linux/fs/ext2/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/time.h>
  26#include <linux/highuid.h>
  27#include <linux/pagemap.h>
  28#include <linux/quotaops.h>
  29#include <linux/writeback.h>
  30#include <linux/buffer_head.h>
  31#include <linux/mpage.h>
  32#include <linux/fiemap.h>
  33#include <linux/namei.h>
  34#include <linux/aio.h>
  35#include "ext2.h"
  36#include "acl.h"
  37#include "xip.h"
  38#include "xattr.h"
  39
  40static int __ext2_write_inode(struct inode *inode, int do_sync);
  41
  42/*
  43 * Test whether an inode is a fast symlink.
  44 */
  45static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  46{
  47        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  48                (inode->i_sb->s_blocksize >> 9) : 0;
  49
  50        return (S_ISLNK(inode->i_mode) &&
  51                inode->i_blocks - ea_blocks == 0);
  52}
  53
  54static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
  55
  56static void ext2_write_failed(struct address_space *mapping, loff_t to)
  57{
  58        struct inode *inode = mapping->host;
  59
  60        if (to > inode->i_size) {
  61                truncate_pagecache(inode, inode->i_size);
  62                ext2_truncate_blocks(inode, inode->i_size);
  63        }
  64}
  65
  66/*
  67 * Called at the last iput() if i_nlink is zero.
  68 */
  69void ext2_evict_inode(struct inode * inode)
  70{
  71        struct ext2_block_alloc_info *rsv;
  72        int want_delete = 0;
  73
  74        if (!inode->i_nlink && !is_bad_inode(inode)) {
  75                want_delete = 1;
  76                dquot_initialize(inode);
  77        } else {
  78                dquot_drop(inode);
  79        }
  80
  81        truncate_inode_pages_final(&inode->i_data);
  82
  83        if (want_delete) {
  84                sb_start_intwrite(inode->i_sb);
  85                /* set dtime */
  86                EXT2_I(inode)->i_dtime  = get_seconds();
  87                mark_inode_dirty(inode);
  88                __ext2_write_inode(inode, inode_needs_sync(inode));
  89                /* truncate to 0 */
  90                inode->i_size = 0;
  91                if (inode->i_blocks)
  92                        ext2_truncate_blocks(inode, 0);
  93                ext2_xattr_delete_inode(inode);
  94        }
  95
  96        invalidate_inode_buffers(inode);
  97        clear_inode(inode);
  98
  99        ext2_discard_reservation(inode);
 100        rsv = EXT2_I(inode)->i_block_alloc_info;
 101        EXT2_I(inode)->i_block_alloc_info = NULL;
 102        if (unlikely(rsv))
 103                kfree(rsv);
 104
 105        if (want_delete) {
 106                ext2_free_inode(inode);
 107                sb_end_intwrite(inode->i_sb);
 108        }
 109}
 110
 111typedef struct {
 112        __le32  *p;
 113        __le32  key;
 114        struct buffer_head *bh;
 115} Indirect;
 116
 117static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 118{
 119        p->key = *(p->p = v);
 120        p->bh = bh;
 121}
 122
 123static inline int verify_chain(Indirect *from, Indirect *to)
 124{
 125        while (from <= to && from->key == *from->p)
 126                from++;
 127        return (from > to);
 128}
 129
 130/**
 131 *      ext2_block_to_path - parse the block number into array of offsets
 132 *      @inode: inode in question (we are only interested in its superblock)
 133 *      @i_block: block number to be parsed
 134 *      @offsets: array to store the offsets in
 135 *      @boundary: set this non-zero if the referred-to block is likely to be
 136 *             followed (on disk) by an indirect block.
 137 *      To store the locations of file's data ext2 uses a data structure common
 138 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 139 *      data blocks at leaves and indirect blocks in intermediate nodes.
 140 *      This function translates the block number into path in that tree -
 141 *      return value is the path length and @offsets[n] is the offset of
 142 *      pointer to (n+1)th node in the nth one. If @block is out of range
 143 *      (negative or too large) warning is printed and zero returned.
 144 *
 145 *      Note: function doesn't find node addresses, so no IO is needed. All
 146 *      we need to know is the capacity of indirect blocks (taken from the
 147 *      inode->i_sb).
 148 */
 149
 150/*
 151 * Portability note: the last comparison (check that we fit into triple
 152 * indirect block) is spelled differently, because otherwise on an
 153 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 154 * if our filesystem had 8Kb blocks. We might use long long, but that would
 155 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 156 * i_block would have to be negative in the very beginning, so we would not
 157 * get there at all.
 158 */
 159
 160static int ext2_block_to_path(struct inode *inode,
 161                        long i_block, int offsets[4], int *boundary)
 162{
 163        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 164        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 165        const long direct_blocks = EXT2_NDIR_BLOCKS,
 166                indirect_blocks = ptrs,
 167                double_blocks = (1 << (ptrs_bits * 2));
 168        int n = 0;
 169        int final = 0;
 170
 171        if (i_block < 0) {
 172                ext2_msg(inode->i_sb, KERN_WARNING,
 173                        "warning: %s: block < 0", __func__);
 174        } else if (i_block < direct_blocks) {
 175                offsets[n++] = i_block;
 176                final = direct_blocks;
 177        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 178                offsets[n++] = EXT2_IND_BLOCK;
 179                offsets[n++] = i_block;
 180                final = ptrs;
 181        } else if ((i_block -= indirect_blocks) < double_blocks) {
 182                offsets[n++] = EXT2_DIND_BLOCK;
 183                offsets[n++] = i_block >> ptrs_bits;
 184                offsets[n++] = i_block & (ptrs - 1);
 185                final = ptrs;
 186        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 187                offsets[n++] = EXT2_TIND_BLOCK;
 188                offsets[n++] = i_block >> (ptrs_bits * 2);
 189                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 190                offsets[n++] = i_block & (ptrs - 1);
 191                final = ptrs;
 192        } else {
 193                ext2_msg(inode->i_sb, KERN_WARNING,
 194                        "warning: %s: block is too big", __func__);
 195        }
 196        if (boundary)
 197                *boundary = final - 1 - (i_block & (ptrs - 1));
 198
 199        return n;
 200}
 201
 202/**
 203 *      ext2_get_branch - read the chain of indirect blocks leading to data
 204 *      @inode: inode in question
 205 *      @depth: depth of the chain (1 - direct pointer, etc.)
 206 *      @offsets: offsets of pointers in inode/indirect blocks
 207 *      @chain: place to store the result
 208 *      @err: here we store the error value
 209 *
 210 *      Function fills the array of triples <key, p, bh> and returns %NULL
 211 *      if everything went OK or the pointer to the last filled triple
 212 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 213 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 214 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 215 *      number (it points into struct inode for i==0 and into the bh->b_data
 216 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 217 *      block for i>0 and NULL for i==0. In other words, it holds the block
 218 *      numbers of the chain, addresses they were taken from (and where we can
 219 *      verify that chain did not change) and buffer_heads hosting these
 220 *      numbers.
 221 *
 222 *      Function stops when it stumbles upon zero pointer (absent block)
 223 *              (pointer to last triple returned, *@err == 0)
 224 *      or when it gets an IO error reading an indirect block
 225 *              (ditto, *@err == -EIO)
 226 *      or when it notices that chain had been changed while it was reading
 227 *              (ditto, *@err == -EAGAIN)
 228 *      or when it reads all @depth-1 indirect blocks successfully and finds
 229 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 230 */
 231static Indirect *ext2_get_branch(struct inode *inode,
 232                                 int depth,
 233                                 int *offsets,
 234                                 Indirect chain[4],
 235                                 int *err)
 236{
 237        struct super_block *sb = inode->i_sb;
 238        Indirect *p = chain;
 239        struct buffer_head *bh;
 240
 241        *err = 0;
 242        /* i_data is not going away, no lock needed */
 243        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 244        if (!p->key)
 245                goto no_block;
 246        while (--depth) {
 247                bh = sb_bread(sb, le32_to_cpu(p->key));
 248                if (!bh)
 249                        goto failure;
 250                read_lock(&EXT2_I(inode)->i_meta_lock);
 251                if (!verify_chain(chain, p))
 252                        goto changed;
 253                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 254                read_unlock(&EXT2_I(inode)->i_meta_lock);
 255                if (!p->key)
 256                        goto no_block;
 257        }
 258        return NULL;
 259
 260changed:
 261        read_unlock(&EXT2_I(inode)->i_meta_lock);
 262        brelse(bh);
 263        *err = -EAGAIN;
 264        goto no_block;
 265failure:
 266        *err = -EIO;
 267no_block:
 268        return p;
 269}
 270
 271/**
 272 *      ext2_find_near - find a place for allocation with sufficient locality
 273 *      @inode: owner
 274 *      @ind: descriptor of indirect block.
 275 *
 276 *      This function returns the preferred place for block allocation.
 277 *      It is used when heuristic for sequential allocation fails.
 278 *      Rules are:
 279 *        + if there is a block to the left of our position - allocate near it.
 280 *        + if pointer will live in indirect block - allocate near that block.
 281 *        + if pointer will live in inode - allocate in the same cylinder group.
 282 *
 283 * In the latter case we colour the starting block by the callers PID to
 284 * prevent it from clashing with concurrent allocations for a different inode
 285 * in the same block group.   The PID is used here so that functionally related
 286 * files will be close-by on-disk.
 287 *
 288 *      Caller must make sure that @ind is valid and will stay that way.
 289 */
 290
 291static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
 292{
 293        struct ext2_inode_info *ei = EXT2_I(inode);
 294        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 295        __le32 *p;
 296        ext2_fsblk_t bg_start;
 297        ext2_fsblk_t colour;
 298
 299        /* Try to find previous block */
 300        for (p = ind->p - 1; p >= start; p--)
 301                if (*p)
 302                        return le32_to_cpu(*p);
 303
 304        /* No such thing, so let's try location of indirect block */
 305        if (ind->bh)
 306                return ind->bh->b_blocknr;
 307
 308        /*
 309         * It is going to be referred from inode itself? OK, just put it into
 310         * the same cylinder group then.
 311         */
 312        bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
 313        colour = (current->pid % 16) *
 314                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 315        return bg_start + colour;
 316}
 317
 318/**
 319 *      ext2_find_goal - find a preferred place for allocation.
 320 *      @inode: owner
 321 *      @block:  block we want
 322 *      @partial: pointer to the last triple within a chain
 323 *
 324 *      Returns preferred place for a block (the goal).
 325 */
 326
 327static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
 328                                          Indirect *partial)
 329{
 330        struct ext2_block_alloc_info *block_i;
 331
 332        block_i = EXT2_I(inode)->i_block_alloc_info;
 333
 334        /*
 335         * try the heuristic for sequential allocation,
 336         * failing that at least try to get decent locality.
 337         */
 338        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 339                && (block_i->last_alloc_physical_block != 0)) {
 340                return block_i->last_alloc_physical_block + 1;
 341        }
 342
 343        return ext2_find_near(inode, partial);
 344}
 345
 346/**
 347 *      ext2_blks_to_allocate: Look up the block map and count the number
 348 *      of direct blocks need to be allocated for the given branch.
 349 *
 350 *      @branch: chain of indirect blocks
 351 *      @k: number of blocks need for indirect blocks
 352 *      @blks: number of data blocks to be mapped.
 353 *      @blocks_to_boundary:  the offset in the indirect block
 354 *
 355 *      return the total number of blocks to be allocate, including the
 356 *      direct and indirect blocks.
 357 */
 358static int
 359ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 360                int blocks_to_boundary)
 361{
 362        unsigned long count = 0;
 363
 364        /*
 365         * Simple case, [t,d]Indirect block(s) has not allocated yet
 366         * then it's clear blocks on that path have not allocated
 367         */
 368        if (k > 0) {
 369                /* right now don't hanel cross boundary allocation */
 370                if (blks < blocks_to_boundary + 1)
 371                        count += blks;
 372                else
 373                        count += blocks_to_boundary + 1;
 374                return count;
 375        }
 376
 377        count++;
 378        while (count < blks && count <= blocks_to_boundary
 379                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 380                count++;
 381        }
 382        return count;
 383}
 384
 385/**
 386 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 387 *      @indirect_blks: the number of blocks need to allocate for indirect
 388 *                      blocks
 389 *
 390 *      @new_blocks: on return it will store the new block numbers for
 391 *      the indirect blocks(if needed) and the first direct block,
 392 *      @blks:  on return it will store the total number of allocated
 393 *              direct blocks
 394 */
 395static int ext2_alloc_blocks(struct inode *inode,
 396                        ext2_fsblk_t goal, int indirect_blks, int blks,
 397                        ext2_fsblk_t new_blocks[4], int *err)
 398{
 399        int target, i;
 400        unsigned long count = 0;
 401        int index = 0;
 402        ext2_fsblk_t current_block = 0;
 403        int ret = 0;
 404
 405        /*
 406         * Here we try to allocate the requested multiple blocks at once,
 407         * on a best-effort basis.
 408         * To build a branch, we should allocate blocks for
 409         * the indirect blocks(if not allocated yet), and at least
 410         * the first direct block of this branch.  That's the
 411         * minimum number of blocks need to allocate(required)
 412         */
 413        target = blks + indirect_blks;
 414
 415        while (1) {
 416                count = target;
 417                /* allocating blocks for indirect blocks and direct blocks */
 418                current_block = ext2_new_blocks(inode,goal,&count,err);
 419                if (*err)
 420                        goto failed_out;
 421
 422                target -= count;
 423                /* allocate blocks for indirect blocks */
 424                while (index < indirect_blks && count) {
 425                        new_blocks[index++] = current_block++;
 426                        count--;
 427                }
 428
 429                if (count > 0)
 430                        break;
 431        }
 432
 433        /* save the new block number for the first direct block */
 434        new_blocks[index] = current_block;
 435
 436        /* total number of blocks allocated for direct blocks */
 437        ret = count;
 438        *err = 0;
 439        return ret;
 440failed_out:
 441        for (i = 0; i <index; i++)
 442                ext2_free_blocks(inode, new_blocks[i], 1);
 443        if (index)
 444                mark_inode_dirty(inode);
 445        return ret;
 446}
 447
 448/**
 449 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 450 *      @inode: owner
 451 *      @num: depth of the chain (number of blocks to allocate)
 452 *      @offsets: offsets (in the blocks) to store the pointers to next.
 453 *      @branch: place to store the chain in.
 454 *
 455 *      This function allocates @num blocks, zeroes out all but the last one,
 456 *      links them into chain and (if we are synchronous) writes them to disk.
 457 *      In other words, it prepares a branch that can be spliced onto the
 458 *      inode. It stores the information about that chain in the branch[], in
 459 *      the same format as ext2_get_branch() would do. We are calling it after
 460 *      we had read the existing part of chain and partial points to the last
 461 *      triple of that (one with zero ->key). Upon the exit we have the same
 462 *      picture as after the successful ext2_get_block(), except that in one
 463 *      place chain is disconnected - *branch->p is still zero (we did not
 464 *      set the last link), but branch->key contains the number that should
 465 *      be placed into *branch->p to fill that gap.
 466 *
 467 *      If allocation fails we free all blocks we've allocated (and forget
 468 *      their buffer_heads) and return the error value the from failed
 469 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 470 *      as described above and return 0.
 471 */
 472
 473static int ext2_alloc_branch(struct inode *inode,
 474                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 475                        int *offsets, Indirect *branch)
 476{
 477        int blocksize = inode->i_sb->s_blocksize;
 478        int i, n = 0;
 479        int err = 0;
 480        struct buffer_head *bh;
 481        int num;
 482        ext2_fsblk_t new_blocks[4];
 483        ext2_fsblk_t current_block;
 484
 485        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 486                                *blks, new_blocks, &err);
 487        if (err)
 488                return err;
 489
 490        branch[0].key = cpu_to_le32(new_blocks[0]);
 491        /*
 492         * metadata blocks and data blocks are allocated.
 493         */
 494        for (n = 1; n <= indirect_blks;  n++) {
 495                /*
 496                 * Get buffer_head for parent block, zero it out
 497                 * and set the pointer to new one, then send
 498                 * parent to disk.
 499                 */
 500                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 501                if (unlikely(!bh)) {
 502                        err = -ENOMEM;
 503                        goto failed;
 504                }
 505                branch[n].bh = bh;
 506                lock_buffer(bh);
 507                memset(bh->b_data, 0, blocksize);
 508                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 509                branch[n].key = cpu_to_le32(new_blocks[n]);
 510                *branch[n].p = branch[n].key;
 511                if ( n == indirect_blks) {
 512                        current_block = new_blocks[n];
 513                        /*
 514                         * End of chain, update the last new metablock of
 515                         * the chain to point to the new allocated
 516                         * data blocks numbers
 517                         */
 518                        for (i=1; i < num; i++)
 519                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 520                }
 521                set_buffer_uptodate(bh);
 522                unlock_buffer(bh);
 523                mark_buffer_dirty_inode(bh, inode);
 524                /* We used to sync bh here if IS_SYNC(inode).
 525                 * But we now rely upon generic_write_sync()
 526                 * and b_inode_buffers.  But not for directories.
 527                 */
 528                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 529                        sync_dirty_buffer(bh);
 530        }
 531        *blks = num;
 532        return err;
 533
 534failed:
 535        for (i = 1; i < n; i++)
 536                bforget(branch[i].bh);
 537        for (i = 0; i < indirect_blks; i++)
 538                ext2_free_blocks(inode, new_blocks[i], 1);
 539        ext2_free_blocks(inode, new_blocks[i], num);
 540        return err;
 541}
 542
 543/**
 544 * ext2_splice_branch - splice the allocated branch onto inode.
 545 * @inode: owner
 546 * @block: (logical) number of block we are adding
 547 * @where: location of missing link
 548 * @num:   number of indirect blocks we are adding
 549 * @blks:  number of direct blocks we are adding
 550 *
 551 * This function fills the missing link and does all housekeeping needed in
 552 * inode (->i_blocks, etc.). In case of success we end up with the full
 553 * chain to new block and return 0.
 554 */
 555static void ext2_splice_branch(struct inode *inode,
 556                        long block, Indirect *where, int num, int blks)
 557{
 558        int i;
 559        struct ext2_block_alloc_info *block_i;
 560        ext2_fsblk_t current_block;
 561
 562        block_i = EXT2_I(inode)->i_block_alloc_info;
 563
 564        /* XXX LOCKING probably should have i_meta_lock ?*/
 565        /* That's it */
 566
 567        *where->p = where->key;
 568
 569        /*
 570         * Update the host buffer_head or inode to point to more just allocated
 571         * direct blocks blocks
 572         */
 573        if (num == 0 && blks > 1) {
 574                current_block = le32_to_cpu(where->key) + 1;
 575                for (i = 1; i < blks; i++)
 576                        *(where->p + i ) = cpu_to_le32(current_block++);
 577        }
 578
 579        /*
 580         * update the most recently allocated logical & physical block
 581         * in i_block_alloc_info, to assist find the proper goal block for next
 582         * allocation
 583         */
 584        if (block_i) {
 585                block_i->last_alloc_logical_block = block + blks - 1;
 586                block_i->last_alloc_physical_block =
 587                                le32_to_cpu(where[num].key) + blks - 1;
 588        }
 589
 590        /* We are done with atomic stuff, now do the rest of housekeeping */
 591
 592        /* had we spliced it onto indirect block? */
 593        if (where->bh)
 594                mark_buffer_dirty_inode(where->bh, inode);
 595
 596        inode->i_ctime = CURRENT_TIME_SEC;
 597        mark_inode_dirty(inode);
 598}
 599
 600/*
 601 * Allocation strategy is simple: if we have to allocate something, we will
 602 * have to go the whole way to leaf. So let's do it before attaching anything
 603 * to tree, set linkage between the newborn blocks, write them if sync is
 604 * required, recheck the path, free and repeat if check fails, otherwise
 605 * set the last missing link (that will protect us from any truncate-generated
 606 * removals - all blocks on the path are immune now) and possibly force the
 607 * write on the parent block.
 608 * That has a nice additional property: no special recovery from the failed
 609 * allocations is needed - we simply release blocks and do not touch anything
 610 * reachable from inode.
 611 *
 612 * `handle' can be NULL if create == 0.
 613 *
 614 * return > 0, # of blocks mapped or allocated.
 615 * return = 0, if plain lookup failed.
 616 * return < 0, error case.
 617 */
 618static int ext2_get_blocks(struct inode *inode,
 619                           sector_t iblock, unsigned long maxblocks,
 620                           struct buffer_head *bh_result,
 621                           int create)
 622{
 623        int err = -EIO;
 624        int offsets[4];
 625        Indirect chain[4];
 626        Indirect *partial;
 627        ext2_fsblk_t goal;
 628        int indirect_blks;
 629        int blocks_to_boundary = 0;
 630        int depth;
 631        struct ext2_inode_info *ei = EXT2_I(inode);
 632        int count = 0;
 633        ext2_fsblk_t first_block = 0;
 634
 635        BUG_ON(maxblocks == 0);
 636
 637        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 638
 639        if (depth == 0)
 640                return (err);
 641
 642        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 643        /* Simplest case - block found, no allocation needed */
 644        if (!partial) {
 645                first_block = le32_to_cpu(chain[depth - 1].key);
 646                clear_buffer_new(bh_result); /* What's this do? */
 647                count++;
 648                /*map more blocks*/
 649                while (count < maxblocks && count <= blocks_to_boundary) {
 650                        ext2_fsblk_t blk;
 651
 652                        if (!verify_chain(chain, chain + depth - 1)) {
 653                                /*
 654                                 * Indirect block might be removed by
 655                                 * truncate while we were reading it.
 656                                 * Handling of that case: forget what we've
 657                                 * got now, go to reread.
 658                                 */
 659                                err = -EAGAIN;
 660                                count = 0;
 661                                break;
 662                        }
 663                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 664                        if (blk == first_block + count)
 665                                count++;
 666                        else
 667                                break;
 668                }
 669                if (err != -EAGAIN)
 670                        goto got_it;
 671        }
 672
 673        /* Next simple case - plain lookup or failed read of indirect block */
 674        if (!create || err == -EIO)
 675                goto cleanup;
 676
 677        mutex_lock(&ei->truncate_mutex);
 678        /*
 679         * If the indirect block is missing while we are reading
 680         * the chain(ext2_get_branch() returns -EAGAIN err), or
 681         * if the chain has been changed after we grab the semaphore,
 682         * (either because another process truncated this branch, or
 683         * another get_block allocated this branch) re-grab the chain to see if
 684         * the request block has been allocated or not.
 685         *
 686         * Since we already block the truncate/other get_block
 687         * at this point, we will have the current copy of the chain when we
 688         * splice the branch into the tree.
 689         */
 690        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 691                while (partial > chain) {
 692                        brelse(partial->bh);
 693                        partial--;
 694                }
 695                partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 696                if (!partial) {
 697                        count++;
 698                        mutex_unlock(&ei->truncate_mutex);
 699                        if (err)
 700                                goto cleanup;
 701                        clear_buffer_new(bh_result);
 702                        goto got_it;
 703                }
 704        }
 705
 706        /*
 707         * Okay, we need to do block allocation.  Lazily initialize the block
 708         * allocation info here if necessary
 709        */
 710        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 711                ext2_init_block_alloc_info(inode);
 712
 713        goal = ext2_find_goal(inode, iblock, partial);
 714
 715        /* the number of blocks need to allocate for [d,t]indirect blocks */
 716        indirect_blks = (chain + depth) - partial - 1;
 717        /*
 718         * Next look up the indirect map to count the totoal number of
 719         * direct blocks to allocate for this branch.
 720         */
 721        count = ext2_blks_to_allocate(partial, indirect_blks,
 722                                        maxblocks, blocks_to_boundary);
 723        /*
 724         * XXX ???? Block out ext2_truncate while we alter the tree
 725         */
 726        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 727                                offsets + (partial - chain), partial);
 728
 729        if (err) {
 730                mutex_unlock(&ei->truncate_mutex);
 731                goto cleanup;
 732        }
 733
 734        if (ext2_use_xip(inode->i_sb)) {
 735                /*
 736                 * we need to clear the block
 737                 */
 738                err = ext2_clear_xip_target (inode,
 739                        le32_to_cpu(chain[depth-1].key));
 740                if (err) {
 741                        mutex_unlock(&ei->truncate_mutex);
 742                        goto cleanup;
 743                }
 744        }
 745
 746        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 747        mutex_unlock(&ei->truncate_mutex);
 748        set_buffer_new(bh_result);
 749got_it:
 750        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 751        if (count > blocks_to_boundary)
 752                set_buffer_boundary(bh_result);
 753        err = count;
 754        /* Clean up and exit */
 755        partial = chain + depth - 1;    /* the whole chain */
 756cleanup:
 757        while (partial > chain) {
 758                brelse(partial->bh);
 759                partial--;
 760        }
 761        return err;
 762}
 763
 764int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
 765{
 766        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 767        int ret = ext2_get_blocks(inode, iblock, max_blocks,
 768                              bh_result, create);
 769        if (ret > 0) {
 770                bh_result->b_size = (ret << inode->i_blkbits);
 771                ret = 0;
 772        }
 773        return ret;
 774
 775}
 776
 777int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 778                u64 start, u64 len)
 779{
 780        return generic_block_fiemap(inode, fieinfo, start, len,
 781                                    ext2_get_block);
 782}
 783
 784static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 785{
 786        return block_write_full_page(page, ext2_get_block, wbc);
 787}
 788
 789static int ext2_readpage(struct file *file, struct page *page)
 790{
 791        return mpage_readpage(page, ext2_get_block);
 792}
 793
 794static int
 795ext2_readpages(struct file *file, struct address_space *mapping,
 796                struct list_head *pages, unsigned nr_pages)
 797{
 798        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 799}
 800
 801static int
 802ext2_write_begin(struct file *file, struct address_space *mapping,
 803                loff_t pos, unsigned len, unsigned flags,
 804                struct page **pagep, void **fsdata)
 805{
 806        int ret;
 807
 808        ret = block_write_begin(mapping, pos, len, flags, pagep,
 809                                ext2_get_block);
 810        if (ret < 0)
 811                ext2_write_failed(mapping, pos + len);
 812        return ret;
 813}
 814
 815static int ext2_write_end(struct file *file, struct address_space *mapping,
 816                        loff_t pos, unsigned len, unsigned copied,
 817                        struct page *page, void *fsdata)
 818{
 819        int ret;
 820
 821        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 822        if (ret < len)
 823                ext2_write_failed(mapping, pos + len);
 824        return ret;
 825}
 826
 827static int
 828ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 829                loff_t pos, unsigned len, unsigned flags,
 830                struct page **pagep, void **fsdata)
 831{
 832        int ret;
 833
 834        ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
 835                               ext2_get_block);
 836        if (ret < 0)
 837                ext2_write_failed(mapping, pos + len);
 838        return ret;
 839}
 840
 841static int ext2_nobh_writepage(struct page *page,
 842                        struct writeback_control *wbc)
 843{
 844        return nobh_writepage(page, ext2_get_block, wbc);
 845}
 846
 847static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 848{
 849        return generic_block_bmap(mapping,block,ext2_get_block);
 850}
 851
 852static ssize_t
 853ext2_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
 854                        loff_t offset)
 855{
 856        struct file *file = iocb->ki_filp;
 857        struct address_space *mapping = file->f_mapping;
 858        struct inode *inode = mapping->host;
 859        size_t count = iov_iter_count(iter);
 860        ssize_t ret;
 861
 862        ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, ext2_get_block);
 863        if (ret < 0 && (rw & WRITE))
 864                ext2_write_failed(mapping, offset + count);
 865        return ret;
 866}
 867
 868static int
 869ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 870{
 871        return mpage_writepages(mapping, wbc, ext2_get_block);
 872}
 873
 874const struct address_space_operations ext2_aops = {
 875        .readpage               = ext2_readpage,
 876        .readpages              = ext2_readpages,
 877        .writepage              = ext2_writepage,
 878        .write_begin            = ext2_write_begin,
 879        .write_end              = ext2_write_end,
 880        .bmap                   = ext2_bmap,
 881        .direct_IO              = ext2_direct_IO,
 882        .writepages             = ext2_writepages,
 883        .migratepage            = buffer_migrate_page,
 884        .is_partially_uptodate  = block_is_partially_uptodate,
 885        .error_remove_page      = generic_error_remove_page,
 886};
 887
 888const struct address_space_operations ext2_aops_xip = {
 889        .bmap                   = ext2_bmap,
 890        .get_xip_mem            = ext2_get_xip_mem,
 891};
 892
 893const struct address_space_operations ext2_nobh_aops = {
 894        .readpage               = ext2_readpage,
 895        .readpages              = ext2_readpages,
 896        .writepage              = ext2_nobh_writepage,
 897        .write_begin            = ext2_nobh_write_begin,
 898        .write_end              = nobh_write_end,
 899        .bmap                   = ext2_bmap,
 900        .direct_IO              = ext2_direct_IO,
 901        .writepages             = ext2_writepages,
 902        .migratepage            = buffer_migrate_page,
 903        .error_remove_page      = generic_error_remove_page,
 904};
 905
 906/*
 907 * Probably it should be a library function... search for first non-zero word
 908 * or memcmp with zero_page, whatever is better for particular architecture.
 909 * Linus?
 910 */
 911static inline int all_zeroes(__le32 *p, __le32 *q)
 912{
 913        while (p < q)
 914                if (*p++)
 915                        return 0;
 916        return 1;
 917}
 918
 919/**
 920 *      ext2_find_shared - find the indirect blocks for partial truncation.
 921 *      @inode:   inode in question
 922 *      @depth:   depth of the affected branch
 923 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
 924 *      @chain:   place to store the pointers to partial indirect blocks
 925 *      @top:     place to the (detached) top of branch
 926 *
 927 *      This is a helper function used by ext2_truncate().
 928 *
 929 *      When we do truncate() we may have to clean the ends of several indirect
 930 *      blocks but leave the blocks themselves alive. Block is partially
 931 *      truncated if some data below the new i_size is referred from it (and
 932 *      it is on the path to the first completely truncated data block, indeed).
 933 *      We have to free the top of that path along with everything to the right
 934 *      of the path. Since no allocation past the truncation point is possible
 935 *      until ext2_truncate() finishes, we may safely do the latter, but top
 936 *      of branch may require special attention - pageout below the truncation
 937 *      point might try to populate it.
 938 *
 939 *      We atomically detach the top of branch from the tree, store the block
 940 *      number of its root in *@top, pointers to buffer_heads of partially
 941 *      truncated blocks - in @chain[].bh and pointers to their last elements
 942 *      that should not be removed - in @chain[].p. Return value is the pointer
 943 *      to last filled element of @chain.
 944 *
 945 *      The work left to caller to do the actual freeing of subtrees:
 946 *              a) free the subtree starting from *@top
 947 *              b) free the subtrees whose roots are stored in
 948 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 949 *              c) free the subtrees growing from the inode past the @chain[0].p
 950 *                      (no partially truncated stuff there).
 951 */
 952
 953static Indirect *ext2_find_shared(struct inode *inode,
 954                                int depth,
 955                                int offsets[4],
 956                                Indirect chain[4],
 957                                __le32 *top)
 958{
 959        Indirect *partial, *p;
 960        int k, err;
 961
 962        *top = 0;
 963        for (k = depth; k > 1 && !offsets[k-1]; k--)
 964                ;
 965        partial = ext2_get_branch(inode, k, offsets, chain, &err);
 966        if (!partial)
 967                partial = chain + k-1;
 968        /*
 969         * If the branch acquired continuation since we've looked at it -
 970         * fine, it should all survive and (new) top doesn't belong to us.
 971         */
 972        write_lock(&EXT2_I(inode)->i_meta_lock);
 973        if (!partial->key && *partial->p) {
 974                write_unlock(&EXT2_I(inode)->i_meta_lock);
 975                goto no_top;
 976        }
 977        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
 978                ;
 979        /*
 980         * OK, we've found the last block that must survive. The rest of our
 981         * branch should be detached before unlocking. However, if that rest
 982         * of branch is all ours and does not grow immediately from the inode
 983         * it's easier to cheat and just decrement partial->p.
 984         */
 985        if (p == chain + k - 1 && p > chain) {
 986                p->p--;
 987        } else {
 988                *top = *p->p;
 989                *p->p = 0;
 990        }
 991        write_unlock(&EXT2_I(inode)->i_meta_lock);
 992
 993        while(partial > p)
 994        {
 995                brelse(partial->bh);
 996                partial--;
 997        }
 998no_top:
 999        return partial;
1000}
1001
1002/**
1003 *      ext2_free_data - free a list of data blocks
1004 *      @inode: inode we are dealing with
1005 *      @p:     array of block numbers
1006 *      @q:     points immediately past the end of array
1007 *
1008 *      We are freeing all blocks referred from that array (numbers are
1009 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1010 *      appropriately.
1011 */
1012static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1013{
1014        unsigned long block_to_free = 0, count = 0;
1015        unsigned long nr;
1016
1017        for ( ; p < q ; p++) {
1018                nr = le32_to_cpu(*p);
1019                if (nr) {
1020                        *p = 0;
1021                        /* accumulate blocks to free if they're contiguous */
1022                        if (count == 0)
1023                                goto free_this;
1024                        else if (block_to_free == nr - count)
1025                                count++;
1026                        else {
1027                                ext2_free_blocks (inode, block_to_free, count);
1028                                mark_inode_dirty(inode);
1029                        free_this:
1030                                block_to_free = nr;
1031                                count = 1;
1032                        }
1033                }
1034        }
1035        if (count > 0) {
1036                ext2_free_blocks (inode, block_to_free, count);
1037                mark_inode_dirty(inode);
1038        }
1039}
1040
1041/**
1042 *      ext2_free_branches - free an array of branches
1043 *      @inode: inode we are dealing with
1044 *      @p:     array of block numbers
1045 *      @q:     pointer immediately past the end of array
1046 *      @depth: depth of the branches to free
1047 *
1048 *      We are freeing all blocks referred from these branches (numbers are
1049 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1050 *      appropriately.
1051 */
1052static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1053{
1054        struct buffer_head * bh;
1055        unsigned long nr;
1056
1057        if (depth--) {
1058                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1059                for ( ; p < q ; p++) {
1060                        nr = le32_to_cpu(*p);
1061                        if (!nr)
1062                                continue;
1063                        *p = 0;
1064                        bh = sb_bread(inode->i_sb, nr);
1065                        /*
1066                         * A read failure? Report error and clear slot
1067                         * (should be rare).
1068                         */ 
1069                        if (!bh) {
1070                                ext2_error(inode->i_sb, "ext2_free_branches",
1071                                        "Read failure, inode=%ld, block=%ld",
1072                                        inode->i_ino, nr);
1073                                continue;
1074                        }
1075                        ext2_free_branches(inode,
1076                                           (__le32*)bh->b_data,
1077                                           (__le32*)bh->b_data + addr_per_block,
1078                                           depth);
1079                        bforget(bh);
1080                        ext2_free_blocks(inode, nr, 1);
1081                        mark_inode_dirty(inode);
1082                }
1083        } else
1084                ext2_free_data(inode, p, q);
1085}
1086
1087static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1088{
1089        __le32 *i_data = EXT2_I(inode)->i_data;
1090        struct ext2_inode_info *ei = EXT2_I(inode);
1091        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1092        int offsets[4];
1093        Indirect chain[4];
1094        Indirect *partial;
1095        __le32 nr = 0;
1096        int n;
1097        long iblock;
1098        unsigned blocksize;
1099        blocksize = inode->i_sb->s_blocksize;
1100        iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1101
1102        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1103        if (n == 0)
1104                return;
1105
1106        /*
1107         * From here we block out all ext2_get_block() callers who want to
1108         * modify the block allocation tree.
1109         */
1110        mutex_lock(&ei->truncate_mutex);
1111
1112        if (n == 1) {
1113                ext2_free_data(inode, i_data+offsets[0],
1114                                        i_data + EXT2_NDIR_BLOCKS);
1115                goto do_indirects;
1116        }
1117
1118        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1119        /* Kill the top of shared branch (already detached) */
1120        if (nr) {
1121                if (partial == chain)
1122                        mark_inode_dirty(inode);
1123                else
1124                        mark_buffer_dirty_inode(partial->bh, inode);
1125                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1126        }
1127        /* Clear the ends of indirect blocks on the shared branch */
1128        while (partial > chain) {
1129                ext2_free_branches(inode,
1130                                   partial->p + 1,
1131                                   (__le32*)partial->bh->b_data+addr_per_block,
1132                                   (chain+n-1) - partial);
1133                mark_buffer_dirty_inode(partial->bh, inode);
1134                brelse (partial->bh);
1135                partial--;
1136        }
1137do_indirects:
1138        /* Kill the remaining (whole) subtrees */
1139        switch (offsets[0]) {
1140                default:
1141                        nr = i_data[EXT2_IND_BLOCK];
1142                        if (nr) {
1143                                i_data[EXT2_IND_BLOCK] = 0;
1144                                mark_inode_dirty(inode);
1145                                ext2_free_branches(inode, &nr, &nr+1, 1);
1146                        }
1147                case EXT2_IND_BLOCK:
1148                        nr = i_data[EXT2_DIND_BLOCK];
1149                        if (nr) {
1150                                i_data[EXT2_DIND_BLOCK] = 0;
1151                                mark_inode_dirty(inode);
1152                                ext2_free_branches(inode, &nr, &nr+1, 2);
1153                        }
1154                case EXT2_DIND_BLOCK:
1155                        nr = i_data[EXT2_TIND_BLOCK];
1156                        if (nr) {
1157                                i_data[EXT2_TIND_BLOCK] = 0;
1158                                mark_inode_dirty(inode);
1159                                ext2_free_branches(inode, &nr, &nr+1, 3);
1160                        }
1161                case EXT2_TIND_BLOCK:
1162                        ;
1163        }
1164
1165        ext2_discard_reservation(inode);
1166
1167        mutex_unlock(&ei->truncate_mutex);
1168}
1169
1170static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1171{
1172        /*
1173         * XXX: it seems like a bug here that we don't allow
1174         * IS_APPEND inode to have blocks-past-i_size trimmed off.
1175         * review and fix this.
1176         *
1177         * Also would be nice to be able to handle IO errors and such,
1178         * but that's probably too much to ask.
1179         */
1180        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181            S_ISLNK(inode->i_mode)))
1182                return;
1183        if (ext2_inode_is_fast_symlink(inode))
1184                return;
1185        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1186                return;
1187        __ext2_truncate_blocks(inode, offset);
1188}
1189
1190static int ext2_setsize(struct inode *inode, loff_t newsize)
1191{
1192        int error;
1193
1194        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1195            S_ISLNK(inode->i_mode)))
1196                return -EINVAL;
1197        if (ext2_inode_is_fast_symlink(inode))
1198                return -EINVAL;
1199        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1200                return -EPERM;
1201
1202        inode_dio_wait(inode);
1203
1204        if (mapping_is_xip(inode->i_mapping))
1205                error = xip_truncate_page(inode->i_mapping, newsize);
1206        else if (test_opt(inode->i_sb, NOBH))
1207                error = nobh_truncate_page(inode->i_mapping,
1208                                newsize, ext2_get_block);
1209        else
1210                error = block_truncate_page(inode->i_mapping,
1211                                newsize, ext2_get_block);
1212        if (error)
1213                return error;
1214
1215        truncate_setsize(inode, newsize);
1216        __ext2_truncate_blocks(inode, newsize);
1217
1218        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1219        if (inode_needs_sync(inode)) {
1220                sync_mapping_buffers(inode->i_mapping);
1221                sync_inode_metadata(inode, 1);
1222        } else {
1223                mark_inode_dirty(inode);
1224        }
1225
1226        return 0;
1227}
1228
1229static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1230                                        struct buffer_head **p)
1231{
1232        struct buffer_head * bh;
1233        unsigned long block_group;
1234        unsigned long block;
1235        unsigned long offset;
1236        struct ext2_group_desc * gdp;
1237
1238        *p = NULL;
1239        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1240            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1241                goto Einval;
1242
1243        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1244        gdp = ext2_get_group_desc(sb, block_group, NULL);
1245        if (!gdp)
1246                goto Egdp;
1247        /*
1248         * Figure out the offset within the block group inode table
1249         */
1250        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1251        block = le32_to_cpu(gdp->bg_inode_table) +
1252                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1253        if (!(bh = sb_bread(sb, block)))
1254                goto Eio;
1255
1256        *p = bh;
1257        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1258        return (struct ext2_inode *) (bh->b_data + offset);
1259
1260Einval:
1261        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1262                   (unsigned long) ino);
1263        return ERR_PTR(-EINVAL);
1264Eio:
1265        ext2_error(sb, "ext2_get_inode",
1266                   "unable to read inode block - inode=%lu, block=%lu",
1267                   (unsigned long) ino, block);
1268Egdp:
1269        return ERR_PTR(-EIO);
1270}
1271
1272void ext2_set_inode_flags(struct inode *inode)
1273{
1274        unsigned int flags = EXT2_I(inode)->i_flags;
1275
1276        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1277        if (flags & EXT2_SYNC_FL)
1278                inode->i_flags |= S_SYNC;
1279        if (flags & EXT2_APPEND_FL)
1280                inode->i_flags |= S_APPEND;
1281        if (flags & EXT2_IMMUTABLE_FL)
1282                inode->i_flags |= S_IMMUTABLE;
1283        if (flags & EXT2_NOATIME_FL)
1284                inode->i_flags |= S_NOATIME;
1285        if (flags & EXT2_DIRSYNC_FL)
1286                inode->i_flags |= S_DIRSYNC;
1287}
1288
1289/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1290void ext2_get_inode_flags(struct ext2_inode_info *ei)
1291{
1292        unsigned int flags = ei->vfs_inode.i_flags;
1293
1294        ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1295                        EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1296        if (flags & S_SYNC)
1297                ei->i_flags |= EXT2_SYNC_FL;
1298        if (flags & S_APPEND)
1299                ei->i_flags |= EXT2_APPEND_FL;
1300        if (flags & S_IMMUTABLE)
1301                ei->i_flags |= EXT2_IMMUTABLE_FL;
1302        if (flags & S_NOATIME)
1303                ei->i_flags |= EXT2_NOATIME_FL;
1304        if (flags & S_DIRSYNC)
1305                ei->i_flags |= EXT2_DIRSYNC_FL;
1306}
1307
1308struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1309{
1310        struct ext2_inode_info *ei;
1311        struct buffer_head * bh;
1312        struct ext2_inode *raw_inode;
1313        struct inode *inode;
1314        long ret = -EIO;
1315        int n;
1316        uid_t i_uid;
1317        gid_t i_gid;
1318
1319        inode = iget_locked(sb, ino);
1320        if (!inode)
1321                return ERR_PTR(-ENOMEM);
1322        if (!(inode->i_state & I_NEW))
1323                return inode;
1324
1325        ei = EXT2_I(inode);
1326        ei->i_block_alloc_info = NULL;
1327
1328        raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1329        if (IS_ERR(raw_inode)) {
1330                ret = PTR_ERR(raw_inode);
1331                goto bad_inode;
1332        }
1333
1334        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1335        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1336        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1337        if (!(test_opt (inode->i_sb, NO_UID32))) {
1338                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1339                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1340        }
1341        i_uid_write(inode, i_uid);
1342        i_gid_write(inode, i_gid);
1343        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1344        inode->i_size = le32_to_cpu(raw_inode->i_size);
1345        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1346        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1347        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1348        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1349        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1350        /* We now have enough fields to check if the inode was active or not.
1351         * This is needed because nfsd might try to access dead inodes
1352         * the test is that same one that e2fsck uses
1353         * NeilBrown 1999oct15
1354         */
1355        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1356                /* this inode is deleted */
1357                brelse (bh);
1358                ret = -ESTALE;
1359                goto bad_inode;
1360        }
1361        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1362        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1363        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1364        ei->i_frag_no = raw_inode->i_frag;
1365        ei->i_frag_size = raw_inode->i_fsize;
1366        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1367        ei->i_dir_acl = 0;
1368        if (S_ISREG(inode->i_mode))
1369                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1370        else
1371                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1372        ei->i_dtime = 0;
1373        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1374        ei->i_state = 0;
1375        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1376        ei->i_dir_start_lookup = 0;
1377
1378        /*
1379         * NOTE! The in-memory inode i_data array is in little-endian order
1380         * even on big-endian machines: we do NOT byteswap the block numbers!
1381         */
1382        for (n = 0; n < EXT2_N_BLOCKS; n++)
1383                ei->i_data[n] = raw_inode->i_block[n];
1384
1385        if (S_ISREG(inode->i_mode)) {
1386                inode->i_op = &ext2_file_inode_operations;
1387                if (ext2_use_xip(inode->i_sb)) {
1388                        inode->i_mapping->a_ops = &ext2_aops_xip;
1389                        inode->i_fop = &ext2_xip_file_operations;
1390                } else if (test_opt(inode->i_sb, NOBH)) {
1391                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1392                        inode->i_fop = &ext2_file_operations;
1393                } else {
1394                        inode->i_mapping->a_ops = &ext2_aops;
1395                        inode->i_fop = &ext2_file_operations;
1396                }
1397        } else if (S_ISDIR(inode->i_mode)) {
1398                inode->i_op = &ext2_dir_inode_operations;
1399                inode->i_fop = &ext2_dir_operations;
1400                if (test_opt(inode->i_sb, NOBH))
1401                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1402                else
1403                        inode->i_mapping->a_ops = &ext2_aops;
1404        } else if (S_ISLNK(inode->i_mode)) {
1405                if (ext2_inode_is_fast_symlink(inode)) {
1406                        inode->i_op = &ext2_fast_symlink_inode_operations;
1407                        nd_terminate_link(ei->i_data, inode->i_size,
1408                                sizeof(ei->i_data) - 1);
1409                } else {
1410                        inode->i_op = &ext2_symlink_inode_operations;
1411                        if (test_opt(inode->i_sb, NOBH))
1412                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1413                        else
1414                                inode->i_mapping->a_ops = &ext2_aops;
1415                }
1416        } else {
1417                inode->i_op = &ext2_special_inode_operations;
1418                if (raw_inode->i_block[0])
1419                        init_special_inode(inode, inode->i_mode,
1420                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1421                else 
1422                        init_special_inode(inode, inode->i_mode,
1423                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1424        }
1425        brelse (bh);
1426        ext2_set_inode_flags(inode);
1427        unlock_new_inode(inode);
1428        return inode;
1429        
1430bad_inode:
1431        iget_failed(inode);
1432        return ERR_PTR(ret);
1433}
1434
1435static int __ext2_write_inode(struct inode *inode, int do_sync)
1436{
1437        struct ext2_inode_info *ei = EXT2_I(inode);
1438        struct super_block *sb = inode->i_sb;
1439        ino_t ino = inode->i_ino;
1440        uid_t uid = i_uid_read(inode);
1441        gid_t gid = i_gid_read(inode);
1442        struct buffer_head * bh;
1443        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1444        int n;
1445        int err = 0;
1446
1447        if (IS_ERR(raw_inode))
1448                return -EIO;
1449
1450        /* For fields not not tracking in the in-memory inode,
1451         * initialise them to zero for new inodes. */
1452        if (ei->i_state & EXT2_STATE_NEW)
1453                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1454
1455        ext2_get_inode_flags(ei);
1456        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1457        if (!(test_opt(sb, NO_UID32))) {
1458                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1459                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1460/*
1461 * Fix up interoperability with old kernels. Otherwise, old inodes get
1462 * re-used with the upper 16 bits of the uid/gid intact
1463 */
1464                if (!ei->i_dtime) {
1465                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1466                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1467                } else {
1468                        raw_inode->i_uid_high = 0;
1469                        raw_inode->i_gid_high = 0;
1470                }
1471        } else {
1472                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1473                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1474                raw_inode->i_uid_high = 0;
1475                raw_inode->i_gid_high = 0;
1476        }
1477        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1478        raw_inode->i_size = cpu_to_le32(inode->i_size);
1479        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1480        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1481        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1482
1483        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1484        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1485        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1486        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1487        raw_inode->i_frag = ei->i_frag_no;
1488        raw_inode->i_fsize = ei->i_frag_size;
1489        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1490        if (!S_ISREG(inode->i_mode))
1491                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1492        else {
1493                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1494                if (inode->i_size > 0x7fffffffULL) {
1495                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1496                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1497                            EXT2_SB(sb)->s_es->s_rev_level ==
1498                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1499                               /* If this is the first large file
1500                                * created, add a flag to the superblock.
1501                                */
1502                                spin_lock(&EXT2_SB(sb)->s_lock);
1503                                ext2_update_dynamic_rev(sb);
1504                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1505                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1506                                spin_unlock(&EXT2_SB(sb)->s_lock);
1507                                ext2_write_super(sb);
1508                        }
1509                }
1510        }
1511        
1512        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1513        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1514                if (old_valid_dev(inode->i_rdev)) {
1515                        raw_inode->i_block[0] =
1516                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1517                        raw_inode->i_block[1] = 0;
1518                } else {
1519                        raw_inode->i_block[0] = 0;
1520                        raw_inode->i_block[1] =
1521                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1522                        raw_inode->i_block[2] = 0;
1523                }
1524        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1525                raw_inode->i_block[n] = ei->i_data[n];
1526        mark_buffer_dirty(bh);
1527        if (do_sync) {
1528                sync_dirty_buffer(bh);
1529                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1530                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1531                                sb->s_id, (unsigned long) ino);
1532                        err = -EIO;
1533                }
1534        }
1535        ei->i_state &= ~EXT2_STATE_NEW;
1536        brelse (bh);
1537        return err;
1538}
1539
1540int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1541{
1542        return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1543}
1544
1545int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1546{
1547        struct inode *inode = dentry->d_inode;
1548        int error;
1549
1550        error = inode_change_ok(inode, iattr);
1551        if (error)
1552                return error;
1553
1554        if (is_quota_modification(inode, iattr))
1555                dquot_initialize(inode);
1556        if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1557            (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1558                error = dquot_transfer(inode, iattr);
1559                if (error)
1560                        return error;
1561        }
1562        if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1563                error = ext2_setsize(inode, iattr->ia_size);
1564                if (error)
1565                        return error;
1566        }
1567        setattr_copy(inode, iattr);
1568        if (iattr->ia_valid & ATTR_MODE)
1569                error = posix_acl_chmod(inode, inode->i_mode);
1570        mark_inode_dirty(inode);
1571
1572        return error;
1573}
1574