109         * Check if the ref was overwritten by an inode's ref that was processed
2110         * earlier. If yes, treat as orphan and return 1.
2111         */
2112        ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2113                        dest->start, dest->end - dest->start);
2114        if (ret < 0)
2115                goto out;
2116        if (ret) {
2117                fs_path_reset(dest);
2118                ret = gen_unique_name(sctx, ino, gen, dest);
2119                if (ret < 0)
2120                        goto out;
2121                ret = 1;
2122        }
2123
2124out_cache:
2125        /*
2126         * Store the result of the lookup in the name cache.
2127         */
2128        nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2129        if (!nce) {
2130                ret = -ENOMEM;
2131                goto out;
2132        }
2133
2134        nce->ino = ino;
2135        nce->gen = gen;
2136        nce->parent_ino = *parent_ino;
2137        nce->parent_gen = *parent_gen;
2138        nce->name_len = fs_path_len(dest);
2139        nce->ret = ret;
2140        strcpy(nce->name, dest->start);
2141
2142        if (ino < sctx->send_progress)
2143                nce->need_later_update = 0;
2144        else
2145                nce->need_later_update = 1;
2146
2147        nce_ret = name_cache_insert(sctx, nce);
2148        if (nce_ret < 0)
2149                ret = nce_ret;
2150        name_cache_clean_unused(sctx);
2151
2152out:
2153        return ret;
2154}
2155
2156/*
2157 * Magic happens here. This function returns the first ref to an inode as it
2158 * would look like while receiving the stream at this point in time.
2159 * We walk the path up to the root. For every inode in between, we check if it
2160 * was already processed/sent. If yes, we continue with the parent as found
2161 * in send_root. If not, we continue with the parent as found in parent_root.
2162 * If we encounter an inode that was deleted at this point in time, we use the
2163 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2164 * that were not created yet and overwritten inodes/refs.
2165 *
2166 * When do we have have orphan inodes:
2167 * 1. When an inode is freshly created and thus no valid refs are available yet
2168 * 2. When a directory lost all it's refs (deleted) but still has dir items
2169 *    inside which were not processed yet (pending for move/delete). If anyone
2170 *    tried to get the path to the dir items, it would get a path inside that
2171 *    orphan directory.
2172 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2173 *    of an unprocessed inode. If in that case the first ref would be
2174 *    overwritten, the overwritten inode gets "orphanized". Later when we
2175 *    process this overwritten inode, it is restored at a new place by moving
2176 *    the orphan inode.
2177 *
2178 * sctx->send_progress tells this function at which point in time receiving
2179 * would be.
2180 */
2181static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2182                        struct fs_path *dest)
2183{
2184        int ret = 0;
2185        struct fs_path *name = NULL;
2186        u64 parent_inode = 0;
2187        u64 parent_gen = 0;
2188        int stop = 0;
2189
2190        name = fs_path_alloc();
2191        if (!name) {
2192                ret = -ENOMEM;
2193                goto out;
2194        }
2195
2196        dest->reversed = 1;
2197        fs_path_reset(dest);
2198
2199        while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2200                fs_path_reset(name);
2201
2202                if (is_waiting_for_rm(sctx, ino)) {
2203                        ret = gen_unique_name(sctx, ino, gen, name);
2204                        if (ret < 0)
2205                                goto out;
2206                        ret = fs_path_add_path(dest, name);
2207                        break;
2208                }
2209
2210                if (is_waiting_for_move(sctx, ino)) {
2211                        ret = get_first_ref(sctx->parent_root, ino,
2212                                            &parent_inode, &parent_gen, name);
2213                } else {
2214                        ret = __get_cur_name_and_parent(sctx, ino, gen,
2215                                                        &parent_inode,
2216                                                        &parent_gen, name);
2217                        if (ret)
2218                                stop = 1;
2219                }
2220
2221                if (ret < 0)
2222                        goto out;
2223
2224                ret = fs_path_add_path(dest, name);
2225                if (ret < 0)
2226                        goto out;
2227
2228                ino = parent_inode;
2229                gen = parent_gen;
2230        }
2231
2232out:
2233        fs_path_free(name);
2234        if (!ret)
2235                fs_path_unreverse(dest);
2236        return ret;
2237}
2238
2239/*
2240 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2241 */
2242static int send_subvol_begin(struct send_ctx *sctx)
2243{
2244        int ret;
2245        struct btrfs_root *send_root = sctx->send_root;
2246        struct btrfs_root *parent_root = sctx->parent_root;
2247        struct btrfs_path *path;
2248        struct btrfs_key key;
2249        struct btrfs_root_ref *ref;
2250        struct extent_buffer *leaf;
2251        char *name = NULL;
2252        int namelen;
2253
2254        path = btrfs_alloc_path();
2255        if (!path)
2256                return -ENOMEM;
2257
2258        name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2259        if (!name) {
2260                btrfs_free_path(path);
2261                return -ENOMEM;
2262        }
2263
2264        key.objectid = send_root->objectid;
2265        key.type = BTRFS_ROOT_BACKREF_KEY;
2266        key.offset = 0;
2267
2268        ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2269                                &key, path, 1, 0);
2270        if (ret < 0)
2271                goto out;
2272        if (ret) {
2273                ret = -ENOENT;
2274                goto out;
2275        }
2276
2277        leaf = path->nodes[0];
2278        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279        if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2280            key.objectid != send_root->objectid) {
2281                ret = -ENOENT;
2282                goto out;
2283        }
2284        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2285        namelen = btrfs_root_ref_name_len(leaf, ref);
2286        read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2287        btrfs_release_path(path);
2288
2289        if (parent_root) {
2290                ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2291                if (ret < 0)
2292                        goto out;
2293        } else {
2294                ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2295                if (ret < 0)
2296                        goto out;
2297        }
2298
2299        TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2300        TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2301                        sctx->send_root->root_item.uuid);
2302        TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2303                    le64_to_cpu(sctx->send_root->root_item.ctransid));
2304        if (parent_root) {
2305                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2306                                sctx->parent_root->root_item.uuid);
2307                TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2308                            le64_to_cpu(sctx->parent_root->root_item.ctransid));
2309        }
2310
2311        ret = send_cmd(sctx);
2312
2313tlv_put_failure:
2314out:
2315        btrfs_free_path(path);
2316        kfree(name);
2317        return ret;
2318}
2319
2320static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2321{
2322        int ret = 0;
2323        struct fs_path *p;
2324
2325verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2326
2327        p = fs_path_alloc();
2328        if (!p)
2329                return -ENOMEM;
2330
2331        ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2332        if (ret < 0)
2333                goto out;
2334
2335        ret = get_cur_path(sctx, ino, gen, p);
2336        if (ret < 0)
2337                goto out;
2338        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2339        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2340
2341        ret = send_cmd(sctx);
2342
2343tlv_put_failure:
2344out:
2345        fs_path_free(p);
2346        return ret;
2347}
2348
2349static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2350{
2351        int ret = 0;
2352        struct fs_path *p;
2353
2354verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2355
2356        p = fs_path_alloc();
2357        if (!p)
2358                return -ENOMEM;
2359
2360        ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2361        if (ret < 0)
2362                goto out;
2363
2364        ret = get_cur_path(sctx, ino, gen, p);
2365        if (ret < 0)
2366                goto out;
2367        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2368        TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2369
2370        ret = send_cmd(sctx);
2371
2372tlv_put_failure:
2373out:
2374        fs_path_free(p);
2375        return ret;
2376}
2377
2378static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2379{
2380        int ret = 0;
2381        struct fs_path *p;
2382
2383verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2384
2385        p = fs_path_alloc();
2386        if (!p)
2387                return -ENOMEM;
2388
2389        ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2390        if (ret < 0)
2391                goto out;
2392
2393        ret = get_cur_path(sctx, ino, gen, p);
2394        if (ret < 0)
2395                goto out;
2396        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2397        TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2398        TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2399
2400        ret = send_cmd(sctx);
2401
2402tlv_put_failure:
2403out:
2404        fs_path_free(p);
2405        return ret;
2406}
2407
2408static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2409{
2410        int ret = 0;
2411        struct fs_path *p = NULL;
2412        struct btrfs_inode_item *ii;
2413        struct btrfs_path *path = NULL;
2414        struct extent_buffer *eb;
2415        struct btrfs_key key;
2416        int slot;
2417
2418verbose_printk("btrfs: send_utimes %llu\n", ino);
2419
2420        p = fs_path_alloc();
2421        if (!p)
2422                return -ENOMEM;
2423
2424        path = alloc_path_for_send();
2425        if (!path) {
2426                ret = -ENOMEM;
2427                goto out;
2428        }
2429
2430        key.objectid = ino;
2431        key.type = BTRFS_INODE_ITEM_KEY;
2432        key.offset = 0;
2433        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2434        if (ret < 0)
2435                goto out;
2436
2437        eb = path->nodes[0];
2438        slot = path->slots[0];
2439        ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2440
2441        ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2442        if (ret < 0)
2443                goto out;
2444
2445        ret = get_cur_path(sctx, ino, gen, p);
2446        if (ret < 0)
2447                goto out;
2448        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2449        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2450                        btrfs_inode_atime(ii));
2451        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2452                        btrfs_inode_mtime(ii));
2453        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2454                        btrfs_inode_ctime(ii));
2455        /* TODO Add otime support when the otime patches get into upstream */
2456
2457        ret = send_cmd(sctx);
2458
2459tlv_put_failure:
2460out:
2461        fs_path_free(p);
2462        btrfs_free_path(path);
2463        return ret;
2464}
2465
2466/*
2467 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2468 * a valid path yet because we did not process the refs yet. So, the inode
2469 * is created as orphan.
2470 */
2471static int send_create_inode(struct send_ctx *sctx, u64 ino)
2472{
2473        int ret = 0;
2474        struct fs_path *p;
2475        int cmd;
2476        u64 gen;
2477        u64 mode;
2478        u64 rdev;
2479
2480verbose_printk("btrfs: send_create_inode %llu\n", ino);
2481
2482        p = fs_path_alloc();
2483        if (!p)
2484                return -ENOMEM;
2485
2486        if (ino != sctx->cur_ino) {
2487                ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2488                                     NULL, NULL, &rdev);
2489                if (ret < 0)
2490                        goto out;
2491        } else {
2492                gen = sctx->cur_inode_gen;
2493                mode = sctx->cur_inode_mode;
2494                rdev = sctx->cur_inode_rdev;
2495        }
2496
2497        if (S_ISREG(mode)) {
2498                cmd = BTRFS_SEND_C_MKFILE;
2499        } else if (S_ISDIR(mode)) {
2500                cmd = BTRFS_SEND_C_MKDIR;
2501        } else if (S_ISLNK(mode)) {
2502                cmd = BTRFS_SEND_C_SYMLINK;
2503        } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2504                cmd = BTRFS_SEND_C_MKNOD;
2505        } else if (S_ISFIFO(mode)) {
2506                cmd = BTRFS_SEND_C_MKFIFO;
2507        } else if (S_ISSOCK(mode)) {
2508                cmd = BTRFS_SEND_C_MKSOCK;
2509        } else {
2510                printk(KERN_WARNING "btrfs: unexpected inode type %o",
2511                                (int)(mode & S_IFMT));
2512                ret = -ENOTSUPP;
2513                goto out;
2514        }
2515
2516        ret = begin_cmd(sctx, cmd);
2517        if (ret < 0)
2518                goto out;
2519
2520        ret = gen_unique_name(sctx, ino, gen, p);
2521        if (ret < 0)
2522                goto out;
2523
2524        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2525        TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2526
2527        if (S_ISLNK(mode)) {
2528                fs_path_reset(p);
2529                ret = read_symlink(sctx->send_root, ino, p);
2530                if (ret < 0)
2531                        goto out;
2532                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2533        } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2534                   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2535                TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2536                TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2537        }
2538
2539        ret = send_cmd(sctx);
2540        if (ret < 0)
2541                goto out;
2542
2543
2544tlv_put_failure:
2545out:
2546        fs_path_free(p);
2547        return ret;
2548}
2549
2550/*
2551 * We need some special handling for inodes that get processed before the parent
2552 * directory got created. See process_recorded_refs for details.
2553 * This function does the check if we already created the dir out of order.
2554 */
2555static int did_create_dir(struct send_ctx *sctx, u64 dir)
2556{
2557        int ret = 0;
2558        struct btrfs_path *path = NULL;
2559        struct btrfs_key key;
2560        struct btrfs_key found_key;
2561        struct btrfs_key di_key;
2562        struct extent_buffer *eb;
2563        struct btrfs_dir_item *di;
2564        int slot;
2565
2566        path = alloc_path_for_send();
2567        if (!path) {
2568                ret = -ENOMEM;
2569                goto out;
2570        }
2571
2572        key.objectid = dir;
2573        key.type = BTRFS_DIR_INDEX_KEY;
2574        key.offset = 0;
2575        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2576        if (ret < 0)
2577                goto out;
2578
2579        while (1) {
2580                eb = path->nodes[0];
2581                slot = path->slots[0];
2582                if (slot >= btrfs_header_nritems(eb)) {
2583                        ret = btrfs_next_leaf(sctx->send_root, path);
2584                        if (ret < 0) {
2585                                goto out;
2586                        } else if (ret > 0) {
2587                                ret = 0;
2588                                break;
2589                        }
2590                        continue;
2591                }
2592
2593                btrfs_item_key_to_cpu(eb, &found_key, slot);
2594                if (found_key.objectid != key.objectid ||
2595                    found_key.type != key.type) {
2596                        ret = 0;
2597                        goto out;
2598                }
2599
2600                di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2601                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2602
2603                if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2604                    di_key.objectid < sctx->send_progress) {
2605                        ret = 1;
2606                        goto out;
2607                }
2608
2609                path->slots[0]++;
2610        }
2611
2612out:
2613        btrfs_free_path(path);
2614        return ret;
2615}
2616
2617/*
2618 * Only creates the inode if it is:
2619 * 1. Not a directory
2620 * 2. Or a directory which was not created already due to out of order
2621 *    directories. See did_create_dir and process_recorded_refs for details.
2622 */
2623static int send_create_inode_if_needed(struct send_ctx *sctx)
2624{
2625        int ret;
2626
2627        if (S_ISDIR(sctx->cur_inode_mode)) {
2628                ret = did_create_dir(sctx, sctx->cur_ino);
2629                if (ret < 0)
2630                        goto out;
2631                if (ret) {
2632                        ret = 0;
2633                        goto out;
2634                }
2635        }
2636
2637        ret = send_create_inode(sctx, sctx->cur_ino);
2638        if (ret < 0)
2639                goto out;
2640
2641out:
2642        return ret;
2643}
2644
2645struct recorded_ref {
2646        struct list_head list;
2647        char *dir_path;
2648        char *name;
2649        struct fs_path *full_path;
2650        u64 dir;
2651        u64 dir_gen;
2652        int dir_path_len;
2653        int name_len;
2654};
2655
2656/*
2657 * We need to process new refs before deleted refs, but compare_tree gives us
2658 * everything mixed. So we first record all refs and later process them.
2659 * This function is a helper to record one ref.
2660 */
2661static int __record_ref(struct list_head *head, u64 dir,
2662                      u64 dir_gen, struct fs_path *path)
2663{
2664        struct recorded_ref *ref;
2665
2666        ref = kmalloc(sizeof(*ref), GFP_NOFS);
2667        if (!ref)
2668                return -ENOMEM;
2669
2670        ref->dir = dir;
2671        ref->dir_gen = dir_gen;
2672        ref->full_path = path;
2673
2674        ref->name = (char *)kbasename(ref->full_path->start);
2675        ref->name_len = ref->full_path->end - ref->name;
2676        ref->dir_path = ref->full_path->start;
2677        if (ref->name == ref->full_path->start)
2678                ref->dir_path_len = 0;
2679        else
2680                ref->dir_path_len = ref->full_path->end -
2681                                ref->full_path->start - 1 - ref->name_len;
2682
2683        list_add_tail(&ref->list, head);
2684        return 0;
2685}
2686
2687static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2688{
2689        struct recorded_ref *new;
2690
2691        new = kmalloc(sizeof(*ref), GFP_NOFS);
2692        if (!new)
2693                return -ENOMEM;
2694
2695        new->dir = ref->dir;
2696        new->dir_gen = ref->dir_gen;
2697        new->full_path = NULL;
2698        INIT_LIST_HEAD(&new->list);
2699        list_add_tail(&new->list, list);
2700        return 0;
2701}
2702
2703static void __free_recorded_refs(struct list_head *head)
2704{
2705        struct recorded_ref *cur;
2706
2707        while (!list_empty(head)) {
2708                cur = list_entry(head->next, struct recorded_ref, list);
2709                fs_path_free(cur->full_path);
2710                list_del(&cur->list);
2711                kfree(cur);
2712        }
2713}
2714
2715static void free_recorded_refs(struct send_ctx *sctx)
2716{
2717        __free_recorded_refs(&sctx->new_refs);
2718        __free_recorded_refs(&sctx->deleted_refs);
2719}
2720
2721/*
2722 * Renames/moves a file/dir to its orphan name. Used when the first
2723 * ref of an unprocessed inode gets overwritten and for all non empty
2724 * directories.
2725 */
2726static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2727                          struct fs_path *path)
2728{
2729        int ret;
2730        struct fs_path *orphan;
2731
2732        orphan = fs_path_alloc();
2733        if (!orphan)
2734                return -ENOMEM;
2735
2736        ret = gen_unique_name(sctx, ino, gen, orphan);
2737        if (ret < 0)
2738                goto out;
2739
2740        ret = send_rename(sctx, path, orphan);
2741
2742out:
2743        fs_path_free(orphan);
2744        return ret;
2745}
2746
2747static struct orphan_dir_info *
2748add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2749{
2750        struct rb_node **p = &sctx->orphan_dirs.rb_node;
2751        struct rb_node *parent = NULL;
2752        struct orphan_dir_info *entry, *odi;
2753
2754        odi = kmalloc(sizeof(*odi), GFP_NOFS);
2755        if (!odi)
2756                return ERR_PTR(-ENOMEM);
2757        odi->ino = dir_ino;
2758        odi->gen = 0;
2759
2760        while (*p) {
2761                parent = *p;
2762                entry = rb_entry(parent, struct orphan_dir_info, node);
2763                if (dir_ino < entry->ino) {
2764                        p = &(*p)->rb_left;
2765                } else if (dir_ino > entry->ino) {
2766                        p = &(*p)->rb_right;
2767                } else {
2768                        kfree(odi);
2769                        return entry;
2770                }
2771        }
2772
2773        rb_link_node(&odi->node, parent, p);
2774        rb_insert_color(&odi->node, &sctx->orphan_dirs);
2775        return odi;
2776}
2777
2778static struct orphan_dir_info *
2779get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2780{
2781        struct rb_node *n = sctx->orphan_dirs.rb_node;
2782        struct orphan_dir_info *entry;
2783
2784        while (n) {
2785                entry = rb_entry(n, struct orphan_dir_info, node);
2786                if (dir_ino < entry->ino)
2787                        n = n->rb_left;
2788                else if (dir_ino > entry->ino)
2789                        n = n->rb_right;
2790                else
2791                        return entry;
2792        }
2793        return NULL;
2794}
2795
2796static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2797{
2798        struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2799
2800        return odi != NULL;
2801}
2802
2803static void free_orphan_dir_info(struct send_ctx *sctx,
2804                                 struct orphan_dir_info *odi)
2805{
2806        if (!odi)
2807                return;
2808        rb_erase(&odi->node, &sctx->orphan_dirs);
2809        kfree(odi);
2810}
2811
2812/*
2813 * Returns 1 if a directory can be removed at this point in time.
2814 * We check this by iterating all dir items and checking if the inode behind
2815 * the dir item was already processed.
2816 */
2817static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2818                     u64 send_progress)
2819{
2820        int ret = 0;
2821        struct btrfs_root *root = sctx->parent_root;
2822        struct btrfs_path *path;
2823        struct btrfs_key key;
2824        struct btrfs_key found_key;
2825        struct btrfs_key loc;
2826        struct btrfs_dir_item *di;
2827
2828        /*
2829         * Don't try to rmdir the top/root subvolume dir.
2830         */
2831        if (dir == BTRFS_FIRST_FREE_OBJECTID)
2832                return 0;
2833
2834        path = alloc_path_for_send();
2835        if (!path)
2836                return -ENOMEM;
2837
2838        key.objectid = dir;
2839        key.type = BTRFS_DIR_INDEX_KEY;
2840        key.offset = 0;
2841        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2842        if (ret < 0)
2843                goto out;
2844
2845        while (1) {
2846                struct waiting_dir_move *dm;
2847
2848                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2849                        ret = btrfs_next_leaf(root, path);
2850                        if (ret < 0)
2851                                goto out;
2852                        else if (ret > 0)
2853                                break;
2854                        continue;
2855                }
2856                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2857                                      path->slots[0]);
2858                if (found_key.objectid != key.objectid ||
2859                    found_key.type != key.type)
2860                        break;
2861
2862                di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2863                                struct btrfs_dir_item);
2864                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2865
2866                dm = get_waiting_dir_move(sctx, loc.objectid);
2867                if (dm) {
2868                        struct orphan_dir_info *odi;
2869
2870                        odi = add_orphan_dir_info(sctx, dir);
2871                        if (IS_ERR(odi)) {
2872                                ret = PTR_ERR(odi);
2873                                goto out;
2874                        }
2875                        odi->gen = dir_gen;
2876                        dm->rmdir_ino = dir;
2877                        ret = 0;
2878                        goto out;
2879                }
2880
2881                if (loc.objectid > send_progress) {
2882                        ret = 0;
2883                        goto out;
2884                }
2885
2886                path->slots[0]++;
2887        }
2888
2889        ret = 1;
2890
2891out:
2892        btrfs_free_path(path);
2893        return ret;
2894}
2895
2896static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2897{
2898        struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2899
2900        return entry != NULL;
2901}
2902
2903static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2904{
2905        struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2906        struct rb_node *parent = NULL;
2907        struct waiting_dir_move *entry, *dm;
2908
2909        dm = kmalloc(sizeof(*dm), GFP_NOFS);
2910        if (!dm)
2911                return -ENOMEM;
2912        dm->ino = ino;
2913        dm->rmdir_ino = 0;
2914
2915        while (*p) {
2916                parent = *p;
2917                entry = rb_entry(parent, struct waiting_dir_move, node);
2918                if (ino < entry->ino) {
2919                        p = &(*p)->rb_left;
2920                } else if (ino > entry->ino) {
2921                        p = &(*p)->rb_right;
2922                } else {
2923                        kfree(dm);
2924                        return -EEXIST;
2925                }
2926        }
2927
2928        rb_link_node(&dm->node, parent, p);
2929        rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2930        return 0;
2931}
2932
2933static struct waiting_dir_move *
2934get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2935{
2936        struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2937        struct waiting_dir_move *entry;
2938
2939        while (n) {
2940                entry = rb_entry(n, struct waiting_dir_move, node);
2941                if (ino < entry->ino)
2942                        n = n->rb_left;
2943                else if (ino > entry->ino)
2944                        n = n->rb_right;
2945                else
2946                        return entry;
2947        }
2948        return NULL;
2949}
2950
2951static void free_waiting_dir_move(struct send_ctx *sctx,
2952                                  struct waiting_dir_move *dm)
2953{
2954        if (!dm)
2955                return;
2956        rb_erase(&dm->node, &sctx->waiting_dir_moves);
2957        kfree(dm);
2958}
2959
2960static int add_pending_dir_move(struct send_ctx *sctx,
2961                                u64 ino,
2962                                u64 ino_gen,
2963                                u64 parent_ino,
2964                                struct list_head *new_refs,
2965                                struct list_head *deleted_refs)
2966{
2967        struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2968        struct rb_node *parent = NULL;
2969        struct pending_dir_move *entry = NULL, *pm;
2970        struct recorded_ref *cur;
2971        int exists = 0;
2972        int ret;
2973
2974        pm = kmalloc(sizeof(*pm), GFP_NOFS);
2975        if (!pm)
2976                return -ENOMEM;
2977        pm->parent_ino = parent_ino;
2978        pm->ino = ino;
2979        pm->gen = ino_gen;
2980        INIT_LIST_HEAD(&pm->list);
2981        INIT_LIST_HEAD(&pm->update_refs);
2982        RB_CLEAR_NODE(&pm->node);
2983
2984        while (*p) {
2985                parent = *p;
2986                entry = rb_entry(parent, struct pending_dir_move, node);
2987                if (parent_ino < entry->parent_ino) {
2988                        p = &(*p)->rb_left;
2989                } else if (parent_ino > entry->parent_ino) {
2990                        p = &(*p)->rb_right;
2991                } else {
2992                        exists = 1;
2993                        break;
2994                }
2995        }
2996
2997        list_for_each_entry(cur, deleted_refs, list) {
2998                ret = dup_ref(cur, &pm->update_refs);
2999                if (ret < 0)
3000                        goto out;
3001        }
3002        list_for_each_entry(cur, new_refs, list) {
3003                ret = dup_ref(cur, &pm->update_refs);
3004                if (ret < 0)
3005                        goto out;
3006        }
3007
3008        ret = add_waiting_dir_move(sctx, pm->ino);
3009        if (ret)
3010                goto out;
3011
3012        if (exists) {
3013                list_add_tail(&pm->list, &entry->list);
3014        } else {
3015                rb_link_node(&pm->node, parent, p);
3016                rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3017        }
3018        ret = 0;
3019out:
3020        if (ret) {
3021                __free_recorded_refs(&pm->update_refs);
3022                kfree(pm);
3023        }
3024        return ret;
3025}
3026
3027static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3028                                                      u64 parent_ino)
3029{
3030        struct rb_node *n = sctx->pending_dir_moves.rb_node;
3031        struct pending_dir_move *entry;
3032
3033        while (n) {
3034                entry = rb_entry(n, struct pending_dir_move, node);
3035                if (parent_ino < entry->parent_ino)
3036                        n = n->rb_left;
3037                else if (parent_ino > entry->parent_ino)
3038                        n = n->rb_right;
3039                else
3040                        return entry;
3041        }
3042        return NULL;
3043}
3044
3045static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3046                     u64 ino, u64 gen, u64 *ancestor_ino)
3047{
3048        int ret = 0;
3049        u64 parent_inode = 0;
3050        u64 parent_gen = 0;
3051        u64 start_ino = ino;
3052
3053        *ancestor_ino = 0;
3054        while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3055                fs_path_reset(name);
3056
3057                if (is_waiting_for_rm(sctx, ino))
3058                        break;
3059                if (is_waiting_for_move(sctx, ino)) {
3060                        if (*ancestor_ino == 0)
3061                                *ancestor_ino = ino;
3062                        ret = get_first_ref(sctx->parent_root, ino,
3063                                            &parent_inode, &parent_gen, name);
3064                } else {
3065                        ret = __get_cur_name_and_parent(sctx, ino, gen,
3066                                                        &parent_inode,
3067                                                        &parent_gen, name);
3068                        if (ret > 0) {
3069                                ret = 0;
3070                                break;
3071                        }
3072                }
3073                if (ret < 0)
3074                        break;
3075                if (parent_inode == start_ino) {
3076                        ret = 1;
3077                        if (*ancestor_ino == 0)
3078                                *ancestor_ino = ino;
3079                        break;
3080                }
3081                ino = parent_inode;
3082                gen = parent_gen;
3083        }
3084        return ret;
3085}
3086
3087static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3088{
3089        struct fs_path *from_path = NULL;
3090        struct fs_path *to_path = NULL;
3091        struct fs_path *name = NULL;
3092        u64 orig_progress = sctx->send_progress;
3093        struct recorded_ref *cur;
3094        u64 parent_ino, parent_gen;
3095        struct waiting_dir_move *dm = NULL;
3096        u64 rmdir_ino = 0;
3097        int ret;
3098        u64 ancestor = 0;
3099
3100        name = fs_path_alloc();
3101        from_path = fs_path_alloc();
3102        if (!name || !from_path) {
3103                ret = -ENOMEM;
3104                goto out;
3105        }
3106
3107        dm = get_waiting_dir_move(sctx, pm->ino);
3108        ASSERT(dm);
3109        rmdir_ino = dm->rmdir_ino;
3110        free_waiting_dir_move(sctx, dm);
3111
3112        ret = get_first_ref(sctx->parent_root, pm->ino,
3113                            &parent_ino, &parent_gen, name);
3114        if (ret < 0)
3115                goto out;
3116
3117        ret = get_cur_path(sctx, parent_ino, parent_gen,
3118                           from_path);
3119        if (ret < 0)
3120                goto out;
3121        ret = fs_path_add_path(from_path, name);
3122        if (ret < 0)
3123                goto out;
3124
3125        sctx->send_progress = sctx->cur_ino + 1;
3126        ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3127        if (ret) {
3128                LIST_HEAD(deleted_refs);
3129                ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3130                ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3131                                           &pm->update_refs, &deleted_refs);
3132                if (ret < 0)
3133                        goto out;
3134                if (rmdir_ino) {
3135                        dm = get_waiting_dir_move(sctx, pm->ino);
3136                        ASSERT(dm);
3137                        dm->rmdir_ino = rmdir_ino;
3138                }
3139                goto out;
3140        }
3141        fs_path_reset(name);
3142        to_path = name;
3143        name = NULL;
3144        ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3145        if (ret < 0)
3146                goto out;
3147
3148        ret = send_rename(sctx, from_path, to_path);
3149        if (ret < 0)
3150                goto out;
3151
3152        if (rmdir_ino) {
3153                struct orphan_dir_info *odi;
3154
3155                odi = get_orphan_dir_info(sctx, rmdir_ino);
3156                if (!odi) {
3157                        /* already deleted */
3158                        goto finish;
3159                }
3160                ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3161                if (ret < 0)
3162                        goto out;
3163                if (!ret)
3164                        goto finish;
3165
3166                name = fs_path_alloc();
3167                if (!name) {
3168                        ret = -ENOMEM;
3169                        goto out;
3170                }
3171                ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3172                if (ret < 0)
3173                        goto out;
3174                ret = send_rmdir(sctx, name);
3175                if (ret < 0)
3176                        goto out;
3177                free_orphan_dir_info(sctx, odi);
3178        }
3179
3180finish:
3181        ret = send_utimes(sctx, pm->ino, pm->gen);
3182        if (ret < 0)
3183                goto out;
3184
3185        /*
3186         * After rename/move, need to update the utimes of both new parent(s)
3187         * and old parent(s).
3188         */
3189        list_for_each_entry(cur, &pm->update_refs, list) {
3190                if (cur->dir == rmdir_ino)
3191                        continue;
3192                ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3193                if (ret < 0)
3194                        goto out;
3195        }
3196
3197out:
3198        fs_path_free(name);
3199        fs_path_free(from_path);
3200        fs_path_free(to_path);
3201        sctx->send_progress = orig_progress;
3202
3203        return ret;
3204}
3205
3206static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3207{
3208        if (!list_empty(&m->list))
3209                list_del(&m->list);
3210        if (!RB_EMPTY_NODE(&m->node))
3211                rb_erase(&m->node, &sctx->pending_dir_moves);
3212        __free_recorded_refs(&m->update_refs);
3213        kfree(m);
3214}
3215
3216static void tail_append_pending_moves(struct pending_dir_move *moves,
3217                                      struct list_head *stack)
3218{
3219        if (list_empty(&moves->list)) {
3220                list_add_tail(&moves->list, stack);
3221        } else {
3222                LIST_HEAD(list);
3223                list_splice_init(&moves->list, &list);
3224                list_add_tail(&moves->list, stack);
3225                list_splice_tail(&list, stack);
3226        }
3227}
3228
3229static int apply_children_dir_moves(struct send_ctx *sctx)
3230{
3231        struct pending_dir_move *pm;
3232        struct list_head stack;
3233        u64 parent_ino = sctx->cur_ino;
3234        int ret = 0;
3235
3236        pm = get_pending_dir_moves(sctx, parent_ino);
3237        if (!pm)
3238                return 0;
3239
3240        INIT_LIST_HEAD(&stack);
3241        tail_append_pending_moves(pm, &stack);
3242
3243        while (!list_empty(&stack)) {
3244                pm = list_first_entry(&stack, struct pending_dir_move, list);
3245                parent_ino = pm->ino;
3246                ret = apply_dir_move(sctx, pm);
3247                free_pending_move(sctx, pm);
3248                if (ret)
3249                        goto out;
3250                pm = get_pending_dir_moves(sctx, parent_ino);
3251                if (pm)
3252                        tail_append_pending_moves(pm, &stack);
3253        }
3254        return 0;
3255
3256out:
3257        while (!list_empty(&stack)) {
3258                pm = list_first_entry(&stack, struct pending_dir_move, list);
3259                free_pending_move(sctx, pm);
3260        }
3261        return ret;
3262}
3263
3264static int wait_for_parent_move(struct send_ctx *sctx,
3265                                struct recorded_ref *parent_ref)
3266{
3267        int ret = 0;
3268        u64 ino = parent_ref->dir;
3269        u64 parent_ino_before, parent_ino_after;
3270        struct fs_path *path_before = NULL;
3271        struct fs_path *path_after = NULL;
3272        int len1, len2;
3273
3274        path_after = fs_path_alloc();
3275        path_before = fs_path_alloc();
3276        if (!path_after || !path_before) {
3277                ret = -ENOMEM;
3278                goto out;
3279        }
3280
3281        /*
3282         * Our current directory inode may not yet be renamed/moved because some
3283         * ancestor (immediate or not) has to be renamed/moved first. So find if
3284         * such ancestor exists and make sure our own rename/move happens after
3285         * that ancestor is processed.
3286         */
3287        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3288                if (is_waiting_for_move(sctx, ino)) {
3289                        ret = 1;
3290                        break;
3291                }
3292
3293                fs_path_reset(path_before);
3294                fs_path_reset(path_after);
3295
3296                ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3297                                    NULL, path_after);
3298                if (ret < 0)
3299                        goto out;
3300                ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3301                                    NULL, path_before);
3302                if (ret < 0 && ret != -ENOENT) {
3303                        goto out;
3304                } else if (ret == -ENOENT) {
3305                        ret = 1;
3306                        break;
3307                }
3308
3309                len1 = fs_path_len(path_before);
3310                len2 = fs_path_len(path_after);
3311                if (ino > sctx->cur_ino &&
3312                    (parent_ino_before != parent_ino_after || len1 != len2 ||
3313                     memcmp(path_before->start, path_after->start, len1))) {
3314                        ret = 1;
3315                        break;
3316                }
3317                ino = parent_ino_after;
3318        }
3319
3320out:
3321        fs_path_free(path_before);
3322        fs_path_free(path_after);
3323
3324        if (ret == 1) {
3325                ret = add_pending_dir_move(sctx,
3326                                           sctx->cur_ino,
3327                                           sctx->cur_inode_gen,
3328                                           ino,
3329                                           &sctx->new_refs,
3330                                           &sctx->deleted_refs);
3331                if (!ret)
3332                        ret = 1;
3333        }
3334
3335        return ret;
3336}
3337
3338/*
3339 * This does all the move/link/unlink/rmdir magic.
3340 */
3341static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3342{
3343        int ret = 0;
3344        struct recorded_ref *cur;
3345        struct recorded_ref *cur2;
3346        struct list_head check_dirs;
3347        struct fs_path *valid_path = NULL;
3348        u64 ow_inode = 0;
3349        u64 ow_gen;
3350        int did_overwrite = 0;
3351        int is_orphan = 0;
3352        u64 last_dir_ino_rm = 0;
3353
3354verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3355
3356        /*
3357         * This should never happen as the root dir always has the same ref
3358         * which is always '..'
3359         */
3360        BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3361        INIT_LIST_HEAD(&check_dirs);
3362
3363        valid_path = fs_path_alloc();
3364        if (!valid_path) {
3365                ret = -ENOMEM;
3366                goto out;
3367        }
3368
3369        /*
3370         * First, check if the first ref of the current inode was overwritten
3371         * before. If yes, we know that the current inode was already orphanized
3372         * and thus use the orphan name. If not, we can use get_cur_path to
3373         * get the path of the first ref as it would like while receiving at
3374         * this point in time.
3375         * New inodes are always orphan at the beginning, so force to use the
3376         * orphan name in this case.
3377         * The first ref is stored in valid_path and will be updated if it
3378         * gets moved around.
3379         */
3380        if (!sctx->cur_inode_new) {
3381                ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3382                                sctx->cur_inode_gen);
3383                if (ret < 0)
3384                        goto out;
3385                if (ret)
3386                        did_overwrite = 1;
3387        }
3388        if (sctx->cur_inode_new || did_overwrite) {
3389                ret = gen_unique_name(sctx, sctx->cur_ino,
3390                                sctx->cur_inode_gen, valid_path);
3391                if (ret < 0)
3392                        goto out;
3393                is_orphan = 1;
3394        } else {
3395                ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3396                                valid_path);
3397                if (ret < 0)
3398                        goto out;
3399        }
3400
3401        list_for_each_entry(cur, &sctx->new_refs, list) {
3402                /*
3403                 * We may have refs where the parent directory does not exist
3404                 * yet. This happens if the parent directories inum is higher
3405                 * the the current inum. To handle this case, we create the
3406                 * parent directory out of order. But we need to check if this
3407                 * did already happen before due to other refs in the same dir.
3408                 */
3409                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3410                if (ret < 0)
3411                        goto out;
3412                if (ret == inode_state_will_create) {
3413                        ret = 0;
3414                        /*
3415                         * First check if any of the current inodes refs did
3416                         * already create the dir.
3417                         */
3418                        list_for_each_entry(cur2, &sctx->new_refs, list) {
3419                                if (cur == cur2)
3420                                        break;
3421                                if (cur2->dir == cur->dir) {
3422                                        ret = 1;
3423                                        break;
3424                                }
3425                        }
3426
3427                        /*
3428                         * If that did not happen, check if a previous inode
3429                         * did already create the dir.
3430                         */
3431                        if (!ret)
3432                                ret = did_create_dir(sctx, cur->dir);
3433                        if (ret < 0)
3434                                goto out;
3435                        if (!ret) {
3436                                ret = send_create_inode(sctx, cur->dir);
3437                                if (ret < 0)
3438                                        goto out;
3439                        }
3440                }
3441
3442                /*
3443                 * Check if this new ref would overwrite the first ref of
3444                 * another unprocessed inode. If yes, orphanize the
3445                 * overwritten inode. If we find an overwritten ref that is
3446                 * not the first ref, simply unlink it.
3447                 */
3448                ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3449                                cur->name, cur->name_len,
3450                                &ow_inode, &ow_gen);
3451                if (ret < 0)
3452                        goto out;
3453                if (ret) {
3454                        ret = is_first_ref(sctx->parent_root,
3455                                           ow_inode, cur->dir, cur->name,
3456                                           cur->name_len);
3457                        if (ret < 0)
3458                                goto out;
3459                        if (ret) {
3460                                ret = orphanize_inode(sctx, ow_inode, ow_gen,
3461                                                cur->full_path);
3462                                if (ret < 0)
3463                                        goto out;
3464                        } else {
3465                                ret = send_unlink(sctx, cur->full_path);
3466                                if (ret < 0)
3467                                        goto out;
3468                        }
3469                }
3470
3471                /*
3472                 * link/move the ref to the new place. If we have an orphan
3473                 * inode, move it and update valid_path. If not, link or move
3474                 * it depending on the inode mode.
3475                 */
3476                if (is_orphan) {
3477                        ret = send_rename(sctx, valid_path, cur->full_path);
3478                        if (ret < 0)
3479                                goto out;
3480                        is_orphan = 0;
3481                        ret = fs_path_copy(valid_path, cur->full_path);
3482                        if (ret < 0)
3483                                goto out;
3484                } else {
3485                        if (S_ISDIR(sctx->cur_inode_mode)) {
3486                                /*
3487                                 * Dirs can't be linked, so move it. For moved
3488                                 * dirs, we always have one new and one deleted
3489                                 * ref. The deleted ref is ignored later.
3490                                 */
3491                                ret = wait_for_parent_move(sctx, cur);
3492                                if (ret < 0)
3493                                        goto out;
3494                                if (ret) {
3495                                        *pending_move = 1;
3496                                } else {
3497                                        ret = send_rename(sctx, valid_path,
3498                                                          cur->full_path);
3499                                        if (!ret)
3500                                                ret = fs_path_copy(valid_path,
3501                                                               cur->full_path);
3502                                }
3503                                if (ret < 0)
3504                                        goto out;
3505                        } else {
3506                                ret = send_link(sctx, cur->full_path,
3507                                                valid_path);
3508                                if (ret < 0)
3509                                        goto out;
3510                        }
3511                }
3512                ret = dup_ref(cur, &check_dirs);
3513                if (ret < 0)
3514                        goto out;
3515        }
3516
3517        if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3518                /*
3519                 * Check if we can already rmdir the directory. If not,
3520                 * orphanize it. For every dir item inside that gets deleted
3521                 * later, we do this check again and rmdir it then if possible.
3522                 * See the use of check_dirs for more details.
3523                 */
3524                ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3525                                sctx->cur_ino);
3526                if (ret < 0)
3527                        goto out;
3528                if (ret) {
3529                        ret = send_rmdir(sctx, valid_path);
3530                        if (ret < 0)
3531                                goto out;
3532                } else if (!is_orphan) {
3533                        ret = orphanize_inode(sctx, sctx->cur_ino,
3534                                        sctx->cur_inode_gen, valid_path);
3535                        if (ret < 0)
3536                                goto out;
3537                        is_orphan = 1;
3538                }
3539
3540                list_for_each_entry(cur, &sctx->deleted_refs, list) {
3541                        ret = dup_ref(cur, &check_dirs);
3542                        if (ret < 0)
3543                                goto out;
3544                }
3545        } else if (S_ISDIR(sctx->cur_inode_mode) &&
3546                   !list_empty(&sctx->deleted_refs)) {
3547                /*
3548                 * We have a moved dir. Add the old parent to check_dirs
3549                 */
3550                cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3551                                list);
3552                ret = dup_ref(cur, &check_dirs);
3553                if (ret < 0)
3554                        goto out;
3555        } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3556                /*
3557                 * We have a non dir inode. Go through all deleted refs and
3558                 * unlink them if they were not already overwritten by other
3559                 * inodes.
3560                 */
3561                list_for_each_entry(cur, &sctx->deleted_refs, list) {
3562                        ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3563                                        sctx->cur_ino, sctx->cur_inode_gen,
3564                                        cur->name, cur->name_len);
3565                        if (ret < 0)
3566                                goto out;
3567                        if (!ret) {
3568                                ret = send_unlink(sctx, cur->full_path);
3569                                if (ret < 0)
3570                                        goto out;
3571                        }
3572                        ret = dup_ref(cur, &check_dirs);
3573                        if (ret < 0)
3574                                goto out;
3575                }
3576                /*
3577                 * If the inode is still orphan, unlink the orphan. This may
3578                 * happen when a previous inode did overwrite the first ref
3579                 * of this inode and no new refs were added for the current
3580                 * inode. Unlinking does not mean that the inode is deleted in
3581                 * all cases. There may still be links to this inode in other
3582                 * places.
3583                 */
3584                if (is_orphan) {
3585                        ret = send_unlink(sctx, valid_path);
3586                        if (ret < 0)
3587                                goto out;
3588                }
3589        }
3590
3591        /*
3592         * We did collect all parent dirs where cur_inode was once located. We
3593         * now go through all these dirs and check if they are pending for
3594         * deletion and if it's finally possible to perform the rmdir now.
3595         * We also update the inode stats of the parent dirs here.
3596         */
3597        list_for_each_entry(cur, &check_dirs, list) {
3598                /*
3599                 * In case we had refs into dirs that were not processed yet,
3600                 * we don't need to do the utime and rmdir logic for these dirs.
3601                 * The dir will be processed later.
3602                 */
3603                if (cur->dir > sctx->cur_ino)
3604                        continue;
3605
3606                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3607                if (ret < 0)
3608                        goto out;
3609
3610                if (ret == inode_state_did_create ||
3611                    ret == inode_state_no_change) {
3612                        /* TODO delayed utimes */
3613                        ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3614                        if (ret < 0)
3615                                goto out;
3616                } else if (ret == inode_state_did_delete &&
3617                           cur->dir != last_dir_ino_rm) {
3618                        ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3619                                        sctx->cur_ino);
3620                        if (ret < 0)
3621                                goto out;
3622                        if (ret) {
3623                                ret = get_cur_path(sctx, cur->dir,
3624                                                   cur->dir_gen, valid_path);
3625                                if (ret < 0)
3626                                        goto out;
3627                                ret = send_rmdir(sctx, valid_path);
3628                                if (ret < 0)
3629                                        goto out;
3630                                last_dir_ino_rm = cur->dir;
3631                        }
3632                }
3633        }
3634
3635        ret = 0;
3636
3637out:
3638        __free_recorded_refs(&check_dirs);
3639        free_recorded_refs(sctx);
3640        fs_path_free(valid_path);
3641        return ret;
3642}
3643
3644static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3645                      struct fs_path *name, void *ctx, struct list_head *refs)
3646{
3647        int ret = 0;
3648        struct send_ctx *sctx = ctx;
3649        struct fs_path *p;
3650        u64 gen;
3651
3652        p = fs_path_alloc();
3653        if (!p)
3654                return -ENOMEM;
3655
3656        ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3657                        NULL, NULL);
3658        if (ret < 0)
3659                goto out;
3660
3661        ret = get_cur_path(sctx, dir, gen, p);
3662        if (ret < 0)
3663                goto out;
3664        ret = fs_path_add_path(p, name);
3665        if (ret < 0)
3666                goto out;
3667
3668        ret = __record_ref(refs, dir, gen, p);
3669
3670out:
3671        if (ret)
3672                fs_path_free(p);
3673        return ret;
3674}
3675
3676static int __record_new_ref(int num, u64 dir, int index,
3677                            struct fs_path *name,
3678                            void *ctx)
3679{
3680        struct send_ctx *sctx = ctx;
3681        return record_ref(sctx->send_root, num, dir, index, name,
3682                          ctx, &sctx->new_refs);
3683}
3684
3685
3686static int __record_deleted_ref(int num, u64 dir, int index,
3687                                struct fs_path *name,
3688                                void *ctx)
3689{
3690        struct send_ctx *sctx = ctx;
3691        return record_ref(sctx->parent_root, num, dir, index, name,
3692                          ctx, &sctx->deleted_refs);
3693}
3694
3695static int record_new_ref(struct send_ctx *sctx)
3696{
3697        int ret;
3698
3699        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3700                                sctx->cmp_key, 0, __record_new_ref, sctx);
3701        if (ret < 0)
3702                goto out;
3703        ret = 0;
3704
3705out:
3706        return ret;
3707}
3708
3709static int record_deleted_ref(struct send_ctx *sctx)
3710{
3711        int ret;
3712
3713        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3714                                sctx->cmp_key, 0, __record_deleted_ref, sctx);
3715        if (ret < 0)
3716                goto out;
3717        ret = 0;
3718
3719out:
3720        return ret;
3721}
3722
3723struct find_ref_ctx {
3724        u64 dir;
3725        u64 dir_gen;
3726        struct btrfs_root *root;
3727        struct fs_path *name;
3728        int found_idx;
3729};
3730
3731static int __find_iref(int num, u64 dir, int index,
3732                       struct fs_path *name,
3733                       void *ctx_)
3734{
3735        struct find_ref_ctx *ctx = ctx_;
3736        u64 dir_gen;
3737        int ret;
3738
3739        if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3740            strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3741                /*
3742                 * To avoid doing extra lookups we'll only do this if everything
3743                 * else matches.
3744                 */
3745                ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3746                                     NULL, NULL, NULL);
3747                if (ret)
3748                        return ret;
3749                if (dir_gen != ctx->dir_gen)
3750                        return 0;
3751                ctx->found_idx = num;
3752                return 1;
3753        }
3754        return 0;
3755}
3756
3757static int find_iref(struct btrfs_root *root,
3758                     struct btrfs_path *path,
3759                     struct btrfs_key *key,
3760                     u64 dir, u64 dir_gen, struct fs_path *name)
3761{
3762        int ret;
3763        struct find_ref_ctx ctx;
3764
3765        ctx.dir = dir;
3766        ctx.name = name;
3767        ctx.dir_gen = dir_gen;
3768        ctx.found_idx = -1;
3769        ctx.root = root;
3770
3771        ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3772        if (ret < 0)
3773                return ret;
3774
3775        if (ctx.found_idx == -1)
3776                return -ENOENT;
3777
3778        return ctx.found_idx;
3779}
3780
3781static int __record_changed_new_ref(int num, u64 dir, int index,
3782                                    struct fs_path *name,
3783                                    void *ctx)
3784{
3785        u64 dir_gen;
3786        int ret;
3787        struct send_ctx *sctx = ctx;
3788
3789        ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3790                             NULL, NULL, NULL);
3791        if (ret)
3792                return ret;
3793
3794        ret = find_iref(sctx->parent_root, sctx->right_path,
3795                        sctx->cmp_key, dir, dir_gen, name);
3796        if (ret == -ENOENT)
3797                ret = __record_new_ref(num, dir, index, name, sctx);
3798        else if (ret > 0)
3799                ret = 0;
3800
3801        return ret;
3802}
3803
3804static int __record_changed_deleted_ref(int num, u64 dir, int index,
3805                                        struct fs_path *name,
3806                                        void *ctx)
3807{
3808        u64 dir_gen;
3809        int ret;
3810        struct send_ctx *sctx = ctx;
3811
3812        ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3813                             NULL, NULL, NULL);
3814        if (ret)
3815                return ret;
3816
3817        ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3818                        dir, dir_gen, name);
3819        if (ret == -ENOENT)
3820                ret = __record_deleted_ref(num, dir, index, name, sctx);
3821        else if (ret > 0)
3822                ret = 0;
3823
3824        return ret;
3825}
3826
3827static int record_changed_ref(struct send_ctx *sctx)
3828{
3829        int ret = 0;
3830
3831        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3832                        sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3833        if (ret < 0)
3834                goto out;
3835        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3836                        sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3837        if (ret < 0)
3838                goto out;
3839        ret = 0;
3840
3841out:
3842        return ret;
3843}
3844
3845/*
3846 * Record and process all refs at once. Needed when an inode changes the
3847 * generation number, which means that it was deleted and recreated.
3848 */
3849static int process_all_refs(struct send_ctx *sctx,
3850                            enum btrfs_compare_tree_result cmd)
3851{
3852        int ret;
3853        struct btrfs_root *root;
3854        struct btrfs_path *path;
3855        struct btrfs_key key;
3856        struct btrfs_key found_key;
3857        struct extent_buffer *eb;
3858        int slot;
3859        iterate_inode_ref_t cb;
3860        int pending_move = 0;
3861
3862        path = alloc_path_for_send();
3863        if (!path)
3864                return -ENOMEM;
3865
3866        if (cmd == BTRFS_COMPARE_TREE_NEW) {
3867                root = sctx->send_root;
3868                cb = __record_new_ref;
3869        } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3870                root = sctx->parent_root;
3871                cb = __record_deleted_ref;
3872        } else {
3873                btrfs_err(sctx->send_root->fs_info,
3874                                "Wrong command %d in process_all_refs", cmd);
3875                ret = -EINVAL;
3876                goto out;
3877        }
3878
3879        key.objectid = sctx->cmp_key->objectid;
3880        key.type = BTRFS_INODE_REF_KEY;
3881        key.offset = 0;
3882        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3883        if (ret < 0)
3884                goto out;
3885
3886        while (1) {
3887                eb = path->nodes[0];
3888                slot = path->slots[0];
3889                if (slot >= btrfs_header_nritems(eb)) {
3890                        ret = btrfs_next_leaf(root, path);
3891                        if (ret < 0)
3892                                goto out;
3893                        else if (ret > 0)
3894                                break;
3895                        continue;
3896                }
3897
3898                btrfs_item_key_to_cpu(eb, &found_key, slot);
3899
3900                if (found_key.objectid != key.objectid ||
3901                    (found_key.type != BTRFS_INODE_REF_KEY &&
3902                     found_key.type != BTRFS_INODE_EXTREF_KEY))
3903                        break;
3904
3905                ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3906                if (ret < 0)
3907                        goto out;
3908
3909                path->slots[0]++;
3910        }
3911        btrfs_release_path(path);
3912
3913        ret = process_recorded_refs(sctx, &pending_move);
3914        /* Only applicable to an incremental send. */
3915        ASSERT(pending_move == 0);
3916
3917out:
3918        btrfs_free_path(path);
3919        return ret;
3920}
3921
3922static int send_set_xattr(struct send_ctx *sctx,
3923                          struct fs_path *path,
3924                          const char *name, int name_len,
3925                          const char *data, int data_len)
3926{
3927        int ret = 0;
3928
3929        ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3930        if (ret < 0)
3931                goto out;
3932
3933        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3934        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3935        TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3936
3937        ret = send_cmd(sctx);
3938
3939tlv_put_failure:
3940out:
3941        return ret;
3942}
3943
3944static int send_remove_xattr(struct send_ctx *sctx,
3945                          struct fs_path *path,
3946                          const char *name, int name_len)
3947{
3948        int ret = 0;
3949
3950        ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3951        if (ret < 0)
3952                goto out;
3953
3954        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3955        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3956
3957        ret = send_cmd(sctx);
3958
3959tlv_put_failure:
3960out:
3961        return ret;
3962}
3963
3964static int __process_new_xattr(int num, struct btrfs_key *di_key,
3965                               const char *name, int name_len,
3966                               const char *data, int data_len,
3967                               u8 type, void *ctx)
3968{
3969        int ret;
3970        struct send_ctx *sctx = ctx;
3971        struct fs_path *p;
3972        posix_acl_xattr_header dummy_acl;
3973
3974        p = fs_path_alloc();
3975        if (!p)
3976                return -ENOMEM;
3977
3978        /*
3979         * This hack is needed because empty acl's are stored as zero byte
3980         * data in xattrs. Problem with that is, that receiving these zero byte
3981         * acl's will fail later. To fix this, we send a dummy acl list that
3982         * only contains the version number and no entries.
3983         */
3984        if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3985            !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3986                if (data_len == 0) {
3987                        dummy_acl.a_version =
3988                                        cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3989                        data = (char *)&dummy_acl;
3990                        data_len = sizeof(dummy_acl);
3991                }
3992        }
3993
3994        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3995        if (ret < 0)
3996                goto out;
3997
3998        ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3999
4000out:
4001        fs_path_free(p);
4002        return ret;
4003}
4004
4005static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4006                                   const char *name, int name_len,
4007                                   const char *data, int data_len,
4008                                   u8 type, void *ctx)
4009{
4010        int ret;
4011        struct send_ctx *sctx = ctx;
4012        struct fs_path *p;
4013
4014        p = fs_path_alloc();
4015        if (!p)
4016                return -ENOMEM;
4017
4018        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4019        if (ret < 0)
4020                goto out;
4021
4022        ret = send_remove_xattr(sctx, p, name, name_len);
4023
4024out:
4025        fs_path_free(p);
4026        return ret;
4027}
4028
4029static int process_new_xattr(struct send_ctx *sctx)
4030{
4031        int ret = 0;
4032
4033        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4034                               sctx->cmp_key, __process_new_xattr, sctx);
4035
4036        return ret;
4037}
4038
4039static int process_deleted_xattr(struct send_ctx *sctx)
4040{
4041        int ret;
4042
4043        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4044                               sctx->cmp_key, __process_deleted_xattr, sctx);
4045
4046        return ret;
4047}
4048
4049struct find_xattr_ctx {
4050        const char *name;
4051        int name_len;
4052        int found_idx;
4053        char *found_data;
4054        int found_data_len;
4055};
4056
4057static int __find_xattr(int num, struct btrfs_key *di_key,
4058                        const char *name, int name_len,
4059                        const char *data, int data_len,
4060                        u8 type, void *vctx)
4061{
4062        struct find_xattr_ctx *ctx = vctx;
4063
4064        if (name_len == ctx->name_len &&
4065            strncmp(name, ctx->name, name_len) == 0) {
4066                ctx->found_idx = num;
4067                ctx->found_data_len = data_len;
4068                ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4069                if (!ctx->found_data)
4070                        return -ENOMEM;
4071                return 1;
4072        }
4073        return 0;
4074}
4075
4076static int find_xattr(struct btrfs_root *root,
4077                      struct btrfs_path *path,
4078                      struct btrfs_key *key,
4079                      const char *name, int name_len,
4080                      char **data, int *data_len)
4081{
4082        int ret;
4083        struct find_xattr_ctx ctx;
4084
4085        ctx.name = name;
4086        ctx.name_len = name_len;
4087        ctx.found_idx = -1;
4088        ctx.found_data = NULL;
4089        ctx.found_data_len = 0;
4090
4091        ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4092        if (ret < 0)
4093                return ret;
4094
4095        if (ctx.found_idx == -1)
4096                return -ENOENT;
4097        if (data) {
4098                *data = ctx.found_data;
4099                *data_len = ctx.found_data_len;
4100        } else {
4101                kfree(ctx.found_data);
4102        }
4103        return ctx.found_idx;
4104}
4105
4106
4107static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4108                                       const char *name, int name_len,
4109                                       const char *data, int data_len,
4110                                       u8 type, void *ctx)
4111{
4112        int ret;
4113        struct send_ctx *sctx = ctx;
4114        char *found_data = NULL;
4115        int found_data_len  = 0;
4116
4117        ret = find_xattr(sctx->parent_root, sctx->right_path,
4118                         sctx->cmp_key, name, name_len, &found_data,
4119                         &found_data_len);
4120        if (ret == -ENOENT) {
4121                ret = __process_new_xattr(num, di_key, name, name_len, data,
4122                                data_len, type, ctx);
4123        } else if (ret >= 0) {
4124                if (data_len != found_data_len ||
4125                    memcmp(data, found_data, data_len)) {
4126                        ret = __process_new_xattr(num, di_key, name, name_len,
4127                                        data, data_len, type, ctx);
4128                } else {
4129                        ret = 0;
4130                }
4131        }
4132
4133        kfree(found_data);
4134        return ret;
4135}
4136
4137static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4138                                           const char *name, int name_len,
4139                                           const char *data, int data_len,
4140                                           u8 type, void *ctx)
4141{
4142        int ret;
4143        struct send_ctx *sctx = ctx;
4144
4145        ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4146                         name, name_len, NULL, NULL);
4147        if (ret == -ENOENT)
4148                ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4149                                data_len, type, ctx);
4150        else if (ret >= 0)
4151                ret = 0;
4152
4153        return ret;
4154}
4155
4156static int process_changed_xattr(struct send_ctx *sctx)
4157{
4158        int ret = 0;
4159
4160        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4161                        sctx->cmp_key, __process_changed_new_xattr, sctx);
4162        if (ret < 0)
4163                goto out;
4164        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4165                        sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4166
4167out:
4168        return ret;
4169}
4170
4171static int process_all_new_xattrs(struct send_ctx *sctx)
4172{
4173        int ret;
4174        struct btrfs_root *root;
4175        struct btrfs_path *path;
4176        struct btrfs_key key;
4177        struct btrfs_key found_key;
4178        struct extent_buffer *eb;
4179        int slot;
4180
4181        path = alloc_path_for_send();
4182        if (!path)
4183                return -ENOMEM;
4184
4185        root = sctx->send_root;
4186
4187        key.objectid = sctx->cmp_key->objectid;
4188        key.type = BTRFS_XATTR_ITEM_KEY;
4189        key.offset = 0;
4190        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191        if (ret < 0)
4192                goto out;
4193
4194        while (1) {
4195                eb = path->nodes[0];
4196                slot = path->slots[0];
4197                if (slot >= btrfs_header_nritems(eb)) {
4198                        ret = btrfs_next_leaf(root, path);
4199                        if (ret < 0) {
4200                                goto out;
4201                        } else if (ret > 0) {
4202                                ret = 0;
4203                                break;
4204                        }
4205                        continue;
4206                }
4207
4208                btrfs_item_key_to_cpu(eb, &found_key, slot);
4209                if (found_key.objectid != key.objectid ||
4210                    found_key.type != key.type) {
4211                        ret = 0;
4212                        goto out;
4213                }
4214
4215                ret = iterate_dir_item(root, path, &found_key,
4216                                       __process_new_xattr, sctx);
4217                if (ret < 0)
4218                        goto out;
4219
4220                path->slots[0]++;
4221        }
4222
4223out:
4224        btrfs_free_path(path);
4225        return ret;
4226}
4227
4228static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4229{
4230        struct btrfs_root *root = sctx->send_root;
4231        struct btrfs_fs_info *fs_info = root->fs_info;
4232        struct inode *inode;
4233        struct page *page;
4234        char *addr;
4235        struct btrfs_key key;
4236        pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4237        pgoff_t last_index;
4238        unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4239        ssize_t ret = 0;
4240
4241        key.objectid = sctx->cur_ino;
4242        key.type = BTRFS_INODE_ITEM_KEY;
4243        key.offset = 0;
4244
4245        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4246        if (IS_ERR(inode))
4247                return PTR_ERR(inode);
4248
4249        if (offset + len > i_size_read(inode)) {
4250                if (offset > i_size_read(inode))
4251                        len = 0;
4252                else
4253                        len = offset - i_size_read(inode);
4254        }
4255        if (len == 0)
4256                goto out;
4257
4258        last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4259
4260        /* initial readahead */
4261        memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4262        file_ra_state_init(&sctx->ra, inode->i_mapping);
4263        btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4264                       last_index - index + 1);
4265
4266        while (index <= last_index) {
4267                unsigned cur_len = min_t(unsigned, len,
4268                                         PAGE_CACHE_SIZE - pg_offset);
4269                page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4270                if (!page) {
4271                        ret = -ENOMEM;
4272                        break;
4273                }
4274
4275                if (!PageUptodate(page)) {
4276                        btrfs_readpage(NULL, page);
4277                        lock_page(page);
4278                        if (!PageUptodate(page)) {
4279                                unlock_page(page);
4280                                page_cache_release(page);
4281                                ret = -EIO;
4282                                break;
4283                        }
4284                }
4285
4286                addr = kmap(page);
4287                memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4288                kunmap(page);
4289                unlock_page(page);
4290                page_cache_release(page);
4291                index++;
4292                pg_offset = 0;
4293                len -= cur_len;
4294                ret += cur_len;
4295        }
4296out:
4297        iput(inode);
4298        return ret;
4299}
4300
4301/*
4302 * Read some bytes from the current inode/file and send a write command to
4303 * user space.
4304 */
4305static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4306{
4307        int ret = 0;
4308        struct fs_path *p;
4309        ssize_t num_read = 0;
4310
4311        p = fs_path_alloc();
4312        if (!p)
4313                return -ENOMEM;
4314
4315verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4316
4317        num_read = fill_read_buf(sctx, offset, len);
4318        if (num_read <= 0) {
4319                if (num_read < 0)
4320                        ret = num_read;
4321                goto out;
4322        }
4323
4324        ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4325        if (ret < 0)
4326                goto out;
4327
4328        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4329        if (ret < 0)
4330                goto out;
4331
4332        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4333        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4334        TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4335
4336        ret = send_cmd(sctx);
4337
4338tlv_put_failure:
4339out:
4340        fs_path_free(p);
4341        if (ret < 0)
4342                return ret;
4343        return num_read;
4344}
4345
4346/*
4347 * Send a clone command to user space.
4348 */
4349static int send_clone(struct send_ctx *sctx,
4350                      u64 offset, u32 len,
4351                      struct clone_root *clone_root)
4352{
4353        int ret = 0;
4354        struct fs_path *p;
4355        u64 gen;
4356
4357verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4358               "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4359                clone_root->root->objectid, clone_root->ino,
4360                clone_root->offset);
4361
4362        p = fs_path_alloc();
4363        if (!p)
4364                return -ENOMEM;
4365
4366        ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4367        if (ret < 0)
4368                goto out;
4369
4370        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4371        if (ret < 0)
4372                goto out;
4373
4374        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4375        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4376        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4377
4378        if (clone_root->root == sctx->send_root) {
4379                ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4380                                &gen, NULL, NULL, NULL, NULL);
4381                if (ret < 0)
4382                        goto out;
4383                ret = get_cur_path(sctx, clone_root->ino, gen, p);
4384        } else {
4385                ret = get_inode_path(clone_root->root, clone_root->ino, p);
4386        }
4387        if (ret < 0)
4388                goto out;
4389
4390        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4391                        clone_root->root->root_item.uuid);
4392        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4393                    le64_to_cpu(clone_root->root->root_item.ctransid));
4394        TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4395        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4396                        clone_root->offset);
4397
4398        ret = send_cmd(sctx);
4399
4400tlv_put_failure:
4401out:
4402        fs_path_free(p);
4403        return ret;
4404}
4405
4406/*
4407 * Send an update extent command to user space.
4408 */
4409static int send_update_extent(struct send_ctx *sctx,
4410                              u64 offset, u32 len)
4411{
4412        int ret = 0;
4413        struct fs_path *p;
4414
4415        p = fs_path_alloc();
4416        if (!p)
4417                return -ENOMEM;
4418
4419        ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4420        if (ret < 0)
4421                goto out;
4422
4423        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4424        if (ret < 0)
4425                goto out;
4426
4427        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4428        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4429        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4430
4431        ret = send_cmd(sctx);
4432
4433tlv_put_failure:
4434out:
4435        fs_path_free(p);
4436        return ret;
4437}
4438
4439static int send_hole(struct send_ctx *sctx, u64 end)
4440{
4441        struct fs_path *p = NULL;
4442        u64 offset = sctx->cur_inode_last_extent;
4443        u64 len;
4444        int ret = 0;
4445
4446        p = fs_path_alloc();
4447        if (!p)
4448                return -ENOMEM;
4449        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4450        if (ret < 0)
4451                goto tlv_put_failure;
4452        memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4453        while (offset < end) {
4454                len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4455
4456                ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4457                if (ret < 0)
4458                        break;
4459                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4460                TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4461                TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4462                ret = send_cmd(sctx);
4463                if (ret < 0)
4464                        break;
4465                offset += len;
4466        }
4467tlv_put_failure:
4468        fs_path_free(p);
4469        return ret;
4470}
4471
4472static int send_write_or_clone(struct send_ctx *sctx,
4473                               struct btrfs_path *path,
4474                               struct btrfs_key *key,
4475                               struct clone_root *clone_root)
4476{
4477        int ret = 0;
4478        struct btrfs_file_extent_item *ei;
4479        u64 offset = key->offset;
4480        u64 pos = 0;
4481        u64 len;
4482        u32 l;
4483        u8 type;
4484        u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4485
4486        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4487                        struct btrfs_file_extent_item);
4488        type = btrfs_file_extent_type(path->nodes[0], ei);
4489        if (type == BTRFS_FILE_EXTENT_INLINE) {
4490                len = btrfs_file_extent_inline_len(path->nodes[0],
4491                                                   path->slots[0], ei);
4492                /*
4493                 * it is possible the inline item won't cover the whole page,
4494                 * but there may be items after this page.  Make
4495                 * sure to send the whole thing
4496                 */
4497                len = PAGE_CACHE_ALIGN(len);
4498        } else {
4499                len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4500        }
4501
4502        if (offset + len > sctx->cur_inode_size)
4503                len = sctx->cur_inode_size - offset;
4504        if (len == 0) {
4505                ret = 0;
4506                goto out;
4507        }
4508
4509        if (clone_root && IS_ALIGNED(offset + len, bs)) {
4510                ret = send_clone(sctx, offset, len, clone_root);
4511        } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4512                ret = send_update_extent(sctx, offset, len);
4513        } else {
4514                while (pos < len) {
4515                        l = len - pos;
4516                        if (l > BTRFS_SEND_READ_SIZE)
4517                                l = BTRFS_SEND_READ_SIZE;
4518                        ret = send_write(sctx, pos + offset, l);
4519                        if (ret < 0)
4520                                goto out;
4521                        if (!ret)
4522                                break;
4523                        pos += ret;
4524                }
4525                ret = 0;
4526        }
4527out:
4528        return ret;
4529}
4530
4531static int is_extent_unchanged(struct send_ctx *sctx,
4532                               struct btrfs_path *left_path,
4533                               struct btrfs_key *ekey)
4534{
4535        int ret = 0;
4536        struct btrfs_key key;
4537        struct btrfs_path *path = NULL;
4538        struct extent_buffer *eb;
4539        int slot;
4540        struct btrfs_key found_key;
4541        struct btrfs_file_extent_item *ei;
4542        u64 left_disknr;
4543        u64 right_disknr;
4544        u64 left_offset;
4545        u64 right_offset;
4546        u64 left_offset_fixed;
4547        u64 left_len;
4548        u64 right_len;
4549        u64 left_gen;
4550        u64 right_gen;
4551        u8 left_type;
4552        u8 right_type;
4553
4554        path = alloc_path_for_send();
4555        if (!path)
4556                return -ENOMEM;
4557
4558        eb = left_path->nodes[0];
4559        slot = left_path->slots[0];
4560        ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4561        left_type = btrfs_file_extent_type(eb, ei);
4562
4563        if (left_type != BTRFS_FILE_EXTENT_REG) {
4564                ret = 0;
4565                goto out;
4566        }
4567        left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4568        left_len = btrfs_file_extent_num_bytes(eb, ei);
4569        left_offset = btrfs_file_extent_offset(eb, ei);
4570        left_gen = btrfs_file_extent_generation(eb, ei);
4571
4572        /*
4573         * Following comments will refer to these graphics. L is the left
4574         * extents which we are checking at the moment. 1-8 are the right
4575         * extents that we iterate.
4576         *
4577         *       |-----L-----|
4578         * |-1-|-2a-|-3-|-4-|-5-|-6-|
4579         *
4580         *       |-----L-----|
4581         * |--1--|-2b-|...(same as above)
4582         *
4583         * Alternative situation. Happens on files where extents got split.
4584         *       |-----L-----|
4585         * |-----------7-----------|-6-|
4586         *
4587         * Alternative situation. Happens on files which got larger.
4588         *       |-----L-----|
4589         * |-8-|
4590         * Nothing follows after 8.
4591         */
4592
4593        key.objectid = ekey->objectid;
4594        key.type = BTRFS_EXTENT_DATA_KEY;
4595        key.offset = ekey->offset;
4596        ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4597        if (ret < 0)
4598                goto out;
4599        if (ret) {
4600                ret = 0;
4601                goto out;
4602        }
4603
4604        /*
4605         * Handle special case where the right side has no extents at all.
4606         */
4607        eb = path->nodes[0];
4608        slot = path->slots[0];
4609        btrfs_item_key_to_cpu(eb, &found_key, slot);
4610        if (found_key.objectid != key.objectid ||
4611            found_key.type != key.type) {
4612                /* If we're a hole then just pretend nothing changed */
4613                ret = (left_disknr) ? 0 : 1;
4614                goto out;
4615        }
4616
4617        /*
4618         * We're now on 2a, 2b or 7.
4619         */
4620        key = found_key;
4621        while (key.offset < ekey->offset + left_len) {
4622                ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4623                right_type = btrfs_file_extent_type(eb, ei);
4624                if (right_type != BTRFS_FILE_EXTENT_REG) {
4625                        ret = 0;
4626                        goto out;
4627                }
4628
4629                right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4630                right_len = btrfs_file_extent_num_bytes(eb, ei);
4631                right_offset = btrfs_file_extent_offset(eb, ei);
4632                right_gen = btrfs_file_extent_generation(eb, ei);
4633
4634                /*
4635                 * Are we at extent 8? If yes, we know the extent is changed.
4636                 * This may only happen on the first iteration.
4637                 */
4638                if (found_key.offset + right_len <= ekey->offset) {
4639                        /* If we're a hole just pretend nothing changed */
4640                        ret = (left_disknr) ? 0 : 1;
4641                        goto out;
4642                }
4643
4644                left_offset_fixed = left_offset;
4645                if (key.offset < ekey->offset) {
4646                        /* Fix the right offset for 2a and 7. */
4647                        right_offset += ekey->offset - key.offset;
4648                } else {
4649                        /* Fix the left offset for all behind 2a and 2b */
4650                        left_offset_fixed += key.offset - ekey->offset;
4651                }
4652
4653                /*
4654                 * Check if we have the same extent.
4655                 */
4656                if (left_disknr != right_disknr ||
4657                    left_offset_fixed != right_offset ||
4658                    left_gen != right_gen) {
4659                        ret = 0;
4660                        goto out;
4661                }
4662
4663                /*
4664                 * Go to the next extent.
4665                 */
4666                ret = btrfs_next_item(sctx->parent_root, path);
4667                if (ret < 0)
4668                        goto out;
4669                if (!ret) {
4670                        eb = path->nodes[0];
4671                        slot = path->slots[0];
4672                        btrfs_item_key_to_cpu(eb, &found_key, slot);
4673                }
4674                if (ret || found_key.objectid != key.objectid ||
4675                    found_key.type != key.type) {
4676                        key.offset += right_len;
4677                        break;
4678                }
4679                if (found_key.offset != key.offset + right_len) {
4680                        ret = 0;
4681                        goto out;
4682                }
4683                key = found_key;
4684        }
4685
4686        /*
4687         * We're now behind the left extent (treat as unchanged) or at the end
4688         * of the right side (treat as changed).
4689         */
4690        if (key.offset >= ekey->offset + left_len)
4691                ret = 1;
4692        else
4693                ret = 0;
4694
4695
4696out:
4697        btrfs_free_path(path);
4698        return ret;
4699}
4700
4701static int get_last_extent(struct send_ctx *sctx, u64 offset)
4702{
4703        struct btrfs_path *path;
4704        struct btrfs_root *root = sctx->send_root;
4705        struct btrfs_file_extent_item *fi;
4706        struct btrfs_key key;
4707        u64 extent_end;
4708        u8 type;
4709        int ret;
4710
4711        path = alloc_path_for_send();
4712        if (!path)
4713                return -ENOMEM;
4714
4715        sctx->cur_inode_last_extent = 0;
4716
4717        key.objectid = sctx->cur_ino;
4718        key.type = BTRFS_EXTENT_DATA_KEY;
4719        key.offset = offset;
4720        ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4721        if (ret < 0)
4722                goto out;
4723        ret = 0;
4724        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4725        if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4726                goto out;
4727
4728        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4729                            struct btrfs_file_extent_item);
4730        type = btrfs_file_extent_type(path->nodes[0], fi);
4731        if (type == BTRFS_FILE_EXTENT_INLINE) {
4732                u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4733                                                        path->slots[0], fi);
4734                extent_end = ALIGN(key.offset + size,
4735                                   sctx->send_root->sectorsize);
4736        } else {
4737                extent_end = key.offset +
4738                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
4739        }
4740        sctx->cur_inode_last_extent = extent_end;
4741out:
4742        btrfs_free_path(path);
4743        return ret;
4744}
4745
4746static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4747                           struct btrfs_key *key)
4748{
4749        struct btrfs_file_extent_item *fi;
4750        u64 extent_end;
4751        u8 type;
4752        int ret = 0;
4753
4754        if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4755                return 0;
4756
4757        if (sctx->cur_inode_last_extent == (u64)-1) {
4758                ret = get_last_extent(sctx, key->offset - 1);
4759                if (ret)
4760                        return ret;
4761        }
4762
4763        fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4764                            struct btrfs_file_extent_item);
4765        type = btrfs_file_extent_type(path->nodes[0], fi);
4766        if (type == BTRFS_FILE_EXTENT_INLINE) {
4767                u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4768                                                        path->slots[0], fi);
4769                extent_end = ALIGN(key->offset + size,
4770                                   sctx->send_root->sectorsize);
4771        } else {
4772                extent_end = key->offset +
4773                        btrfs_file_extent_num_bytes(path->nodes[0], fi);
4774        }
4775
4776        if (path->slots[0] == 0 &&
4777            sctx->cur_inode_last_extent < key->offset) {
4778                /*
4779                 * We might have skipped entire leafs that contained only
4780                 * file extent items for our current inode. These leafs have
4781                 * a generation number smaller (older) than the one in the
4782                 * current leaf and the leaf our last extent came from, and
4783                 * are located between these 2 leafs.
4784                 */
4785                ret = get_last_extent(sctx, key->offset - 1);
4786                if (ret)
4787                        return ret;
4788        }
4789
4790        if (sctx->cur_inode_last_extent < key->offset)
4791                ret = send_hole(sctx, key->offset);
4792        sctx->cur_inode_last_extent = extent_end;
4793        return ret;
4794}
4795
4796static int process_extent(struct send_ctx *sctx,
4797                          struct btrfs_path *path,
4798                          struct btrfs_key *key)
4799{
4800        struct clone_root *found_clone = NULL;
4801        int ret = 0;
4802
4803        if (S_ISLNK(sctx->cur_inode_mode))
4804                return 0;
4805
4806        if (sctx->parent_root && !sctx->cur_inode_new) {
4807                ret = is_extent_unchanged(sctx, path, key);
4808                if (ret < 0)
4809                        goto out;
4810                if (ret) {
4811                        ret = 0;
4812                        goto out_hole;
4813                }
4814        } else {
4815                struct btrfs_file_extent_item *ei;
4816                u8 type;
4817
4818                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4819                                    struct btrfs_file_extent_item);
4820                type = btrfs_file_extent_type(path->nodes[0], ei);
4821                if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4822                    type == BTRFS_FILE_EXTENT_REG) {
4823                        /*
4824                         * The send spec does not have a prealloc command yet,
4825                         * so just leave a hole for prealloc'ed extents until
4826                         * we have enough commands queued up to justify rev'ing
4827                         * the send spec.
4828                         */
4829                        if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4830                                ret = 0;
4831                                goto out;
4832                        }
4833
4834                        /* Have a hole, just skip it. */
4835                        if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4836                                ret = 0;
4837                                goto out;
4838                        }
4839                }
4840        }
4841
4842        ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4843                        sctx->cur_inode_size, &found_clone);
4844        if (ret != -ENOENT && ret < 0)
4845                goto out;
4846
4847        ret = send_write_or_clone(sctx, path, key, found_clone);
4848        if (ret)
4849                goto out;
4850out_hole:
4851        ret = maybe_send_hole(sctx, path, key);
4852out:
4853        return ret;
4854}
4855
4856static int process_all_extents(struct send_ctx *sctx)
4857{
4858        int ret;
4859        struct btrfs_root *root;
4860        struct btrfs_path *path;
4861        struct btrfs_key key;
4862        struct btrfs_key found_key;
4863        struct extent_buffer *eb;
4864        int slot;
4865
4866        root = sctx->send_root;
4867        path = alloc_path_for_send();
4868        if (!path)
4869                return -ENOMEM;
4870
4871        key.objectid = sctx->cmp_key->objectid;
4872        key.type = BTRFS_EXTENT_DATA_KEY;
4873        key.offset = 0;
4874        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4875        if (ret < 0)
4876                goto out;
4877
4878        while (1) {
4879                eb = path->nodes[0];
4880                slot = path->slots[0];
4881
4882                if (slot >= btrfs_header_nritems(eb)) {
4883                        ret = btrfs_next_leaf(root, path);
4884                        if (ret < 0) {
4885                                goto out;
4886                        } else if (ret > 0) {
4887                                ret = 0;
4888                                break;
4889                        }
4890                        continue;
4891                }
4892
4893                btrfs_item_key_to_cpu(eb, &found_key, slot);
4894
4895                if (found_key.objectid != key.objectid ||
4896                    found_key.type != key.type) {
4897                        ret = 0;
4898                        goto out;
4899                }
4900
4901                ret = process_extent(sctx, path, &found_key);
4902                if (ret < 0)
4903                        goto out;
4904
4905                path->slots[0]++;
4906        }
4907
4908out:
4909        btrfs_free_path(path);
4910        return ret;
4911}
4912
4913static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4914                                           int *pending_move,
4915                                           int *refs_processed)
4916{
4917        int ret = 0;
4918
4919        if (sctx->cur_ino == 0)
4920                goto out;
4921        if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4922            sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4923                goto out;
4924        if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4925                goto out;
4926
4927        ret = process_recorded_refs(sctx, pending_move);
4928        if (ret < 0)
4929                goto out;
4930
4931        *refs_processed = 1;
4932out:
4933        return ret;
4934}
4935
4936static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4937{
4938        int ret = 0;
4939        u64 left_mode;
4940        u64 left_uid;
4941        u64 left_gid;
4942        u64 right_mode;
4943        u64 right_uid;
4944        u64 right_gid;
4945        int need_chmod = 0;
4946        int need_chown = 0;
4947        int pending_move = 0;
4948        int refs_processed = 0;
4949
4950        ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4951                                              &refs_processed);
4952        if (ret < 0)
4953                goto out;
4954
4955        /*
4956         * We have processed the refs and thus need to advance send_progress.
4957         * Now, calls to get_cur_xxx will take the updated refs of the current
4958         * inode into account.
4959         *
4960         * On the other hand, if our current inode is a directory and couldn't
4961         * be moved/renamed because its parent was renamed/moved too and it has
4962         * a higher inode number, we can only move/rename our current inode
4963         * after we moved/renamed its parent. Therefore in this case operate on
4964         * the old path (pre move/rename) of our current inode, and the
4965         * move/rename will be performed later.
4966         */
4967        if (refs_processed && !pending_move)
4968                sctx->send_progress = sctx->cur_ino + 1;
4969
4970        if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4971                goto out;
4972        if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4973                goto out;
4974
4975        ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4976                        &left_mode, &left_uid, &left_gid, NULL);
4977        if (ret < 0)
4978                goto out;
4979
4980        if (!sctx->parent_root || sctx->cur_inode_new) {
4981                need_chown = 1;
4982                if (!S_ISLNK(sctx->cur_inode_mode))
4983                        need_chmod = 1;
4984        } else {
4985                ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4986                                NULL, NULL, &right_mode, &right_uid,
4987                                &right_gid, NULL);
4988                if (ret < 0)
4989                        goto out;
4990
4991                if (left_uid != right_uid || left_gid != right_gid)
4992                        need_chown = 1;
4993                if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4994                        need_chmod = 1;
4995        }
4996
4997        if (S_ISREG(sctx->cur_inode_mode)) {
4998                if (need_send_hole(sctx)) {
4999                        if (sctx->cur_inode_last_extent == (u64)-1 ||
5000                            sctx->cur_inode_last_extent <
5001                            sctx->cur_inode_size) {
5002                                ret = get_last_extent(sctx, (u64)-1);
5003                                if (ret)
5004                                        goto out;
5005                        }
5006                        if (sctx->cur_inode_last_extent <
5007                            sctx->cur_inode_size) {
5008                                ret = send_hole(sctx, sctx->cur_inode_size);
5009                                if (ret)
5010                                        goto out;
5011                        }
5012                }
5013                ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5014                                sctx->cur_inode_size);
5015                if (ret < 0)
5016                        goto out;
5017        }
5018
5019        if (need_chown) {
5020                ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5021                                left_uid, left_gid);
5022                if (ret < 0)
5023                        goto out;
5024        }
5025        if (need_chmod) {
5026                ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5027                                left_mode);
5028                if (ret < 0)
5029                        goto out;
5030        }
5031
5032        /*
5033         * If other directory inodes depended on our current directory
5034         * inode's move/rename, now do their move/rename operations.
5035         */
5036        if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5037                ret = apply_children_dir_moves(sctx);
5038                if (ret)
5039                        goto out;
5040                /*
5041                 * Need to send that every time, no matter if it actually
5042                 * changed between the two trees as we have done changes to
5043                 * the inode before. If our inode is a directory and it's
5044                 * waiting to be moved/renamed, we will send its utimes when
5045                 * it's moved/renamed, therefore we don't need to do it here.
5046                 */
5047                sctx->send_progress = sctx->cur_ino + 1;
5048                ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5049                if (ret < 0)
5050                        goto out;
5051        }
5052
5053out:
5054        return ret;
5055}
5056
5057static int changed_inode(struct send_ctx *sctx,
5058                         enum btrfs_compare_tree_result result)
5059{
5060        int ret = 0;
5061        struct btrfs_key *key = sctx->cmp_key;
5062        struct btrfs_inode_item *left_ii = NULL;
5063        struct btrfs_inode_item *right_ii = NULL;
5064        u64 left_gen = 0;
5065        u64 right_gen = 0;
5066
5067        sctx->cur_ino = key->objectid;
5068        sctx->cur_inode_new_gen = 0;
5069        sctx->cur_inode_last_extent = (u64)-1;
5070
5071        /*
5072         * Set send_progress to current inode. This will tell all get_cur_xxx
5073         * functions that the current inode's refs are not updated yet. Later,
5074         * when process_recorded_refs is finished, it is set to cur_ino + 1.
5075         */
5076        sctx->send_progress = sctx->cur_ino;
5077
5078        if (result == BTRFS_COMPARE_TREE_NEW ||
5079            result == BTRFS_COMPARE_TREE_CHANGED) {
5080                left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5081                                sctx->left_path->slots[0],
5082                                struct btrfs_inode_item);
5083                left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5084                                left_ii);
5085        } else {
5086                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5087                                sctx->right_path->slots[0],
5088                                struct btrfs_inode_item);
5089                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5090                                right_ii);
5091        }
5092        if (result == BTRFS_COMPARE_TREE_CHANGED) {
5093                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5094                                sctx->right_path->slots[0],
5095                                struct btrfs_inode_item);
5096
5097                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5098                                right_ii);
5099
5100                /*
5101                 * The cur_ino = root dir case is special here. We can't treat
5102                 * the inode as deleted+reused because it would generate a
5103                 * stream that tries to delete/mkdir the root dir.
5104                 */
5105                if (left_gen != right_gen &&
5106                    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5107                        sctx->cur_inode_new_gen = 1;
5108        }
5109
5110        if (result == BTRFS_COMPARE_TREE_NEW) {
5111                sctx->cur_inode_gen = left_gen;
5112                sctx->cur_inode_new = 1;
5113                sctx->cur_inode_deleted = 0;
5114                sctx->cur_inode_size = btrfs_inode_size(
5115                                sctx->left_path->nodes[0], left_ii);
5116                sctx->cur_inode_mode = btrfs_inode_mode(
5117                                sctx->left_path->nodes[0], left_ii);
5118                sctx->cur_inode_rdev = btrfs_inode_rdev(
5119                                sctx->left_path->nodes[0], left_ii);
5120                if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5121                        ret = send_create_inode_if_needed(sctx);
5122        } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5123                sctx->cur_inode_gen = right_gen;
5124                sctx->cur_inode_new = 0;
5125                sctx->cur_inode_deleted = 1;
5126                sctx->cur_inode_size = btrfs_inode_size(
5127                                sctx->right_path->nodes[0], right_ii);
5128                sctx->cur_inode_mode = btrfs_inode_mode(
5129                                sctx->right_path->nodes[0], right_ii);
5130        } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5131                /*
5132                 * We need to do some special handling in case the inode was
5133                 * reported as changed with a changed generation number. This
5134                 * means that the original inode was deleted and new inode
5135                 * reused the same inum. So we have to treat the old inode as
5136                 * deleted and the new one as new.
5137                 */
5138                if (sctx->cur_inode_new_gen) {
5139                        /*
5140                         * First, process the inode as if it was deleted.
5141                         */
5142                        sctx->cur_inode_gen = right_gen;
5143                        sctx->cur_inode_new = 0;
5144                        sctx->cur_inode_deleted = 1;
5145                        sctx->cur_inode_size = btrfs_inode_size(
5146                                        sctx->right_path->nodes[0], right_ii);
5147                        sctx->cur_inode_mode = btrfs_inode_mode(
5148                                        sctx->right_path->nodes[0], right_ii);
5149                        ret = process_all_refs(sctx,
5150                                        BTRFS_COMPARE_TREE_DELETED);
5151                        if (ret < 0)
5152                                goto out;
5153
5154                        /*
5155                         * Now process the inode as if it was new.
5156                         */
5157                        sctx->cur_inode_gen = left_gen;
5158                        sctx->cur_inode_new = 1;
5159                        sctx->cur_inode_deleted = 0;
5160                        sctx->cur_inode_size = btrfs_inode_size(
5161                                        sctx->left_path->nodes[0], left_ii);
5162                        sctx->cur_inode_mode = btrfs_inode_mode(
5163                                        sctx->left_path->nodes[0], left_ii);
5164                        sctx->cur_inode_rdev = btrfs_inode_rdev(
5165                                        sctx->left_path->nodes[0], left_ii);
5166                        ret = send_create_inode_if_needed(sctx);
5167                        if (ret < 0)
5168                                goto out;
5169
5170                        ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5171                        if (ret < 0)
5172                                goto out;
5173                        /*
5174                         * Advance send_progress now as we did not get into
5175                         * process_recorded_refs_if_needed in the new_gen case.
5176                         */
5177                        sctx->send_progress = sctx->cur_ino + 1;
5178
5179                        /*
5180                         * Now process all extents and xattrs of the inode as if
5181                         * they were all new.
5182                         */
5183                        ret = process_all_extents(sctx);
5184                        if (ret < 0)
5185                                goto out;
5186                        ret = process_all_new_xattrs(sctx);
5187                        if (ret < 0)
5188                                goto out;
5189                } else {
5190                        sctx->cur_inode_gen = left_gen;
5191                        sctx->cur_inode_new = 0;
5192                        sctx->cur_inode_new_gen = 0;
5193                        sctx->cur_inode_deleted = 0;
5194                        sctx->cur_inode_size = btrfs_inode_size(
5195                                        sctx->left_path->nodes[0], left_ii);
5196                        sctx->cur_inode_mode = btrfs_inode_mode(
5197                                        sctx->left_path->nodes[0], left_ii);
5198                }
5199        }
5200
5201out:
5202        return ret;
5203}
5204
5205/*
5206 * We have to process new refs before deleted refs, but compare_trees gives us
5207 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5208 * first and later process them in process_recorded_refs.
5209 * For the cur_inode_new_gen case, we skip recording completely because
5210 * changed_inode did already initiate processing of refs. The reason for this is
5211 * that in this case, compare_tree actually compares the refs of 2 different
5212 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5213 * refs of the right tree as deleted and all refs of the left tree as new.
5214 */
5215static int changed_ref(struct send_ctx *sctx,
5216                       enum btrfs_compare_tree_result result)
5217{
5218        int ret = 0;
5219
5220        BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5221
5222        if (!sctx->cur_inode_new_gen &&
5223            sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5224                if (result == BTRFS_COMPARE_TREE_NEW)
5225                        ret = record_new_ref(sctx);
5226                else if (result == BTRFS_COMPARE_TREE_DELETED)
5227                        ret = record_deleted_ref(sctx);
5228                else if (result == BTRFS_COMPARE_TREE_CHANGED)
5229                        ret = record_changed_ref(sctx);
5230        }
5231
5232        return ret;
5233}
5234
5235/*
5236 * Process new/deleted/changed xattrs. We skip processing in the
5237 * cur_inode_new_gen case because changed_inode did already initiate processing
5238 * of xattrs. The reason is the same as in changed_ref
5239 */
5240static int changed_xattr(struct send_ctx *sctx,
5241                         enum btrfs_compare_tree_result result)
5242{
5243        int ret = 0;
5244
5245        BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5246
5247        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5248                if (result == BTRFS_COMPARE_TREE_NEW)
5249                        ret = process_new_xattr(sctx);
5250                else if (result == BTRFS_COMPARE_TREE_DELETED)
5251                        ret = process_deleted_xattr(sctx);
5252                else if (result == BTRFS_COMPARE_TREE_CHANGED)
5253                        ret = process_changed_xattr(sctx);
5254        }
5255
5256        return ret;
5257}
5258
5259/*
5260 * Process new/deleted/changed extents. We skip processing in the
5261 * cur_inode_new_gen case because changed_inode did already initiate processing
5262 * of extents. The reason is the same as in changed_ref
5263 */
5264static int changed_extent(struct send_ctx *sctx,
5265                          enum btrfs_compare_tree_result result)
5266{
5267        int ret = 0;
5268
5269        BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5270
5271        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5272                if (result != BTRFS_COMPARE_TREE_DELETED)
5273                        ret = process_extent(sctx, sctx->left_path,
5274                                        sctx->cmp_key);
5275        }
5276
5277        return ret;
5278}
5279
5280static int dir_changed(struct send_ctx *sctx, u64 dir)
5281{
5282        u64 orig_gen, new_gen;
5283        int ret;
5284
5285        ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5286                             NULL, NULL);
5287        if (ret)
5288                return ret;
5289
5290        ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5291                             NULL, NULL, NULL);
5292        if (ret)
5293                return ret;
5294
5295        return (orig_gen != new_gen) ? 1 : 0;
5296}
5297
5298static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5299                        struct btrfs_key *key)
5300{
5301        struct btrfs_inode_extref *extref;
5302        struct extent_buffer *leaf;
5303        u64 dirid = 0, last_dirid = 0;
5304        unsigned long ptr;
5305        u32 item_size;
5306        u32 cur_offset = 0;
5307        int ref_name_len;
5308        int ret = 0;
5309
5310        /* Easy case, just check this one dirid */
5311        if (key->type == BTRFS_INODE_REF_KEY) {
5312                dirid = key->offset;
5313
5314                ret = dir_changed(sctx, dirid);
5315                goto out;
5316        }
5317
5318        leaf = path->nodes[0];
5319        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5320        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5321        while (cur_offset < item_size) {
5322                extref = (struct btrfs_inode_extref *)(ptr +
5323                                                       cur_offset);
5324                dirid = btrfs_inode_extref_parent(leaf, extref);
5325                ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5326                cur_offset += ref_name_len + sizeof(*extref);
5327                if (dirid == last_dirid)
5328                        continue;
5329                ret = dir_changed(sctx, dirid);
5330                if (ret)
5331                        break;
5332                last_dirid = dirid;
5333        }
5334out:
5335        return ret;
5336}
5337
5338/*
5339 * Updates compare related fields in sctx and simply forwards to the actual
5340 * changed_xxx functions.
5341 */
5342static int changed_cb(struct btrfs_root *left_root,
5343                      struct btrfs_root *right_root,
5344                      struct btrfs_path *left_path,
5345                      struct btrfs_path *right_path,
5346                      struct btrfs_key *key,
5347                      enum btrfs_compare_tree_result result,
5348                      void *ctx)
5349{
5350        int ret = 0;
5351        struct send_ctx *sctx = ctx;
5352
5353        if (result == BTRFS_COMPARE_TREE_SAME) {
5354                if (key->type == BTRFS_INODE_REF_KEY ||
5355                    key->type == BTRFS_INODE_EXTREF_KEY) {
5356                        ret = compare_refs(sctx, left_path, key);
5357                        if (!ret)
5358                                return 0;
5359                        if (ret < 0)
5360                                return ret;
5361                } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5362                        return maybe_send_hole(sctx, left_path, key);
5363                } else {
5364                        return 0;
5365                }
5366                result = BTRFS_COMPARE_TREE_CHANGED;
5367                ret = 0;
5368        }
5369
5370        sctx->left_path = left_path;
5371        sctx->right_path = right_path;
5372        sctx->cmp_key = key;
5373
5374        ret = finish_inode_if_needed(sctx, 0);
5375        if (ret < 0)
5376                goto out;
5377
5378        /* Ignore non-FS objects */
5379        if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5380            key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5381                goto out;
5382
5383        if (key->type == BTRFS_INODE_ITEM_KEY)
5384                ret = changed_inode(sctx, result);
5385        else if (key->type == BTRFS_INODE_REF_KEY ||
5386                 key->type == BTRFS_INODE_EXTREF_KEY)
5387                ret = changed_ref(sctx, result);
5388        else if (key->type == BTRFS_XATTR_ITEM_KEY)
5389                ret = changed_xattr(sctx, result);
5390        else if (key->type == BTRFS_EXTENT_DATA_KEY)
5391                ret = changed_extent(sctx, result);
5392
5393out:
5394        return ret;
5395}
5396
5397static int full_send_tree(struct send_ctx *sctx)
5398{
5399        int ret;
5400        struct btrfs_root *send_root = sctx->send_root;
5401        struct btrfs_key key;
5402        struct btrfs_key found_key;
5403        struct btrfs_path *path;
5404        struct extent_buffer *eb;
5405        int slot;
5406
5407        path = alloc_path_for_send();
5408        if (!path)
5409                return -ENOMEM;
5410
5411        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5412        key.type = BTRFS_INODE_ITEM_KEY;
5413        key.offset = 0;
5414
5415        ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5416        if (ret < 0)
5417                goto out;
5418        if (ret)
5419                goto out_finish;
5420
5421        while (1) {
5422                eb = path->nodes[0];
5423                slot = path->slots[0];
5424                btrfs_item_key_to_cpu(eb, &found_key, slot);
5425
5426                ret = changed_cb(send_root, NULL, path, NULL,
5427                                &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5428                if (ret < 0)
5429                        goto out;
5430
5431                key.objectid = found_key.objectid;
5432                key.type = found_key.type;
5433                key.offset = found_key.offset + 1;
5434
5435                ret = btrfs_next_item(send_root, path);
5436                if (ret < 0)
5437                        goto out;
5438                if (ret) {
5439                        ret  = 0;
5440                        break;
5441                }
5442        }
5443
5444out_finish:
5445        ret = finish_inode_if_needed(sctx, 1);
5446
5447out:
5448        btrfs_free_path(path);
5449        return ret;
5450}
5451
5452static int send_subvol(struct send_ctx *sctx)
5453{
5454        int ret;
5455
5456        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5457                ret = send_header(sctx);
5458                if (ret < 0)
5459                        goto out;
5460        }
5461
5462        ret = send_subvol_begin(sctx);
5463        if (ret < 0)
5464                goto out;
5465
5466        if (sctx->parent_root) {
5467                ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5468                                changed_cb, sctx);
5469                if (ret < 0)
5470                        goto out;
5471                ret = finish_inode_if_needed(sctx, 1);
5472                if (ret < 0)
5473                        goto out;
5474        } else {
5475                ret = full_send_tree(sctx);
5476                if (ret < 0)
5477                        goto out;
5478        }
5479
5480out:
5481        free_recorded_refs(sctx);
5482        return ret;
5483}
5484
5485static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5486{
5487        spin_lock(&root->root_item_lock);
5488        root->send_in_progress--;
5489        /*
5490         * Not much left to do, we don't know why it's unbalanced and
5491         * can't blindly reset it to 0.
5492         */
5493        if (root->send_in_progress < 0)
5494                btrfs_err(root->fs_info,
5495                        "send_in_progres unbalanced %d root %llu",
5496                        root->send_in_progress, root->root_key.objectid);
5497        spin_unlock(&root->root_item_lock);
5498}
5499
5500long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5501{
5502        int ret = 0;
5503        struct btrfs_root *send_root;
5504        struct btrfs_root *clone_root;
5505        struct btrfs_fs_info *fs_info;
5506        struct btrfs_ioctl_send_args *arg = NULL;
5507        struct btrfs_key key;
5508        struct send_ctx *sctx = NULL;
5509        u32 i;
5510        u64 *clone_sources_tmp = NULL;
5511        int clone_sources_to_rollback = 0;
5512        int sort_clone_roots = 0;
5513        int index;
5514
5515        if (!capable(CAP_SYS_ADMIN))
5516                return -EPERM;
5517
5518        send_root = BTRFS_I(file_inode(mnt_file))->root;
5519        fs_info = send_root->fs_info;
5520
5521        /*
5522         * The subvolume must remain read-only during send, protect against
5523         * making it RW. This also protects against deletion.
5524         */
5525        spin_lock(&send_root->root_item_lock);
5526        send_root->send_in_progress++;
5527        spin_unlock(&send_root->root_item_lock);
5528
5529        /*
5530         * This is done when we lookup the root, it should already be complete
5531         * by the time we get here.
5532         */
5533        WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5534
5535        /*
5536         * Userspace tools do the checks and warn the user if it's
5537         * not RO.
5538         */
5539        if (!btrfs_root_readonly(send_root)) {
5540                ret = -EPERM;
5541                goto out;
5542        }
5543
5544        arg = memdup_user(arg_, sizeof(*arg));
5545        if (IS_ERR(arg)) {
5546                ret = PTR_ERR(arg);
5547                arg = NULL;
5548                goto out;
5549        }
5550
5551        if (!access_ok(VERIFY_READ, arg->clone_sources,
5552                        sizeof(*arg->clone_sources) *
5553                        arg->clone_sources_count)) {
5554                ret = -EFAULT;
5555                goto out;
5556        }
5557
5558        if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5559                ret = -EINVAL;
5560                goto out;
5561        }
5562
5563        sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5564        if (!sctx) {
5565                ret = -ENOMEM;
5566                goto out;
5567        }
5568
5569        INIT_LIST_HEAD(&sctx->new_refs);
5570        INIT_LIST_HEAD(&sctx->deleted_refs);
5571        INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5572        INIT_LIST_HEAD(&sctx->name_cache_list);
5573
5574        sctx->flags = arg->flags;
5575
5576        sctx->send_filp = fget(arg->send_fd);
5577        if (!sctx->send_filp) {
5578                ret = -EBADF;
5579                goto out;
5580        }
5581
5582        sctx->send_root = send_root;
5583        /*
5584         * Unlikely but possible, if the subvolume is marked for deletion but
5585         * is slow to remove the directory entry, send can still be started
5586         */
5587        if (btrfs_root_dead(sctx->send_root)) {
5588                ret = -EPERM;
5589                goto out;
5590        }
5591
5592        sctx->clone_roots_cnt = arg->clone_sources_count;
5593
5594        sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5595        sctx->send_buf = vmalloc(sctx->send_max_size);
5596        if (!sctx->send_buf) {
5597                ret = -ENOMEM;
5598                goto out;
5599        }
5600
5601        sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5602        if (!sctx->read_buf) {
5603                ret = -ENOMEM;
5604                goto out;
5605        }
5606
5607        sctx->pending_dir_moves = RB_ROOT;
5608        sctx->waiting_dir_moves = RB_ROOT;
5609        sctx->orphan_dirs = RB_ROOT;
5610
5611        sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5612                        (arg->clone_sources_count + 1));
5613        if (!sctx->clone_roots) {
5614                ret = -ENOMEM;
5615                goto out;
5616        }
5617
5618        if (arg->clone_sources_count) {
5619                clone_sources_tmp = vmalloc(arg->clone_sources_count *
5620                                sizeof(*arg->clone_sources));
5621                if (!clone_sources_tmp) {
5622                        ret = -ENOMEM;
5623                        goto out;
5624                }
5625
5626                ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5627                                arg->clone_sources_count *
5628                                sizeof(*arg->clone_sources));
5629                if (ret) {
5630                        ret = -EFAULT;
5631                        goto out;
5632                }
5633
5634                for (i = 0; i < arg->clone_sources_count; i++) {
5635                        key.objectid = clone_sources_tmp[i];
5636                        key.type = BTRFS_ROOT_ITEM_KEY;
5637                        key.offset = (u64)-1;
5638
5639                        index = srcu_read_lock(&fs_info->subvol_srcu);
5640
5641                        clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5642                        if (IS_ERR(clone_root)) {
5643                                srcu_read_unlock(&fs_info->subvol_srcu, index);
5644                                ret = PTR_ERR(clone_root);
5645                                goto out;
5646                        }
5647                        clone_sources_to_rollback = i + 1;
5648                        spin_lock(&clone_root->root_item_lock);
5649                        clone_root->send_in_progress++;
5650                        if (!btrfs_root_readonly(clone_root)) {
5651                                spin_unlock(&clone_root->root_item_lock);
5652                                srcu_read_unlock(&fs_info->subvol_srcu, index);
5653                                ret = -EPERM;
5654                                goto out;
5655                        }
5656                        spin_unlock(&clone_root->root_item_lock);
5657                        srcu_read_unlock(&fs_info->subvol_srcu, index);
5658
5659                        sctx->clone_roots[i].root = clone_root;
5660                }
5661                vfree(clone_sources_tmp);
5662                clone_sources_tmp = NULL;
5663        }
5664
5665        if (arg->parent_root) {
5666                key.objectid = arg->parent_root;
5667                key.type = BTRFS_ROOT_ITEM_KEY;
5668                key.offset = (u64)-1;
5669
5670                index = srcu_read_lock(&fs_info->subvol_srcu);
5671
5672                sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5673                if (IS_ERR(sctx->parent_root)) {
5674                        srcu_read_unlock(&fs_info->subvol_srcu, index);
5675                        ret = PTR_ERR(sctx->parent_root);
5676                        goto out;
5677                }
5678
5679                spin_lock(&sctx->parent_root->root_item_lock);
5680                sctx->parent_root->send_in_progress++;
5681                if (!btrfs_root_readonly(sctx->parent_root) ||
5682                                btrfs_root_dead(sctx->parent_root)) {
5683                        spin_unlock(&sctx->parent_root->root_item_lock);
5684                        srcu_read_unlock(&fs_info->subvol_srcu, index);
5685                        ret = -EPERM;
5686                        goto out;
5687                }
5688                spin_unlock(&sctx->parent_root->root_item_lock);
5689
5690                srcu_read_unlock(&fs_info->subvol_srcu, index);
5691        }
5692
5693        /*
5694         * Clones from send_root are allowed, but only if the clone source
5695         * is behind the current send position. This is checked while searching
5696         * for possible clone sources.
5697         */
5698        sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5699
5700        /* We do a bsearch later */
5701        sort(sctx->clone_roots, sctx->clone_roots_cnt,
5702                        sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5703                        NULL);
5704        sort_clone_roots = 1;
5705
5706        current->journal_info = (void *)BTRFS_SEND_TRANS_STUB;
5707        ret = send_subvol(sctx);
5708        current->journal_info = NULL;
5709        if (ret < 0)
5710                goto out;
5711
5712        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5713                ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5714                if (ret < 0)
5715                        goto out;
5716                ret = send_cmd(sctx);
5717                if (ret < 0)
5718                        goto out;
5719        }
5720
5721out:
5722        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5723        while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5724                struct rb_node *n;
5725                struct pending_dir_move *pm;
5726
5727                n = rb_first(&sctx->pending_dir_moves);
5728                pm = rb_entry(n, struct pending_dir_move, node);
5729                while (!list_empty(&pm->list)) {
5730                        struct pending_dir_move *pm2;
5731
5732                        pm2 = list_first_entry(&pm->list,
5733                                               struct pending_dir_move, list);
5734                        free_pending_move(sctx, pm2);
5735                }
5736                free_pending_move(sctx, pm);
5737        }
5738
5739        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5740        while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5741                struct rb_node *n;
5742                struct waiting_dir_move *dm;
5743
5744                n = rb_first(&sctx->waiting_dir_moves);
5745                dm = rb_entry(n, struct waiting_dir_move, node);
5746                rb_erase(&dm->node, &sctx->waiting_dir_moves);
5747                kfree(dm);
5748        }
5749
5750        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5751        while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5752                struct rb_node *n;
5753                struct orphan_dir_info *odi;
5754
5755                n = rb_first(&sctx->orphan_dirs);
5756                odi = rb_entry(n, struct orphan_dir_info, node);
5757                free_orphan_dir_info(sctx, odi);
5758        }
5759
5760        if (sort_clone_roots) {
5761                for (i = 0; i < sctx->clone_roots_cnt; i++)
5762                        btrfs_root_dec_send_in_progress(
5763                                        sctx->clone_roots[i].root);
5764        } else {
5765                for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5766                        btrfs_root_dec_send_in_progress(
5767                                        sctx->clone_roots[i].root);
5768
5769                btrfs_root_dec_send_in_progress(send_root);
5770        }
5771        if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5772                btrfs_root_dec_send_in_progress(sctx->parent_root);
5773
5774        kfree(arg);
5775        vfree(clone_sources_tmp);
5776
5777        if (sctx) {
5778                if (sctx->send_filp)
5779                        fput(sctx->send_filp);
5780
5781                vfree(sctx->clone_roots);
5782                vfree(sctx->send_buf);
5783                vfree(sctx->read_buf);
5784
5785                name_cache_free(sctx);
5786
5787                kfree(sctx);
5788        }
5789
5790        return ret;
5791}
5792