linux/fs/xfs/xfs_buf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
  37#include "xfs_log_format.h"
  38#include "xfs_trans_resv.h"
  39#include "xfs_sb.h"
  40#include "xfs_ag.h"
  41#include "xfs_mount.h"
  42#include "xfs_trace.h"
  43#include "xfs_log.h"
  44
  45static kmem_zone_t *xfs_buf_zone;
  46
  47static struct workqueue_struct *xfslogd_workqueue;
  48
  49#ifdef XFS_BUF_LOCK_TRACKING
  50# define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
  51# define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
  52# define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
  53#else
  54# define XB_SET_OWNER(bp)       do { } while (0)
  55# define XB_CLEAR_OWNER(bp)     do { } while (0)
  56# define XB_GET_OWNER(bp)       do { } while (0)
  57#endif
  58
  59#define xb_to_gfp(flags) \
  60        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  61
  62
  63static inline int
  64xfs_buf_is_vmapped(
  65        struct xfs_buf  *bp)
  66{
  67        /*
  68         * Return true if the buffer is vmapped.
  69         *
  70         * b_addr is null if the buffer is not mapped, but the code is clever
  71         * enough to know it doesn't have to map a single page, so the check has
  72         * to be both for b_addr and bp->b_page_count > 1.
  73         */
  74        return bp->b_addr && bp->b_page_count > 1;
  75}
  76
  77static inline int
  78xfs_buf_vmap_len(
  79        struct xfs_buf  *bp)
  80{
  81        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  82}
  83
  84/*
  85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  86 * b_lru_ref count so that the buffer is freed immediately when the buffer
  87 * reference count falls to zero. If the buffer is already on the LRU, we need
  88 * to remove the reference that LRU holds on the buffer.
  89 *
  90 * This prevents build-up of stale buffers on the LRU.
  91 */
  92void
  93xfs_buf_stale(
  94        struct xfs_buf  *bp)
  95{
  96        ASSERT(xfs_buf_islocked(bp));
  97
  98        bp->b_flags |= XBF_STALE;
  99
 100        /*
 101         * Clear the delwri status so that a delwri queue walker will not
 102         * flush this buffer to disk now that it is stale. The delwri queue has
 103         * a reference to the buffer, so this is safe to do.
 104         */
 105        bp->b_flags &= ~_XBF_DELWRI_Q;
 106
 107        spin_lock(&bp->b_lock);
 108        atomic_set(&bp->b_lru_ref, 0);
 109        if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 110            (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 111                atomic_dec(&bp->b_hold);
 112
 113        ASSERT(atomic_read(&bp->b_hold) >= 1);
 114        spin_unlock(&bp->b_lock);
 115}
 116
 117static int
 118xfs_buf_get_maps(
 119        struct xfs_buf          *bp,
 120        int                     map_count)
 121{
 122        ASSERT(bp->b_maps == NULL);
 123        bp->b_map_count = map_count;
 124
 125        if (map_count == 1) {
 126                bp->b_maps = &bp->__b_map;
 127                return 0;
 128        }
 129
 130        bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 131                                KM_NOFS);
 132        if (!bp->b_maps)
 133                return ENOMEM;
 134        return 0;
 135}
 136
 137/*
 138 *      Frees b_pages if it was allocated.
 139 */
 140static void
 141xfs_buf_free_maps(
 142        struct xfs_buf  *bp)
 143{
 144        if (bp->b_maps != &bp->__b_map) {
 145                kmem_free(bp->b_maps);
 146                bp->b_maps = NULL;
 147        }
 148}
 149
 150struct xfs_buf *
 151_xfs_buf_alloc(
 152        struct xfs_buftarg      *target,
 153        struct xfs_buf_map      *map,
 154        int                     nmaps,
 155        xfs_buf_flags_t         flags)
 156{
 157        struct xfs_buf          *bp;
 158        int                     error;
 159        int                     i;
 160
 161        bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 162        if (unlikely(!bp))
 163                return NULL;
 164
 165        /*
 166         * We don't want certain flags to appear in b_flags unless they are
 167         * specifically set by later operations on the buffer.
 168         */
 169        flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 170
 171        atomic_set(&bp->b_hold, 1);
 172        atomic_set(&bp->b_lru_ref, 1);
 173        init_completion(&bp->b_iowait);
 174        INIT_LIST_HEAD(&bp->b_lru);
 175        INIT_LIST_HEAD(&bp->b_list);
 176        RB_CLEAR_NODE(&bp->b_rbnode);
 177        sema_init(&bp->b_sema, 0); /* held, no waiters */
 178        spin_lock_init(&bp->b_lock);
 179        XB_SET_OWNER(bp);
 180        bp->b_target = target;
 181        bp->b_flags = flags;
 182
 183        /*
 184         * Set length and io_length to the same value initially.
 185         * I/O routines should use io_length, which will be the same in
 186         * most cases but may be reset (e.g. XFS recovery).
 187         */
 188        error = xfs_buf_get_maps(bp, nmaps);
 189        if (error)  {
 190                kmem_zone_free(xfs_buf_zone, bp);
 191                return NULL;
 192        }
 193
 194        bp->b_bn = map[0].bm_bn;
 195        bp->b_length = 0;
 196        for (i = 0; i < nmaps; i++) {
 197                bp->b_maps[i].bm_bn = map[i].bm_bn;
 198                bp->b_maps[i].bm_len = map[i].bm_len;
 199                bp->b_length += map[i].bm_len;
 200        }
 201        bp->b_io_length = bp->b_length;
 202
 203        atomic_set(&bp->b_pin_count, 0);
 204        init_waitqueue_head(&bp->b_waiters);
 205
 206        XFS_STATS_INC(xb_create);
 207        trace_xfs_buf_init(bp, _RET_IP_);
 208
 209        return bp;
 210}
 211
 212/*
 213 *      Allocate a page array capable of holding a specified number
 214 *      of pages, and point the page buf at it.
 215 */
 216STATIC int
 217_xfs_buf_get_pages(
 218        xfs_buf_t               *bp,
 219        int                     page_count)
 220{
 221        /* Make sure that we have a page list */
 222        if (bp->b_pages == NULL) {
 223                bp->b_page_count = page_count;
 224                if (page_count <= XB_PAGES) {
 225                        bp->b_pages = bp->b_page_array;
 226                } else {
 227                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 228                                                 page_count, KM_NOFS);
 229                        if (bp->b_pages == NULL)
 230                                return -ENOMEM;
 231                }
 232                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 233        }
 234        return 0;
 235}
 236
 237/*
 238 *      Frees b_pages if it was allocated.
 239 */
 240STATIC void
 241_xfs_buf_free_pages(
 242        xfs_buf_t       *bp)
 243{
 244        if (bp->b_pages != bp->b_page_array) {
 245                kmem_free(bp->b_pages);
 246                bp->b_pages = NULL;
 247        }
 248}
 249
 250/*
 251 *      Releases the specified buffer.
 252 *
 253 *      The modification state of any associated pages is left unchanged.
 254 *      The buffer must not be on any hash - use xfs_buf_rele instead for
 255 *      hashed and refcounted buffers
 256 */
 257void
 258xfs_buf_free(
 259        xfs_buf_t               *bp)
 260{
 261        trace_xfs_buf_free(bp, _RET_IP_);
 262
 263        ASSERT(list_empty(&bp->b_lru));
 264
 265        if (bp->b_flags & _XBF_PAGES) {
 266                uint            i;
 267
 268                if (xfs_buf_is_vmapped(bp))
 269                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 270                                        bp->b_page_count);
 271
 272                for (i = 0; i < bp->b_page_count; i++) {
 273                        struct page     *page = bp->b_pages[i];
 274
 275                        __free_page(page);
 276                }
 277        } else if (bp->b_flags & _XBF_KMEM)
 278                kmem_free(bp->b_addr);
 279        _xfs_buf_free_pages(bp);
 280        xfs_buf_free_maps(bp);
 281        kmem_zone_free(xfs_buf_zone, bp);
 282}
 283
 284/*
 285 * Allocates all the pages for buffer in question and builds it's page list.
 286 */
 287STATIC int
 288xfs_buf_allocate_memory(
 289        xfs_buf_t               *bp,
 290        uint                    flags)
 291{
 292        size_t                  size;
 293        size_t                  nbytes, offset;
 294        gfp_t                   gfp_mask = xb_to_gfp(flags);
 295        unsigned short          page_count, i;
 296        xfs_off_t               start, end;
 297        int                     error;
 298
 299        /*
 300         * for buffers that are contained within a single page, just allocate
 301         * the memory from the heap - there's no need for the complexity of
 302         * page arrays to keep allocation down to order 0.
 303         */
 304        size = BBTOB(bp->b_length);
 305        if (size < PAGE_SIZE) {
 306                bp->b_addr = kmem_alloc(size, KM_NOFS);
 307                if (!bp->b_addr) {
 308                        /* low memory - use alloc_page loop instead */
 309                        goto use_alloc_page;
 310                }
 311
 312                if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 313                    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 314                        /* b_addr spans two pages - use alloc_page instead */
 315                        kmem_free(bp->b_addr);
 316                        bp->b_addr = NULL;
 317                        goto use_alloc_page;
 318                }
 319                bp->b_offset = offset_in_page(bp->b_addr);
 320                bp->b_pages = bp->b_page_array;
 321                bp->b_pages[0] = virt_to_page(bp->b_addr);
 322                bp->b_page_count = 1;
 323                bp->b_flags |= _XBF_KMEM;
 324                return 0;
 325        }
 326
 327use_alloc_page:
 328        start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 329        end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 330                                                                >> PAGE_SHIFT;
 331        page_count = end - start;
 332        error = _xfs_buf_get_pages(bp, page_count);
 333        if (unlikely(error))
 334                return error;
 335
 336        offset = bp->b_offset;
 337        bp->b_flags |= _XBF_PAGES;
 338
 339        for (i = 0; i < bp->b_page_count; i++) {
 340                struct page     *page;
 341                uint            retries = 0;
 342retry:
 343                page = alloc_page(gfp_mask);
 344                if (unlikely(page == NULL)) {
 345                        if (flags & XBF_READ_AHEAD) {
 346                                bp->b_page_count = i;
 347                                error = ENOMEM;
 348                                goto out_free_pages;
 349                        }
 350
 351                        /*
 352                         * This could deadlock.
 353                         *
 354                         * But until all the XFS lowlevel code is revamped to
 355                         * handle buffer allocation failures we can't do much.
 356                         */
 357                        if (!(++retries % 100))
 358                                xfs_err(NULL,
 359                "possible memory allocation deadlock in %s (mode:0x%x)",
 360                                        __func__, gfp_mask);
 361
 362                        XFS_STATS_INC(xb_page_retries);
 363                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 364                        goto retry;
 365                }
 366
 367                XFS_STATS_INC(xb_page_found);
 368
 369                nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 370                size -= nbytes;
 371                bp->b_pages[i] = page;
 372                offset = 0;
 373        }
 374        return 0;
 375
 376out_free_pages:
 377        for (i = 0; i < bp->b_page_count; i++)
 378                __free_page(bp->b_pages[i]);
 379        return error;
 380}
 381
 382/*
 383 *      Map buffer into kernel address-space if necessary.
 384 */
 385STATIC int
 386_xfs_buf_map_pages(
 387        xfs_buf_t               *bp,
 388        uint                    flags)
 389{
 390        ASSERT(bp->b_flags & _XBF_PAGES);
 391        if (bp->b_page_count == 1) {
 392                /* A single page buffer is always mappable */
 393                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 394        } else if (flags & XBF_UNMAPPED) {
 395                bp->b_addr = NULL;
 396        } else {
 397                int retried = 0;
 398                unsigned noio_flag;
 399
 400                /*
 401                 * vm_map_ram() will allocate auxillary structures (e.g.
 402                 * pagetables) with GFP_KERNEL, yet we are likely to be under
 403                 * GFP_NOFS context here. Hence we need to tell memory reclaim
 404                 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
 405                 * memory reclaim re-entering the filesystem here and
 406                 * potentially deadlocking.
 407                 */
 408                noio_flag = memalloc_noio_save();
 409                do {
 410                        bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 411                                                -1, PAGE_KERNEL);
 412                        if (bp->b_addr)
 413                                break;
 414                        vm_unmap_aliases();
 415                } while (retried++ <= 1);
 416                memalloc_noio_restore(noio_flag);
 417
 418                if (!bp->b_addr)
 419                        return -ENOMEM;
 420                bp->b_addr += bp->b_offset;
 421        }
 422
 423        return 0;
 424}
 425
 426/*
 427 *      Finding and Reading Buffers
 428 */
 429
 430/*
 431 *      Look up, and creates if absent, a lockable buffer for
 432 *      a given range of an inode.  The buffer is returned
 433 *      locked. No I/O is implied by this call.
 434 */
 435xfs_buf_t *
 436_xfs_buf_find(
 437        struct xfs_buftarg      *btp,
 438        struct xfs_buf_map      *map,
 439        int                     nmaps,
 440        xfs_buf_flags_t         flags,
 441        xfs_buf_t               *new_bp)
 442{
 443        size_t                  numbytes;
 444        struct xfs_perag        *pag;
 445        struct rb_node          **rbp;
 446        struct rb_node          *parent;
 447        xfs_buf_t               *bp;
 448        xfs_daddr_t             blkno = map[0].bm_bn;
 449        xfs_daddr_t             eofs;
 450        int                     numblks = 0;
 451        int                     i;
 452
 453        for (i = 0; i < nmaps; i++)
 454                numblks += map[i].bm_len;
 455        numbytes = BBTOB(numblks);
 456
 457        /* Check for IOs smaller than the sector size / not sector aligned */
 458        ASSERT(!(numbytes < btp->bt_meta_sectorsize));
 459        ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
 460
 461        /*
 462         * Corrupted block numbers can get through to here, unfortunately, so we
 463         * have to check that the buffer falls within the filesystem bounds.
 464         */
 465        eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 466        if (blkno >= eofs) {
 467                /*
 468                 * XXX (dgc): we should really be returning EFSCORRUPTED here,
 469                 * but none of the higher level infrastructure supports
 470                 * returning a specific error on buffer lookup failures.
 471                 */
 472                xfs_alert(btp->bt_mount,
 473                          "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
 474                          __func__, blkno, eofs);
 475                WARN_ON(1);
 476                return NULL;
 477        }
 478
 479        /* get tree root */
 480        pag = xfs_perag_get(btp->bt_mount,
 481                                xfs_daddr_to_agno(btp->bt_mount, blkno));
 482
 483        /* walk tree */
 484        spin_lock(&pag->pag_buf_lock);
 485        rbp = &pag->pag_buf_tree.rb_node;
 486        parent = NULL;
 487        bp = NULL;
 488        while (*rbp) {
 489                parent = *rbp;
 490                bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 491
 492                if (blkno < bp->b_bn)
 493                        rbp = &(*rbp)->rb_left;
 494                else if (blkno > bp->b_bn)
 495                        rbp = &(*rbp)->rb_right;
 496                else {
 497                        /*
 498                         * found a block number match. If the range doesn't
 499                         * match, the only way this is allowed is if the buffer
 500                         * in the cache is stale and the transaction that made
 501                         * it stale has not yet committed. i.e. we are
 502                         * reallocating a busy extent. Skip this buffer and
 503                         * continue searching to the right for an exact match.
 504                         */
 505                        if (bp->b_length != numblks) {
 506                                ASSERT(bp->b_flags & XBF_STALE);
 507                                rbp = &(*rbp)->rb_right;
 508                                continue;
 509                        }
 510                        atomic_inc(&bp->b_hold);
 511                        goto found;
 512                }
 513        }
 514
 515        /* No match found */
 516        if (new_bp) {
 517                rb_link_node(&new_bp->b_rbnode, parent, rbp);
 518                rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 519                /* the buffer keeps the perag reference until it is freed */
 520                new_bp->b_pag = pag;
 521                spin_unlock(&pag->pag_buf_lock);
 522        } else {
 523                XFS_STATS_INC(xb_miss_locked);
 524                spin_unlock(&pag->pag_buf_lock);
 525                xfs_perag_put(pag);
 526        }
 527        return new_bp;
 528
 529found:
 530        spin_unlock(&pag->pag_buf_lock);
 531        xfs_perag_put(pag);
 532
 533        if (!xfs_buf_trylock(bp)) {
 534                if (flags & XBF_TRYLOCK) {
 535                        xfs_buf_rele(bp);
 536                        XFS_STATS_INC(xb_busy_locked);
 537                        return NULL;
 538                }
 539                xfs_buf_lock(bp);
 540                XFS_STATS_INC(xb_get_locked_waited);
 541        }
 542
 543        /*
 544         * if the buffer is stale, clear all the external state associated with
 545         * it. We need to keep flags such as how we allocated the buffer memory
 546         * intact here.
 547         */
 548        if (bp->b_flags & XBF_STALE) {
 549                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 550                ASSERT(bp->b_iodone == NULL);
 551                bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 552                bp->b_ops = NULL;
 553        }
 554
 555        trace_xfs_buf_find(bp, flags, _RET_IP_);
 556        XFS_STATS_INC(xb_get_locked);
 557        return bp;
 558}
 559
 560/*
 561 * Assembles a buffer covering the specified range. The code is optimised for
 562 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 563 * more hits than misses.
 564 */
 565struct xfs_buf *
 566xfs_buf_get_map(
 567        struct xfs_buftarg      *target,
 568        struct xfs_buf_map      *map,
 569        int                     nmaps,
 570        xfs_buf_flags_t         flags)
 571{
 572        struct xfs_buf          *bp;
 573        struct xfs_buf          *new_bp;
 574        int                     error = 0;
 575
 576        bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
 577        if (likely(bp))
 578                goto found;
 579
 580        new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
 581        if (unlikely(!new_bp))
 582                return NULL;
 583
 584        error = xfs_buf_allocate_memory(new_bp, flags);
 585        if (error) {
 586                xfs_buf_free(new_bp);
 587                return NULL;
 588        }
 589
 590        bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
 591        if (!bp) {
 592                xfs_buf_free(new_bp);
 593                return NULL;
 594        }
 595
 596        if (bp != new_bp)
 597                xfs_buf_free(new_bp);
 598
 599found:
 600        if (!bp->b_addr) {
 601                error = _xfs_buf_map_pages(bp, flags);
 602                if (unlikely(error)) {
 603                        xfs_warn(target->bt_mount,
 604                                "%s: failed to map pagesn", __func__);
 605                        xfs_buf_relse(bp);
 606                        return NULL;
 607                }
 608        }
 609
 610        XFS_STATS_INC(xb_get);
 611        trace_xfs_buf_get(bp, flags, _RET_IP_);
 612        return bp;
 613}
 614
 615STATIC int
 616_xfs_buf_read(
 617        xfs_buf_t               *bp,
 618        xfs_buf_flags_t         flags)
 619{
 620        ASSERT(!(flags & XBF_WRITE));
 621        ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 622
 623        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 624        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 625
 626        xfs_buf_iorequest(bp);
 627        if (flags & XBF_ASYNC)
 628                return 0;
 629        return xfs_buf_iowait(bp);
 630}
 631
 632xfs_buf_t *
 633xfs_buf_read_map(
 634        struct xfs_buftarg      *target,
 635        struct xfs_buf_map      *map,
 636        int                     nmaps,
 637        xfs_buf_flags_t         flags,
 638        const struct xfs_buf_ops *ops)
 639{
 640        struct xfs_buf          *bp;
 641
 642        flags |= XBF_READ;
 643
 644        bp = xfs_buf_get_map(target, map, nmaps, flags);
 645        if (bp) {
 646                trace_xfs_buf_read(bp, flags, _RET_IP_);
 647
 648                if (!XFS_BUF_ISDONE(bp)) {
 649                        XFS_STATS_INC(xb_get_read);
 650                        bp->b_ops = ops;
 651                        _xfs_buf_read(bp, flags);
 652                } else if (flags & XBF_ASYNC) {
 653                        /*
 654                         * Read ahead call which is already satisfied,
 655                         * drop the buffer
 656                         */
 657                        xfs_buf_relse(bp);
 658                        return NULL;
 659                } else {
 660                        /* We do not want read in the flags */
 661                        bp->b_flags &= ~XBF_READ;
 662                }
 663        }
 664
 665        return bp;
 666}
 667
 668/*
 669 *      If we are not low on memory then do the readahead in a deadlock
 670 *      safe manner.
 671 */
 672void
 673xfs_buf_readahead_map(
 674        struct xfs_buftarg      *target,
 675        struct xfs_buf_map      *map,
 676        int                     nmaps,
 677        const struct xfs_buf_ops *ops)
 678{
 679        if (bdi_read_congested(target->bt_bdi))
 680                return;
 681
 682        xfs_buf_read_map(target, map, nmaps,
 683                     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
 684}
 685
 686/*
 687 * Read an uncached buffer from disk. Allocates and returns a locked
 688 * buffer containing the disk contents or nothing.
 689 */
 690struct xfs_buf *
 691xfs_buf_read_uncached(
 692        struct xfs_buftarg      *target,
 693        xfs_daddr_t             daddr,
 694        size_t                  numblks,
 695        int                     flags,
 696        const struct xfs_buf_ops *ops)
 697{
 698        struct xfs_buf          *bp;
 699
 700        bp = xfs_buf_get_uncached(target, numblks, flags);
 701        if (!bp)
 702                return NULL;
 703
 704        /* set up the buffer for a read IO */
 705        ASSERT(bp->b_map_count == 1);
 706        bp->b_bn = daddr;
 707        bp->b_maps[0].bm_bn = daddr;
 708        bp->b_flags |= XBF_READ;
 709        bp->b_ops = ops;
 710
 711        if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
 712                xfs_buf_relse(bp);
 713                return NULL;
 714        }
 715        xfs_buf_iorequest(bp);
 716        xfs_buf_iowait(bp);
 717        return bp;
 718}
 719
 720/*
 721 * Return a buffer allocated as an empty buffer and associated to external
 722 * memory via xfs_buf_associate_memory() back to it's empty state.
 723 */
 724void
 725xfs_buf_set_empty(
 726        struct xfs_buf          *bp,
 727        size_t                  numblks)
 728{
 729        if (bp->b_pages)
 730                _xfs_buf_free_pages(bp);
 731
 732        bp->b_pages = NULL;
 733        bp->b_page_count = 0;
 734        bp->b_addr = NULL;
 735        bp->b_length = numblks;
 736        bp->b_io_length = numblks;
 737
 738        ASSERT(bp->b_map_count == 1);
 739        bp->b_bn = XFS_BUF_DADDR_NULL;
 740        bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
 741        bp->b_maps[0].bm_len = bp->b_length;
 742}
 743
 744static inline struct page *
 745mem_to_page(
 746        void                    *addr)
 747{
 748        if ((!is_vmalloc_addr(addr))) {
 749                return virt_to_page(addr);
 750        } else {
 751                return vmalloc_to_page(addr);
 752        }
 753}
 754
 755int
 756xfs_buf_associate_memory(
 757        xfs_buf_t               *bp,
 758        void                    *mem,
 759        size_t                  len)
 760{
 761        int                     rval;
 762        int                     i = 0;
 763        unsigned long           pageaddr;
 764        unsigned long           offset;
 765        size_t                  buflen;
 766        int                     page_count;
 767
 768        pageaddr = (unsigned long)mem & PAGE_MASK;
 769        offset = (unsigned long)mem - pageaddr;
 770        buflen = PAGE_ALIGN(len + offset);
 771        page_count = buflen >> PAGE_SHIFT;
 772
 773        /* Free any previous set of page pointers */
 774        if (bp->b_pages)
 775                _xfs_buf_free_pages(bp);
 776
 777        bp->b_pages = NULL;
 778        bp->b_addr = mem;
 779
 780        rval = _xfs_buf_get_pages(bp, page_count);
 781        if (rval)
 782                return rval;
 783
 784        bp->b_offset = offset;
 785
 786        for (i = 0; i < bp->b_page_count; i++) {
 787                bp->b_pages[i] = mem_to_page((void *)pageaddr);
 788                pageaddr += PAGE_SIZE;
 789        }
 790
 791        bp->b_io_length = BTOBB(len);
 792        bp->b_length = BTOBB(buflen);
 793
 794        return 0;
 795}
 796
 797xfs_buf_t *
 798xfs_buf_get_uncached(
 799        struct xfs_buftarg      *target,
 800        size_t                  numblks,
 801        int                     flags)
 802{
 803        unsigned long           page_count;
 804        int                     error, i;
 805        struct xfs_buf          *bp;
 806        DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 807
 808        bp = _xfs_buf_alloc(target, &map, 1, 0);
 809        if (unlikely(bp == NULL))
 810                goto fail;
 811
 812        page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 813        error = _xfs_buf_get_pages(bp, page_count);
 814        if (error)
 815                goto fail_free_buf;
 816
 817        for (i = 0; i < page_count; i++) {
 818                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 819                if (!bp->b_pages[i])
 820                        goto fail_free_mem;
 821        }
 822        bp->b_flags |= _XBF_PAGES;
 823
 824        error = _xfs_buf_map_pages(bp, 0);
 825        if (unlikely(error)) {
 826                xfs_warn(target->bt_mount,
 827                        "%s: failed to map pages", __func__);
 828                goto fail_free_mem;
 829        }
 830
 831        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 832        return bp;
 833
 834 fail_free_mem:
 835        while (--i >= 0)
 836                __free_page(bp->b_pages[i]);
 837        _xfs_buf_free_pages(bp);
 838 fail_free_buf:
 839        xfs_buf_free_maps(bp);
 840        kmem_zone_free(xfs_buf_zone, bp);
 841 fail:
 842        return NULL;
 843}
 844
 845/*
 846 *      Increment reference count on buffer, to hold the buffer concurrently
 847 *      with another thread which may release (free) the buffer asynchronously.
 848 *      Must hold the buffer already to call this function.
 849 */
 850void
 851xfs_buf_hold(
 852        xfs_buf_t               *bp)
 853{
 854        trace_xfs_buf_hold(bp, _RET_IP_);
 855        atomic_inc(&bp->b_hold);
 856}
 857
 858/*
 859 *      Releases a hold on the specified buffer.  If the
 860 *      the hold count is 1, calls xfs_buf_free.
 861 */
 862void
 863xfs_buf_rele(
 864        xfs_buf_t               *bp)
 865{
 866        struct xfs_perag        *pag = bp->b_pag;
 867
 868        trace_xfs_buf_rele(bp, _RET_IP_);
 869
 870        if (!pag) {
 871                ASSERT(list_empty(&bp->b_lru));
 872                ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 873                if (atomic_dec_and_test(&bp->b_hold))
 874                        xfs_buf_free(bp);
 875                return;
 876        }
 877
 878        ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 879
 880        ASSERT(atomic_read(&bp->b_hold) > 0);
 881        if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 882                spin_lock(&bp->b_lock);
 883                if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
 884                        /*
 885                         * If the buffer is added to the LRU take a new
 886                         * reference to the buffer for the LRU and clear the
 887                         * (now stale) dispose list state flag
 888                         */
 889                        if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
 890                                bp->b_state &= ~XFS_BSTATE_DISPOSE;
 891                                atomic_inc(&bp->b_hold);
 892                        }
 893                        spin_unlock(&bp->b_lock);
 894                        spin_unlock(&pag->pag_buf_lock);
 895                } else {
 896                        /*
 897                         * most of the time buffers will already be removed from
 898                         * the LRU, so optimise that case by checking for the
 899                         * XFS_BSTATE_DISPOSE flag indicating the last list the
 900                         * buffer was on was the disposal list
 901                         */
 902                        if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
 903                                list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
 904                        } else {
 905                                ASSERT(list_empty(&bp->b_lru));
 906                        }
 907                        spin_unlock(&bp->b_lock);
 908
 909                        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 910                        rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 911                        spin_unlock(&pag->pag_buf_lock);
 912                        xfs_perag_put(pag);
 913                        xfs_buf_free(bp);
 914                }
 915        }
 916}
 917
 918
 919/*
 920 *      Lock a buffer object, if it is not already locked.
 921 *
 922 *      If we come across a stale, pinned, locked buffer, we know that we are
 923 *      being asked to lock a buffer that has been reallocated. Because it is
 924 *      pinned, we know that the log has not been pushed to disk and hence it
 925 *      will still be locked.  Rather than continuing to have trylock attempts
 926 *      fail until someone else pushes the log, push it ourselves before
 927 *      returning.  This means that the xfsaild will not get stuck trying
 928 *      to push on stale inode buffers.
 929 */
 930int
 931xfs_buf_trylock(
 932        struct xfs_buf          *bp)
 933{
 934        int                     locked;
 935
 936        locked = down_trylock(&bp->b_sema) == 0;
 937        if (locked)
 938                XB_SET_OWNER(bp);
 939
 940        trace_xfs_buf_trylock(bp, _RET_IP_);
 941        return locked;
 942}
 943
 944/*
 945 *      Lock a buffer object.
 946 *
 947 *      If we come across a stale, pinned, locked buffer, we know that we
 948 *      are being asked to lock a buffer that has been reallocated. Because
 949 *      it is pinned, we know that the log has not been pushed to disk and
 950 *      hence it will still be locked. Rather than sleeping until someone
 951 *      else pushes the log, push it ourselves before trying to get the lock.
 952 */
 953void
 954xfs_buf_lock(
 955        struct xfs_buf          *bp)
 956{
 957        trace_xfs_buf_lock(bp, _RET_IP_);
 958
 959        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 960                xfs_log_force(bp->b_target->bt_mount, 0);
 961        down(&bp->b_sema);
 962        XB_SET_OWNER(bp);
 963
 964        trace_xfs_buf_lock_done(bp, _RET_IP_);
 965}
 966
 967void
 968xfs_buf_unlock(
 969        struct xfs_buf          *bp)
 970{
 971        XB_CLEAR_OWNER(bp);
 972        up(&bp->b_sema);
 973
 974        trace_xfs_buf_unlock(bp, _RET_IP_);
 975}
 976
 977STATIC void
 978xfs_buf_wait_unpin(
 979        xfs_buf_t               *bp)
 980{
 981        DECLARE_WAITQUEUE       (wait, current);
 982
 983        if (atomic_read(&bp->b_pin_count) == 0)
 984                return;
 985
 986        add_wait_queue(&bp->b_waiters, &wait);
 987        for (;;) {
 988                set_current_state(TASK_UNINTERRUPTIBLE);
 989                if (atomic_read(&bp->b_pin_count) == 0)
 990                        break;
 991                io_schedule();
 992        }
 993        remove_wait_queue(&bp->b_waiters, &wait);
 994        set_current_state(TASK_RUNNING);
 995}
 996
 997/*
 998 *      Buffer Utility Routines
 999 */
1000
1001STATIC void
1002xfs_buf_iodone_work(
1003        struct work_struct      *work)
1004{
1005        struct xfs_buf          *bp =
1006                container_of(work, xfs_buf_t, b_iodone_work);
1007        bool                    read = !!(bp->b_flags & XBF_READ);
1008
1009        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1010
1011        /* only validate buffers that were read without errors */
1012        if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1013                bp->b_ops->verify_read(bp);
1014
1015        if (bp->b_iodone)
1016                (*(bp->b_iodone))(bp);
1017        else if (bp->b_flags & XBF_ASYNC)
1018                xfs_buf_relse(bp);
1019        else {
1020                ASSERT(read && bp->b_ops);
1021                complete(&bp->b_iowait);
1022        }
1023}
1024
1025void
1026xfs_buf_ioend(
1027        struct xfs_buf  *bp,
1028        int             schedule)
1029{
1030        bool            read = !!(bp->b_flags & XBF_READ);
1031
1032        trace_xfs_buf_iodone(bp, _RET_IP_);
1033
1034        if (bp->b_error == 0)
1035                bp->b_flags |= XBF_DONE;
1036
1037        if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1038                if (schedule) {
1039                        INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1040                        queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1041                } else {
1042                        xfs_buf_iodone_work(&bp->b_iodone_work);
1043                }
1044        } else {
1045                bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1046                complete(&bp->b_iowait);
1047        }
1048}
1049
1050void
1051xfs_buf_ioerror(
1052        xfs_buf_t               *bp,
1053        int                     error)
1054{
1055        ASSERT(error >= 0 && error <= 0xffff);
1056        bp->b_error = (unsigned short)error;
1057        trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1058}
1059
1060void
1061xfs_buf_ioerror_alert(
1062        struct xfs_buf          *bp,
1063        const char              *func)
1064{
1065        xfs_alert(bp->b_target->bt_mount,
1066"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1067                (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1068}
1069
1070/*
1071 * Called when we want to stop a buffer from getting written or read.
1072 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1073 * so that the proper iodone callbacks get called.
1074 */
1075STATIC int
1076xfs_bioerror(
1077        xfs_buf_t *bp)
1078{
1079#ifdef XFSERRORDEBUG
1080        ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1081#endif
1082
1083        /*
1084         * No need to wait until the buffer is unpinned, we aren't flushing it.
1085         */
1086        xfs_buf_ioerror(bp, EIO);
1087
1088        /*
1089         * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1090         */
1091        XFS_BUF_UNREAD(bp);
1092        XFS_BUF_UNDONE(bp);
1093        xfs_buf_stale(bp);
1094
1095        xfs_buf_ioend(bp, 0);
1096
1097        return EIO;
1098}
1099
1100/*
1101 * Same as xfs_bioerror, except that we are releasing the buffer
1102 * here ourselves, and avoiding the xfs_buf_ioend call.
1103 * This is meant for userdata errors; metadata bufs come with
1104 * iodone functions attached, so that we can track down errors.
1105 */
1106int
1107xfs_bioerror_relse(
1108        struct xfs_buf  *bp)
1109{
1110        int64_t         fl = bp->b_flags;
1111        /*
1112         * No need to wait until the buffer is unpinned.
1113         * We aren't flushing it.
1114         *
1115         * chunkhold expects B_DONE to be set, whether
1116         * we actually finish the I/O or not. We don't want to
1117         * change that interface.
1118         */
1119        XFS_BUF_UNREAD(bp);
1120        XFS_BUF_DONE(bp);
1121        xfs_buf_stale(bp);
1122        bp->b_iodone = NULL;
1123        if (!(fl & XBF_ASYNC)) {
1124                /*
1125                 * Mark b_error and B_ERROR _both_.
1126                 * Lot's of chunkcache code assumes that.
1127                 * There's no reason to mark error for
1128                 * ASYNC buffers.
1129                 */
1130                xfs_buf_ioerror(bp, EIO);
1131                complete(&bp->b_iowait);
1132        } else {
1133                xfs_buf_relse(bp);
1134        }
1135
1136        return EIO;
1137}
1138
1139STATIC int
1140xfs_bdstrat_cb(
1141        struct xfs_buf  *bp)
1142{
1143        if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1144                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1145                /*
1146                 * Metadata write that didn't get logged but
1147                 * written delayed anyway. These aren't associated
1148                 * with a transaction, and can be ignored.
1149                 */
1150                if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1151                        return xfs_bioerror_relse(bp);
1152                else
1153                        return xfs_bioerror(bp);
1154        }
1155
1156        xfs_buf_iorequest(bp);
1157        return 0;
1158}
1159
1160int
1161xfs_bwrite(
1162        struct xfs_buf          *bp)
1163{
1164        int                     error;
1165
1166        ASSERT(xfs_buf_islocked(bp));
1167
1168        bp->b_flags |= XBF_WRITE;
1169        bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
1170
1171        xfs_bdstrat_cb(bp);
1172
1173        error = xfs_buf_iowait(bp);
1174        if (error) {
1175                xfs_force_shutdown(bp->b_target->bt_mount,
1176                                   SHUTDOWN_META_IO_ERROR);
1177        }
1178        return error;
1179}
1180
1181STATIC void
1182_xfs_buf_ioend(
1183        xfs_buf_t               *bp,
1184        int                     schedule)
1185{
1186        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1187                xfs_buf_ioend(bp, schedule);
1188}
1189
1190STATIC void
1191xfs_buf_bio_end_io(
1192        struct bio              *bio,
1193        int                     error)
1194{
1195        xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1196
1197        /*
1198         * don't overwrite existing errors - otherwise we can lose errors on
1199         * buffers that require multiple bios to complete.
1200         */
1201        if (!bp->b_error)
1202                xfs_buf_ioerror(bp, -error);
1203
1204        if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1205                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1206
1207        _xfs_buf_ioend(bp, 1);
1208        bio_put(bio);
1209}
1210
1211static void
1212xfs_buf_ioapply_map(
1213        struct xfs_buf  *bp,
1214        int             map,
1215        int             *buf_offset,
1216        int             *count,
1217        int             rw)
1218{
1219        int             page_index;
1220        int             total_nr_pages = bp->b_page_count;
1221        int             nr_pages;
1222        struct bio      *bio;
1223        sector_t        sector =  bp->b_maps[map].bm_bn;
1224        int             size;
1225        int             offset;
1226
1227        total_nr_pages = bp->b_page_count;
1228
1229        /* skip the pages in the buffer before the start offset */
1230        page_index = 0;
1231        offset = *buf_offset;
1232        while (offset >= PAGE_SIZE) {
1233                page_index++;
1234                offset -= PAGE_SIZE;
1235        }
1236
1237        /*
1238         * Limit the IO size to the length of the current vector, and update the
1239         * remaining IO count for the next time around.
1240         */
1241        size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1242        *count -= size;
1243        *buf_offset += size;
1244
1245next_chunk:
1246        atomic_inc(&bp->b_io_remaining);
1247        nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1248        if (nr_pages > total_nr_pages)
1249                nr_pages = total_nr_pages;
1250
1251        bio = bio_alloc(GFP_NOIO, nr_pages);
1252        bio->bi_bdev = bp->b_target->bt_bdev;
1253        bio->bi_iter.bi_sector = sector;
1254        bio->bi_end_io = xfs_buf_bio_end_io;
1255        bio->bi_private = bp;
1256
1257
1258        for (; size && nr_pages; nr_pages--, page_index++) {
1259                int     rbytes, nbytes = PAGE_SIZE - offset;
1260
1261                if (nbytes > size)
1262                        nbytes = size;
1263
1264                rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1265                                      offset);
1266                if (rbytes < nbytes)
1267                        break;
1268
1269                offset = 0;
1270                sector += BTOBB(nbytes);
1271                size -= nbytes;
1272                total_nr_pages--;
1273        }
1274
1275        if (likely(bio->bi_iter.bi_size)) {
1276                if (xfs_buf_is_vmapped(bp)) {
1277                        flush_kernel_vmap_range(bp->b_addr,
1278                                                xfs_buf_vmap_len(bp));
1279                }
1280                submit_bio(rw, bio);
1281                if (size)
1282                        goto next_chunk;
1283        } else {
1284                /*
1285                 * This is guaranteed not to be the last io reference count
1286                 * because the caller (xfs_buf_iorequest) holds a count itself.
1287                 */
1288                atomic_dec(&bp->b_io_remaining);
1289                xfs_buf_ioerror(bp, EIO);
1290                bio_put(bio);
1291        }
1292
1293}
1294
1295STATIC void
1296_xfs_buf_ioapply(
1297        struct xfs_buf  *bp)
1298{
1299        struct blk_plug plug;
1300        int             rw;
1301        int             offset;
1302        int             size;
1303        int             i;
1304
1305        /*
1306         * Make sure we capture only current IO errors rather than stale errors
1307         * left over from previous use of the buffer (e.g. failed readahead).
1308         */
1309        bp->b_error = 0;
1310
1311        if (bp->b_flags & XBF_WRITE) {
1312                if (bp->b_flags & XBF_SYNCIO)
1313                        rw = WRITE_SYNC;
1314                else
1315                        rw = WRITE;
1316                if (bp->b_flags & XBF_FUA)
1317                        rw |= REQ_FUA;
1318                if (bp->b_flags & XBF_FLUSH)
1319                        rw |= REQ_FLUSH;
1320
1321                /*
1322                 * Run the write verifier callback function if it exists. If
1323                 * this function fails it will mark the buffer with an error and
1324                 * the IO should not be dispatched.
1325                 */
1326                if (bp->b_ops) {
1327                        bp->b_ops->verify_write(bp);
1328                        if (bp->b_error) {
1329                                xfs_force_shutdown(bp->b_target->bt_mount,
1330                                                   SHUTDOWN_CORRUPT_INCORE);
1331                                return;
1332                        }
1333                }
1334        } else if (bp->b_flags & XBF_READ_AHEAD) {
1335                rw = READA;
1336        } else {
1337                rw = READ;
1338        }
1339
1340        /* we only use the buffer cache for meta-data */
1341        rw |= REQ_META;
1342
1343        /*
1344         * Walk all the vectors issuing IO on them. Set up the initial offset
1345         * into the buffer and the desired IO size before we start -
1346         * _xfs_buf_ioapply_vec() will modify them appropriately for each
1347         * subsequent call.
1348         */
1349        offset = bp->b_offset;
1350        size = BBTOB(bp->b_io_length);
1351        blk_start_plug(&plug);
1352        for (i = 0; i < bp->b_map_count; i++) {
1353                xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1354                if (bp->b_error)
1355                        break;
1356                if (size <= 0)
1357                        break;  /* all done */
1358        }
1359        blk_finish_plug(&plug);
1360}
1361
1362void
1363xfs_buf_iorequest(
1364        xfs_buf_t               *bp)
1365{
1366        trace_xfs_buf_iorequest(bp, _RET_IP_);
1367
1368        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1369
1370        if (bp->b_flags & XBF_WRITE)
1371                xfs_buf_wait_unpin(bp);
1372        xfs_buf_hold(bp);
1373
1374        /*
1375         * Set the count to 1 initially, this will stop an I/O
1376         * completion callout which happens before we have started
1377         * all the I/O from calling xfs_buf_ioend too early.
1378         */
1379        atomic_set(&bp->b_io_remaining, 1);
1380        _xfs_buf_ioapply(bp);
1381        /*
1382         * If _xfs_buf_ioapply failed, we'll get back here with
1383         * only the reference we took above.  _xfs_buf_ioend will
1384         * drop it to zero, so we'd better not queue it for later,
1385         * or we'll free it before it's done.
1386         */
1387        _xfs_buf_ioend(bp, bp->b_error ? 0 : 1);
1388
1389        xfs_buf_rele(bp);
1390}
1391
1392/*
1393 * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1394 * no I/O is pending or there is already a pending error on the buffer, in which
1395 * case nothing will ever complete.  It returns the I/O error code, if any, or
1396 * 0 if there was no error.
1397 */
1398int
1399xfs_buf_iowait(
1400        xfs_buf_t               *bp)
1401{
1402        trace_xfs_buf_iowait(bp, _RET_IP_);
1403
1404        if (!bp->b_error)
1405                wait_for_completion(&bp->b_iowait);
1406
1407        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1408        return bp->b_error;
1409}
1410
1411xfs_caddr_t
1412xfs_buf_offset(
1413        xfs_buf_t               *bp,
1414        size_t                  offset)
1415{
1416        struct page             *page;
1417
1418        if (bp->b_addr)
1419                return bp->b_addr + offset;
1420
1421        offset += bp->b_offset;
1422        page = bp->b_pages[offset >> PAGE_SHIFT];
1423        return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1424}
1425
1426/*
1427 *      Move data into or out of a buffer.
1428 */
1429void
1430xfs_buf_iomove(
1431        xfs_buf_t               *bp,    /* buffer to process            */
1432        size_t                  boff,   /* starting buffer offset       */
1433        size_t                  bsize,  /* length to copy               */
1434        void                    *data,  /* data address                 */
1435        xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1436{
1437        size_t                  bend;
1438
1439        bend = boff + bsize;
1440        while (boff < bend) {
1441                struct page     *page;
1442                int             page_index, page_offset, csize;
1443
1444                page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1445                page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1446                page = bp->b_pages[page_index];
1447                csize = min_t(size_t, PAGE_SIZE - page_offset,
1448                                      BBTOB(bp->b_io_length) - boff);
1449
1450                ASSERT((csize + page_offset) <= PAGE_SIZE);
1451
1452                switch (mode) {
1453                case XBRW_ZERO:
1454                        memset(page_address(page) + page_offset, 0, csize);
1455                        break;
1456                case XBRW_READ:
1457                        memcpy(data, page_address(page) + page_offset, csize);
1458                        break;
1459                case XBRW_WRITE:
1460                        memcpy(page_address(page) + page_offset, data, csize);
1461                }
1462
1463                boff += csize;
1464                data += csize;
1465        }
1466}
1467
1468/*
1469 *      Handling of buffer targets (buftargs).
1470 */
1471
1472/*
1473 * Wait for any bufs with callbacks that have been submitted but have not yet
1474 * returned. These buffers will have an elevated hold count, so wait on those
1475 * while freeing all the buffers only held by the LRU.
1476 */
1477static enum lru_status
1478xfs_buftarg_wait_rele(
1479        struct list_head        *item,
1480        spinlock_t              *lru_lock,
1481        void                    *arg)
1482
1483{
1484        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1485        struct list_head        *dispose = arg;
1486
1487        if (atomic_read(&bp->b_hold) > 1) {
1488                /* need to wait, so skip it this pass */
1489                trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1490                return LRU_SKIP;
1491        }
1492        if (!spin_trylock(&bp->b_lock))
1493                return LRU_SKIP;
1494
1495        /*
1496         * clear the LRU reference count so the buffer doesn't get
1497         * ignored in xfs_buf_rele().
1498         */
1499        atomic_set(&bp->b_lru_ref, 0);
1500        bp->b_state |= XFS_BSTATE_DISPOSE;
1501        list_move(item, dispose);
1502        spin_unlock(&bp->b_lock);
1503        return LRU_REMOVED;
1504}
1505
1506void
1507xfs_wait_buftarg(
1508        struct xfs_buftarg      *btp)
1509{
1510        LIST_HEAD(dispose);
1511        int loop = 0;
1512
1513        /* loop until there is nothing left on the lru list. */
1514        while (list_lru_count(&btp->bt_lru)) {
1515                list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1516                              &dispose, LONG_MAX);
1517
1518                while (!list_empty(&dispose)) {
1519                        struct xfs_buf *bp;
1520                        bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1521                        list_del_init(&bp->b_lru);
1522                        if (bp->b_flags & XBF_WRITE_FAIL) {
1523                                xfs_alert(btp->bt_mount,
1524"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1525"Please run xfs_repair to determine the extent of the problem.",
1526                                        (long long)bp->b_bn);
1527                        }
1528                        xfs_buf_rele(bp);
1529                }
1530                if (loop++ != 0)
1531                        delay(100);
1532        }
1533}
1534
1535static enum lru_status
1536xfs_buftarg_isolate(
1537        struct list_head        *item,
1538        spinlock_t              *lru_lock,
1539        void                    *arg)
1540{
1541        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1542        struct list_head        *dispose = arg;
1543
1544        /*
1545         * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1546         * If we fail to get the lock, just skip it.
1547         */
1548        if (!spin_trylock(&bp->b_lock))
1549                return LRU_SKIP;
1550        /*
1551         * Decrement the b_lru_ref count unless the value is already
1552         * zero. If the value is already zero, we need to reclaim the
1553         * buffer, otherwise it gets another trip through the LRU.
1554         */
1555        if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1556                spin_unlock(&bp->b_lock);
1557                return LRU_ROTATE;
1558        }
1559
1560        bp->b_state |= XFS_BSTATE_DISPOSE;
1561        list_move(item, dispose);
1562        spin_unlock(&bp->b_lock);
1563        return LRU_REMOVED;
1564}
1565
1566static unsigned long
1567xfs_buftarg_shrink_scan(
1568        struct shrinker         *shrink,
1569        struct shrink_control   *sc)
1570{
1571        struct xfs_buftarg      *btp = container_of(shrink,
1572                                        struct xfs_buftarg, bt_shrinker);
1573        LIST_HEAD(dispose);
1574        unsigned long           freed;
1575        unsigned long           nr_to_scan = sc->nr_to_scan;
1576
1577        freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1578                                       &dispose, &nr_to_scan);
1579
1580        while (!list_empty(&dispose)) {
1581                struct xfs_buf *bp;
1582                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1583                list_del_init(&bp->b_lru);
1584                xfs_buf_rele(bp);
1585        }
1586
1587        return freed;
1588}
1589
1590static unsigned long
1591xfs_buftarg_shrink_count(
1592        struct shrinker         *shrink,
1593        struct shrink_control   *sc)
1594{
1595        struct xfs_buftarg      *btp = container_of(shrink,
1596                                        struct xfs_buftarg, bt_shrinker);
1597        return list_lru_count_node(&btp->bt_lru, sc->nid);
1598}
1599
1600void
1601xfs_free_buftarg(
1602        struct xfs_mount        *mp,
1603        struct xfs_buftarg      *btp)
1604{
1605        unregister_shrinker(&btp->bt_shrinker);
1606        list_lru_destroy(&btp->bt_lru);
1607
1608        if (mp->m_flags & XFS_MOUNT_BARRIER)
1609                xfs_blkdev_issue_flush(btp);
1610
1611        kmem_free(btp);
1612}
1613
1614int
1615xfs_setsize_buftarg(
1616        xfs_buftarg_t           *btp,
1617        unsigned int            sectorsize)
1618{
1619        /* Set up metadata sector size info */
1620        btp->bt_meta_sectorsize = sectorsize;
1621        btp->bt_meta_sectormask = sectorsize - 1;
1622
1623        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1624                char name[BDEVNAME_SIZE];
1625
1626                bdevname(btp->bt_bdev, name);
1627
1628                xfs_warn(btp->bt_mount,
1629                        "Cannot set_blocksize to %u on device %s",
1630                        sectorsize, name);
1631                return EINVAL;
1632        }
1633
1634        /* Set up device logical sector size mask */
1635        btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1636        btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1637
1638        return 0;
1639}
1640
1641/*
1642 * When allocating the initial buffer target we have not yet
1643 * read in the superblock, so don't know what sized sectors
1644 * are being used at this early stage.  Play safe.
1645 */
1646STATIC int
1647xfs_setsize_buftarg_early(
1648        xfs_buftarg_t           *btp,
1649        struct block_device     *bdev)
1650{
1651        return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1652}
1653
1654xfs_buftarg_t *
1655xfs_alloc_buftarg(
1656        struct xfs_mount        *mp,
1657        struct block_device     *bdev)
1658{
1659        xfs_buftarg_t           *btp;
1660
1661        btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1662
1663        btp->bt_mount = mp;
1664        btp->bt_dev =  bdev->bd_dev;
1665        btp->bt_bdev = bdev;
1666        btp->bt_bdi = blk_get_backing_dev_info(bdev);
1667        if (!btp->bt_bdi)
1668                goto error;
1669
1670        if (xfs_setsize_buftarg_early(btp, bdev))
1671                goto error;
1672
1673        if (list_lru_init(&btp->bt_lru))
1674                goto error;
1675
1676        btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1677        btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1678        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1679        btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1680        register_shrinker(&btp->bt_shrinker);
1681        return btp;
1682
1683error:
1684        kmem_free(btp);
1685        return NULL;
1686}
1687
1688/*
1689 * Add a buffer to the delayed write list.
1690 *
1691 * This queues a buffer for writeout if it hasn't already been.  Note that
1692 * neither this routine nor the buffer list submission functions perform
1693 * any internal synchronization.  It is expected that the lists are thread-local
1694 * to the callers.
1695 *
1696 * Returns true if we queued up the buffer, or false if it already had
1697 * been on the buffer list.
1698 */
1699bool
1700xfs_buf_delwri_queue(
1701        struct xfs_buf          *bp,
1702        struct list_head        *list)
1703{
1704        ASSERT(xfs_buf_islocked(bp));
1705        ASSERT(!(bp->b_flags & XBF_READ));
1706
1707        /*
1708         * If the buffer is already marked delwri it already is queued up
1709         * by someone else for imediate writeout.  Just ignore it in that
1710         * case.
1711         */
1712        if (bp->b_flags & _XBF_DELWRI_Q) {
1713                trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1714                return false;
1715        }
1716
1717        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1718
1719        /*
1720         * If a buffer gets written out synchronously or marked stale while it
1721         * is on a delwri list we lazily remove it. To do this, the other party
1722         * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1723         * It remains referenced and on the list.  In a rare corner case it
1724         * might get readded to a delwri list after the synchronous writeout, in
1725         * which case we need just need to re-add the flag here.
1726         */
1727        bp->b_flags |= _XBF_DELWRI_Q;
1728        if (list_empty(&bp->b_list)) {
1729                atomic_inc(&bp->b_hold);
1730                list_add_tail(&bp->b_list, list);
1731        }
1732
1733        return true;
1734}
1735
1736/*
1737 * Compare function is more complex than it needs to be because
1738 * the return value is only 32 bits and we are doing comparisons
1739 * on 64 bit values
1740 */
1741static int
1742xfs_buf_cmp(
1743        void            *priv,
1744        struct list_head *a,
1745        struct list_head *b)
1746{
1747        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1748        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1749        xfs_daddr_t             diff;
1750
1751        diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1752        if (diff < 0)
1753                return -1;
1754        if (diff > 0)
1755                return 1;
1756        return 0;
1757}
1758
1759static int
1760__xfs_buf_delwri_submit(
1761        struct list_head        *buffer_list,
1762        struct list_head        *io_list,
1763        bool                    wait)
1764{
1765        struct blk_plug         plug;
1766        struct xfs_buf          *bp, *n;
1767        int                     pinned = 0;
1768
1769        list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1770                if (!wait) {
1771                        if (xfs_buf_ispinned(bp)) {
1772                                pinned++;
1773                                continue;
1774                        }
1775                        if (!xfs_buf_trylock(bp))
1776                                continue;
1777                } else {
1778                        xfs_buf_lock(bp);
1779                }
1780
1781                /*
1782                 * Someone else might have written the buffer synchronously or
1783                 * marked it stale in the meantime.  In that case only the
1784                 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1785                 * reference and remove it from the list here.
1786                 */
1787                if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1788                        list_del_init(&bp->b_list);
1789                        xfs_buf_relse(bp);
1790                        continue;
1791                }
1792
1793                list_move_tail(&bp->b_list, io_list);
1794                trace_xfs_buf_delwri_split(bp, _RET_IP_);
1795        }
1796
1797        list_sort(NULL, io_list, xfs_buf_cmp);
1798
1799        blk_start_plug(&plug);
1800        list_for_each_entry_safe(bp, n, io_list, b_list) {
1801                bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1802                bp->b_flags |= XBF_WRITE;
1803
1804                if (!wait) {
1805                        bp->b_flags |= XBF_ASYNC;
1806                        list_del_init(&bp->b_list);
1807                }
1808                xfs_bdstrat_cb(bp);
1809        }
1810        blk_finish_plug(&plug);
1811
1812        return pinned;
1813}
1814
1815/*
1816 * Write out a buffer list asynchronously.
1817 *
1818 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1819 * out and not wait for I/O completion on any of the buffers.  This interface
1820 * is only safely useable for callers that can track I/O completion by higher
1821 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1822 * function.
1823 */
1824int
1825xfs_buf_delwri_submit_nowait(
1826        struct list_head        *buffer_list)
1827{
1828        LIST_HEAD               (io_list);
1829        return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1830}
1831
1832/*
1833 * Write out a buffer list synchronously.
1834 *
1835 * This will take the @buffer_list, write all buffers out and wait for I/O
1836 * completion on all of the buffers. @buffer_list is consumed by the function,
1837 * so callers must have some other way of tracking buffers if they require such
1838 * functionality.
1839 */
1840int
1841xfs_buf_delwri_submit(
1842        struct list_head        *buffer_list)
1843{
1844        LIST_HEAD               (io_list);
1845        int                     error = 0, error2;
1846        struct xfs_buf          *bp;
1847
1848        __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1849
1850        /* Wait for IO to complete. */
1851        while (!list_empty(&io_list)) {
1852                bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1853
1854                list_del_init(&bp->b_list);
1855                error2 = xfs_buf_iowait(bp);
1856                xfs_buf_relse(bp);
1857                if (!error)
1858                        error = error2;
1859        }
1860
1861        return error;
1862}
1863
1864int __init
1865xfs_buf_init(void)
1866{
1867        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1868                                                KM_ZONE_HWALIGN, NULL);
1869        if (!xfs_buf_zone)
1870                goto out;
1871
1872        xfslogd_workqueue = alloc_workqueue("xfslogd",
1873                                        WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1874        if (!xfslogd_workqueue)
1875                goto out_free_buf_zone;
1876
1877        return 0;
1878
1879 out_free_buf_zone:
1880        kmem_zone_destroy(xfs_buf_zone);
1881 out:
1882        return -ENOMEM;
1883}
1884
1885void
1886xfs_buf_terminate(void)
1887{
1888        destroy_workqueue(xfslogd_workqueue);
1889        kmem_zone_destroy(xfs_buf_zone);
1890}
1891