linux/fs/buffer.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25#include <linux/percpu.h>
  26#include <linux/slab.h>
  27#include <linux/capability.h>
  28#include <linux/blkdev.h>
  29#include <linux/file.h>
  30#include <linux/quotaops.h>
  31#include <linux/highmem.h>
  32#include <linux/export.h>
  33#include <linux/writeback.h>
  34#include <linux/hash.h>
  35#include <linux/suspend.h>
  36#include <linux/buffer_head.h>
  37#include <linux/task_io_accounting_ops.h>
  38#include <linux/bio.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/bitops.h>
  42#include <linux/mpage.h>
  43#include <linux/bit_spinlock.h>
  44#include <trace/events/block.h>
  45
  46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  47
  48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  49
  50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  51{
  52        bh->b_end_io = handler;
  53        bh->b_private = private;
  54}
  55EXPORT_SYMBOL(init_buffer);
  56
  57inline void touch_buffer(struct buffer_head *bh)
  58{
  59        trace_block_touch_buffer(bh);
  60        mark_page_accessed(bh->b_page);
  61}
  62EXPORT_SYMBOL(touch_buffer);
  63
  64static int sleep_on_buffer(void *word)
  65{
  66        io_schedule();
  67        return 0;
  68}
  69
  70void __lock_buffer(struct buffer_head *bh)
  71{
  72        wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
  73                                                        TASK_UNINTERRUPTIBLE);
  74}
  75EXPORT_SYMBOL(__lock_buffer);
  76
  77void unlock_buffer(struct buffer_head *bh)
  78{
  79        clear_bit_unlock(BH_Lock, &bh->b_state);
  80        smp_mb__after_atomic();
  81        wake_up_bit(&bh->b_state, BH_Lock);
  82}
  83EXPORT_SYMBOL(unlock_buffer);
  84
  85/*
  86 * Returns if the page has dirty or writeback buffers. If all the buffers
  87 * are unlocked and clean then the PageDirty information is stale. If
  88 * any of the pages are locked, it is assumed they are locked for IO.
  89 */
  90void buffer_check_dirty_writeback(struct page *page,
  91                                     bool *dirty, bool *writeback)
  92{
  93        struct buffer_head *head, *bh;
  94        *dirty = false;
  95        *writeback = false;
  96
  97        BUG_ON(!PageLocked(page));
  98
  99        if (!page_has_buffers(page))
 100                return;
 101
 102        if (PageWriteback(page))
 103                *writeback = true;
 104
 105        head = page_buffers(page);
 106        bh = head;
 107        do {
 108                if (buffer_locked(bh))
 109                        *writeback = true;
 110
 111                if (buffer_dirty(bh))
 112                        *dirty = true;
 113
 114                bh = bh->b_this_page;
 115        } while (bh != head);
 116}
 117EXPORT_SYMBOL(buffer_check_dirty_writeback);
 118
 119/*
 120 * Block until a buffer comes unlocked.  This doesn't stop it
 121 * from becoming locked again - you have to lock it yourself
 122 * if you want to preserve its state.
 123 */
 124void __wait_on_buffer(struct buffer_head * bh)
 125{
 126        wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
 127}
 128EXPORT_SYMBOL(__wait_on_buffer);
 129
 130static void
 131__clear_page_buffers(struct page *page)
 132{
 133        ClearPagePrivate(page);
 134        set_page_private(page, 0);
 135        page_cache_release(page);
 136}
 137
 138
 139static int quiet_error(struct buffer_head *bh)
 140{
 141        if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
 142                return 0;
 143        return 1;
 144}
 145
 146
 147static void buffer_io_error(struct buffer_head *bh)
 148{
 149        char b[BDEVNAME_SIZE];
 150        printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
 151                        bdevname(bh->b_bdev, b),
 152                        (unsigned long long)bh->b_blocknr);
 153}
 154
 155/*
 156 * End-of-IO handler helper function which does not touch the bh after
 157 * unlocking it.
 158 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 159 * a race there is benign: unlock_buffer() only use the bh's address for
 160 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 161 * itself.
 162 */
 163static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 164{
 165        if (uptodate) {
 166                set_buffer_uptodate(bh);
 167        } else {
 168                /* This happens, due to failed READA attempts. */
 169                clear_buffer_uptodate(bh);
 170        }
 171        unlock_buffer(bh);
 172}
 173
 174/*
 175 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 176 * unlock the buffer. This is what ll_rw_block uses too.
 177 */
 178void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 179{
 180        __end_buffer_read_notouch(bh, uptodate);
 181        put_bh(bh);
 182}
 183EXPORT_SYMBOL(end_buffer_read_sync);
 184
 185void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 186{
 187        char b[BDEVNAME_SIZE];
 188
 189        if (uptodate) {
 190                set_buffer_uptodate(bh);
 191        } else {
 192                if (!quiet_error(bh)) {
 193                        buffer_io_error(bh);
 194                        printk(KERN_WARNING "lost page write due to "
 195                                        "I/O error on %s\n",
 196                                       bdevname(bh->b_bdev, b));
 197                }
 198                set_buffer_write_io_error(bh);
 199                clear_buffer_uptodate(bh);
 200        }
 201        unlock_buffer(bh);
 202        put_bh(bh);
 203}
 204EXPORT_SYMBOL(end_buffer_write_sync);
 205
 206/*
 207 * Various filesystems appear to want __find_get_block to be non-blocking.
 208 * But it's the page lock which protects the buffers.  To get around this,
 209 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 210 * private_lock.
 211 *
 212 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 213 * may be quite high.  This code could TryLock the page, and if that
 214 * succeeds, there is no need to take private_lock. (But if
 215 * private_lock is contended then so is mapping->tree_lock).
 216 */
 217static struct buffer_head *
 218__find_get_block_slow(struct block_device *bdev, sector_t block)
 219{
 220        struct inode *bd_inode = bdev->bd_inode;
 221        struct address_space *bd_mapping = bd_inode->i_mapping;
 222        struct buffer_head *ret = NULL;
 223        pgoff_t index;
 224        struct buffer_head *bh;
 225        struct buffer_head *head;
 226        struct page *page;
 227        int all_mapped = 1;
 228
 229        index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
 230        page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 231        if (!page)
 232                goto out;
 233
 234        spin_lock(&bd_mapping->private_lock);
 235        if (!page_has_buffers(page))
 236                goto out_unlock;
 237        head = page_buffers(page);
 238        bh = head;
 239        do {
 240                if (!buffer_mapped(bh))
 241                        all_mapped = 0;
 242                else if (bh->b_blocknr == block) {
 243                        ret = bh;
 244                        get_bh(bh);
 245                        goto out_unlock;
 246                }
 247                bh = bh->b_this_page;
 248        } while (bh != head);
 249
 250        /* we might be here because some of the buffers on this page are
 251         * not mapped.  This is due to various races between
 252         * file io on the block device and getblk.  It gets dealt with
 253         * elsewhere, don't buffer_error if we had some unmapped buffers
 254         */
 255        if (all_mapped) {
 256                char b[BDEVNAME_SIZE];
 257
 258                printk("__find_get_block_slow() failed. "
 259                        "block=%llu, b_blocknr=%llu\n",
 260                        (unsigned long long)block,
 261                        (unsigned long long)bh->b_blocknr);
 262                printk("b_state=0x%08lx, b_size=%zu\n",
 263                        bh->b_state, bh->b_size);
 264                printk("device %s blocksize: %d\n", bdevname(bdev, b),
 265                        1 << bd_inode->i_blkbits);
 266        }
 267out_unlock:
 268        spin_unlock(&bd_mapping->private_lock);
 269        page_cache_release(page);
 270out:
 271        return ret;
 272}
 273
 274/*
 275 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 276 */
 277static void free_more_memory(void)
 278{
 279        struct zone *zone;
 280        int nid;
 281
 282        wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
 283        yield();
 284
 285        for_each_online_node(nid) {
 286                (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 287                                                gfp_zone(GFP_NOFS), NULL,
 288                                                &zone);
 289                if (zone)
 290                        try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 291                                                GFP_NOFS, NULL);
 292        }
 293}
 294
 295/*
 296 * I/O completion handler for block_read_full_page() - pages
 297 * which come unlocked at the end of I/O.
 298 */
 299static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 300{
 301        unsigned long flags;
 302        struct buffer_head *first;
 303        struct buffer_head *tmp;
 304        struct page *page;
 305        int page_uptodate = 1;
 306
 307        BUG_ON(!buffer_async_read(bh));
 308
 309        page = bh->b_page;
 310        if (uptodate) {
 311                set_buffer_uptodate(bh);
 312        } else {
 313                clear_buffer_uptodate(bh);
 314                if (!quiet_error(bh))
 315                        buffer_io_error(bh);
 316                SetPageError(page);
 317        }
 318
 319        /*
 320         * Be _very_ careful from here on. Bad things can happen if
 321         * two buffer heads end IO at almost the same time and both
 322         * decide that the page is now completely done.
 323         */
 324        first = page_buffers(page);
 325        local_irq_save(flags);
 326        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 327        clear_buffer_async_read(bh);
 328        unlock_buffer(bh);
 329        tmp = bh;
 330        do {
 331                if (!buffer_uptodate(tmp))
 332                        page_uptodate = 0;
 333                if (buffer_async_read(tmp)) {
 334                        BUG_ON(!buffer_locked(tmp));
 335                        goto still_busy;
 336                }
 337                tmp = tmp->b_this_page;
 338        } while (tmp != bh);
 339        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 340        local_irq_restore(flags);
 341
 342        /*
 343         * If none of the buffers had errors and they are all
 344         * uptodate then we can set the page uptodate.
 345         */
 346        if (page_uptodate && !PageError(page))
 347                SetPageUptodate(page);
 348        unlock_page(page);
 349        return;
 350
 351still_busy:
 352        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 353        local_irq_restore(flags);
 354        return;
 355}
 356
 357/*
 358 * Completion handler for block_write_full_page() - pages which are unlocked
 359 * during I/O, and which have PageWriteback cleared upon I/O completion.
 360 */
 361void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 362{
 363        char b[BDEVNAME_SIZE];
 364        unsigned long flags;
 365        struct buffer_head *first;
 366        struct buffer_head *tmp;
 367        struct page *page;
 368
 369        BUG_ON(!buffer_async_write(bh));
 370
 371        page = bh->b_page;
 372        if (uptodate) {
 373                set_buffer_uptodate(bh);
 374        } else {
 375                if (!quiet_error(bh)) {
 376                        buffer_io_error(bh);
 377                        printk(KERN_WARNING "lost page write due to "
 378                                        "I/O error on %s\n",
 379                               bdevname(bh->b_bdev, b));
 380                }
 381                set_bit(AS_EIO, &page->mapping->flags);
 382                set_buffer_write_io_error(bh);
 383                clear_buffer_uptodate(bh);
 384                SetPageError(page);
 385        }
 386
 387        first = page_buffers(page);
 388        local_irq_save(flags);
 389        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 390
 391        clear_buffer_async_write(bh);
 392        unlock_buffer(bh);
 393        tmp = bh->b_this_page;
 394        while (tmp != bh) {
 395                if (buffer_async_write(tmp)) {
 396                        BUG_ON(!buffer_locked(tmp));
 397                        goto still_busy;
 398                }
 399                tmp = tmp->b_this_page;
 400        }
 401        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 402        local_irq_restore(flags);
 403        end_page_writeback(page);
 404        return;
 405
 406still_busy:
 407        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 408        local_irq_restore(flags);
 409        return;
 410}
 411EXPORT_SYMBOL(end_buffer_async_write);
 412
 413/*
 414 * If a page's buffers are under async readin (end_buffer_async_read
 415 * completion) then there is a possibility that another thread of
 416 * control could lock one of the buffers after it has completed
 417 * but while some of the other buffers have not completed.  This
 418 * locked buffer would confuse end_buffer_async_read() into not unlocking
 419 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 420 * that this buffer is not under async I/O.
 421 *
 422 * The page comes unlocked when it has no locked buffer_async buffers
 423 * left.
 424 *
 425 * PageLocked prevents anyone starting new async I/O reads any of
 426 * the buffers.
 427 *
 428 * PageWriteback is used to prevent simultaneous writeout of the same
 429 * page.
 430 *
 431 * PageLocked prevents anyone from starting writeback of a page which is
 432 * under read I/O (PageWriteback is only ever set against a locked page).
 433 */
 434static void mark_buffer_async_read(struct buffer_head *bh)
 435{
 436        bh->b_end_io = end_buffer_async_read;
 437        set_buffer_async_read(bh);
 438}
 439
 440static void mark_buffer_async_write_endio(struct buffer_head *bh,
 441                                          bh_end_io_t *handler)
 442{
 443        bh->b_end_io = handler;
 444        set_buffer_async_write(bh);
 445}
 446
 447void mark_buffer_async_write(struct buffer_head *bh)
 448{
 449        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 450}
 451EXPORT_SYMBOL(mark_buffer_async_write);
 452
 453
 454/*
 455 * fs/buffer.c contains helper functions for buffer-backed address space's
 456 * fsync functions.  A common requirement for buffer-based filesystems is
 457 * that certain data from the backing blockdev needs to be written out for
 458 * a successful fsync().  For example, ext2 indirect blocks need to be
 459 * written back and waited upon before fsync() returns.
 460 *
 461 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 462 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 463 * management of a list of dependent buffers at ->i_mapping->private_list.
 464 *
 465 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 466 * from their controlling inode's queue when they are being freed.  But
 467 * try_to_free_buffers() will be operating against the *blockdev* mapping
 468 * at the time, not against the S_ISREG file which depends on those buffers.
 469 * So the locking for private_list is via the private_lock in the address_space
 470 * which backs the buffers.  Which is different from the address_space 
 471 * against which the buffers are listed.  So for a particular address_space,
 472 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 473 * mapping->private_list will always be protected by the backing blockdev's
 474 * ->private_lock.
 475 *
 476 * Which introduces a requirement: all buffers on an address_space's
 477 * ->private_list must be from the same address_space: the blockdev's.
 478 *
 479 * address_spaces which do not place buffers at ->private_list via these
 480 * utility functions are free to use private_lock and private_list for
 481 * whatever they want.  The only requirement is that list_empty(private_list)
 482 * be true at clear_inode() time.
 483 *
 484 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 485 * filesystems should do that.  invalidate_inode_buffers() should just go
 486 * BUG_ON(!list_empty).
 487 *
 488 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 489 * take an address_space, not an inode.  And it should be called
 490 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 491 * queued up.
 492 *
 493 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 494 * list if it is already on a list.  Because if the buffer is on a list,
 495 * it *must* already be on the right one.  If not, the filesystem is being
 496 * silly.  This will save a ton of locking.  But first we have to ensure
 497 * that buffers are taken *off* the old inode's list when they are freed
 498 * (presumably in truncate).  That requires careful auditing of all
 499 * filesystems (do it inside bforget()).  It could also be done by bringing
 500 * b_inode back.
 501 */
 502
 503/*
 504 * The buffer's backing address_space's private_lock must be held
 505 */
 506static void __remove_assoc_queue(struct buffer_head *bh)
 507{
 508        list_del_init(&bh->b_assoc_buffers);
 509        WARN_ON(!bh->b_assoc_map);
 510        if (buffer_write_io_error(bh))
 511                set_bit(AS_EIO, &bh->b_assoc_map->flags);
 512        bh->b_assoc_map = NULL;
 513}
 514
 515int inode_has_buffers(struct inode *inode)
 516{
 517        return !list_empty(&inode->i_data.private_list);
 518}
 519
 520/*
 521 * osync is designed to support O_SYNC io.  It waits synchronously for
 522 * all already-submitted IO to complete, but does not queue any new
 523 * writes to the disk.
 524 *
 525 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 526 * you dirty the buffers, and then use osync_inode_buffers to wait for
 527 * completion.  Any other dirty buffers which are not yet queued for
 528 * write will not be flushed to disk by the osync.
 529 */
 530static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 531{
 532        struct buffer_head *bh;
 533        struct list_head *p;
 534        int err = 0;
 535
 536        spin_lock(lock);
 537repeat:
 538        list_for_each_prev(p, list) {
 539                bh = BH_ENTRY(p);
 540                if (buffer_locked(bh)) {
 541                        get_bh(bh);
 542                        spin_unlock(lock);
 543                        wait_on_buffer(bh);
 544                        if (!buffer_uptodate(bh))
 545                                err = -EIO;
 546                        brelse(bh);
 547                        spin_lock(lock);
 548                        goto repeat;
 549                }
 550        }
 551        spin_unlock(lock);
 552        return err;
 553}
 554
 555static void do_thaw_one(struct super_block *sb, void *unused)
 556{
 557        char b[BDEVNAME_SIZE];
 558        while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 559                printk(KERN_WARNING "Emergency Thaw on %s\n",
 560                       bdevname(sb->s_bdev, b));
 561}
 562
 563static void do_thaw_all(struct work_struct *work)
 564{
 565        iterate_supers(do_thaw_one, NULL);
 566        kfree(work);
 567        printk(KERN_WARNING "Emergency Thaw complete\n");
 568}
 569
 570/**
 571 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 572 *
 573 * Used for emergency unfreeze of all filesystems via SysRq
 574 */
 575void emergency_thaw_all(void)
 576{
 577        struct work_struct *work;
 578
 579        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 580        if (work) {
 581                INIT_WORK(work, do_thaw_all);
 582                schedule_work(work);
 583        }
 584}
 585
 586/**
 587 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 588 * @mapping: the mapping which wants those buffers written
 589 *
 590 * Starts I/O against the buffers at mapping->private_list, and waits upon
 591 * that I/O.
 592 *
 593 * Basically, this is a convenience function for fsync().
 594 * @mapping is a file or directory which needs those buffers to be written for
 595 * a successful fsync().
 596 */
 597int sync_mapping_buffers(struct address_space *mapping)
 598{
 599        struct address_space *buffer_mapping = mapping->private_data;
 600
 601        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 602                return 0;
 603
 604        return fsync_buffers_list(&buffer_mapping->private_lock,
 605                                        &mapping->private_list);
 606}
 607EXPORT_SYMBOL(sync_mapping_buffers);
 608
 609/*
 610 * Called when we've recently written block `bblock', and it is known that
 611 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 612 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 613 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 614 */
 615void write_boundary_block(struct block_device *bdev,
 616                        sector_t bblock, unsigned blocksize)
 617{
 618        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 619        if (bh) {
 620                if (buffer_dirty(bh))
 621                        ll_rw_block(WRITE, 1, &bh);
 622                put_bh(bh);
 623        }
 624}
 625
 626void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 627{
 628        struct address_space *mapping = inode->i_mapping;
 629        struct address_space *buffer_mapping = bh->b_page->mapping;
 630
 631        mark_buffer_dirty(bh);
 632        if (!mapping->private_data) {
 633                mapping->private_data = buffer_mapping;
 634        } else {
 635                BUG_ON(mapping->private_data != buffer_mapping);
 636        }
 637        if (!bh->b_assoc_map) {
 638                spin_lock(&buffer_mapping->private_lock);
 639                list_move_tail(&bh->b_assoc_buffers,
 640                                &mapping->private_list);
 641                bh->b_assoc_map = mapping;
 642                spin_unlock(&buffer_mapping->private_lock);
 643        }
 644}
 645EXPORT_SYMBOL(mark_buffer_dirty_inode);
 646
 647/*
 648 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 649 * dirty.
 650 *
 651 * If warn is true, then emit a warning if the page is not uptodate and has
 652 * not been truncated.
 653 */
 654static void __set_page_dirty(struct page *page,
 655                struct address_space *mapping, int warn)
 656{
 657        unsigned long flags;
 658
 659        spin_lock_irqsave(&mapping->tree_lock, flags);
 660        if (page->mapping) {    /* Race with truncate? */
 661                WARN_ON_ONCE(warn && !PageUptodate(page));
 662                account_page_dirtied(page, mapping);
 663                radix_tree_tag_set(&mapping->page_tree,
 664                                page_index(page), PAGECACHE_TAG_DIRTY);
 665        }
 666        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 667        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 668}
 669
 670/*
 671 * Add a page to the dirty page list.
 672 *
 673 * It is a sad fact of life that this function is called from several places
 674 * deeply under spinlocking.  It may not sleep.
 675 *
 676 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 677 * dirty-state coherency between the page and the buffers.  It the page does
 678 * not have buffers then when they are later attached they will all be set
 679 * dirty.
 680 *
 681 * The buffers are dirtied before the page is dirtied.  There's a small race
 682 * window in which a writepage caller may see the page cleanness but not the
 683 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 684 * before the buffers, a concurrent writepage caller could clear the page dirty
 685 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 686 * page on the dirty page list.
 687 *
 688 * We use private_lock to lock against try_to_free_buffers while using the
 689 * page's buffer list.  Also use this to protect against clean buffers being
 690 * added to the page after it was set dirty.
 691 *
 692 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 693 * address_space though.
 694 */
 695int __set_page_dirty_buffers(struct page *page)
 696{
 697        int newly_dirty;
 698        struct address_space *mapping = page_mapping(page);
 699
 700        if (unlikely(!mapping))
 701                return !TestSetPageDirty(page);
 702
 703        spin_lock(&mapping->private_lock);
 704        if (page_has_buffers(page)) {
 705                struct buffer_head *head = page_buffers(page);
 706                struct buffer_head *bh = head;
 707
 708                do {
 709                        set_buffer_dirty(bh);
 710                        bh = bh->b_this_page;
 711                } while (bh != head);
 712        }
 713        newly_dirty = !TestSetPageDirty(page);
 714        spin_unlock(&mapping->private_lock);
 715
 716        if (newly_dirty)
 717                __set_page_dirty(page, mapping, 1);
 718        return newly_dirty;
 719}
 720EXPORT_SYMBOL(__set_page_dirty_buffers);
 721
 722/*
 723 * Write out and wait upon a list of buffers.
 724 *
 725 * We have conflicting pressures: we want to make sure that all
 726 * initially dirty buffers get waited on, but that any subsequently
 727 * dirtied buffers don't.  After all, we don't want fsync to last
 728 * forever if somebody is actively writing to the file.
 729 *
 730 * Do this in two main stages: first we copy dirty buffers to a
 731 * temporary inode list, queueing the writes as we go.  Then we clean
 732 * up, waiting for those writes to complete.
 733 * 
 734 * During this second stage, any subsequent updates to the file may end
 735 * up refiling the buffer on the original inode's dirty list again, so
 736 * there is a chance we will end up with a buffer queued for write but
 737 * not yet completed on that list.  So, as a final cleanup we go through
 738 * the osync code to catch these locked, dirty buffers without requeuing
 739 * any newly dirty buffers for write.
 740 */
 741static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 742{
 743        struct buffer_head *bh;
 744        struct list_head tmp;
 745        struct address_space *mapping;
 746        int err = 0, err2;
 747        struct blk_plug plug;
 748
 749        INIT_LIST_HEAD(&tmp);
 750        blk_start_plug(&plug);
 751
 752        spin_lock(lock);
 753        while (!list_empty(list)) {
 754                bh = BH_ENTRY(list->next);
 755                mapping = bh->b_assoc_map;
 756                __remove_assoc_queue(bh);
 757                /* Avoid race with mark_buffer_dirty_inode() which does
 758                 * a lockless check and we rely on seeing the dirty bit */
 759                smp_mb();
 760                if (buffer_dirty(bh) || buffer_locked(bh)) {
 761                        list_add(&bh->b_assoc_buffers, &tmp);
 762                        bh->b_assoc_map = mapping;
 763                        if (buffer_dirty(bh)) {
 764                                get_bh(bh);
 765                                spin_unlock(lock);
 766                                /*
 767                                 * Ensure any pending I/O completes so that
 768                                 * write_dirty_buffer() actually writes the
 769                                 * current contents - it is a noop if I/O is
 770                                 * still in flight on potentially older
 771                                 * contents.
 772                                 */
 773                                write_dirty_buffer(bh, WRITE_SYNC);
 774
 775                                /*
 776                                 * Kick off IO for the previous mapping. Note
 777                                 * that we will not run the very last mapping,
 778                                 * wait_on_buffer() will do that for us
 779                                 * through sync_buffer().
 780                                 */
 781                                brelse(bh);
 782                                spin_lock(lock);
 783                        }
 784                }
 785        }
 786
 787        spin_unlock(lock);
 788        blk_finish_plug(&plug);
 789        spin_lock(lock);
 790
 791        while (!list_empty(&tmp)) {
 792                bh = BH_ENTRY(tmp.prev);
 793                get_bh(bh);
 794                mapping = bh->b_assoc_map;
 795                __remove_assoc_queue(bh);
 796                /* Avoid race with mark_buffer_dirty_inode() which does
 797                 * a lockless check and we rely on seeing the dirty bit */
 798                smp_mb();
 799                if (buffer_dirty(bh)) {
 800                        list_add(&bh->b_assoc_buffers,
 801                                 &mapping->private_list);
 802                        bh->b_assoc_map = mapping;
 803                }
 804                spin_unlock(lock);
 805                wait_on_buffer(bh);
 806                if (!buffer_uptodate(bh))
 807                        err = -EIO;
 808                brelse(bh);
 809                spin_lock(lock);
 810        }
 811        
 812        spin_unlock(lock);
 813        err2 = osync_buffers_list(lock, list);
 814        if (err)
 815                return err;
 816        else
 817                return err2;
 818}
 819
 820/*
 821 * Invalidate any and all dirty buffers on a given inode.  We are
 822 * probably unmounting the fs, but that doesn't mean we have already
 823 * done a sync().  Just drop the buffers from the inode list.
 824 *
 825 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 826 * assumes that all the buffers are against the blockdev.  Not true
 827 * for reiserfs.
 828 */
 829void invalidate_inode_buffers(struct inode *inode)
 830{
 831        if (inode_has_buffers(inode)) {
 832                struct address_space *mapping = &inode->i_data;
 833                struct list_head *list = &mapping->private_list;
 834                struct address_space *buffer_mapping = mapping->private_data;
 835
 836                spin_lock(&buffer_mapping->private_lock);
 837                while (!list_empty(list))
 838                        __remove_assoc_queue(BH_ENTRY(list->next));
 839                spin_unlock(&buffer_mapping->private_lock);
 840        }
 841}
 842EXPORT_SYMBOL(invalidate_inode_buffers);
 843
 844/*
 845 * Remove any clean buffers from the inode's buffer list.  This is called
 846 * when we're trying to free the inode itself.  Those buffers can pin it.
 847 *
 848 * Returns true if all buffers were removed.
 849 */
 850int remove_inode_buffers(struct inode *inode)
 851{
 852        int ret = 1;
 853
 854        if (inode_has_buffers(inode)) {
 855                struct address_space *mapping = &inode->i_data;
 856                struct list_head *list = &mapping->private_list;
 857                struct address_space *buffer_mapping = mapping->private_data;
 858
 859                spin_lock(&buffer_mapping->private_lock);
 860                while (!list_empty(list)) {
 861                        struct buffer_head *bh = BH_ENTRY(list->next);
 862                        if (buffer_dirty(bh)) {
 863                                ret = 0;
 864                                break;
 865                        }
 866                        __remove_assoc_queue(bh);
 867                }
 868                spin_unlock(&buffer_mapping->private_lock);
 869        }
 870        return ret;
 871}
 872
 873/*
 874 * Create the appropriate buffers when given a page for data area and
 875 * the size of each buffer.. Use the bh->b_this_page linked list to
 876 * follow the buffers created.  Return NULL if unable to create more
 877 * buffers.
 878 *
 879 * The retry flag is used to differentiate async IO (paging, swapping)
 880 * which may not fail from ordinary buffer allocations.
 881 */
 882struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 883                int retry)
 884{
 885        struct buffer_head *bh, *head;
 886        long offset;
 887
 888try_again:
 889        head = NULL;
 890        offset = PAGE_SIZE;
 891        while ((offset -= size) >= 0) {
 892                bh = alloc_buffer_head(GFP_NOFS);
 893                if (!bh)
 894                        goto no_grow;
 895
 896                bh->b_this_page = head;
 897                bh->b_blocknr = -1;
 898                head = bh;
 899
 900                bh->b_size = size;
 901
 902                /* Link the buffer to its page */
 903                set_bh_page(bh, page, offset);
 904        }
 905        return head;
 906/*
 907 * In case anything failed, we just free everything we got.
 908 */
 909no_grow:
 910        if (head) {
 911                do {
 912                        bh = head;
 913                        head = head->b_this_page;
 914                        free_buffer_head(bh);
 915                } while (head);
 916        }
 917
 918        /*
 919         * Return failure for non-async IO requests.  Async IO requests
 920         * are not allowed to fail, so we have to wait until buffer heads
 921         * become available.  But we don't want tasks sleeping with 
 922         * partially complete buffers, so all were released above.
 923         */
 924        if (!retry)
 925                return NULL;
 926
 927        /* We're _really_ low on memory. Now we just
 928         * wait for old buffer heads to become free due to
 929         * finishing IO.  Since this is an async request and
 930         * the reserve list is empty, we're sure there are 
 931         * async buffer heads in use.
 932         */
 933        free_more_memory();
 934        goto try_again;
 935}
 936EXPORT_SYMBOL_GPL(alloc_page_buffers);
 937
 938static inline void
 939link_dev_buffers(struct page *page, struct buffer_head *head)
 940{
 941        struct buffer_head *bh, *tail;
 942
 943        bh = head;
 944        do {
 945                tail = bh;
 946                bh = bh->b_this_page;
 947        } while (bh);
 948        tail->b_this_page = head;
 949        attach_page_buffers(page, head);
 950}
 951
 952static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 953{
 954        sector_t retval = ~((sector_t)0);
 955        loff_t sz = i_size_read(bdev->bd_inode);
 956
 957        if (sz) {
 958                unsigned int sizebits = blksize_bits(size);
 959                retval = (sz >> sizebits);
 960        }
 961        return retval;
 962}
 963
 964/*
 965 * Initialise the state of a blockdev page's buffers.
 966 */ 
 967static sector_t
 968init_page_buffers(struct page *page, struct block_device *bdev,
 969                        sector_t block, int size)
 970{
 971        struct buffer_head *head = page_buffers(page);
 972        struct buffer_head *bh = head;
 973        int uptodate = PageUptodate(page);
 974        sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 975
 976        do {
 977                if (!buffer_mapped(bh)) {
 978                        init_buffer(bh, NULL, NULL);
 979                        bh->b_bdev = bdev;
 980                        bh->b_blocknr = block;
 981                        if (uptodate)
 982                                set_buffer_uptodate(bh);
 983                        if (block < end_block)
 984                                set_buffer_mapped(bh);
 985                }
 986                block++;
 987                bh = bh->b_this_page;
 988        } while (bh != head);
 989
 990        /*
 991         * Caller needs to validate requested block against end of device.
 992         */
 993        return end_block;
 994}
 995
 996/*
 997 * Create the page-cache page that contains the requested block.
 998 *
 999 * This is used purely for blockdev mappings.
1000 */
1001static int
1002grow_dev_page(struct block_device *bdev, sector_t block,
1003                pgoff_t index, int size, int sizebits)
1004{
1005        struct inode *inode = bdev->bd_inode;
1006        struct page *page;
1007        struct buffer_head *bh;
1008        sector_t end_block;
1009        int ret = 0;            /* Will call free_more_memory() */
1010        gfp_t gfp_mask;
1011
1012        gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1013        gfp_mask |= __GFP_MOVABLE;
1014        /*
1015         * XXX: __getblk_slow() can not really deal with failure and
1016         * will endlessly loop on improvised global reclaim.  Prefer
1017         * looping in the allocator rather than here, at least that
1018         * code knows what it's doing.
1019         */
1020        gfp_mask |= __GFP_NOFAIL;
1021
1022        page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1023        if (!page)
1024                return ret;
1025
1026        BUG_ON(!PageLocked(page));
1027
1028        if (page_has_buffers(page)) {
1029                bh = page_buffers(page);
1030                if (bh->b_size == size) {
1031                        end_block = init_page_buffers(page, bdev,
1032                                                index << sizebits, size);
1033                        goto done;
1034                }
1035                if (!try_to_free_buffers(page))
1036                        goto failed;
1037        }
1038
1039        /*
1040         * Allocate some buffers for this page
1041         */
1042        bh = alloc_page_buffers(page, size, 0);
1043        if (!bh)
1044                goto failed;
1045
1046        /*
1047         * Link the page to the buffers and initialise them.  Take the
1048         * lock to be atomic wrt __find_get_block(), which does not
1049         * run under the page lock.
1050         */
1051        spin_lock(&inode->i_mapping->private_lock);
1052        link_dev_buffers(page, bh);
1053        end_block = init_page_buffers(page, bdev, index << sizebits, size);
1054        spin_unlock(&inode->i_mapping->private_lock);
1055done:
1056        ret = (block < end_block) ? 1 : -ENXIO;
1057failed:
1058        unlock_page(page);
1059        page_cache_release(page);
1060        return ret;
1061}
1062
1063/*
1064 * Create buffers for the specified block device block's page.  If
1065 * that page was dirty, the buffers are set dirty also.
1066 */
1067static int
1068grow_buffers(struct block_device *bdev, sector_t block, int size)
1069{
1070        pgoff_t index;
1071        int sizebits;
1072
1073        sizebits = -1;
1074        do {
1075                sizebits++;
1076        } while ((size << sizebits) < PAGE_SIZE);
1077
1078        index = block >> sizebits;
1079
1080        /*
1081         * Check for a block which wants to lie outside our maximum possible
1082         * pagecache index.  (this comparison is done using sector_t types).
1083         */
1084        if (unlikely(index != block >> sizebits)) {
1085                char b[BDEVNAME_SIZE];
1086
1087                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1088                        "device %s\n",
1089                        __func__, (unsigned long long)block,
1090                        bdevname(bdev, b));
1091                return -EIO;
1092        }
1093
1094        /* Create a page with the proper size buffers.. */
1095        return grow_dev_page(bdev, block, index, size, sizebits);
1096}
1097
1098static struct buffer_head *
1099__getblk_slow(struct block_device *bdev, sector_t block, int size)
1100{
1101        /* Size must be multiple of hard sectorsize */
1102        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1103                        (size < 512 || size > PAGE_SIZE))) {
1104                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1105                                        size);
1106                printk(KERN_ERR "logical block size: %d\n",
1107                                        bdev_logical_block_size(bdev));
1108
1109                dump_stack();
1110                return NULL;
1111        }
1112
1113        for (;;) {
1114                struct buffer_head *bh;
1115                int ret;
1116
1117                bh = __find_get_block(bdev, block, size);
1118                if (bh)
1119                        return bh;
1120
1121                ret = grow_buffers(bdev, block, size);
1122                if (ret < 0)
1123                        return NULL;
1124                if (ret == 0)
1125                        free_more_memory();
1126        }
1127}
1128
1129/*
1130 * The relationship between dirty buffers and dirty pages:
1131 *
1132 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1133 * the page is tagged dirty in its radix tree.
1134 *
1135 * At all times, the dirtiness of the buffers represents the dirtiness of
1136 * subsections of the page.  If the page has buffers, the page dirty bit is
1137 * merely a hint about the true dirty state.
1138 *
1139 * When a page is set dirty in its entirety, all its buffers are marked dirty
1140 * (if the page has buffers).
1141 *
1142 * When a buffer is marked dirty, its page is dirtied, but the page's other
1143 * buffers are not.
1144 *
1145 * Also.  When blockdev buffers are explicitly read with bread(), they
1146 * individually become uptodate.  But their backing page remains not
1147 * uptodate - even if all of its buffers are uptodate.  A subsequent
1148 * block_read_full_page() against that page will discover all the uptodate
1149 * buffers, will set the page uptodate and will perform no I/O.
1150 */
1151
1152/**
1153 * mark_buffer_dirty - mark a buffer_head as needing writeout
1154 * @bh: the buffer_head to mark dirty
1155 *
1156 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1157 * backing page dirty, then tag the page as dirty in its address_space's radix
1158 * tree and then attach the address_space's inode to its superblock's dirty
1159 * inode list.
1160 *
1161 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1162 * mapping->tree_lock and mapping->host->i_lock.
1163 */
1164void mark_buffer_dirty(struct buffer_head *bh)
1165{
1166        WARN_ON_ONCE(!buffer_uptodate(bh));
1167
1168        trace_block_dirty_buffer(bh);
1169
1170        /*
1171         * Very *carefully* optimize the it-is-already-dirty case.
1172         *
1173         * Don't let the final "is it dirty" escape to before we
1174         * perhaps modified the buffer.
1175         */
1176        if (buffer_dirty(bh)) {
1177                smp_mb();
1178                if (buffer_dirty(bh))
1179                        return;
1180        }
1181
1182        if (!test_set_buffer_dirty(bh)) {
1183                struct page *page = bh->b_page;
1184                if (!TestSetPageDirty(page)) {
1185                        struct address_space *mapping = page_mapping(page);
1186                        if (mapping)
1187                                __set_page_dirty(page, mapping, 0);
1188                }
1189        }
1190}
1191EXPORT_SYMBOL(mark_buffer_dirty);
1192
1193/*
1194 * Decrement a buffer_head's reference count.  If all buffers against a page
1195 * have zero reference count, are clean and unlocked, and if the page is clean
1196 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198 * a page but it ends up not being freed, and buffers may later be reattached).
1199 */
1200void __brelse(struct buffer_head * buf)
1201{
1202        if (atomic_read(&buf->b_count)) {
1203                put_bh(buf);
1204                return;
1205        }
1206        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1207}
1208EXPORT_SYMBOL(__brelse);
1209
1210/*
1211 * bforget() is like brelse(), except it discards any
1212 * potentially dirty data.
1213 */
1214void __bforget(struct buffer_head *bh)
1215{
1216        clear_buffer_dirty(bh);
1217        if (bh->b_assoc_map) {
1218                struct address_space *buffer_mapping = bh->b_page->mapping;
1219
1220                spin_lock(&buffer_mapping->private_lock);
1221                list_del_init(&bh->b_assoc_buffers);
1222                bh->b_assoc_map = NULL;
1223                spin_unlock(&buffer_mapping->private_lock);
1224        }
1225        __brelse(bh);
1226}
1227EXPORT_SYMBOL(__bforget);
1228
1229static struct buffer_head *__bread_slow(struct buffer_head *bh)
1230{
1231        lock_buffer(bh);
1232        if (buffer_uptodate(bh)) {
1233                unlock_buffer(bh);
1234                return bh;
1235        } else {
1236                get_bh(bh);
1237                bh->b_end_io = end_buffer_read_sync;
1238                submit_bh(READ, bh);
1239                wait_on_buffer(bh);
1240                if (buffer_uptodate(bh))
1241                        return bh;
1242        }
1243        brelse(bh);
1244        return NULL;
1245}
1246
1247/*
1248 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1249 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1250 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1251 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1252 * CPU's LRUs at the same time.
1253 *
1254 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255 * sb_find_get_block().
1256 *
1257 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1258 * a local interrupt disable for that.
1259 */
1260
1261#define BH_LRU_SIZE     8
1262
1263struct bh_lru {
1264        struct buffer_head *bhs[BH_LRU_SIZE];
1265};
1266
1267static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1268
1269#ifdef CONFIG_SMP
1270#define bh_lru_lock()   local_irq_disable()
1271#define bh_lru_unlock() local_irq_enable()
1272#else
1273#define bh_lru_lock()   preempt_disable()
1274#define bh_lru_unlock() preempt_enable()
1275#endif
1276
1277static inline void check_irqs_on(void)
1278{
1279#ifdef irqs_disabled
1280        BUG_ON(irqs_disabled());
1281#endif
1282}
1283
1284/*
1285 * The LRU management algorithm is dopey-but-simple.  Sorry.
1286 */
1287static void bh_lru_install(struct buffer_head *bh)
1288{
1289        struct buffer_head *evictee = NULL;
1290
1291        check_irqs_on();
1292        bh_lru_lock();
1293        if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1294                struct buffer_head *bhs[BH_LRU_SIZE];
1295                int in;
1296                int out = 0;
1297
1298                get_bh(bh);
1299                bhs[out++] = bh;
1300                for (in = 0; in < BH_LRU_SIZE; in++) {
1301                        struct buffer_head *bh2 =
1302                                __this_cpu_read(bh_lrus.bhs[in]);
1303
1304                        if (bh2 == bh) {
1305                                __brelse(bh2);
1306                        } else {
1307                                if (out >= BH_LRU_SIZE) {
1308                                        BUG_ON(evictee != NULL);
1309                                        evictee = bh2;
1310                                } else {
1311                                        bhs[out++] = bh2;
1312                                }
1313                        }
1314                }
1315                while (out < BH_LRU_SIZE)
1316                        bhs[out++] = NULL;
1317                memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1318        }
1319        bh_lru_unlock();
1320
1321        if (evictee)
1322                __brelse(evictee);
1323}
1324
1325/*
1326 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1327 */
1328static struct buffer_head *
1329lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1330{
1331        struct buffer_head *ret = NULL;
1332        unsigned int i;
1333
1334        check_irqs_on();
1335        bh_lru_lock();
1336        for (i = 0; i < BH_LRU_SIZE; i++) {
1337                struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1338
1339                if (bh && bh->b_bdev == bdev &&
1340                                bh->b_blocknr == block && bh->b_size == size) {
1341                        if (i) {
1342                                while (i) {
1343                                        __this_cpu_write(bh_lrus.bhs[i],
1344                                                __this_cpu_read(bh_lrus.bhs[i - 1]));
1345                                        i--;
1346                                }
1347                                __this_cpu_write(bh_lrus.bhs[0], bh);
1348                        }
1349                        get_bh(bh);
1350                        ret = bh;
1351                        break;
1352                }
1353        }
1354        bh_lru_unlock();
1355        return ret;
1356}
1357
1358/*
1359 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1360 * it in the LRU and mark it as accessed.  If it is not present then return
1361 * NULL
1362 */
1363struct buffer_head *
1364__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1365{
1366        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1367
1368        if (bh == NULL) {
1369                /* __find_get_block_slow will mark the page accessed */
1370                bh = __find_get_block_slow(bdev, block);
1371                if (bh)
1372                        bh_lru_install(bh);
1373        } else
1374                touch_buffer(bh);
1375
1376        return bh;
1377}
1378EXPORT_SYMBOL(__find_get_block);
1379
1380/*
1381 * __getblk will locate (and, if necessary, create) the buffer_head
1382 * which corresponds to the passed block_device, block and size. The
1383 * returned buffer has its reference count incremented.
1384 *
1385 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1386 * attempt is failing.  FIXME, perhaps?
1387 */
1388struct buffer_head *
1389__getblk(struct block_device *bdev, sector_t block, unsigned size)
1390{
1391        struct buffer_head *bh = __find_get_block(bdev, block, size);
1392
1393        might_sleep();
1394        if (bh == NULL)
1395                bh = __getblk_slow(bdev, block, size);
1396        return bh;
1397}
1398EXPORT_SYMBOL(__getblk);
1399
1400/*
1401 * Do async read-ahead on a buffer..
1402 */
1403void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1404{
1405        struct buffer_head *bh = __getblk(bdev, block, size);
1406        if (likely(bh)) {
1407                ll_rw_block(READA, 1, &bh);
1408                brelse(bh);
1409        }
1410}
1411EXPORT_SYMBOL(__breadahead);
1412
1413/**
1414 *  __bread() - reads a specified block and returns the bh
1415 *  @bdev: the block_device to read from
1416 *  @block: number of block
1417 *  @size: size (in bytes) to read
1418 * 
1419 *  Reads a specified block, and returns buffer head that contains it.
1420 *  It returns NULL if the block was unreadable.
1421 */
1422struct buffer_head *
1423__bread(struct block_device *bdev, sector_t block, unsigned size)
1424{
1425        struct buffer_head *bh = __getblk(bdev, block, size);
1426
1427        if (likely(bh) && !buffer_uptodate(bh))
1428                bh = __bread_slow(bh);
1429        return bh;
1430}
1431EXPORT_SYMBOL(__bread);
1432
1433/*
1434 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435 * This doesn't race because it runs in each cpu either in irq
1436 * or with preempt disabled.
1437 */
1438static void invalidate_bh_lru(void *arg)
1439{
1440        struct bh_lru *b = &get_cpu_var(bh_lrus);
1441        int i;
1442
1443        for (i = 0; i < BH_LRU_SIZE; i++) {
1444                brelse(b->bhs[i]);
1445                b->bhs[i] = NULL;
1446        }
1447        put_cpu_var(bh_lrus);
1448}
1449
1450static bool has_bh_in_lru(int cpu, void *dummy)
1451{
1452        struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1453        int i;
1454        
1455        for (i = 0; i < BH_LRU_SIZE; i++) {
1456                if (b->bhs[i])
1457                        return 1;
1458        }
1459
1460        return 0;
1461}
1462
1463void invalidate_bh_lrus(void)
1464{
1465        on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1466}
1467EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1468
1469void set_bh_page(struct buffer_head *bh,
1470                struct page *page, unsigned long offset)
1471{
1472        bh->b_page = page;
1473        BUG_ON(offset >= PAGE_SIZE);
1474        if (PageHighMem(page))
1475                /*
1476                 * This catches illegal uses and preserves the offset:
1477                 */
1478                bh->b_data = (char *)(0 + offset);
1479        else
1480                bh->b_data = page_address(page) + offset;
1481}
1482EXPORT_SYMBOL(set_bh_page);
1483
1484/*
1485 * Called when truncating a buffer on a page completely.
1486 */
1487
1488/* Bits that are cleared during an invalidate */
1489#define BUFFER_FLAGS_DISCARD \
1490        (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1491         1 << BH_Delay | 1 << BH_Unwritten)
1492
1493static void discard_buffer(struct buffer_head * bh)
1494{
1495        unsigned long b_state, b_state_old;
1496
1497        lock_buffer(bh);
1498        clear_buffer_dirty(bh);
1499        bh->b_bdev = NULL;
1500        b_state = bh->b_state;
1501        for (;;) {
1502                b_state_old = cmpxchg(&bh->b_state, b_state,
1503                                      (b_state & ~BUFFER_FLAGS_DISCARD));
1504                if (b_state_old == b_state)
1505                        break;
1506                b_state = b_state_old;
1507        }
1508        unlock_buffer(bh);
1509}
1510
1511/**
1512 * block_invalidatepage - invalidate part or all of a buffer-backed page
1513 *
1514 * @page: the page which is affected
1515 * @offset: start of the range to invalidate
1516 * @length: length of the range to invalidate
1517 *
1518 * block_invalidatepage() is called when all or part of the page has become
1519 * invalidated by a truncate operation.
1520 *
1521 * block_invalidatepage() does not have to release all buffers, but it must
1522 * ensure that no dirty buffer is left outside @offset and that no I/O
1523 * is underway against any of the blocks which are outside the truncation
1524 * point.  Because the caller is about to free (and possibly reuse) those
1525 * blocks on-disk.
1526 */
1527void block_invalidatepage(struct page *page, unsigned int offset,
1528                          unsigned int length)
1529{
1530        struct buffer_head *head, *bh, *next;
1531        unsigned int curr_off = 0;
1532        unsigned int stop = length + offset;
1533
1534        BUG_ON(!PageLocked(page));
1535        if (!page_has_buffers(page))
1536                goto out;
1537
1538        /*
1539         * Check for overflow
1540         */
1541        BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1542
1543        head = page_buffers(page);
1544        bh = head;
1545        do {
1546                unsigned int next_off = curr_off + bh->b_size;
1547                next = bh->b_this_page;
1548
1549                /*
1550                 * Are we still fully in range ?
1551                 */
1552                if (next_off > stop)
1553                        goto out;
1554
1555                /*
1556                 * is this block fully invalidated?
1557                 */
1558                if (offset <= curr_off)
1559                        discard_buffer(bh);
1560                curr_off = next_off;
1561                bh = next;
1562        } while (bh != head);
1563
1564        /*
1565         * We release buffers only if the entire page is being invalidated.
1566         * The get_block cached value has been unconditionally invalidated,
1567         * so real IO is not possible anymore.
1568         */
1569        if (offset == 0)
1570                try_to_release_page(page, 0);
1571out:
1572        return;
1573}
1574EXPORT_SYMBOL(block_invalidatepage);
1575
1576
1577/*
1578 * We attach and possibly dirty the buffers atomically wrt
1579 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1580 * is already excluded via the page lock.
1581 */
1582void create_empty_buffers(struct page *page,
1583                        unsigned long blocksize, unsigned long b_state)
1584{
1585        struct buffer_head *bh, *head, *tail;
1586
1587        head = alloc_page_buffers(page, blocksize, 1);
1588        bh = head;
1589        do {
1590                bh->b_state |= b_state;
1591                tail = bh;
1592                bh = bh->b_this_page;
1593        } while (bh);
1594        tail->b_this_page = head;
1595
1596        spin_lock(&page->mapping->private_lock);
1597        if (PageUptodate(page) || PageDirty(page)) {
1598                bh = head;
1599                do {
1600                        if (PageDirty(page))
1601                                set_buffer_dirty(bh);
1602                        if (PageUptodate(page))
1603                                set_buffer_uptodate(bh);
1604                        bh = bh->b_this_page;
1605                } while (bh != head);
1606        }
1607        attach_page_buffers(page, head);
1608        spin_unlock(&page->mapping->private_lock);
1609}
1610EXPORT_SYMBOL(create_empty_buffers);
1611
1612/*
1613 * We are taking a block for data and we don't want any output from any
1614 * buffer-cache aliases starting from return from that function and
1615 * until the moment when something will explicitly mark the buffer
1616 * dirty (hopefully that will not happen until we will free that block ;-)
1617 * We don't even need to mark it not-uptodate - nobody can expect
1618 * anything from a newly allocated buffer anyway. We used to used
1619 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1620 * don't want to mark the alias unmapped, for example - it would confuse
1621 * anyone who might pick it with bread() afterwards...
1622 *
1623 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1624 * be writeout I/O going on against recently-freed buffers.  We don't
1625 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1626 * only if we really need to.  That happens here.
1627 */
1628void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1629{
1630        struct buffer_head *old_bh;
1631
1632        might_sleep();
1633
1634        old_bh = __find_get_block_slow(bdev, block);
1635        if (old_bh) {
1636                clear_buffer_dirty(old_bh);
1637                wait_on_buffer(old_bh);
1638                clear_buffer_req(old_bh);
1639                __brelse(old_bh);
1640        }
1641}
1642EXPORT_SYMBOL(unmap_underlying_metadata);
1643
1644/*
1645 * Size is a power-of-two in the range 512..PAGE_SIZE,
1646 * and the case we care about most is PAGE_SIZE.
1647 *
1648 * So this *could* possibly be written with those
1649 * constraints in mind (relevant mostly if some
1650 * architecture has a slow bit-scan instruction)
1651 */
1652static inline int block_size_bits(unsigned int blocksize)
1653{
1654        return ilog2(blocksize);
1655}
1656
1657static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1658{
1659        BUG_ON(!PageLocked(page));
1660
1661        if (!page_has_buffers(page))
1662                create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1663        return page_buffers(page);
1664}
1665
1666/*
1667 * NOTE! All mapped/uptodate combinations are valid:
1668 *
1669 *      Mapped  Uptodate        Meaning
1670 *
1671 *      No      No              "unknown" - must do get_block()
1672 *      No      Yes             "hole" - zero-filled
1673 *      Yes     No              "allocated" - allocated on disk, not read in
1674 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1675 *
1676 * "Dirty" is valid only with the last case (mapped+uptodate).
1677 */
1678
1679/*
1680 * While block_write_full_page is writing back the dirty buffers under
1681 * the page lock, whoever dirtied the buffers may decide to clean them
1682 * again at any time.  We handle that by only looking at the buffer
1683 * state inside lock_buffer().
1684 *
1685 * If block_write_full_page() is called for regular writeback
1686 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1687 * locked buffer.   This only can happen if someone has written the buffer
1688 * directly, with submit_bh().  At the address_space level PageWriteback
1689 * prevents this contention from occurring.
1690 *
1691 * If block_write_full_page() is called with wbc->sync_mode ==
1692 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1693 * causes the writes to be flagged as synchronous writes.
1694 */
1695static int __block_write_full_page(struct inode *inode, struct page *page,
1696                        get_block_t *get_block, struct writeback_control *wbc,
1697                        bh_end_io_t *handler)
1698{
1699        int err;
1700        sector_t block;
1701        sector_t last_block;
1702        struct buffer_head *bh, *head;
1703        unsigned int blocksize, bbits;
1704        int nr_underway = 0;
1705        int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1706                        WRITE_SYNC : WRITE);
1707
1708        head = create_page_buffers(page, inode,
1709                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1710
1711        /*
1712         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1713         * here, and the (potentially unmapped) buffers may become dirty at
1714         * any time.  If a buffer becomes dirty here after we've inspected it
1715         * then we just miss that fact, and the page stays dirty.
1716         *
1717         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1718         * handle that here by just cleaning them.
1719         */
1720
1721        bh = head;
1722        blocksize = bh->b_size;
1723        bbits = block_size_bits(blocksize);
1724
1725        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1726        last_block = (i_size_read(inode) - 1) >> bbits;
1727
1728        /*
1729         * Get all the dirty buffers mapped to disk addresses and
1730         * handle any aliases from the underlying blockdev's mapping.
1731         */
1732        do {
1733                if (block > last_block) {
1734                        /*
1735                         * mapped buffers outside i_size will occur, because
1736                         * this page can be outside i_size when there is a
1737                         * truncate in progress.
1738                         */
1739                        /*
1740                         * The buffer was zeroed by block_write_full_page()
1741                         */
1742                        clear_buffer_dirty(bh);
1743                        set_buffer_uptodate(bh);
1744                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1745                           buffer_dirty(bh)) {
1746                        WARN_ON(bh->b_size != blocksize);
1747                        err = get_block(inode, block, bh, 1);
1748                        if (err)
1749                                goto recover;
1750                        clear_buffer_delay(bh);
1751                        if (buffer_new(bh)) {
1752                                /* blockdev mappings never come here */
1753                                clear_buffer_new(bh);
1754                                unmap_underlying_metadata(bh->b_bdev,
1755                                                        bh->b_blocknr);
1756                        }
1757                }
1758                bh = bh->b_this_page;
1759                block++;
1760        } while (bh != head);
1761
1762        do {
1763                if (!buffer_mapped(bh))
1764                        continue;
1765                /*
1766                 * If it's a fully non-blocking write attempt and we cannot
1767                 * lock the buffer then redirty the page.  Note that this can
1768                 * potentially cause a busy-wait loop from writeback threads
1769                 * and kswapd activity, but those code paths have their own
1770                 * higher-level throttling.
1771                 */
1772                if (wbc->sync_mode != WB_SYNC_NONE) {
1773                        lock_buffer(bh);
1774                } else if (!trylock_buffer(bh)) {
1775                        redirty_page_for_writepage(wbc, page);
1776                        continue;
1777                }
1778                if (test_clear_buffer_dirty(bh)) {
1779                        mark_buffer_async_write_endio(bh, handler);
1780                } else {
1781                        unlock_buffer(bh);
1782                }
1783        } while ((bh = bh->b_this_page) != head);
1784
1785        /*
1786         * The page and its buffers are protected by PageWriteback(), so we can
1787         * drop the bh refcounts early.
1788         */
1789        BUG_ON(PageWriteback(page));
1790        set_page_writeback(page);
1791
1792        do {
1793                struct buffer_head *next = bh->b_this_page;
1794                if (buffer_async_write(bh)) {
1795                        submit_bh(write_op, bh);
1796                        nr_underway++;
1797                }
1798                bh = next;
1799        } while (bh != head);
1800        unlock_page(page);
1801
1802        err = 0;
1803done:
1804        if (nr_underway == 0) {
1805                /*
1806                 * The page was marked dirty, but the buffers were
1807                 * clean.  Someone wrote them back by hand with
1808                 * ll_rw_block/submit_bh.  A rare case.
1809                 */
1810                end_page_writeback(page);
1811
1812                /*
1813                 * The page and buffer_heads can be released at any time from
1814                 * here on.
1815                 */
1816        }
1817        return err;
1818
1819recover:
1820        /*
1821         * ENOSPC, or some other error.  We may already have added some
1822         * blocks to the file, so we need to write these out to avoid
1823         * exposing stale data.
1824         * The page is currently locked and not marked for writeback
1825         */
1826        bh = head;
1827        /* Recovery: lock and submit the mapped buffers */
1828        do {
1829                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1830                    !buffer_delay(bh)) {
1831                        lock_buffer(bh);
1832                        mark_buffer_async_write_endio(bh, handler);
1833                } else {
1834                        /*
1835                         * The buffer may have been set dirty during
1836                         * attachment to a dirty page.
1837                         */
1838                        clear_buffer_dirty(bh);
1839                }
1840        } while ((bh = bh->b_this_page) != head);
1841        SetPageError(page);
1842        BUG_ON(PageWriteback(page));
1843        mapping_set_error(page->mapping, err);
1844        set_page_writeback(page);
1845        do {
1846                struct buffer_head *next = bh->b_this_page;
1847                if (buffer_async_write(bh)) {
1848                        clear_buffer_dirty(bh);
1849                        submit_bh(write_op, bh);
1850                        nr_underway++;
1851                }
1852                bh = next;
1853        } while (bh != head);
1854        unlock_page(page);
1855        goto done;
1856}
1857
1858/*
1859 * If a page has any new buffers, zero them out here, and mark them uptodate
1860 * and dirty so they'll be written out (in order to prevent uninitialised
1861 * block data from leaking). And clear the new bit.
1862 */
1863void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1864{
1865        unsigned int block_start, block_end;
1866        struct buffer_head *head, *bh;
1867
1868        BUG_ON(!PageLocked(page));
1869        if (!page_has_buffers(page))
1870                return;
1871
1872        bh = head = page_buffers(page);
1873        block_start = 0;
1874        do {
1875                block_end = block_start + bh->b_size;
1876
1877                if (buffer_new(bh)) {
1878                        if (block_end > from && block_start < to) {
1879                                if (!PageUptodate(page)) {
1880                                        unsigned start, size;
1881
1882                                        start = max(from, block_start);
1883                                        size = min(to, block_end) - start;
1884
1885                                        zero_user(page, start, size);
1886                                        set_buffer_uptodate(bh);
1887                                }
1888
1889                                clear_buffer_new(bh);
1890                                mark_buffer_dirty(bh);
1891                        }
1892                }
1893
1894                block_start = block_end;
1895                bh = bh->b_this_page;
1896        } while (bh != head);
1897}
1898EXPORT_SYMBOL(page_zero_new_buffers);
1899
1900int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1901                get_block_t *get_block)
1902{
1903        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1904        unsigned to = from + len;
1905        struct inode *inode = page->mapping->host;
1906        unsigned block_start, block_end;
1907        sector_t block;
1908        int err = 0;
1909        unsigned blocksize, bbits;
1910        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1911
1912        BUG_ON(!PageLocked(page));
1913        BUG_ON(from > PAGE_CACHE_SIZE);
1914        BUG_ON(to > PAGE_CACHE_SIZE);
1915        BUG_ON(from > to);
1916
1917        head = create_page_buffers(page, inode, 0);
1918        blocksize = head->b_size;
1919        bbits = block_size_bits(blocksize);
1920
1921        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1922
1923        for(bh = head, block_start = 0; bh != head || !block_start;
1924            block++, block_start=block_end, bh = bh->b_this_page) {
1925                block_end = block_start + blocksize;
1926                if (block_end <= from || block_start >= to) {
1927                        if (PageUptodate(page)) {
1928                                if (!buffer_uptodate(bh))
1929                                        set_buffer_uptodate(bh);
1930                        }
1931                        continue;
1932                }
1933                if (buffer_new(bh))
1934                        clear_buffer_new(bh);
1935                if (!buffer_mapped(bh)) {
1936                        WARN_ON(bh->b_size != blocksize);
1937                        err = get_block(inode, block, bh, 1);
1938                        if (err)
1939                                break;
1940                        if (buffer_new(bh)) {
1941                                unmap_underlying_metadata(bh->b_bdev,
1942                                                        bh->b_blocknr);
1943                                if (PageUptodate(page)) {
1944                                        clear_buffer_new(bh);
1945                                        set_buffer_uptodate(bh);
1946                                        mark_buffer_dirty(bh);
1947                                        continue;
1948                                }
1949                                if (block_end > to || block_start < from)
1950                                        zero_user_segments(page,
1951                                                to, block_end,
1952                                                block_start, from);
1953                                continue;
1954                        }
1955                }
1956                if (PageUptodate(page)) {
1957                        if (!buffer_uptodate(bh))
1958                                set_buffer_uptodate(bh);
1959                        continue; 
1960                }
1961                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1962                    !buffer_unwritten(bh) &&
1963                     (block_start < from || block_end > to)) {
1964                        ll_rw_block(READ, 1, &bh);
1965                        *wait_bh++=bh;
1966                }
1967        }
1968        /*
1969         * If we issued read requests - let them complete.
1970         */
1971        while(wait_bh > wait) {
1972                wait_on_buffer(*--wait_bh);
1973                if (!buffer_uptodate(*wait_bh))
1974                        err = -EIO;
1975        }
1976        if (unlikely(err))
1977                page_zero_new_buffers(page, from, to);
1978        return err;
1979}
1980EXPORT_SYMBOL(__block_write_begin);
1981
1982static int __block_commit_write(struct inode *inode, struct page *page,
1983                unsigned from, unsigned to)
1984{
1985        unsigned block_start, block_end;
1986        int partial = 0;
1987        unsigned blocksize;
1988        struct buffer_head *bh, *head;
1989
1990        bh = head = page_buffers(page);
1991        blocksize = bh->b_size;
1992
1993        block_start = 0;
1994        do {
1995                block_end = block_start + blocksize;
1996                if (block_end <= from || block_start >= to) {
1997                        if (!buffer_uptodate(bh))
1998                                partial = 1;
1999                } else {
2000                        set_buffer_uptodate(bh);
2001                        mark_buffer_dirty(bh);
2002                }
2003                clear_buffer_new(bh);
2004
2005                block_start = block_end;
2006                bh = bh->b_this_page;
2007        } while (bh != head);
2008
2009        /*
2010         * If this is a partial write which happened to make all buffers
2011         * uptodate then we can optimize away a bogus readpage() for
2012         * the next read(). Here we 'discover' whether the page went
2013         * uptodate as a result of this (potentially partial) write.
2014         */
2015        if (!partial)
2016                SetPageUptodate(page);
2017        return 0;
2018}
2019
2020/*
2021 * block_write_begin takes care of the basic task of block allocation and
2022 * bringing partial write blocks uptodate first.
2023 *
2024 * The filesystem needs to handle block truncation upon failure.
2025 */
2026int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2027                unsigned flags, struct page **pagep, get_block_t *get_block)
2028{
2029        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2030        struct page *page;
2031        int status;
2032
2033        page = grab_cache_page_write_begin(mapping, index, flags);
2034        if (!page)
2035                return -ENOMEM;
2036
2037        status = __block_write_begin(page, pos, len, get_block);
2038        if (unlikely(status)) {
2039                unlock_page(page);
2040                page_cache_release(page);
2041                page = NULL;
2042        }
2043
2044        *pagep = page;
2045        return status;
2046}
2047EXPORT_SYMBOL(block_write_begin);
2048
2049int block_write_end(struct file *file, struct address_space *mapping,
2050                        loff_t pos, unsigned len, unsigned copied,
2051                        struct page *page, void *fsdata)
2052{
2053        struct inode *inode = mapping->host;
2054        unsigned start;
2055
2056        start = pos & (PAGE_CACHE_SIZE - 1);
2057
2058        if (unlikely(copied < len)) {
2059                /*
2060                 * The buffers that were written will now be uptodate, so we
2061                 * don't have to worry about a readpage reading them and
2062                 * overwriting a partial write. However if we have encountered
2063                 * a short write and only partially written into a buffer, it
2064                 * will not be marked uptodate, so a readpage might come in and
2065                 * destroy our partial write.
2066                 *
2067                 * Do the simplest thing, and just treat any short write to a
2068                 * non uptodate page as a zero-length write, and force the
2069                 * caller to redo the whole thing.
2070                 */
2071                if (!PageUptodate(page))
2072                        copied = 0;
2073
2074                page_zero_new_buffers(page, start+copied, start+len);
2075        }
2076        flush_dcache_page(page);
2077
2078        /* This could be a short (even 0-length) commit */
2079        __block_commit_write(inode, page, start, start+copied);
2080
2081        return copied;
2082}
2083EXPORT_SYMBOL(block_write_end);
2084
2085int generic_write_end(struct file *file, struct address_space *mapping,
2086                        loff_t pos, unsigned len, unsigned copied,
2087                        struct page *page, void *fsdata)
2088{
2089        struct inode *inode = mapping->host;
2090        int i_size_changed = 0;
2091
2092        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2093
2094        /*
2095         * No need to use i_size_read() here, the i_size
2096         * cannot change under us because we hold i_mutex.
2097         *
2098         * But it's important to update i_size while still holding page lock:
2099         * page writeout could otherwise come in and zero beyond i_size.
2100         */
2101        if (pos+copied > inode->i_size) {
2102                i_size_write(inode, pos+copied);
2103                i_size_changed = 1;
2104        }
2105
2106        unlock_page(page);
2107        page_cache_release(page);
2108
2109        /*
2110         * Don't mark the inode dirty under page lock. First, it unnecessarily
2111         * makes the holding time of page lock longer. Second, it forces lock
2112         * ordering of page lock and transaction start for journaling
2113         * filesystems.
2114         */
2115        if (i_size_changed)
2116                mark_inode_dirty(inode);
2117
2118        return copied;
2119}
2120EXPORT_SYMBOL(generic_write_end);
2121
2122/*
2123 * block_is_partially_uptodate checks whether buffers within a page are
2124 * uptodate or not.
2125 *
2126 * Returns true if all buffers which correspond to a file portion
2127 * we want to read are uptodate.
2128 */
2129int block_is_partially_uptodate(struct page *page, unsigned long from,
2130                                        unsigned long count)
2131{
2132        unsigned block_start, block_end, blocksize;
2133        unsigned to;
2134        struct buffer_head *bh, *head;
2135        int ret = 1;
2136
2137        if (!page_has_buffers(page))
2138                return 0;
2139
2140        head = page_buffers(page);
2141        blocksize = head->b_size;
2142        to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2143        to = from + to;
2144        if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2145                return 0;
2146
2147        bh = head;
2148        block_start = 0;
2149        do {
2150                block_end = block_start + blocksize;
2151                if (block_end > from && block_start < to) {
2152                        if (!buffer_uptodate(bh)) {
2153                                ret = 0;
2154                                break;
2155                        }
2156                        if (block_end >= to)
2157                                break;
2158                }
2159                block_start = block_end;
2160                bh = bh->b_this_page;
2161        } while (bh != head);
2162
2163        return ret;
2164}
2165EXPORT_SYMBOL(block_is_partially_uptodate);
2166
2167/*
2168 * Generic "read page" function for block devices that have the normal
2169 * get_block functionality. This is most of the block device filesystems.
2170 * Reads the page asynchronously --- the unlock_buffer() and
2171 * set/clear_buffer_uptodate() functions propagate buffer state into the
2172 * page struct once IO has completed.
2173 */
2174int block_read_full_page(struct page *page, get_block_t *get_block)
2175{
2176        struct inode *inode = page->mapping->host;
2177        sector_t iblock, lblock;
2178        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2179        unsigned int blocksize, bbits;
2180        int nr, i;
2181        int fully_mapped = 1;
2182
2183        head = create_page_buffers(page, inode, 0);
2184        blocksize = head->b_size;
2185        bbits = block_size_bits(blocksize);
2186
2187        iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2188        lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2189        bh = head;
2190        nr = 0;
2191        i = 0;
2192
2193        do {
2194                if (buffer_uptodate(bh))
2195                        continue;
2196
2197                if (!buffer_mapped(bh)) {
2198                        int err = 0;
2199
2200                        fully_mapped = 0;
2201                        if (iblock < lblock) {
2202                                WARN_ON(bh->b_size != blocksize);
2203                                err = get_block(inode, iblock, bh, 0);
2204                                if (err)
2205                                        SetPageError(page);
2206                        }
2207                        if (!buffer_mapped(bh)) {
2208                                zero_user(page, i * blocksize, blocksize);
2209                                if (!err)
2210                                        set_buffer_uptodate(bh);
2211                                continue;
2212                        }
2213                        /*
2214                         * get_block() might have updated the buffer
2215                         * synchronously
2216                         */
2217                        if (buffer_uptodate(bh))
2218                                continue;
2219                }
2220                arr[nr++] = bh;
2221        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2222
2223        if (fully_mapped)
2224                SetPageMappedToDisk(page);
2225
2226        if (!nr) {
2227                /*
2228                 * All buffers are uptodate - we can set the page uptodate
2229                 * as well. But not if get_block() returned an error.
2230                 */
2231                if (!PageError(page))
2232                        SetPageUptodate(page);
2233                unlock_page(page);
2234                return 0;
2235        }
2236
2237        /* Stage two: lock the buffers */
2238        for (i = 0; i < nr; i++) {
2239                bh = arr[i];
2240                lock_buffer(bh);
2241                mark_buffer_async_read(bh);
2242        }
2243
2244        /*
2245         * Stage 3: start the IO.  Check for uptodateness
2246         * inside the buffer lock in case another process reading
2247         * the underlying blockdev brought it uptodate (the sct fix).
2248         */
2249        for (i = 0; i < nr; i++) {
2250                bh = arr[i];
2251                if (buffer_uptodate(bh))
2252                        end_buffer_async_read(bh, 1);
2253                else
2254                        submit_bh(READ, bh);
2255        }
2256        return 0;
2257}
2258EXPORT_SYMBOL(block_read_full_page);
2259
2260/* utility function for filesystems that need to do work on expanding
2261 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2262 * deal with the hole.  
2263 */
2264int generic_cont_expand_simple(struct inode *inode, loff_t size)
2265{
2266        struct address_space *mapping = inode->i_mapping;
2267        struct page *page;
2268        void *fsdata;
2269        int err;
2270
2271        err = inode_newsize_ok(inode, size);
2272        if (err)
2273                goto out;
2274
2275        err = pagecache_write_begin(NULL, mapping, size, 0,
2276                                AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2277                                &page, &fsdata);
2278        if (err)
2279                goto out;
2280
2281        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2282        BUG_ON(err > 0);
2283
2284out:
2285        return err;
2286}
2287EXPORT_SYMBOL(generic_cont_expand_simple);
2288
2289static int cont_expand_zero(struct file *file, struct address_space *mapping,
2290                            loff_t pos, loff_t *bytes)
2291{
2292        struct inode *inode = mapping->host;
2293        unsigned blocksize = 1 << inode->i_blkbits;
2294        struct page *page;
2295        void *fsdata;
2296        pgoff_t index, curidx;
2297        loff_t curpos;
2298        unsigned zerofrom, offset, len;
2299        int err = 0;
2300
2301        index = pos >> PAGE_CACHE_SHIFT;
2302        offset = pos & ~PAGE_CACHE_MASK;
2303
2304        while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2305                zerofrom = curpos & ~PAGE_CACHE_MASK;
2306                if (zerofrom & (blocksize-1)) {
2307                        *bytes |= (blocksize-1);
2308                        (*bytes)++;
2309                }
2310                len = PAGE_CACHE_SIZE - zerofrom;
2311
2312                err = pagecache_write_begin(file, mapping, curpos, len,
2313                                                AOP_FLAG_UNINTERRUPTIBLE,
2314                                                &page, &fsdata);
2315                if (err)
2316                        goto out;
2317                zero_user(page, zerofrom, len);
2318                err = pagecache_write_end(file, mapping, curpos, len, len,
2319                                                page, fsdata);
2320                if (err < 0)
2321                        goto out;
2322                BUG_ON(err != len);
2323                err = 0;
2324
2325                balance_dirty_pages_ratelimited(mapping);
2326        }
2327
2328        /* page covers the boundary, find the boundary offset */
2329        if (index == curidx) {
2330                zerofrom = curpos & ~PAGE_CACHE_MASK;
2331                /* if we will expand the thing last block will be filled */
2332                if (offset <= zerofrom) {
2333                        goto out;
2334                }
2335                if (zerofrom & (blocksize-1)) {
2336                        *bytes |= (blocksize-1);
2337                        (*bytes)++;
2338                }
2339                len = offset - zerofrom;
2340
2341                err = pagecache_write_begin(file, mapping, curpos, len,
2342                                                AOP_FLAG_UNINTERRUPTIBLE,
2343                                                &page, &fsdata);
2344                if (err)
2345                        goto out;
2346                zero_user(page, zerofrom, len);
2347                err = pagecache_write_end(file, mapping, curpos, len, len,
2348                                                page, fsdata);
2349                if (err < 0)
2350                        goto out;
2351                BUG_ON(err != len);
2352                err = 0;
2353        }
2354out:
2355        return err;
2356}
2357
2358/*
2359 * For moronic filesystems that do not allow holes in file.
2360 * We may have to extend the file.
2361 */
2362int cont_write_begin(struct file *file, struct address_space *mapping,
2363                        loff_t pos, unsigned len, unsigned flags,
2364                        struct page **pagep, void **fsdata,
2365                        get_block_t *get_block, loff_t *bytes)
2366{
2367        struct inode *inode = mapping->host;
2368        unsigned blocksize = 1 << inode->i_blkbits;
2369        unsigned zerofrom;
2370        int err;
2371
2372        err = cont_expand_zero(file, mapping, pos, bytes);
2373        if (err)
2374                return err;
2375
2376        zerofrom = *bytes & ~PAGE_CACHE_MASK;
2377        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2378                *bytes |= (blocksize-1);
2379                (*bytes)++;
2380        }
2381
2382        return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2383}
2384EXPORT_SYMBOL(cont_write_begin);
2385
2386int block_commit_write(struct page *page, unsigned from, unsigned to)
2387{
2388        struct inode *inode = page->mapping->host;
2389        __block_commit_write(inode,page,from,to);
2390        return 0;
2391}
2392EXPORT_SYMBOL(block_commit_write);
2393
2394/*
2395 * block_page_mkwrite() is not allowed to change the file size as it gets
2396 * called from a page fault handler when a page is first dirtied. Hence we must
2397 * be careful to check for EOF conditions here. We set the page up correctly
2398 * for a written page which means we get ENOSPC checking when writing into
2399 * holes and correct delalloc and unwritten extent mapping on filesystems that
2400 * support these features.
2401 *
2402 * We are not allowed to take the i_mutex here so we have to play games to
2403 * protect against truncate races as the page could now be beyond EOF.  Because
2404 * truncate writes the inode size before removing pages, once we have the
2405 * page lock we can determine safely if the page is beyond EOF. If it is not
2406 * beyond EOF, then the page is guaranteed safe against truncation until we
2407 * unlock the page.
2408 *
2409 * Direct callers of this function should protect against filesystem freezing
2410 * using sb_start_write() - sb_end_write() functions.
2411 */
2412int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2413                         get_block_t get_block)
2414{
2415        struct page *page = vmf->page;
2416        struct inode *inode = file_inode(vma->vm_file);
2417        unsigned long end;
2418        loff_t size;
2419        int ret;
2420
2421        lock_page(page);
2422        size = i_size_read(inode);
2423        if ((page->mapping != inode->i_mapping) ||
2424            (page_offset(page) > size)) {
2425                /* We overload EFAULT to mean page got truncated */
2426                ret = -EFAULT;
2427                goto out_unlock;
2428        }
2429
2430        /* page is wholly or partially inside EOF */
2431        if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2432                end = size & ~PAGE_CACHE_MASK;
2433        else
2434                end = PAGE_CACHE_SIZE;
2435
2436        ret = __block_write_begin(page, 0, end, get_block);
2437        if (!ret)
2438                ret = block_commit_write(page, 0, end);
2439
2440        if (unlikely(ret < 0))
2441                goto out_unlock;
2442        set_page_dirty(page);
2443        wait_for_stable_page(page);
2444        return 0;
2445out_unlock:
2446        unlock_page(page);
2447        return ret;
2448}
2449EXPORT_SYMBOL(__block_page_mkwrite);
2450
2451int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2452                   get_block_t get_block)
2453{
2454        int ret;
2455        struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2456
2457        sb_start_pagefault(sb);
2458
2459        /*
2460         * Update file times before taking page lock. We may end up failing the
2461         * fault so this update may be superfluous but who really cares...
2462         */
2463        file_update_time(vma->vm_file);
2464
2465        ret = __block_page_mkwrite(vma, vmf, get_block);
2466        sb_end_pagefault(sb);
2467        return block_page_mkwrite_return(ret);
2468}
2469EXPORT_SYMBOL(block_page_mkwrite);
2470
2471/*
2472 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2473 * immediately, while under the page lock.  So it needs a special end_io
2474 * handler which does not touch the bh after unlocking it.
2475 */
2476static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2477{
2478        __end_buffer_read_notouch(bh, uptodate);
2479}
2480
2481/*
2482 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2483 * the page (converting it to circular linked list and taking care of page
2484 * dirty races).
2485 */
2486static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2487{
2488        struct buffer_head *bh;
2489
2490        BUG_ON(!PageLocked(page));
2491
2492        spin_lock(&page->mapping->private_lock);
2493        bh = head;
2494        do {
2495                if (PageDirty(page))
2496                        set_buffer_dirty(bh);
2497                if (!bh->b_this_page)
2498                        bh->b_this_page = head;
2499                bh = bh->b_this_page;
2500        } while (bh != head);
2501        attach_page_buffers(page, head);
2502        spin_unlock(&page->mapping->private_lock);
2503}
2504
2505/*
2506 * On entry, the page is fully not uptodate.
2507 * On exit the page is fully uptodate in the areas outside (from,to)
2508 * The filesystem needs to handle block truncation upon failure.
2509 */
2510int nobh_write_begin(struct address_space *mapping,
2511                        loff_t pos, unsigned len, unsigned flags,
2512                        struct page **pagep, void **fsdata,
2513                        get_block_t *get_block)
2514{
2515        struct inode *inode = mapping->host;
2516        const unsigned blkbits = inode->i_blkbits;
2517        const unsigned blocksize = 1 << blkbits;
2518        struct buffer_head *head, *bh;
2519        struct page *page;
2520        pgoff_t index;
2521        unsigned from, to;
2522        unsigned block_in_page;
2523        unsigned block_start, block_end;
2524        sector_t block_in_file;
2525        int nr_reads = 0;
2526        int ret = 0;
2527        int is_mapped_to_disk = 1;
2528
2529        index = pos >> PAGE_CACHE_SHIFT;
2530        from = pos & (PAGE_CACHE_SIZE - 1);
2531        to = from + len;
2532
2533        page = grab_cache_page_write_begin(mapping, index, flags);
2534        if (!page)
2535                return -ENOMEM;
2536        *pagep = page;
2537        *fsdata = NULL;
2538
2539        if (page_has_buffers(page)) {
2540                ret = __block_write_begin(page, pos, len, get_block);
2541                if (unlikely(ret))
2542                        goto out_release;
2543                return ret;
2544        }
2545
2546        if (PageMappedToDisk(page))
2547                return 0;
2548
2549        /*
2550         * Allocate buffers so that we can keep track of state, and potentially
2551         * attach them to the page if an error occurs. In the common case of
2552         * no error, they will just be freed again without ever being attached
2553         * to the page (which is all OK, because we're under the page lock).
2554         *
2555         * Be careful: the buffer linked list is a NULL terminated one, rather
2556         * than the circular one we're used to.
2557         */
2558        head = alloc_page_buffers(page, blocksize, 0);
2559        if (!head) {
2560                ret = -ENOMEM;
2561                goto out_release;
2562        }
2563
2564        block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2565
2566        /*
2567         * We loop across all blocks in the page, whether or not they are
2568         * part of the affected region.  This is so we can discover if the
2569         * page is fully mapped-to-disk.
2570         */
2571        for (block_start = 0, block_in_page = 0, bh = head;
2572                  block_start < PAGE_CACHE_SIZE;
2573                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2574                int create;
2575
2576                block_end = block_start + blocksize;
2577                bh->b_state = 0;
2578                create = 1;
2579                if (block_start >= to)
2580                        create = 0;
2581                ret = get_block(inode, block_in_file + block_in_page,
2582                                        bh, create);
2583                if (ret)
2584                        goto failed;
2585                if (!buffer_mapped(bh))
2586                        is_mapped_to_disk = 0;
2587                if (buffer_new(bh))
2588                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2589                if (PageUptodate(page)) {
2590                        set_buffer_uptodate(bh);
2591                        continue;
2592                }
2593                if (buffer_new(bh) || !buffer_mapped(bh)) {
2594                        zero_user_segments(page, block_start, from,
2595                                                        to, block_end);
2596                        continue;
2597                }
2598                if (buffer_uptodate(bh))
2599                        continue;       /* reiserfs does this */
2600                if (block_start < from || block_end > to) {
2601                        lock_buffer(bh);
2602                        bh->b_end_io = end_buffer_read_nobh;
2603                        submit_bh(READ, bh);
2604                        nr_reads++;
2605                }
2606        }
2607
2608        if (nr_reads) {
2609                /*
2610                 * The page is locked, so these buffers are protected from
2611                 * any VM or truncate activity.  Hence we don't need to care
2612                 * for the buffer_head refcounts.
2613                 */
2614                for (bh = head; bh; bh = bh->b_this_page) {
2615                        wait_on_buffer(bh);
2616                        if (!buffer_uptodate(bh))
2617                                ret = -EIO;
2618                }
2619                if (ret)
2620                        goto failed;
2621        }
2622
2623        if (is_mapped_to_disk)
2624                SetPageMappedToDisk(page);
2625
2626        *fsdata = head; /* to be released by nobh_write_end */
2627
2628        return 0;
2629
2630failed:
2631        BUG_ON(!ret);
2632        /*
2633         * Error recovery is a bit difficult. We need to zero out blocks that
2634         * were newly allocated, and dirty them to ensure they get written out.
2635         * Buffers need to be attached to the page at this point, otherwise
2636         * the handling of potential IO errors during writeout would be hard
2637         * (could try doing synchronous writeout, but what if that fails too?)
2638         */
2639        attach_nobh_buffers(page, head);
2640        page_zero_new_buffers(page, from, to);
2641
2642out_release:
2643        unlock_page(page);
2644        page_cache_release(page);
2645        *pagep = NULL;
2646
2647        return ret;
2648}
2649EXPORT_SYMBOL(nobh_write_begin);
2650
2651int nobh_write_end(struct file *file, struct address_space *mapping,
2652                        loff_t pos, unsigned len, unsigned copied,
2653                        struct page *page, void *fsdata)
2654{
2655        struct inode *inode = page->mapping->host;
2656        struct buffer_head *head = fsdata;
2657        struct buffer_head *bh;
2658        BUG_ON(fsdata != NULL && page_has_buffers(page));
2659
2660        if (unlikely(copied < len) && head)
2661                attach_nobh_buffers(page, head);
2662        if (page_has_buffers(page))
2663                return generic_write_end(file, mapping, pos, len,
2664                                        copied, page, fsdata);
2665
2666        SetPageUptodate(page);
2667        set_page_dirty(page);
2668        if (pos+copied > inode->i_size) {
2669                i_size_write(inode, pos+copied);
2670                mark_inode_dirty(inode);
2671        }
2672
2673        unlock_page(page);
2674        page_cache_release(page);
2675
2676        while (head) {
2677                bh = head;
2678                head = head->b_this_page;
2679                free_buffer_head(bh);
2680        }
2681
2682        return copied;
2683}
2684EXPORT_SYMBOL(nobh_write_end);
2685
2686/*
2687 * nobh_writepage() - based on block_full_write_page() except
2688 * that it tries to operate without attaching bufferheads to
2689 * the page.
2690 */
2691int nobh_writepage(struct page *page, get_block_t *get_block,
2692                        struct writeback_control *wbc)
2693{
2694        struct inode * const inode = page->mapping->host;
2695        loff_t i_size = i_size_read(inode);
2696        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2697        unsigned offset;
2698        int ret;
2699
2700        /* Is the page fully inside i_size? */
2701        if (page->index < end_index)
2702                goto out;
2703
2704        /* Is the page fully outside i_size? (truncate in progress) */
2705        offset = i_size & (PAGE_CACHE_SIZE-1);
2706        if (page->index >= end_index+1 || !offset) {
2707                /*
2708                 * The page may have dirty, unmapped buffers.  For example,
2709                 * they may have been added in ext3_writepage().  Make them
2710                 * freeable here, so the page does not leak.
2711                 */
2712#if 0
2713                /* Not really sure about this  - do we need this ? */
2714                if (page->mapping->a_ops->invalidatepage)
2715                        page->mapping->a_ops->invalidatepage(page, offset);
2716#endif
2717                unlock_page(page);
2718                return 0; /* don't care */
2719        }
2720
2721        /*
2722         * The page straddles i_size.  It must be zeroed out on each and every
2723         * writepage invocation because it may be mmapped.  "A file is mapped
2724         * in multiples of the page size.  For a file that is not a multiple of
2725         * the  page size, the remaining memory is zeroed when mapped, and
2726         * writes to that region are not written out to the file."
2727         */
2728        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2729out:
2730        ret = mpage_writepage(page, get_block, wbc);
2731        if (ret == -EAGAIN)
2732                ret = __block_write_full_page(inode, page, get_block, wbc,
2733                                              end_buffer_async_write);
2734        return ret;
2735}
2736EXPORT_SYMBOL(nobh_writepage);
2737
2738int nobh_truncate_page(struct address_space *mapping,
2739                        loff_t from, get_block_t *get_block)
2740{
2741        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2742        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2743        unsigned blocksize;
2744        sector_t iblock;
2745        unsigned length, pos;
2746        struct inode *inode = mapping->host;
2747        struct page *page;
2748        struct buffer_head map_bh;
2749        int err;
2750
2751        blocksize = 1 << inode->i_blkbits;
2752        length = offset & (blocksize - 1);
2753
2754        /* Block boundary? Nothing to do */
2755        if (!length)
2756                return 0;
2757
2758        length = blocksize - length;
2759        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2760
2761        page = grab_cache_page(mapping, index);
2762        err = -ENOMEM;
2763        if (!page)
2764                goto out;
2765
2766        if (page_has_buffers(page)) {
2767has_buffers:
2768                unlock_page(page);
2769                page_cache_release(page);
2770                return block_truncate_page(mapping, from, get_block);
2771        }
2772
2773        /* Find the buffer that contains "offset" */
2774        pos = blocksize;
2775        while (offset >= pos) {
2776                iblock++;
2777                pos += blocksize;
2778        }
2779
2780        map_bh.b_size = blocksize;
2781        map_bh.b_state = 0;
2782        err = get_block(inode, iblock, &map_bh, 0);
2783        if (err)
2784                goto unlock;
2785        /* unmapped? It's a hole - nothing to do */
2786        if (!buffer_mapped(&map_bh))
2787                goto unlock;
2788
2789        /* Ok, it's mapped. Make sure it's up-to-date */
2790        if (!PageUptodate(page)) {
2791                err = mapping->a_ops->readpage(NULL, page);
2792                if (err) {
2793                        page_cache_release(page);
2794                        goto out;
2795                }
2796                lock_page(page);
2797                if (!PageUptodate(page)) {
2798                        err = -EIO;
2799                        goto unlock;
2800                }
2801                if (page_has_buffers(page))
2802                        goto has_buffers;
2803        }
2804        zero_user(page, offset, length);
2805        set_page_dirty(page);
2806        err = 0;
2807
2808unlock:
2809        unlock_page(page);
2810        page_cache_release(page);
2811out:
2812        return err;
2813}
2814EXPORT_SYMBOL(nobh_truncate_page);
2815
2816int block_truncate_page(struct address_space *mapping,
2817                        loff_t from, get_block_t *get_block)
2818{
2819        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2820        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2821        unsigned blocksize;
2822        sector_t iblock;
2823        unsigned length, pos;
2824        struct inode *inode = mapping->host;
2825        struct page *page;
2826        struct buffer_head *bh;
2827        int err;
2828
2829        blocksize = 1 << inode->i_blkbits;
2830        length = offset & (blocksize - 1);
2831
2832        /* Block boundary? Nothing to do */
2833        if (!length)
2834                return 0;
2835
2836        length = blocksize - length;
2837        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2838        
2839        page = grab_cache_page(mapping, index);
2840        err = -ENOMEM;
2841        if (!page)
2842                goto out;
2843
2844        if (!page_has_buffers(page))
2845                create_empty_buffers(page, blocksize, 0);
2846
2847        /* Find the buffer that contains "offset" */
2848        bh = page_buffers(page);
2849        pos = blocksize;
2850        while (offset >= pos) {
2851                bh = bh->b_this_page;
2852                iblock++;
2853                pos += blocksize;
2854        }
2855
2856        err = 0;
2857        if (!buffer_mapped(bh)) {
2858                WARN_ON(bh->b_size != blocksize);
2859                err = get_block(inode, iblock, bh, 0);
2860                if (err)
2861                        goto unlock;
2862                /* unmapped? It's a hole - nothing to do */
2863                if (!buffer_mapped(bh))
2864                        goto unlock;
2865        }
2866
2867        /* Ok, it's mapped. Make sure it's up-to-date */
2868        if (PageUptodate(page))
2869                set_buffer_uptodate(bh);
2870
2871        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2872                err = -EIO;
2873                ll_rw_block(READ, 1, &bh);
2874                wait_on_buffer(bh);
2875                /* Uhhuh. Read error. Complain and punt. */
2876                if (!buffer_uptodate(bh))
2877                        goto unlock;
2878        }
2879
2880        zero_user(page, offset, length);
2881        mark_buffer_dirty(bh);
2882        err = 0;
2883
2884unlock:
2885        unlock_page(page);
2886        page_cache_release(page);
2887out:
2888        return err;
2889}
2890EXPORT_SYMBOL(block_truncate_page);
2891
2892/*
2893 * The generic ->writepage function for buffer-backed address_spaces
2894 */
2895int block_write_full_page(struct page *page, get_block_t *get_block,
2896                        struct writeback_control *wbc)
2897{
2898        struct inode * const inode = page->mapping->host;
2899        loff_t i_size = i_size_read(inode);
2900        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2901        unsigned offset;
2902
2903        /* Is the page fully inside i_size? */
2904        if (page->index < end_index)
2905                return __block_write_full_page(inode, page, get_block, wbc,
2906                                               end_buffer_async_write);
2907
2908        /* Is the page fully outside i_size? (truncate in progress) */
2909        offset = i_size & (PAGE_CACHE_SIZE-1);
2910        if (page->index >= end_index+1 || !offset) {
2911                /*
2912                 * The page may have dirty, unmapped buffers.  For example,
2913                 * they may have been added in ext3_writepage().  Make them
2914                 * freeable here, so the page does not leak.
2915                 */
2916                do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2917                unlock_page(page);
2918                return 0; /* don't care */
2919        }
2920
2921        /*
2922         * The page straddles i_size.  It must be zeroed out on each and every
2923         * writepage invocation because it may be mmapped.  "A file is mapped
2924         * in multiples of the page size.  For a file that is not a multiple of
2925         * the  page size, the remaining memory is zeroed when mapped, and
2926         * writes to that region are not written out to the file."
2927         */
2928        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2929        return __block_write_full_page(inode, page, get_block, wbc,
2930                                                        end_buffer_async_write);
2931}
2932EXPORT_SYMBOL(block_write_full_page);
2933
2934sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2935                            get_block_t *get_block)
2936{
2937        struct buffer_head tmp;
2938        struct inode *inode = mapping->host;
2939        tmp.b_state = 0;
2940        tmp.b_blocknr = 0;
2941        tmp.b_size = 1 << inode->i_blkbits;
2942        get_block(inode, block, &tmp, 0);
2943        return tmp.b_blocknr;
2944}
2945EXPORT_SYMBOL(generic_block_bmap);
2946
2947static void end_bio_bh_io_sync(struct bio *bio, int err)
2948{
2949        struct buffer_head *bh = bio->bi_private;
2950
2951        if (err == -EOPNOTSUPP) {
2952                set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2953        }
2954
2955        if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2956                set_bit(BH_Quiet, &bh->b_state);
2957
2958        bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2959        bio_put(bio);
2960}
2961
2962/*
2963 * This allows us to do IO even on the odd last sectors
2964 * of a device, even if the bh block size is some multiple
2965 * of the physical sector size.
2966 *
2967 * We'll just truncate the bio to the size of the device,
2968 * and clear the end of the buffer head manually.
2969 *
2970 * Truly out-of-range accesses will turn into actual IO
2971 * errors, this only handles the "we need to be able to
2972 * do IO at the final sector" case.
2973 */
2974static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2975{
2976        sector_t maxsector;
2977        unsigned bytes;
2978
2979        maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2980        if (!maxsector)
2981                return;
2982
2983        /*
2984         * If the *whole* IO is past the end of the device,
2985         * let it through, and the IO layer will turn it into
2986         * an EIO.
2987         */
2988        if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2989                return;
2990
2991        maxsector -= bio->bi_iter.bi_sector;
2992        bytes = bio->bi_iter.bi_size;
2993        if (likely((bytes >> 9) <= maxsector))
2994                return;
2995
2996        /* Uhhuh. We've got a bh that straddles the device size! */
2997        bytes = maxsector << 9;
2998
2999        /* Truncate the bio.. */
3000        bio->bi_iter.bi_size = bytes;
3001        bio->bi_io_vec[0].bv_len = bytes;
3002
3003        /* ..and clear the end of the buffer for reads */
3004        if ((rw & RW_MASK) == READ) {
3005                void *kaddr = kmap_atomic(bh->b_page);
3006                memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3007                kunmap_atomic(kaddr);
3008                flush_dcache_page(bh->b_page);
3009        }
3010}
3011
3012int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3013{
3014        struct bio *bio;
3015        int ret = 0;
3016
3017        BUG_ON(!buffer_locked(bh));
3018        BUG_ON(!buffer_mapped(bh));
3019        BUG_ON(!bh->b_end_io);
3020        BUG_ON(buffer_delay(bh));
3021        BUG_ON(buffer_unwritten(bh));
3022
3023        /*
3024         * Only clear out a write error when rewriting
3025         */
3026        if (test_set_buffer_req(bh) && (rw & WRITE))
3027                clear_buffer_write_io_error(bh);
3028
3029        /*
3030         * from here on down, it's all bio -- do the initial mapping,
3031         * submit_bio -> generic_make_request may further map this bio around
3032         */
3033        bio = bio_alloc(GFP_NOIO, 1);
3034
3035        bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3036        bio->bi_bdev = bh->b_bdev;
3037        bio->bi_io_vec[0].bv_page = bh->b_page;
3038        bio->bi_io_vec[0].bv_len = bh->b_size;
3039        bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3040
3041        bio->bi_vcnt = 1;
3042        bio->bi_iter.bi_size = bh->b_size;
3043
3044        bio->bi_end_io = end_bio_bh_io_sync;
3045        bio->bi_private = bh;
3046        bio->bi_flags |= bio_flags;
3047
3048        /* Take care of bh's that straddle the end of the device */
3049        guard_bh_eod(rw, bio, bh);
3050
3051        if (buffer_meta(bh))
3052                rw |= REQ_META;
3053        if (buffer_prio(bh))
3054                rw |= REQ_PRIO;
3055
3056        bio_get(bio);
3057        submit_bio(rw, bio);
3058
3059        if (bio_flagged(bio, BIO_EOPNOTSUPP))
3060                ret = -EOPNOTSUPP;
3061
3062        bio_put(bio);
3063        return ret;
3064}
3065EXPORT_SYMBOL_GPL(_submit_bh);
3066
3067int submit_bh(int rw, struct buffer_head *bh)
3068{
3069        return _submit_bh(rw, bh, 0);
3070}
3071EXPORT_SYMBOL(submit_bh);
3072
3073/**
3074 * ll_rw_block: low-level access to block devices (DEPRECATED)
3075 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3076 * @nr: number of &struct buffer_heads in the array
3077 * @bhs: array of pointers to &struct buffer_head
3078 *
3079 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3080 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3081 * %READA option is described in the documentation for generic_make_request()
3082 * which ll_rw_block() calls.
3083 *
3084 * This function drops any buffer that it cannot get a lock on (with the
3085 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3086 * request, and any buffer that appears to be up-to-date when doing read
3087 * request.  Further it marks as clean buffers that are processed for
3088 * writing (the buffer cache won't assume that they are actually clean
3089 * until the buffer gets unlocked).
3090 *
3091 * ll_rw_block sets b_end_io to simple completion handler that marks
3092 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3093 * any waiters. 
3094 *
3095 * All of the buffers must be for the same device, and must also be a
3096 * multiple of the current approved size for the device.
3097 */
3098void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3099{
3100        int i;
3101
3102        for (i = 0; i < nr; i++) {
3103                struct buffer_head *bh = bhs[i];
3104
3105                if (!trylock_buffer(bh))
3106                        continue;
3107                if (rw == WRITE) {
3108                        if (test_clear_buffer_dirty(bh)) {
3109                                bh->b_end_io = end_buffer_write_sync;
3110                                get_bh(bh);
3111                                submit_bh(WRITE, bh);
3112                                continue;
3113                        }
3114                } else {
3115                        if (!buffer_uptodate(bh)) {
3116                                bh->b_end_io = end_buffer_read_sync;
3117                                get_bh(bh);
3118                                submit_bh(rw, bh);
3119                                continue;
3120                        }
3121                }
3122                unlock_buffer(bh);
3123        }
3124}
3125EXPORT_SYMBOL(ll_rw_block);
3126
3127void write_dirty_buffer(struct buffer_head *bh, int rw)
3128{
3129        lock_buffer(bh);
3130        if (!test_clear_buffer_dirty(bh)) {
3131                unlock_buffer(bh);
3132                return;
3133        }
3134        bh->b_end_io = end_buffer_write_sync;
3135        get_bh(bh);
3136        submit_bh(rw, bh);
3137}
3138EXPORT_SYMBOL(write_dirty_buffer);
3139
3140/*
3141 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3142 * and then start new I/O and then wait upon it.  The caller must have a ref on
3143 * the buffer_head.
3144 */
3145int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3146{
3147        int ret = 0;
3148
3149        WARN_ON(atomic_read(&bh->b_count) < 1);
3150        lock_buffer(bh);
3151        if (test_clear_buffer_dirty(bh)) {
3152                get_bh(bh);
3153                bh->b_end_io = end_buffer_write_sync;
3154                ret = submit_bh(rw, bh);
3155                wait_on_buffer(bh);
3156                if (!ret && !buffer_uptodate(bh))
3157                        ret = -EIO;
3158        } else {
3159                unlock_buffer(bh);
3160        }
3161        return ret;
3162}
3163EXPORT_SYMBOL(__sync_dirty_buffer);
3164
3165int sync_dirty_buffer(struct buffer_head *bh)
3166{
3167        return __sync_dirty_buffer(bh, WRITE_SYNC);
3168}
3169EXPORT_SYMBOL(sync_dirty_buffer);
3170
3171/*
3172 * try_to_free_buffers() checks if all the buffers on this particular page
3173 * are unused, and releases them if so.
3174 *
3175 * Exclusion against try_to_free_buffers may be obtained by either
3176 * locking the page or by holding its mapping's private_lock.
3177 *
3178 * If the page is dirty but all the buffers are clean then we need to
3179 * be sure to mark the page clean as well.  This is because the page
3180 * may be against a block device, and a later reattachment of buffers
3181 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3182 * filesystem data on the same device.
3183 *
3184 * The same applies to regular filesystem pages: if all the buffers are
3185 * clean then we set the page clean and proceed.  To do that, we require
3186 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3187 * private_lock.
3188 *
3189 * try_to_free_buffers() is non-blocking.
3190 */
3191static inline int buffer_busy(struct buffer_head *bh)
3192{
3193        return atomic_read(&bh->b_count) |
3194                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3195}
3196
3197static int
3198drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3199{
3200        struct buffer_head *head = page_buffers(page);
3201        struct buffer_head *bh;
3202
3203        bh = head;
3204        do {
3205                if (buffer_write_io_error(bh) && page->mapping)
3206                        set_bit(AS_EIO, &page->mapping->flags);
3207                if (buffer_busy(bh))
3208                        goto failed;
3209                bh = bh->b_this_page;
3210        } while (bh != head);
3211
3212        do {
3213                struct buffer_head *next = bh->b_this_page;
3214
3215                if (bh->b_assoc_map)
3216                        __remove_assoc_queue(bh);
3217                bh = next;
3218        } while (bh != head);
3219        *buffers_to_free = head;
3220        __clear_page_buffers(page);
3221        return 1;
3222failed:
3223        return 0;
3224}
3225
3226int try_to_free_buffers(struct page *page)
3227{
3228        struct address_space * const mapping = page->mapping;
3229        struct buffer_head *buffers_to_free = NULL;
3230        int ret = 0;
3231
3232        BUG_ON(!PageLocked(page));
3233        if (PageWriteback(page))
3234                return 0;
3235
3236        if (mapping == NULL) {          /* can this still happen? */
3237                ret = drop_buffers(page, &buffers_to_free);
3238                goto out;
3239        }
3240
3241        spin_lock(&mapping->private_lock);
3242        ret = drop_buffers(page, &buffers_to_free);
3243
3244        /*
3245         * If the filesystem writes its buffers by hand (eg ext3)
3246         * then we can have clean buffers against a dirty page.  We
3247         * clean the page here; otherwise the VM will never notice
3248         * that the filesystem did any IO at all.
3249         *
3250         * Also, during truncate, discard_buffer will have marked all
3251         * the page's buffers clean.  We discover that here and clean
3252         * the page also.
3253         *
3254         * private_lock must be held over this entire operation in order
3255         * to synchronise against __set_page_dirty_buffers and prevent the
3256         * dirty bit from being lost.
3257         */
3258        if (ret)
3259                cancel_dirty_page(page, PAGE_CACHE_SIZE);
3260        spin_unlock(&mapping->private_lock);
3261out:
3262        if (buffers_to_free) {
3263                struct buffer_head *bh = buffers_to_free;
3264
3265                do {
3266                        struct buffer_head *next = bh->b_this_page;
3267                        free_buffer_head(bh);
3268                        bh = next;
3269                } while (bh != buffers_to_free);
3270        }
3271        return ret;
3272}
3273EXPORT_SYMBOL(try_to_free_buffers);
3274
3275/*
3276 * There are no bdflush tunables left.  But distributions are
3277 * still running obsolete flush daemons, so we terminate them here.
3278 *
3279 * Use of bdflush() is deprecated and will be removed in a future kernel.
3280 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3281 */
3282SYSCALL_DEFINE2(bdflush, int, func, long, data)
3283{
3284        static int msg_count;
3285
3286        if (!capable(CAP_SYS_ADMIN))
3287                return -EPERM;
3288
3289        if (msg_count < 5) {
3290                msg_count++;
3291                printk(KERN_INFO
3292                        "warning: process `%s' used the obsolete bdflush"
3293                        " system call\n", current->comm);
3294                printk(KERN_INFO "Fix your initscripts?\n");
3295        }
3296
3297        if (func == 1)
3298                do_exit(0);
3299        return 0;
3300}
3301
3302/*
3303 * Buffer-head allocation
3304 */
3305static struct kmem_cache *bh_cachep __read_mostly;
3306
3307/*
3308 * Once the number of bh's in the machine exceeds this level, we start
3309 * stripping them in writeback.
3310 */
3311static unsigned long max_buffer_heads;
3312
3313int buffer_heads_over_limit;
3314
3315struct bh_accounting {
3316        int nr;                 /* Number of live bh's */
3317        int ratelimit;          /* Limit cacheline bouncing */
3318};
3319
3320static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3321
3322static void recalc_bh_state(void)
3323{
3324        int i;
3325        int tot = 0;
3326
3327        if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3328                return;
3329        __this_cpu_write(bh_accounting.ratelimit, 0);
3330        for_each_online_cpu(i)
3331                tot += per_cpu(bh_accounting, i).nr;
3332        buffer_heads_over_limit = (tot > max_buffer_heads);
3333}
3334
3335struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3336{
3337        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3338        if (ret) {
3339                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3340                preempt_disable();
3341                __this_cpu_inc(bh_accounting.nr);
3342                recalc_bh_state();
3343                preempt_enable();
3344        }
3345        return ret;
3346}
3347EXPORT_SYMBOL(alloc_buffer_head);
3348
3349void free_buffer_head(struct buffer_head *bh)
3350{
3351        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352        kmem_cache_free(bh_cachep, bh);
3353        preempt_disable();
3354        __this_cpu_dec(bh_accounting.nr);
3355        recalc_bh_state();
3356        preempt_enable();
3357}
3358EXPORT_SYMBOL(free_buffer_head);
3359
3360static void buffer_exit_cpu(int cpu)
3361{
3362        int i;
3363        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364
3365        for (i = 0; i < BH_LRU_SIZE; i++) {
3366                brelse(b->bhs[i]);
3367                b->bhs[i] = NULL;
3368        }
3369        this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3370        per_cpu(bh_accounting, cpu).nr = 0;
3371}
3372
3373static int buffer_cpu_notify(struct notifier_block *self,
3374                              unsigned long action, void *hcpu)
3375{
3376        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3377                buffer_exit_cpu((unsigned long)hcpu);
3378        return NOTIFY_OK;
3379}
3380
3381/**
3382 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3383 * @bh: struct buffer_head
3384 *
3385 * Return true if the buffer is up-to-date and false,
3386 * with the buffer locked, if not.
3387 */
3388int bh_uptodate_or_lock(struct buffer_head *bh)
3389{
3390        if (!buffer_uptodate(bh)) {
3391                lock_buffer(bh);
3392                if (!buffer_uptodate(bh))
3393                        return 0;
3394                unlock_buffer(bh);
3395        }
3396        return 1;
3397}
3398EXPORT_SYMBOL(bh_uptodate_or_lock);
3399
3400/**
3401 * bh_submit_read - Submit a locked buffer for reading
3402 * @bh: struct buffer_head
3403 *
3404 * Returns zero on success and -EIO on error.
3405 */
3406int bh_submit_read(struct buffer_head *bh)
3407{
3408        BUG_ON(!buffer_locked(bh));
3409
3410        if (buffer_uptodate(bh)) {
3411                unlock_buffer(bh);
3412                return 0;
3413        }
3414
3415        get_bh(bh);
3416        bh->b_end_io = end_buffer_read_sync;
3417        submit_bh(READ, bh);
3418        wait_on_buffer(bh);
3419        if (buffer_uptodate(bh))
3420                return 0;
3421        return -EIO;
3422}
3423EXPORT_SYMBOL(bh_submit_read);
3424
3425void __init buffer_init(void)
3426{
3427        unsigned long nrpages;
3428
3429        bh_cachep = kmem_cache_create("buffer_head",
3430                        sizeof(struct buffer_head), 0,
3431                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3432                                SLAB_MEM_SPREAD),
3433                                NULL);
3434
3435        /*
3436         * Limit the bh occupancy to 10% of ZONE_NORMAL
3437         */
3438        nrpages = (nr_free_buffer_pages() * 10) / 100;
3439        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3440        hotcpu_notifier(buffer_cpu_notify, 0);
3441}
3442