linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_inum.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_mount.h"
  29#include "xfs_da_format.h"
  30#include "xfs_inode.h"
  31#include "xfs_trans.h"
  32#include "xfs_log.h"
  33#include "xfs_log_priv.h"
  34#include "xfs_log_recover.h"
  35#include "xfs_inode_item.h"
  36#include "xfs_extfree_item.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_alloc.h"
  39#include "xfs_ialloc.h"
  40#include "xfs_quota.h"
  41#include "xfs_cksum.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_bmap_btree.h"
  45#include "xfs_dinode.h"
  46#include "xfs_error.h"
  47#include "xfs_dir2.h"
  48
  49#define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
  50
  51STATIC int
  52xlog_find_zeroed(
  53        struct xlog     *,
  54        xfs_daddr_t     *);
  55STATIC int
  56xlog_clear_stale_blocks(
  57        struct xlog     *,
  58        xfs_lsn_t);
  59#if defined(DEBUG)
  60STATIC void
  61xlog_recover_check_summary(
  62        struct xlog *);
  63#else
  64#define xlog_recover_check_summary(log)
  65#endif
  66
  67/*
  68 * This structure is used during recovery to record the buf log items which
  69 * have been canceled and should not be replayed.
  70 */
  71struct xfs_buf_cancel {
  72        xfs_daddr_t             bc_blkno;
  73        uint                    bc_len;
  74        int                     bc_refcount;
  75        struct list_head        bc_list;
  76};
  77
  78/*
  79 * Sector aligned buffer routines for buffer create/read/write/access
  80 */
  81
  82/*
  83 * Verify the given count of basic blocks is valid number of blocks
  84 * to specify for an operation involving the given XFS log buffer.
  85 * Returns nonzero if the count is valid, 0 otherwise.
  86 */
  87
  88static inline int
  89xlog_buf_bbcount_valid(
  90        struct xlog     *log,
  91        int             bbcount)
  92{
  93        return bbcount > 0 && bbcount <= log->l_logBBsize;
  94}
  95
  96/*
  97 * Allocate a buffer to hold log data.  The buffer needs to be able
  98 * to map to a range of nbblks basic blocks at any valid (basic
  99 * block) offset within the log.
 100 */
 101STATIC xfs_buf_t *
 102xlog_get_bp(
 103        struct xlog     *log,
 104        int             nbblks)
 105{
 106        struct xfs_buf  *bp;
 107
 108        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 109                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 110                        nbblks);
 111                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 112                return NULL;
 113        }
 114
 115        /*
 116         * We do log I/O in units of log sectors (a power-of-2
 117         * multiple of the basic block size), so we round up the
 118         * requested size to accommodate the basic blocks required
 119         * for complete log sectors.
 120         *
 121         * In addition, the buffer may be used for a non-sector-
 122         * aligned block offset, in which case an I/O of the
 123         * requested size could extend beyond the end of the
 124         * buffer.  If the requested size is only 1 basic block it
 125         * will never straddle a sector boundary, so this won't be
 126         * an issue.  Nor will this be a problem if the log I/O is
 127         * done in basic blocks (sector size 1).  But otherwise we
 128         * extend the buffer by one extra log sector to ensure
 129         * there's space to accommodate this possibility.
 130         */
 131        if (nbblks > 1 && log->l_sectBBsize > 1)
 132                nbblks += log->l_sectBBsize;
 133        nbblks = round_up(nbblks, log->l_sectBBsize);
 134
 135        bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 136        if (bp)
 137                xfs_buf_unlock(bp);
 138        return bp;
 139}
 140
 141STATIC void
 142xlog_put_bp(
 143        xfs_buf_t       *bp)
 144{
 145        xfs_buf_free(bp);
 146}
 147
 148/*
 149 * Return the address of the start of the given block number's data
 150 * in a log buffer.  The buffer covers a log sector-aligned region.
 151 */
 152STATIC xfs_caddr_t
 153xlog_align(
 154        struct xlog     *log,
 155        xfs_daddr_t     blk_no,
 156        int             nbblks,
 157        struct xfs_buf  *bp)
 158{
 159        xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 160
 161        ASSERT(offset + nbblks <= bp->b_length);
 162        return bp->b_addr + BBTOB(offset);
 163}
 164
 165
 166/*
 167 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 168 */
 169STATIC int
 170xlog_bread_noalign(
 171        struct xlog     *log,
 172        xfs_daddr_t     blk_no,
 173        int             nbblks,
 174        struct xfs_buf  *bp)
 175{
 176        int             error;
 177
 178        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 179                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 180                        nbblks);
 181                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 182                return EFSCORRUPTED;
 183        }
 184
 185        blk_no = round_down(blk_no, log->l_sectBBsize);
 186        nbblks = round_up(nbblks, log->l_sectBBsize);
 187
 188        ASSERT(nbblks > 0);
 189        ASSERT(nbblks <= bp->b_length);
 190
 191        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 192        XFS_BUF_READ(bp);
 193        bp->b_io_length = nbblks;
 194        bp->b_error = 0;
 195
 196        if (XFS_FORCED_SHUTDOWN(log->l_mp))
 197                return XFS_ERROR(EIO);
 198
 199        xfs_buf_iorequest(bp);
 200        error = xfs_buf_iowait(bp);
 201        if (error)
 202                xfs_buf_ioerror_alert(bp, __func__);
 203        return error;
 204}
 205
 206STATIC int
 207xlog_bread(
 208        struct xlog     *log,
 209        xfs_daddr_t     blk_no,
 210        int             nbblks,
 211        struct xfs_buf  *bp,
 212        xfs_caddr_t     *offset)
 213{
 214        int             error;
 215
 216        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 217        if (error)
 218                return error;
 219
 220        *offset = xlog_align(log, blk_no, nbblks, bp);
 221        return 0;
 222}
 223
 224/*
 225 * Read at an offset into the buffer. Returns with the buffer in it's original
 226 * state regardless of the result of the read.
 227 */
 228STATIC int
 229xlog_bread_offset(
 230        struct xlog     *log,
 231        xfs_daddr_t     blk_no,         /* block to read from */
 232        int             nbblks,         /* blocks to read */
 233        struct xfs_buf  *bp,
 234        xfs_caddr_t     offset)
 235{
 236        xfs_caddr_t     orig_offset = bp->b_addr;
 237        int             orig_len = BBTOB(bp->b_length);
 238        int             error, error2;
 239
 240        error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 241        if (error)
 242                return error;
 243
 244        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 245
 246        /* must reset buffer pointer even on error */
 247        error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 248        if (error)
 249                return error;
 250        return error2;
 251}
 252
 253/*
 254 * Write out the buffer at the given block for the given number of blocks.
 255 * The buffer is kept locked across the write and is returned locked.
 256 * This can only be used for synchronous log writes.
 257 */
 258STATIC int
 259xlog_bwrite(
 260        struct xlog     *log,
 261        xfs_daddr_t     blk_no,
 262        int             nbblks,
 263        struct xfs_buf  *bp)
 264{
 265        int             error;
 266
 267        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 268                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 269                        nbblks);
 270                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 271                return EFSCORRUPTED;
 272        }
 273
 274        blk_no = round_down(blk_no, log->l_sectBBsize);
 275        nbblks = round_up(nbblks, log->l_sectBBsize);
 276
 277        ASSERT(nbblks > 0);
 278        ASSERT(nbblks <= bp->b_length);
 279
 280        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 281        XFS_BUF_ZEROFLAGS(bp);
 282        xfs_buf_hold(bp);
 283        xfs_buf_lock(bp);
 284        bp->b_io_length = nbblks;
 285        bp->b_error = 0;
 286
 287        error = xfs_bwrite(bp);
 288        if (error)
 289                xfs_buf_ioerror_alert(bp, __func__);
 290        xfs_buf_relse(bp);
 291        return error;
 292}
 293
 294#ifdef DEBUG
 295/*
 296 * dump debug superblock and log record information
 297 */
 298STATIC void
 299xlog_header_check_dump(
 300        xfs_mount_t             *mp,
 301        xlog_rec_header_t       *head)
 302{
 303        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 304                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 305        xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 306                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 307}
 308#else
 309#define xlog_header_check_dump(mp, head)
 310#endif
 311
 312/*
 313 * check log record header for recovery
 314 */
 315STATIC int
 316xlog_header_check_recover(
 317        xfs_mount_t             *mp,
 318        xlog_rec_header_t       *head)
 319{
 320        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 321
 322        /*
 323         * IRIX doesn't write the h_fmt field and leaves it zeroed
 324         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 325         * a dirty log created in IRIX.
 326         */
 327        if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 328                xfs_warn(mp,
 329        "dirty log written in incompatible format - can't recover");
 330                xlog_header_check_dump(mp, head);
 331                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 332                                 XFS_ERRLEVEL_HIGH, mp);
 333                return XFS_ERROR(EFSCORRUPTED);
 334        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 335                xfs_warn(mp,
 336        "dirty log entry has mismatched uuid - can't recover");
 337                xlog_header_check_dump(mp, head);
 338                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 339                                 XFS_ERRLEVEL_HIGH, mp);
 340                return XFS_ERROR(EFSCORRUPTED);
 341        }
 342        return 0;
 343}
 344
 345/*
 346 * read the head block of the log and check the header
 347 */
 348STATIC int
 349xlog_header_check_mount(
 350        xfs_mount_t             *mp,
 351        xlog_rec_header_t       *head)
 352{
 353        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 354
 355        if (uuid_is_nil(&head->h_fs_uuid)) {
 356                /*
 357                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 358                 * h_fs_uuid is nil, we assume this log was last mounted
 359                 * by IRIX and continue.
 360                 */
 361                xfs_warn(mp, "nil uuid in log - IRIX style log");
 362        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 363                xfs_warn(mp, "log has mismatched uuid - can't recover");
 364                xlog_header_check_dump(mp, head);
 365                XFS_ERROR_REPORT("xlog_header_check_mount",
 366                                 XFS_ERRLEVEL_HIGH, mp);
 367                return XFS_ERROR(EFSCORRUPTED);
 368        }
 369        return 0;
 370}
 371
 372STATIC void
 373xlog_recover_iodone(
 374        struct xfs_buf  *bp)
 375{
 376        if (bp->b_error) {
 377                /*
 378                 * We're not going to bother about retrying
 379                 * this during recovery. One strike!
 380                 */
 381                xfs_buf_ioerror_alert(bp, __func__);
 382                xfs_force_shutdown(bp->b_target->bt_mount,
 383                                        SHUTDOWN_META_IO_ERROR);
 384        }
 385        bp->b_iodone = NULL;
 386        xfs_buf_ioend(bp, 0);
 387}
 388
 389/*
 390 * This routine finds (to an approximation) the first block in the physical
 391 * log which contains the given cycle.  It uses a binary search algorithm.
 392 * Note that the algorithm can not be perfect because the disk will not
 393 * necessarily be perfect.
 394 */
 395STATIC int
 396xlog_find_cycle_start(
 397        struct xlog     *log,
 398        struct xfs_buf  *bp,
 399        xfs_daddr_t     first_blk,
 400        xfs_daddr_t     *last_blk,
 401        uint            cycle)
 402{
 403        xfs_caddr_t     offset;
 404        xfs_daddr_t     mid_blk;
 405        xfs_daddr_t     end_blk;
 406        uint            mid_cycle;
 407        int             error;
 408
 409        end_blk = *last_blk;
 410        mid_blk = BLK_AVG(first_blk, end_blk);
 411        while (mid_blk != first_blk && mid_blk != end_blk) {
 412                error = xlog_bread(log, mid_blk, 1, bp, &offset);
 413                if (error)
 414                        return error;
 415                mid_cycle = xlog_get_cycle(offset);
 416                if (mid_cycle == cycle)
 417                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 418                else
 419                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 420                mid_blk = BLK_AVG(first_blk, end_blk);
 421        }
 422        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 423               (mid_blk == end_blk && mid_blk-1 == first_blk));
 424
 425        *last_blk = end_blk;
 426
 427        return 0;
 428}
 429
 430/*
 431 * Check that a range of blocks does not contain stop_on_cycle_no.
 432 * Fill in *new_blk with the block offset where such a block is
 433 * found, or with -1 (an invalid block number) if there is no such
 434 * block in the range.  The scan needs to occur from front to back
 435 * and the pointer into the region must be updated since a later
 436 * routine will need to perform another test.
 437 */
 438STATIC int
 439xlog_find_verify_cycle(
 440        struct xlog     *log,
 441        xfs_daddr_t     start_blk,
 442        int             nbblks,
 443        uint            stop_on_cycle_no,
 444        xfs_daddr_t     *new_blk)
 445{
 446        xfs_daddr_t     i, j;
 447        uint            cycle;
 448        xfs_buf_t       *bp;
 449        xfs_daddr_t     bufblks;
 450        xfs_caddr_t     buf = NULL;
 451        int             error = 0;
 452
 453        /*
 454         * Greedily allocate a buffer big enough to handle the full
 455         * range of basic blocks we'll be examining.  If that fails,
 456         * try a smaller size.  We need to be able to read at least
 457         * a log sector, or we're out of luck.
 458         */
 459        bufblks = 1 << ffs(nbblks);
 460        while (bufblks > log->l_logBBsize)
 461                bufblks >>= 1;
 462        while (!(bp = xlog_get_bp(log, bufblks))) {
 463                bufblks >>= 1;
 464                if (bufblks < log->l_sectBBsize)
 465                        return ENOMEM;
 466        }
 467
 468        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 469                int     bcount;
 470
 471                bcount = min(bufblks, (start_blk + nbblks - i));
 472
 473                error = xlog_bread(log, i, bcount, bp, &buf);
 474                if (error)
 475                        goto out;
 476
 477                for (j = 0; j < bcount; j++) {
 478                        cycle = xlog_get_cycle(buf);
 479                        if (cycle == stop_on_cycle_no) {
 480                                *new_blk = i+j;
 481                                goto out;
 482                        }
 483
 484                        buf += BBSIZE;
 485                }
 486        }
 487
 488        *new_blk = -1;
 489
 490out:
 491        xlog_put_bp(bp);
 492        return error;
 493}
 494
 495/*
 496 * Potentially backup over partial log record write.
 497 *
 498 * In the typical case, last_blk is the number of the block directly after
 499 * a good log record.  Therefore, we subtract one to get the block number
 500 * of the last block in the given buffer.  extra_bblks contains the number
 501 * of blocks we would have read on a previous read.  This happens when the
 502 * last log record is split over the end of the physical log.
 503 *
 504 * extra_bblks is the number of blocks potentially verified on a previous
 505 * call to this routine.
 506 */
 507STATIC int
 508xlog_find_verify_log_record(
 509        struct xlog             *log,
 510        xfs_daddr_t             start_blk,
 511        xfs_daddr_t             *last_blk,
 512        int                     extra_bblks)
 513{
 514        xfs_daddr_t             i;
 515        xfs_buf_t               *bp;
 516        xfs_caddr_t             offset = NULL;
 517        xlog_rec_header_t       *head = NULL;
 518        int                     error = 0;
 519        int                     smallmem = 0;
 520        int                     num_blks = *last_blk - start_blk;
 521        int                     xhdrs;
 522
 523        ASSERT(start_blk != 0 || *last_blk != start_blk);
 524
 525        if (!(bp = xlog_get_bp(log, num_blks))) {
 526                if (!(bp = xlog_get_bp(log, 1)))
 527                        return ENOMEM;
 528                smallmem = 1;
 529        } else {
 530                error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 531                if (error)
 532                        goto out;
 533                offset += ((num_blks - 1) << BBSHIFT);
 534        }
 535
 536        for (i = (*last_blk) - 1; i >= 0; i--) {
 537                if (i < start_blk) {
 538                        /* valid log record not found */
 539                        xfs_warn(log->l_mp,
 540                "Log inconsistent (didn't find previous header)");
 541                        ASSERT(0);
 542                        error = XFS_ERROR(EIO);
 543                        goto out;
 544                }
 545
 546                if (smallmem) {
 547                        error = xlog_bread(log, i, 1, bp, &offset);
 548                        if (error)
 549                                goto out;
 550                }
 551
 552                head = (xlog_rec_header_t *)offset;
 553
 554                if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 555                        break;
 556
 557                if (!smallmem)
 558                        offset -= BBSIZE;
 559        }
 560
 561        /*
 562         * We hit the beginning of the physical log & still no header.  Return
 563         * to caller.  If caller can handle a return of -1, then this routine
 564         * will be called again for the end of the physical log.
 565         */
 566        if (i == -1) {
 567                error = -1;
 568                goto out;
 569        }
 570
 571        /*
 572         * We have the final block of the good log (the first block
 573         * of the log record _before_ the head. So we check the uuid.
 574         */
 575        if ((error = xlog_header_check_mount(log->l_mp, head)))
 576                goto out;
 577
 578        /*
 579         * We may have found a log record header before we expected one.
 580         * last_blk will be the 1st block # with a given cycle #.  We may end
 581         * up reading an entire log record.  In this case, we don't want to
 582         * reset last_blk.  Only when last_blk points in the middle of a log
 583         * record do we update last_blk.
 584         */
 585        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 586                uint    h_size = be32_to_cpu(head->h_size);
 587
 588                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 589                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 590                        xhdrs++;
 591        } else {
 592                xhdrs = 1;
 593        }
 594
 595        if (*last_blk - i + extra_bblks !=
 596            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 597                *last_blk = i;
 598
 599out:
 600        xlog_put_bp(bp);
 601        return error;
 602}
 603
 604/*
 605 * Head is defined to be the point of the log where the next log write
 606 * could go.  This means that incomplete LR writes at the end are
 607 * eliminated when calculating the head.  We aren't guaranteed that previous
 608 * LR have complete transactions.  We only know that a cycle number of
 609 * current cycle number -1 won't be present in the log if we start writing
 610 * from our current block number.
 611 *
 612 * last_blk contains the block number of the first block with a given
 613 * cycle number.
 614 *
 615 * Return: zero if normal, non-zero if error.
 616 */
 617STATIC int
 618xlog_find_head(
 619        struct xlog     *log,
 620        xfs_daddr_t     *return_head_blk)
 621{
 622        xfs_buf_t       *bp;
 623        xfs_caddr_t     offset;
 624        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 625        int             num_scan_bblks;
 626        uint            first_half_cycle, last_half_cycle;
 627        uint            stop_on_cycle;
 628        int             error, log_bbnum = log->l_logBBsize;
 629
 630        /* Is the end of the log device zeroed? */
 631        if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 632                *return_head_blk = first_blk;
 633
 634                /* Is the whole lot zeroed? */
 635                if (!first_blk) {
 636                        /* Linux XFS shouldn't generate totally zeroed logs -
 637                         * mkfs etc write a dummy unmount record to a fresh
 638                         * log so we can store the uuid in there
 639                         */
 640                        xfs_warn(log->l_mp, "totally zeroed log");
 641                }
 642
 643                return 0;
 644        } else if (error) {
 645                xfs_warn(log->l_mp, "empty log check failed");
 646                return error;
 647        }
 648
 649        first_blk = 0;                  /* get cycle # of 1st block */
 650        bp = xlog_get_bp(log, 1);
 651        if (!bp)
 652                return ENOMEM;
 653
 654        error = xlog_bread(log, 0, 1, bp, &offset);
 655        if (error)
 656                goto bp_err;
 657
 658        first_half_cycle = xlog_get_cycle(offset);
 659
 660        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 661        error = xlog_bread(log, last_blk, 1, bp, &offset);
 662        if (error)
 663                goto bp_err;
 664
 665        last_half_cycle = xlog_get_cycle(offset);
 666        ASSERT(last_half_cycle != 0);
 667
 668        /*
 669         * If the 1st half cycle number is equal to the last half cycle number,
 670         * then the entire log is stamped with the same cycle number.  In this
 671         * case, head_blk can't be set to zero (which makes sense).  The below
 672         * math doesn't work out properly with head_blk equal to zero.  Instead,
 673         * we set it to log_bbnum which is an invalid block number, but this
 674         * value makes the math correct.  If head_blk doesn't changed through
 675         * all the tests below, *head_blk is set to zero at the very end rather
 676         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 677         * in a circular file.
 678         */
 679        if (first_half_cycle == last_half_cycle) {
 680                /*
 681                 * In this case we believe that the entire log should have
 682                 * cycle number last_half_cycle.  We need to scan backwards
 683                 * from the end verifying that there are no holes still
 684                 * containing last_half_cycle - 1.  If we find such a hole,
 685                 * then the start of that hole will be the new head.  The
 686                 * simple case looks like
 687                 *        x | x ... | x - 1 | x
 688                 * Another case that fits this picture would be
 689                 *        x | x + 1 | x ... | x
 690                 * In this case the head really is somewhere at the end of the
 691                 * log, as one of the latest writes at the beginning was
 692                 * incomplete.
 693                 * One more case is
 694                 *        x | x + 1 | x ... | x - 1 | x
 695                 * This is really the combination of the above two cases, and
 696                 * the head has to end up at the start of the x-1 hole at the
 697                 * end of the log.
 698                 *
 699                 * In the 256k log case, we will read from the beginning to the
 700                 * end of the log and search for cycle numbers equal to x-1.
 701                 * We don't worry about the x+1 blocks that we encounter,
 702                 * because we know that they cannot be the head since the log
 703                 * started with x.
 704                 */
 705                head_blk = log_bbnum;
 706                stop_on_cycle = last_half_cycle - 1;
 707        } else {
 708                /*
 709                 * In this case we want to find the first block with cycle
 710                 * number matching last_half_cycle.  We expect the log to be
 711                 * some variation on
 712                 *        x + 1 ... | x ... | x
 713                 * The first block with cycle number x (last_half_cycle) will
 714                 * be where the new head belongs.  First we do a binary search
 715                 * for the first occurrence of last_half_cycle.  The binary
 716                 * search may not be totally accurate, so then we scan back
 717                 * from there looking for occurrences of last_half_cycle before
 718                 * us.  If that backwards scan wraps around the beginning of
 719                 * the log, then we look for occurrences of last_half_cycle - 1
 720                 * at the end of the log.  The cases we're looking for look
 721                 * like
 722                 *                               v binary search stopped here
 723                 *        x + 1 ... | x | x + 1 | x ... | x
 724                 *                   ^ but we want to locate this spot
 725                 * or
 726                 *        <---------> less than scan distance
 727                 *        x + 1 ... | x ... | x - 1 | x
 728                 *                           ^ we want to locate this spot
 729                 */
 730                stop_on_cycle = last_half_cycle;
 731                if ((error = xlog_find_cycle_start(log, bp, first_blk,
 732                                                &head_blk, last_half_cycle)))
 733                        goto bp_err;
 734        }
 735
 736        /*
 737         * Now validate the answer.  Scan back some number of maximum possible
 738         * blocks and make sure each one has the expected cycle number.  The
 739         * maximum is determined by the total possible amount of buffering
 740         * in the in-core log.  The following number can be made tighter if
 741         * we actually look at the block size of the filesystem.
 742         */
 743        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 744        if (head_blk >= num_scan_bblks) {
 745                /*
 746                 * We are guaranteed that the entire check can be performed
 747                 * in one buffer.
 748                 */
 749                start_blk = head_blk - num_scan_bblks;
 750                if ((error = xlog_find_verify_cycle(log,
 751                                                start_blk, num_scan_bblks,
 752                                                stop_on_cycle, &new_blk)))
 753                        goto bp_err;
 754                if (new_blk != -1)
 755                        head_blk = new_blk;
 756        } else {                /* need to read 2 parts of log */
 757                /*
 758                 * We are going to scan backwards in the log in two parts.
 759                 * First we scan the physical end of the log.  In this part
 760                 * of the log, we are looking for blocks with cycle number
 761                 * last_half_cycle - 1.
 762                 * If we find one, then we know that the log starts there, as
 763                 * we've found a hole that didn't get written in going around
 764                 * the end of the physical log.  The simple case for this is
 765                 *        x + 1 ... | x ... | x - 1 | x
 766                 *        <---------> less than scan distance
 767                 * If all of the blocks at the end of the log have cycle number
 768                 * last_half_cycle, then we check the blocks at the start of
 769                 * the log looking for occurrences of last_half_cycle.  If we
 770                 * find one, then our current estimate for the location of the
 771                 * first occurrence of last_half_cycle is wrong and we move
 772                 * back to the hole we've found.  This case looks like
 773                 *        x + 1 ... | x | x + 1 | x ...
 774                 *                               ^ binary search stopped here
 775                 * Another case we need to handle that only occurs in 256k
 776                 * logs is
 777                 *        x + 1 ... | x ... | x+1 | x ...
 778                 *                   ^ binary search stops here
 779                 * In a 256k log, the scan at the end of the log will see the
 780                 * x + 1 blocks.  We need to skip past those since that is
 781                 * certainly not the head of the log.  By searching for
 782                 * last_half_cycle-1 we accomplish that.
 783                 */
 784                ASSERT(head_blk <= INT_MAX &&
 785                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 786                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 787                if ((error = xlog_find_verify_cycle(log, start_blk,
 788                                        num_scan_bblks - (int)head_blk,
 789                                        (stop_on_cycle - 1), &new_blk)))
 790                        goto bp_err;
 791                if (new_blk != -1) {
 792                        head_blk = new_blk;
 793                        goto validate_head;
 794                }
 795
 796                /*
 797                 * Scan beginning of log now.  The last part of the physical
 798                 * log is good.  This scan needs to verify that it doesn't find
 799                 * the last_half_cycle.
 800                 */
 801                start_blk = 0;
 802                ASSERT(head_blk <= INT_MAX);
 803                if ((error = xlog_find_verify_cycle(log,
 804                                        start_blk, (int)head_blk,
 805                                        stop_on_cycle, &new_blk)))
 806                        goto bp_err;
 807                if (new_blk != -1)
 808                        head_blk = new_blk;
 809        }
 810
 811validate_head:
 812        /*
 813         * Now we need to make sure head_blk is not pointing to a block in
 814         * the middle of a log record.
 815         */
 816        num_scan_bblks = XLOG_REC_SHIFT(log);
 817        if (head_blk >= num_scan_bblks) {
 818                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 819
 820                /* start ptr at last block ptr before head_blk */
 821                if ((error = xlog_find_verify_log_record(log, start_blk,
 822                                                        &head_blk, 0)) == -1) {
 823                        error = XFS_ERROR(EIO);
 824                        goto bp_err;
 825                } else if (error)
 826                        goto bp_err;
 827        } else {
 828                start_blk = 0;
 829                ASSERT(head_blk <= INT_MAX);
 830                if ((error = xlog_find_verify_log_record(log, start_blk,
 831                                                        &head_blk, 0)) == -1) {
 832                        /* We hit the beginning of the log during our search */
 833                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 834                        new_blk = log_bbnum;
 835                        ASSERT(start_blk <= INT_MAX &&
 836                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 837                        ASSERT(head_blk <= INT_MAX);
 838                        if ((error = xlog_find_verify_log_record(log,
 839                                                        start_blk, &new_blk,
 840                                                        (int)head_blk)) == -1) {
 841                                error = XFS_ERROR(EIO);
 842                                goto bp_err;
 843                        } else if (error)
 844                                goto bp_err;
 845                        if (new_blk != log_bbnum)
 846                                head_blk = new_blk;
 847                } else if (error)
 848                        goto bp_err;
 849        }
 850
 851        xlog_put_bp(bp);
 852        if (head_blk == log_bbnum)
 853                *return_head_blk = 0;
 854        else
 855                *return_head_blk = head_blk;
 856        /*
 857         * When returning here, we have a good block number.  Bad block
 858         * means that during a previous crash, we didn't have a clean break
 859         * from cycle number N to cycle number N-1.  In this case, we need
 860         * to find the first block with cycle number N-1.
 861         */
 862        return 0;
 863
 864 bp_err:
 865        xlog_put_bp(bp);
 866
 867        if (error)
 868                xfs_warn(log->l_mp, "failed to find log head");
 869        return error;
 870}
 871
 872/*
 873 * Find the sync block number or the tail of the log.
 874 *
 875 * This will be the block number of the last record to have its
 876 * associated buffers synced to disk.  Every log record header has
 877 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 878 * to get a sync block number.  The only concern is to figure out which
 879 * log record header to believe.
 880 *
 881 * The following algorithm uses the log record header with the largest
 882 * lsn.  The entire log record does not need to be valid.  We only care
 883 * that the header is valid.
 884 *
 885 * We could speed up search by using current head_blk buffer, but it is not
 886 * available.
 887 */
 888STATIC int
 889xlog_find_tail(
 890        struct xlog             *log,
 891        xfs_daddr_t             *head_blk,
 892        xfs_daddr_t             *tail_blk)
 893{
 894        xlog_rec_header_t       *rhead;
 895        xlog_op_header_t        *op_head;
 896        xfs_caddr_t             offset = NULL;
 897        xfs_buf_t               *bp;
 898        int                     error, i, found;
 899        xfs_daddr_t             umount_data_blk;
 900        xfs_daddr_t             after_umount_blk;
 901        xfs_lsn_t               tail_lsn;
 902        int                     hblks;
 903
 904        found = 0;
 905
 906        /*
 907         * Find previous log record
 908         */
 909        if ((error = xlog_find_head(log, head_blk)))
 910                return error;
 911
 912        bp = xlog_get_bp(log, 1);
 913        if (!bp)
 914                return ENOMEM;
 915        if (*head_blk == 0) {                           /* special case */
 916                error = xlog_bread(log, 0, 1, bp, &offset);
 917                if (error)
 918                        goto done;
 919
 920                if (xlog_get_cycle(offset) == 0) {
 921                        *tail_blk = 0;
 922                        /* leave all other log inited values alone */
 923                        goto done;
 924                }
 925        }
 926
 927        /*
 928         * Search backwards looking for log record header block
 929         */
 930        ASSERT(*head_blk < INT_MAX);
 931        for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 932                error = xlog_bread(log, i, 1, bp, &offset);
 933                if (error)
 934                        goto done;
 935
 936                if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 937                        found = 1;
 938                        break;
 939                }
 940        }
 941        /*
 942         * If we haven't found the log record header block, start looking
 943         * again from the end of the physical log.  XXXmiken: There should be
 944         * a check here to make sure we didn't search more than N blocks in
 945         * the previous code.
 946         */
 947        if (!found) {
 948                for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 949                        error = xlog_bread(log, i, 1, bp, &offset);
 950                        if (error)
 951                                goto done;
 952
 953                        if (*(__be32 *)offset ==
 954                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 955                                found = 2;
 956                                break;
 957                        }
 958                }
 959        }
 960        if (!found) {
 961                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
 962                xlog_put_bp(bp);
 963                ASSERT(0);
 964                return XFS_ERROR(EIO);
 965        }
 966
 967        /* find blk_no of tail of log */
 968        rhead = (xlog_rec_header_t *)offset;
 969        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 970
 971        /*
 972         * Reset log values according to the state of the log when we
 973         * crashed.  In the case where head_blk == 0, we bump curr_cycle
 974         * one because the next write starts a new cycle rather than
 975         * continuing the cycle of the last good log record.  At this
 976         * point we have guaranteed that all partial log records have been
 977         * accounted for.  Therefore, we know that the last good log record
 978         * written was complete and ended exactly on the end boundary
 979         * of the physical log.
 980         */
 981        log->l_prev_block = i;
 982        log->l_curr_block = (int)*head_blk;
 983        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 984        if (found == 2)
 985                log->l_curr_cycle++;
 986        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 987        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 988        xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
 989                                        BBTOB(log->l_curr_block));
 990        xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
 991                                        BBTOB(log->l_curr_block));
 992
 993        /*
 994         * Look for unmount record.  If we find it, then we know there
 995         * was a clean unmount.  Since 'i' could be the last block in
 996         * the physical log, we convert to a log block before comparing
 997         * to the head_blk.
 998         *
 999         * Save the current tail lsn to use to pass to
1000         * xlog_clear_stale_blocks() below.  We won't want to clear the
1001         * unmount record if there is one, so we pass the lsn of the
1002         * unmount record rather than the block after it.
1003         */
1004        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1005                int     h_size = be32_to_cpu(rhead->h_size);
1006                int     h_version = be32_to_cpu(rhead->h_version);
1007
1008                if ((h_version & XLOG_VERSION_2) &&
1009                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1010                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1011                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
1012                                hblks++;
1013                } else {
1014                        hblks = 1;
1015                }
1016        } else {
1017                hblks = 1;
1018        }
1019        after_umount_blk = (i + hblks + (int)
1020                BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1021        tail_lsn = atomic64_read(&log->l_tail_lsn);
1022        if (*head_blk == after_umount_blk &&
1023            be32_to_cpu(rhead->h_num_logops) == 1) {
1024                umount_data_blk = (i + hblks) % log->l_logBBsize;
1025                error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1026                if (error)
1027                        goto done;
1028
1029                op_head = (xlog_op_header_t *)offset;
1030                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1031                        /*
1032                         * Set tail and last sync so that newly written
1033                         * log records will point recovery to after the
1034                         * current unmount record.
1035                         */
1036                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
1037                                        log->l_curr_cycle, after_umount_blk);
1038                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1039                                        log->l_curr_cycle, after_umount_blk);
1040                        *tail_blk = after_umount_blk;
1041
1042                        /*
1043                         * Note that the unmount was clean. If the unmount
1044                         * was not clean, we need to know this to rebuild the
1045                         * superblock counters from the perag headers if we
1046                         * have a filesystem using non-persistent counters.
1047                         */
1048                        log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1049                }
1050        }
1051
1052        /*
1053         * Make sure that there are no blocks in front of the head
1054         * with the same cycle number as the head.  This can happen
1055         * because we allow multiple outstanding log writes concurrently,
1056         * and the later writes might make it out before earlier ones.
1057         *
1058         * We use the lsn from before modifying it so that we'll never
1059         * overwrite the unmount record after a clean unmount.
1060         *
1061         * Do this only if we are going to recover the filesystem
1062         *
1063         * NOTE: This used to say "if (!readonly)"
1064         * However on Linux, we can & do recover a read-only filesystem.
1065         * We only skip recovery if NORECOVERY is specified on mount,
1066         * in which case we would not be here.
1067         *
1068         * But... if the -device- itself is readonly, just skip this.
1069         * We can't recover this device anyway, so it won't matter.
1070         */
1071        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1072                error = xlog_clear_stale_blocks(log, tail_lsn);
1073
1074done:
1075        xlog_put_bp(bp);
1076
1077        if (error)
1078                xfs_warn(log->l_mp, "failed to locate log tail");
1079        return error;
1080}
1081
1082/*
1083 * Is the log zeroed at all?
1084 *
1085 * The last binary search should be changed to perform an X block read
1086 * once X becomes small enough.  You can then search linearly through
1087 * the X blocks.  This will cut down on the number of reads we need to do.
1088 *
1089 * If the log is partially zeroed, this routine will pass back the blkno
1090 * of the first block with cycle number 0.  It won't have a complete LR
1091 * preceding it.
1092 *
1093 * Return:
1094 *      0  => the log is completely written to
1095 *      -1 => use *blk_no as the first block of the log
1096 *      >0 => error has occurred
1097 */
1098STATIC int
1099xlog_find_zeroed(
1100        struct xlog     *log,
1101        xfs_daddr_t     *blk_no)
1102{
1103        xfs_buf_t       *bp;
1104        xfs_caddr_t     offset;
1105        uint            first_cycle, last_cycle;
1106        xfs_daddr_t     new_blk, last_blk, start_blk;
1107        xfs_daddr_t     num_scan_bblks;
1108        int             error, log_bbnum = log->l_logBBsize;
1109
1110        *blk_no = 0;
1111
1112        /* check totally zeroed log */
1113        bp = xlog_get_bp(log, 1);
1114        if (!bp)
1115                return ENOMEM;
1116        error = xlog_bread(log, 0, 1, bp, &offset);
1117        if (error)
1118                goto bp_err;
1119
1120        first_cycle = xlog_get_cycle(offset);
1121        if (first_cycle == 0) {         /* completely zeroed log */
1122                *blk_no = 0;
1123                xlog_put_bp(bp);
1124                return -1;
1125        }
1126
1127        /* check partially zeroed log */
1128        error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1129        if (error)
1130                goto bp_err;
1131
1132        last_cycle = xlog_get_cycle(offset);
1133        if (last_cycle != 0) {          /* log completely written to */
1134                xlog_put_bp(bp);
1135                return 0;
1136        } else if (first_cycle != 1) {
1137                /*
1138                 * If the cycle of the last block is zero, the cycle of
1139                 * the first block must be 1. If it's not, maybe we're
1140                 * not looking at a log... Bail out.
1141                 */
1142                xfs_warn(log->l_mp,
1143                        "Log inconsistent or not a log (last==0, first!=1)");
1144                error = XFS_ERROR(EINVAL);
1145                goto bp_err;
1146        }
1147
1148        /* we have a partially zeroed log */
1149        last_blk = log_bbnum-1;
1150        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1151                goto bp_err;
1152
1153        /*
1154         * Validate the answer.  Because there is no way to guarantee that
1155         * the entire log is made up of log records which are the same size,
1156         * we scan over the defined maximum blocks.  At this point, the maximum
1157         * is not chosen to mean anything special.   XXXmiken
1158         */
1159        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1160        ASSERT(num_scan_bblks <= INT_MAX);
1161
1162        if (last_blk < num_scan_bblks)
1163                num_scan_bblks = last_blk;
1164        start_blk = last_blk - num_scan_bblks;
1165
1166        /*
1167         * We search for any instances of cycle number 0 that occur before
1168         * our current estimate of the head.  What we're trying to detect is
1169         *        1 ... | 0 | 1 | 0...
1170         *                       ^ binary search ends here
1171         */
1172        if ((error = xlog_find_verify_cycle(log, start_blk,
1173                                         (int)num_scan_bblks, 0, &new_blk)))
1174                goto bp_err;
1175        if (new_blk != -1)
1176                last_blk = new_blk;
1177
1178        /*
1179         * Potentially backup over partial log record write.  We don't need
1180         * to search the end of the log because we know it is zero.
1181         */
1182        if ((error = xlog_find_verify_log_record(log, start_blk,
1183                                &last_blk, 0)) == -1) {
1184            error = XFS_ERROR(EIO);
1185            goto bp_err;
1186        } else if (error)
1187            goto bp_err;
1188
1189        *blk_no = last_blk;
1190bp_err:
1191        xlog_put_bp(bp);
1192        if (error)
1193                return error;
1194        return -1;
1195}
1196
1197/*
1198 * These are simple subroutines used by xlog_clear_stale_blocks() below
1199 * to initialize a buffer full of empty log record headers and write
1200 * them into the log.
1201 */
1202STATIC void
1203xlog_add_record(
1204        struct xlog             *log,
1205        xfs_caddr_t             buf,
1206        int                     cycle,
1207        int                     block,
1208        int                     tail_cycle,
1209        int                     tail_block)
1210{
1211        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1212
1213        memset(buf, 0, BBSIZE);
1214        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1215        recp->h_cycle = cpu_to_be32(cycle);
1216        recp->h_version = cpu_to_be32(
1217                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1218        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1219        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1220        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1221        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1222}
1223
1224STATIC int
1225xlog_write_log_records(
1226        struct xlog     *log,
1227        int             cycle,
1228        int             start_block,
1229        int             blocks,
1230        int             tail_cycle,
1231        int             tail_block)
1232{
1233        xfs_caddr_t     offset;
1234        xfs_buf_t       *bp;
1235        int             balign, ealign;
1236        int             sectbb = log->l_sectBBsize;
1237        int             end_block = start_block + blocks;
1238        int             bufblks;
1239        int             error = 0;
1240        int             i, j = 0;
1241
1242        /*
1243         * Greedily allocate a buffer big enough to handle the full
1244         * range of basic blocks to be written.  If that fails, try
1245         * a smaller size.  We need to be able to write at least a
1246         * log sector, or we're out of luck.
1247         */
1248        bufblks = 1 << ffs(blocks);
1249        while (bufblks > log->l_logBBsize)
1250                bufblks >>= 1;
1251        while (!(bp = xlog_get_bp(log, bufblks))) {
1252                bufblks >>= 1;
1253                if (bufblks < sectbb)
1254                        return ENOMEM;
1255        }
1256
1257        /* We may need to do a read at the start to fill in part of
1258         * the buffer in the starting sector not covered by the first
1259         * write below.
1260         */
1261        balign = round_down(start_block, sectbb);
1262        if (balign != start_block) {
1263                error = xlog_bread_noalign(log, start_block, 1, bp);
1264                if (error)
1265                        goto out_put_bp;
1266
1267                j = start_block - balign;
1268        }
1269
1270        for (i = start_block; i < end_block; i += bufblks) {
1271                int             bcount, endcount;
1272
1273                bcount = min(bufblks, end_block - start_block);
1274                endcount = bcount - j;
1275
1276                /* We may need to do a read at the end to fill in part of
1277                 * the buffer in the final sector not covered by the write.
1278                 * If this is the same sector as the above read, skip it.
1279                 */
1280                ealign = round_down(end_block, sectbb);
1281                if (j == 0 && (start_block + endcount > ealign)) {
1282                        offset = bp->b_addr + BBTOB(ealign - start_block);
1283                        error = xlog_bread_offset(log, ealign, sectbb,
1284                                                        bp, offset);
1285                        if (error)
1286                                break;
1287
1288                }
1289
1290                offset = xlog_align(log, start_block, endcount, bp);
1291                for (; j < endcount; j++) {
1292                        xlog_add_record(log, offset, cycle, i+j,
1293                                        tail_cycle, tail_block);
1294                        offset += BBSIZE;
1295                }
1296                error = xlog_bwrite(log, start_block, endcount, bp);
1297                if (error)
1298                        break;
1299                start_block += endcount;
1300                j = 0;
1301        }
1302
1303 out_put_bp:
1304        xlog_put_bp(bp);
1305        return error;
1306}
1307
1308/*
1309 * This routine is called to blow away any incomplete log writes out
1310 * in front of the log head.  We do this so that we won't become confused
1311 * if we come up, write only a little bit more, and then crash again.
1312 * If we leave the partial log records out there, this situation could
1313 * cause us to think those partial writes are valid blocks since they
1314 * have the current cycle number.  We get rid of them by overwriting them
1315 * with empty log records with the old cycle number rather than the
1316 * current one.
1317 *
1318 * The tail lsn is passed in rather than taken from
1319 * the log so that we will not write over the unmount record after a
1320 * clean unmount in a 512 block log.  Doing so would leave the log without
1321 * any valid log records in it until a new one was written.  If we crashed
1322 * during that time we would not be able to recover.
1323 */
1324STATIC int
1325xlog_clear_stale_blocks(
1326        struct xlog     *log,
1327        xfs_lsn_t       tail_lsn)
1328{
1329        int             tail_cycle, head_cycle;
1330        int             tail_block, head_block;
1331        int             tail_distance, max_distance;
1332        int             distance;
1333        int             error;
1334
1335        tail_cycle = CYCLE_LSN(tail_lsn);
1336        tail_block = BLOCK_LSN(tail_lsn);
1337        head_cycle = log->l_curr_cycle;
1338        head_block = log->l_curr_block;
1339
1340        /*
1341         * Figure out the distance between the new head of the log
1342         * and the tail.  We want to write over any blocks beyond the
1343         * head that we may have written just before the crash, but
1344         * we don't want to overwrite the tail of the log.
1345         */
1346        if (head_cycle == tail_cycle) {
1347                /*
1348                 * The tail is behind the head in the physical log,
1349                 * so the distance from the head to the tail is the
1350                 * distance from the head to the end of the log plus
1351                 * the distance from the beginning of the log to the
1352                 * tail.
1353                 */
1354                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1355                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1356                                         XFS_ERRLEVEL_LOW, log->l_mp);
1357                        return XFS_ERROR(EFSCORRUPTED);
1358                }
1359                tail_distance = tail_block + (log->l_logBBsize - head_block);
1360        } else {
1361                /*
1362                 * The head is behind the tail in the physical log,
1363                 * so the distance from the head to the tail is just
1364                 * the tail block minus the head block.
1365                 */
1366                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1367                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1368                                         XFS_ERRLEVEL_LOW, log->l_mp);
1369                        return XFS_ERROR(EFSCORRUPTED);
1370                }
1371                tail_distance = tail_block - head_block;
1372        }
1373
1374        /*
1375         * If the head is right up against the tail, we can't clear
1376         * anything.
1377         */
1378        if (tail_distance <= 0) {
1379                ASSERT(tail_distance == 0);
1380                return 0;
1381        }
1382
1383        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1384        /*
1385         * Take the smaller of the maximum amount of outstanding I/O
1386         * we could have and the distance to the tail to clear out.
1387         * We take the smaller so that we don't overwrite the tail and
1388         * we don't waste all day writing from the head to the tail
1389         * for no reason.
1390         */
1391        max_distance = MIN(max_distance, tail_distance);
1392
1393        if ((head_block + max_distance) <= log->l_logBBsize) {
1394                /*
1395                 * We can stomp all the blocks we need to without
1396                 * wrapping around the end of the log.  Just do it
1397                 * in a single write.  Use the cycle number of the
1398                 * current cycle minus one so that the log will look like:
1399                 *     n ... | n - 1 ...
1400                 */
1401                error = xlog_write_log_records(log, (head_cycle - 1),
1402                                head_block, max_distance, tail_cycle,
1403                                tail_block);
1404                if (error)
1405                        return error;
1406        } else {
1407                /*
1408                 * We need to wrap around the end of the physical log in
1409                 * order to clear all the blocks.  Do it in two separate
1410                 * I/Os.  The first write should be from the head to the
1411                 * end of the physical log, and it should use the current
1412                 * cycle number minus one just like above.
1413                 */
1414                distance = log->l_logBBsize - head_block;
1415                error = xlog_write_log_records(log, (head_cycle - 1),
1416                                head_block, distance, tail_cycle,
1417                                tail_block);
1418
1419                if (error)
1420                        return error;
1421
1422                /*
1423                 * Now write the blocks at the start of the physical log.
1424                 * This writes the remainder of the blocks we want to clear.
1425                 * It uses the current cycle number since we're now on the
1426                 * same cycle as the head so that we get:
1427                 *    n ... n ... | n - 1 ...
1428                 *    ^^^^^ blocks we're writing
1429                 */
1430                distance = max_distance - (log->l_logBBsize - head_block);
1431                error = xlog_write_log_records(log, head_cycle, 0, distance,
1432                                tail_cycle, tail_block);
1433                if (error)
1434                        return error;
1435        }
1436
1437        return 0;
1438}
1439
1440/******************************************************************************
1441 *
1442 *              Log recover routines
1443 *
1444 ******************************************************************************
1445 */
1446
1447STATIC xlog_recover_t *
1448xlog_recover_find_tid(
1449        struct hlist_head       *head,
1450        xlog_tid_t              tid)
1451{
1452        xlog_recover_t          *trans;
1453
1454        hlist_for_each_entry(trans, head, r_list) {
1455                if (trans->r_log_tid == tid)
1456                        return trans;
1457        }
1458        return NULL;
1459}
1460
1461STATIC void
1462xlog_recover_new_tid(
1463        struct hlist_head       *head,
1464        xlog_tid_t              tid,
1465        xfs_lsn_t               lsn)
1466{
1467        xlog_recover_t          *trans;
1468
1469        trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1470        trans->r_log_tid   = tid;
1471        trans->r_lsn       = lsn;
1472        INIT_LIST_HEAD(&trans->r_itemq);
1473
1474        INIT_HLIST_NODE(&trans->r_list);
1475        hlist_add_head(&trans->r_list, head);
1476}
1477
1478STATIC void
1479xlog_recover_add_item(
1480        struct list_head        *head)
1481{
1482        xlog_recover_item_t     *item;
1483
1484        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1485        INIT_LIST_HEAD(&item->ri_list);
1486        list_add_tail(&item->ri_list, head);
1487}
1488
1489STATIC int
1490xlog_recover_add_to_cont_trans(
1491        struct xlog             *log,
1492        struct xlog_recover     *trans,
1493        xfs_caddr_t             dp,
1494        int                     len)
1495{
1496        xlog_recover_item_t     *item;
1497        xfs_caddr_t             ptr, old_ptr;
1498        int                     old_len;
1499
1500        if (list_empty(&trans->r_itemq)) {
1501                /* finish copying rest of trans header */
1502                xlog_recover_add_item(&trans->r_itemq);
1503                ptr = (xfs_caddr_t) &trans->r_theader +
1504                                sizeof(xfs_trans_header_t) - len;
1505                memcpy(ptr, dp, len); /* d, s, l */
1506                return 0;
1507        }
1508        /* take the tail entry */
1509        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1510
1511        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1512        old_len = item->ri_buf[item->ri_cnt-1].i_len;
1513
1514        ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1515        memcpy(&ptr[old_len], dp, len); /* d, s, l */
1516        item->ri_buf[item->ri_cnt-1].i_len += len;
1517        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1518        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1519        return 0;
1520}
1521
1522/*
1523 * The next region to add is the start of a new region.  It could be
1524 * a whole region or it could be the first part of a new region.  Because
1525 * of this, the assumption here is that the type and size fields of all
1526 * format structures fit into the first 32 bits of the structure.
1527 *
1528 * This works because all regions must be 32 bit aligned.  Therefore, we
1529 * either have both fields or we have neither field.  In the case we have
1530 * neither field, the data part of the region is zero length.  We only have
1531 * a log_op_header and can throw away the header since a new one will appear
1532 * later.  If we have at least 4 bytes, then we can determine how many regions
1533 * will appear in the current log item.
1534 */
1535STATIC int
1536xlog_recover_add_to_trans(
1537        struct xlog             *log,
1538        struct xlog_recover     *trans,
1539        xfs_caddr_t             dp,
1540        int                     len)
1541{
1542        xfs_inode_log_format_t  *in_f;                  /* any will do */
1543        xlog_recover_item_t     *item;
1544        xfs_caddr_t             ptr;
1545
1546        if (!len)
1547                return 0;
1548        if (list_empty(&trans->r_itemq)) {
1549                /* we need to catch log corruptions here */
1550                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1551                        xfs_warn(log->l_mp, "%s: bad header magic number",
1552                                __func__);
1553                        ASSERT(0);
1554                        return XFS_ERROR(EIO);
1555                }
1556                if (len == sizeof(xfs_trans_header_t))
1557                        xlog_recover_add_item(&trans->r_itemq);
1558                memcpy(&trans->r_theader, dp, len); /* d, s, l */
1559                return 0;
1560        }
1561
1562        ptr = kmem_alloc(len, KM_SLEEP);
1563        memcpy(ptr, dp, len);
1564        in_f = (xfs_inode_log_format_t *)ptr;
1565
1566        /* take the tail entry */
1567        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1568        if (item->ri_total != 0 &&
1569             item->ri_total == item->ri_cnt) {
1570                /* tail item is in use, get a new one */
1571                xlog_recover_add_item(&trans->r_itemq);
1572                item = list_entry(trans->r_itemq.prev,
1573                                        xlog_recover_item_t, ri_list);
1574        }
1575
1576        if (item->ri_total == 0) {              /* first region to be added */
1577                if (in_f->ilf_size == 0 ||
1578                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1579                        xfs_warn(log->l_mp,
1580                "bad number of regions (%d) in inode log format",
1581                                  in_f->ilf_size);
1582                        ASSERT(0);
1583                        kmem_free(ptr);
1584                        return XFS_ERROR(EIO);
1585                }
1586
1587                item->ri_total = in_f->ilf_size;
1588                item->ri_buf =
1589                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590                                    KM_SLEEP);
1591        }
1592        ASSERT(item->ri_total > item->ri_cnt);
1593        /* Description region is ri_buf[0] */
1594        item->ri_buf[item->ri_cnt].i_addr = ptr;
1595        item->ri_buf[item->ri_cnt].i_len  = len;
1596        item->ri_cnt++;
1597        trace_xfs_log_recover_item_add(log, trans, item, 0);
1598        return 0;
1599}
1600
1601/*
1602 * Sort the log items in the transaction.
1603 *
1604 * The ordering constraints are defined by the inode allocation and unlink
1605 * behaviour. The rules are:
1606 *
1607 *      1. Every item is only logged once in a given transaction. Hence it
1608 *         represents the last logged state of the item. Hence ordering is
1609 *         dependent on the order in which operations need to be performed so
1610 *         required initial conditions are always met.
1611 *
1612 *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1613 *         there's nothing to replay from them so we can simply cull them
1614 *         from the transaction. However, we can't do that until after we've
1615 *         replayed all the other items because they may be dependent on the
1616 *         cancelled buffer and replaying the cancelled buffer can remove it
1617 *         form the cancelled buffer table. Hence they have tobe done last.
1618 *
1619 *      3. Inode allocation buffers must be replayed before inode items that
1620 *         read the buffer and replay changes into it. For filesystems using the
1621 *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1622 *         treated the same as inode allocation buffers as they create and
1623 *         initialise the buffers directly.
1624 *
1625 *      4. Inode unlink buffers must be replayed after inode items are replayed.
1626 *         This ensures that inodes are completely flushed to the inode buffer
1627 *         in a "free" state before we remove the unlinked inode list pointer.
1628 *
1629 * Hence the ordering needs to be inode allocation buffers first, inode items
1630 * second, inode unlink buffers third and cancelled buffers last.
1631 *
1632 * But there's a problem with that - we can't tell an inode allocation buffer
1633 * apart from a regular buffer, so we can't separate them. We can, however,
1634 * tell an inode unlink buffer from the others, and so we can separate them out
1635 * from all the other buffers and move them to last.
1636 *
1637 * Hence, 4 lists, in order from head to tail:
1638 *      - buffer_list for all buffers except cancelled/inode unlink buffers
1639 *      - item_list for all non-buffer items
1640 *      - inode_buffer_list for inode unlink buffers
1641 *      - cancel_list for the cancelled buffers
1642 *
1643 * Note that we add objects to the tail of the lists so that first-to-last
1644 * ordering is preserved within the lists. Adding objects to the head of the
1645 * list means when we traverse from the head we walk them in last-to-first
1646 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1647 * but for all other items there may be specific ordering that we need to
1648 * preserve.
1649 */
1650STATIC int
1651xlog_recover_reorder_trans(
1652        struct xlog             *log,
1653        struct xlog_recover     *trans,
1654        int                     pass)
1655{
1656        xlog_recover_item_t     *item, *n;
1657        int                     error = 0;
1658        LIST_HEAD(sort_list);
1659        LIST_HEAD(cancel_list);
1660        LIST_HEAD(buffer_list);
1661        LIST_HEAD(inode_buffer_list);
1662        LIST_HEAD(inode_list);
1663
1664        list_splice_init(&trans->r_itemq, &sort_list);
1665        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1666                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1667
1668                switch (ITEM_TYPE(item)) {
1669                case XFS_LI_ICREATE:
1670                        list_move_tail(&item->ri_list, &buffer_list);
1671                        break;
1672                case XFS_LI_BUF:
1673                        if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1674                                trace_xfs_log_recover_item_reorder_head(log,
1675                                                        trans, item, pass);
1676                                list_move(&item->ri_list, &cancel_list);
1677                                break;
1678                        }
1679                        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1680                                list_move(&item->ri_list, &inode_buffer_list);
1681                                break;
1682                        }
1683                        list_move_tail(&item->ri_list, &buffer_list);
1684                        break;
1685                case XFS_LI_INODE:
1686                case XFS_LI_DQUOT:
1687                case XFS_LI_QUOTAOFF:
1688                case XFS_LI_EFD:
1689                case XFS_LI_EFI:
1690                        trace_xfs_log_recover_item_reorder_tail(log,
1691                                                        trans, item, pass);
1692                        list_move_tail(&item->ri_list, &inode_list);
1693                        break;
1694                default:
1695                        xfs_warn(log->l_mp,
1696                                "%s: unrecognized type of log operation",
1697                                __func__);
1698                        ASSERT(0);
1699                        /*
1700                         * return the remaining items back to the transaction
1701                         * item list so they can be freed in caller.
1702                         */
1703                        if (!list_empty(&sort_list))
1704                                list_splice_init(&sort_list, &trans->r_itemq);
1705                        error = XFS_ERROR(EIO);
1706                        goto out;
1707                }
1708        }
1709out:
1710        ASSERT(list_empty(&sort_list));
1711        if (!list_empty(&buffer_list))
1712                list_splice(&buffer_list, &trans->r_itemq);
1713        if (!list_empty(&inode_list))
1714                list_splice_tail(&inode_list, &trans->r_itemq);
1715        if (!list_empty(&inode_buffer_list))
1716                list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1717        if (!list_empty(&cancel_list))
1718                list_splice_tail(&cancel_list, &trans->r_itemq);
1719        return error;
1720}
1721
1722/*
1723 * Build up the table of buf cancel records so that we don't replay
1724 * cancelled data in the second pass.  For buffer records that are
1725 * not cancel records, there is nothing to do here so we just return.
1726 *
1727 * If we get a cancel record which is already in the table, this indicates
1728 * that the buffer was cancelled multiple times.  In order to ensure
1729 * that during pass 2 we keep the record in the table until we reach its
1730 * last occurrence in the log, we keep a reference count in the cancel
1731 * record in the table to tell us how many times we expect to see this
1732 * record during the second pass.
1733 */
1734STATIC int
1735xlog_recover_buffer_pass1(
1736        struct xlog                     *log,
1737        struct xlog_recover_item        *item)
1738{
1739        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1740        struct list_head        *bucket;
1741        struct xfs_buf_cancel   *bcp;
1742
1743        /*
1744         * If this isn't a cancel buffer item, then just return.
1745         */
1746        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1747                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1748                return 0;
1749        }
1750
1751        /*
1752         * Insert an xfs_buf_cancel record into the hash table of them.
1753         * If there is already an identical record, bump its reference count.
1754         */
1755        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1756        list_for_each_entry(bcp, bucket, bc_list) {
1757                if (bcp->bc_blkno == buf_f->blf_blkno &&
1758                    bcp->bc_len == buf_f->blf_len) {
1759                        bcp->bc_refcount++;
1760                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1761                        return 0;
1762                }
1763        }
1764
1765        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1766        bcp->bc_blkno = buf_f->blf_blkno;
1767        bcp->bc_len = buf_f->blf_len;
1768        bcp->bc_refcount = 1;
1769        list_add_tail(&bcp->bc_list, bucket);
1770
1771        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1772        return 0;
1773}
1774
1775/*
1776 * Check to see whether the buffer being recovered has a corresponding
1777 * entry in the buffer cancel record table. If it is, return the cancel
1778 * buffer structure to the caller.
1779 */
1780STATIC struct xfs_buf_cancel *
1781xlog_peek_buffer_cancelled(
1782        struct xlog             *log,
1783        xfs_daddr_t             blkno,
1784        uint                    len,
1785        ushort                  flags)
1786{
1787        struct list_head        *bucket;
1788        struct xfs_buf_cancel   *bcp;
1789
1790        if (!log->l_buf_cancel_table) {
1791                /* empty table means no cancelled buffers in the log */
1792                ASSERT(!(flags & XFS_BLF_CANCEL));
1793                return NULL;
1794        }
1795
1796        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1797        list_for_each_entry(bcp, bucket, bc_list) {
1798                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1799                        return bcp;
1800        }
1801
1802        /*
1803         * We didn't find a corresponding entry in the table, so return 0 so
1804         * that the buffer is NOT cancelled.
1805         */
1806        ASSERT(!(flags & XFS_BLF_CANCEL));
1807        return NULL;
1808}
1809
1810/*
1811 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1812 * otherwise return 0.  If the buffer is actually a buffer cancel item
1813 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1814 * table and remove it from the table if this is the last reference.
1815 *
1816 * We remove the cancel record from the table when we encounter its last
1817 * occurrence in the log so that if the same buffer is re-used again after its
1818 * last cancellation we actually replay the changes made at that point.
1819 */
1820STATIC int
1821xlog_check_buffer_cancelled(
1822        struct xlog             *log,
1823        xfs_daddr_t             blkno,
1824        uint                    len,
1825        ushort                  flags)
1826{
1827        struct xfs_buf_cancel   *bcp;
1828
1829        bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1830        if (!bcp)
1831                return 0;
1832
1833        /*
1834         * We've go a match, so return 1 so that the recovery of this buffer
1835         * is cancelled.  If this buffer is actually a buffer cancel log
1836         * item, then decrement the refcount on the one in the table and
1837         * remove it if this is the last reference.
1838         */
1839        if (flags & XFS_BLF_CANCEL) {
1840                if (--bcp->bc_refcount == 0) {
1841                        list_del(&bcp->bc_list);
1842                        kmem_free(bcp);
1843                }
1844        }
1845        return 1;
1846}
1847
1848/*
1849 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1850 * data which should be recovered is that which corresponds to the
1851 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1852 * data for the inodes is always logged through the inodes themselves rather
1853 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1854 *
1855 * The only time when buffers full of inodes are fully recovered is when the
1856 * buffer is full of newly allocated inodes.  In this case the buffer will
1857 * not be marked as an inode buffer and so will be sent to
1858 * xlog_recover_do_reg_buffer() below during recovery.
1859 */
1860STATIC int
1861xlog_recover_do_inode_buffer(
1862        struct xfs_mount        *mp,
1863        xlog_recover_item_t     *item,
1864        struct xfs_buf          *bp,
1865        xfs_buf_log_format_t    *buf_f)
1866{
1867        int                     i;
1868        int                     item_index = 0;
1869        int                     bit = 0;
1870        int                     nbits = 0;
1871        int                     reg_buf_offset = 0;
1872        int                     reg_buf_bytes = 0;
1873        int                     next_unlinked_offset;
1874        int                     inodes_per_buf;
1875        xfs_agino_t             *logged_nextp;
1876        xfs_agino_t             *buffer_nextp;
1877
1878        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1879
1880        /*
1881         * Post recovery validation only works properly on CRC enabled
1882         * filesystems.
1883         */
1884        if (xfs_sb_version_hascrc(&mp->m_sb))
1885                bp->b_ops = &xfs_inode_buf_ops;
1886
1887        inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1888        for (i = 0; i < inodes_per_buf; i++) {
1889                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1890                        offsetof(xfs_dinode_t, di_next_unlinked);
1891
1892                while (next_unlinked_offset >=
1893                       (reg_buf_offset + reg_buf_bytes)) {
1894                        /*
1895                         * The next di_next_unlinked field is beyond
1896                         * the current logged region.  Find the next
1897                         * logged region that contains or is beyond
1898                         * the current di_next_unlinked field.
1899                         */
1900                        bit += nbits;
1901                        bit = xfs_next_bit(buf_f->blf_data_map,
1902                                           buf_f->blf_map_size, bit);
1903
1904                        /*
1905                         * If there are no more logged regions in the
1906                         * buffer, then we're done.
1907                         */
1908                        if (bit == -1)
1909                                return 0;
1910
1911                        nbits = xfs_contig_bits(buf_f->blf_data_map,
1912                                                buf_f->blf_map_size, bit);
1913                        ASSERT(nbits > 0);
1914                        reg_buf_offset = bit << XFS_BLF_SHIFT;
1915                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1916                        item_index++;
1917                }
1918
1919                /*
1920                 * If the current logged region starts after the current
1921                 * di_next_unlinked field, then move on to the next
1922                 * di_next_unlinked field.
1923                 */
1924                if (next_unlinked_offset < reg_buf_offset)
1925                        continue;
1926
1927                ASSERT(item->ri_buf[item_index].i_addr != NULL);
1928                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1929                ASSERT((reg_buf_offset + reg_buf_bytes) <=
1930                                                        BBTOB(bp->b_io_length));
1931
1932                /*
1933                 * The current logged region contains a copy of the
1934                 * current di_next_unlinked field.  Extract its value
1935                 * and copy it to the buffer copy.
1936                 */
1937                logged_nextp = item->ri_buf[item_index].i_addr +
1938                                next_unlinked_offset - reg_buf_offset;
1939                if (unlikely(*logged_nextp == 0)) {
1940                        xfs_alert(mp,
1941                "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1942                "Trying to replay bad (0) inode di_next_unlinked field.",
1943                                item, bp);
1944                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1945                                         XFS_ERRLEVEL_LOW, mp);
1946                        return XFS_ERROR(EFSCORRUPTED);
1947                }
1948
1949                buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1950                                              next_unlinked_offset);
1951                *buffer_nextp = *logged_nextp;
1952
1953                /*
1954                 * If necessary, recalculate the CRC in the on-disk inode. We
1955                 * have to leave the inode in a consistent state for whoever
1956                 * reads it next....
1957                 */
1958                xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1959                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1960
1961        }
1962
1963        return 0;
1964}
1965
1966/*
1967 * V5 filesystems know the age of the buffer on disk being recovered. We can
1968 * have newer objects on disk than we are replaying, and so for these cases we
1969 * don't want to replay the current change as that will make the buffer contents
1970 * temporarily invalid on disk.
1971 *
1972 * The magic number might not match the buffer type we are going to recover
1973 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
1974 * extract the LSN of the existing object in the buffer based on it's current
1975 * magic number.  If we don't recognise the magic number in the buffer, then
1976 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1977 * so can recover the buffer.
1978 *
1979 * Note: we cannot rely solely on magic number matches to determine that the
1980 * buffer has a valid LSN - we also need to verify that it belongs to this
1981 * filesystem, so we need to extract the object's LSN and compare it to that
1982 * which we read from the superblock. If the UUIDs don't match, then we've got a
1983 * stale metadata block from an old filesystem instance that we need to recover
1984 * over the top of.
1985 */
1986static xfs_lsn_t
1987xlog_recover_get_buf_lsn(
1988        struct xfs_mount        *mp,
1989        struct xfs_buf          *bp)
1990{
1991        __uint32_t              magic32;
1992        __uint16_t              magic16;
1993        __uint16_t              magicda;
1994        void                    *blk = bp->b_addr;
1995        uuid_t                  *uuid;
1996        xfs_lsn_t               lsn = -1;
1997
1998        /* v4 filesystems always recover immediately */
1999        if (!xfs_sb_version_hascrc(&mp->m_sb))
2000                goto recover_immediately;
2001
2002        magic32 = be32_to_cpu(*(__be32 *)blk);
2003        switch (magic32) {
2004        case XFS_ABTB_CRC_MAGIC:
2005        case XFS_ABTC_CRC_MAGIC:
2006        case XFS_ABTB_MAGIC:
2007        case XFS_ABTC_MAGIC:
2008        case XFS_IBT_CRC_MAGIC:
2009        case XFS_IBT_MAGIC: {
2010                struct xfs_btree_block *btb = blk;
2011
2012                lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2013                uuid = &btb->bb_u.s.bb_uuid;
2014                break;
2015        }
2016        case XFS_BMAP_CRC_MAGIC:
2017        case XFS_BMAP_MAGIC: {
2018                struct xfs_btree_block *btb = blk;
2019
2020                lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2021                uuid = &btb->bb_u.l.bb_uuid;
2022                break;
2023        }
2024        case XFS_AGF_MAGIC:
2025                lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2026                uuid = &((struct xfs_agf *)blk)->agf_uuid;
2027                break;
2028        case XFS_AGFL_MAGIC:
2029                lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2030                uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2031                break;
2032        case XFS_AGI_MAGIC:
2033                lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2034                uuid = &((struct xfs_agi *)blk)->agi_uuid;
2035                break;
2036        case XFS_SYMLINK_MAGIC:
2037                lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2038                uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2039                break;
2040        case XFS_DIR3_BLOCK_MAGIC:
2041        case XFS_DIR3_DATA_MAGIC:
2042        case XFS_DIR3_FREE_MAGIC:
2043                lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2044                uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2045                break;
2046        case XFS_ATTR3_RMT_MAGIC:
2047                lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2048                uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2049                break;
2050        case XFS_SB_MAGIC:
2051                lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2052                uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2053                break;
2054        default:
2055                break;
2056        }
2057
2058        if (lsn != (xfs_lsn_t)-1) {
2059                if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2060                        goto recover_immediately;
2061                return lsn;
2062        }
2063
2064        magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2065        switch (magicda) {
2066        case XFS_DIR3_LEAF1_MAGIC:
2067        case XFS_DIR3_LEAFN_MAGIC:
2068        case XFS_DA3_NODE_MAGIC:
2069                lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2070                uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2071                break;
2072        default:
2073                break;
2074        }
2075
2076        if (lsn != (xfs_lsn_t)-1) {
2077                if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2078                        goto recover_immediately;
2079                return lsn;
2080        }
2081
2082        /*
2083         * We do individual object checks on dquot and inode buffers as they
2084         * have their own individual LSN records. Also, we could have a stale
2085         * buffer here, so we have to at least recognise these buffer types.
2086         *
2087         * A notd complexity here is inode unlinked list processing - it logs
2088         * the inode directly in the buffer, but we don't know which inodes have
2089         * been modified, and there is no global buffer LSN. Hence we need to
2090         * recover all inode buffer types immediately. This problem will be
2091         * fixed by logical logging of the unlinked list modifications.
2092         */
2093        magic16 = be16_to_cpu(*(__be16 *)blk);
2094        switch (magic16) {
2095        case XFS_DQUOT_MAGIC:
2096        case XFS_DINODE_MAGIC:
2097                goto recover_immediately;
2098        default:
2099                break;
2100        }
2101
2102        /* unknown buffer contents, recover immediately */
2103
2104recover_immediately:
2105        return (xfs_lsn_t)-1;
2106
2107}
2108
2109/*
2110 * Validate the recovered buffer is of the correct type and attach the
2111 * appropriate buffer operations to them for writeback. Magic numbers are in a
2112 * few places:
2113 *      the first 16 bits of the buffer (inode buffer, dquot buffer),
2114 *      the first 32 bits of the buffer (most blocks),
2115 *      inside a struct xfs_da_blkinfo at the start of the buffer.
2116 */
2117static void
2118xlog_recover_validate_buf_type(
2119        struct xfs_mount        *mp,
2120        struct xfs_buf          *bp,
2121        xfs_buf_log_format_t    *buf_f)
2122{
2123        struct xfs_da_blkinfo   *info = bp->b_addr;
2124        __uint32_t              magic32;
2125        __uint16_t              magic16;
2126        __uint16_t              magicda;
2127
2128        magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2129        magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2130        magicda = be16_to_cpu(info->magic);
2131        switch (xfs_blft_from_flags(buf_f)) {
2132        case XFS_BLFT_BTREE_BUF:
2133                switch (magic32) {
2134                case XFS_ABTB_CRC_MAGIC:
2135                case XFS_ABTC_CRC_MAGIC:
2136                case XFS_ABTB_MAGIC:
2137                case XFS_ABTC_MAGIC:
2138                        bp->b_ops = &xfs_allocbt_buf_ops;
2139                        break;
2140                case XFS_IBT_CRC_MAGIC:
2141                case XFS_FIBT_CRC_MAGIC:
2142                case XFS_IBT_MAGIC:
2143                case XFS_FIBT_MAGIC:
2144                        bp->b_ops = &xfs_inobt_buf_ops;
2145                        break;
2146                case XFS_BMAP_CRC_MAGIC:
2147                case XFS_BMAP_MAGIC:
2148                        bp->b_ops = &xfs_bmbt_buf_ops;
2149                        break;
2150                default:
2151                        xfs_warn(mp, "Bad btree block magic!");
2152                        ASSERT(0);
2153                        break;
2154                }
2155                break;
2156        case XFS_BLFT_AGF_BUF:
2157                if (magic32 != XFS_AGF_MAGIC) {
2158                        xfs_warn(mp, "Bad AGF block magic!");
2159                        ASSERT(0);
2160                        break;
2161                }
2162                bp->b_ops = &xfs_agf_buf_ops;
2163                break;
2164        case XFS_BLFT_AGFL_BUF:
2165                if (!xfs_sb_version_hascrc(&mp->m_sb))
2166                        break;
2167                if (magic32 != XFS_AGFL_MAGIC) {
2168                        xfs_warn(mp, "Bad AGFL block magic!");
2169                        ASSERT(0);
2170                        break;
2171                }
2172                bp->b_ops = &xfs_agfl_buf_ops;
2173                break;
2174        case XFS_BLFT_AGI_BUF:
2175                if (magic32 != XFS_AGI_MAGIC) {
2176                        xfs_warn(mp, "Bad AGI block magic!");
2177                        ASSERT(0);
2178                        break;
2179                }
2180                bp->b_ops = &xfs_agi_buf_ops;
2181                break;
2182        case XFS_BLFT_UDQUOT_BUF:
2183        case XFS_BLFT_PDQUOT_BUF:
2184        case XFS_BLFT_GDQUOT_BUF:
2185#ifdef CONFIG_XFS_QUOTA
2186                if (magic16 != XFS_DQUOT_MAGIC) {
2187                        xfs_warn(mp, "Bad DQUOT block magic!");
2188                        ASSERT(0);
2189                        break;
2190                }
2191                bp->b_ops = &xfs_dquot_buf_ops;
2192#else
2193                xfs_alert(mp,
2194        "Trying to recover dquots without QUOTA support built in!");
2195                ASSERT(0);
2196#endif
2197                break;
2198        case XFS_BLFT_DINO_BUF:
2199                /*
2200                 * we get here with inode allocation buffers, not buffers that
2201                 * track unlinked list changes.
2202                 */
2203                if (magic16 != XFS_DINODE_MAGIC) {
2204                        xfs_warn(mp, "Bad INODE block magic!");
2205                        ASSERT(0);
2206                        break;
2207                }
2208                bp->b_ops = &xfs_inode_buf_ops;
2209                break;
2210        case XFS_BLFT_SYMLINK_BUF:
2211                if (magic32 != XFS_SYMLINK_MAGIC) {
2212                        xfs_warn(mp, "Bad symlink block magic!");
2213                        ASSERT(0);
2214                        break;
2215                }
2216                bp->b_ops = &xfs_symlink_buf_ops;
2217                break;
2218        case XFS_BLFT_DIR_BLOCK_BUF:
2219                if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2220                    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2221                        xfs_warn(mp, "Bad dir block magic!");
2222                        ASSERT(0);
2223                        break;
2224                }
2225                bp->b_ops = &xfs_dir3_block_buf_ops;
2226                break;
2227        case XFS_BLFT_DIR_DATA_BUF:
2228                if (magic32 != XFS_DIR2_DATA_MAGIC &&
2229                    magic32 != XFS_DIR3_DATA_MAGIC) {
2230                        xfs_warn(mp, "Bad dir data magic!");
2231                        ASSERT(0);
2232                        break;
2233                }
2234                bp->b_ops = &xfs_dir3_data_buf_ops;
2235                break;
2236        case XFS_BLFT_DIR_FREE_BUF:
2237                if (magic32 != XFS_DIR2_FREE_MAGIC &&
2238                    magic32 != XFS_DIR3_FREE_MAGIC) {
2239                        xfs_warn(mp, "Bad dir3 free magic!");
2240                        ASSERT(0);
2241                        break;
2242                }
2243                bp->b_ops = &xfs_dir3_free_buf_ops;
2244                break;
2245        case XFS_BLFT_DIR_LEAF1_BUF:
2246                if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2247                    magicda != XFS_DIR3_LEAF1_MAGIC) {
2248                        xfs_warn(mp, "Bad dir leaf1 magic!");
2249                        ASSERT(0);
2250                        break;
2251                }
2252                bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2253                break;
2254        case XFS_BLFT_DIR_LEAFN_BUF:
2255                if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2256                    magicda != XFS_DIR3_LEAFN_MAGIC) {
2257                        xfs_warn(mp, "Bad dir leafn magic!");
2258                        ASSERT(0);
2259                        break;
2260                }
2261                bp->b_ops = &xfs_dir3_leafn_buf_ops;
2262                break;
2263        case XFS_BLFT_DA_NODE_BUF:
2264                if (magicda != XFS_DA_NODE_MAGIC &&
2265                    magicda != XFS_DA3_NODE_MAGIC) {
2266                        xfs_warn(mp, "Bad da node magic!");
2267                        ASSERT(0);
2268                        break;
2269                }
2270                bp->b_ops = &xfs_da3_node_buf_ops;
2271                break;
2272        case XFS_BLFT_ATTR_LEAF_BUF:
2273                if (magicda != XFS_ATTR_LEAF_MAGIC &&
2274                    magicda != XFS_ATTR3_LEAF_MAGIC) {
2275                        xfs_warn(mp, "Bad attr leaf magic!");
2276                        ASSERT(0);
2277                        break;
2278                }
2279                bp->b_ops = &xfs_attr3_leaf_buf_ops;
2280                break;
2281        case XFS_BLFT_ATTR_RMT_BUF:
2282                if (!xfs_sb_version_hascrc(&mp->m_sb))
2283                        break;
2284                if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2285                        xfs_warn(mp, "Bad attr remote magic!");
2286                        ASSERT(0);
2287                        break;
2288                }
2289                bp->b_ops = &xfs_attr3_rmt_buf_ops;
2290                break;
2291        case XFS_BLFT_SB_BUF:
2292                if (magic32 != XFS_SB_MAGIC) {
2293                        xfs_warn(mp, "Bad SB block magic!");
2294                        ASSERT(0);
2295                        break;
2296                }
2297                bp->b_ops = &xfs_sb_buf_ops;
2298                break;
2299        default:
2300                xfs_warn(mp, "Unknown buffer type %d!",
2301                         xfs_blft_from_flags(buf_f));
2302                break;
2303        }
2304}
2305
2306/*
2307 * Perform a 'normal' buffer recovery.  Each logged region of the
2308 * buffer should be copied over the corresponding region in the
2309 * given buffer.  The bitmap in the buf log format structure indicates
2310 * where to place the logged data.
2311 */
2312STATIC void
2313xlog_recover_do_reg_buffer(
2314        struct xfs_mount        *mp,
2315        xlog_recover_item_t     *item,
2316        struct xfs_buf          *bp,
2317        xfs_buf_log_format_t    *buf_f)
2318{
2319        int                     i;
2320        int                     bit;
2321        int                     nbits;
2322        int                     error;
2323
2324        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2325
2326        bit = 0;
2327        i = 1;  /* 0 is the buf format structure */
2328        while (1) {
2329                bit = xfs_next_bit(buf_f->blf_data_map,
2330                                   buf_f->blf_map_size, bit);
2331                if (bit == -1)
2332                        break;
2333                nbits = xfs_contig_bits(buf_f->blf_data_map,
2334                                        buf_f->blf_map_size, bit);
2335                ASSERT(nbits > 0);
2336                ASSERT(item->ri_buf[i].i_addr != NULL);
2337                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2338                ASSERT(BBTOB(bp->b_io_length) >=
2339                       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2340
2341                /*
2342                 * The dirty regions logged in the buffer, even though
2343                 * contiguous, may span multiple chunks. This is because the
2344                 * dirty region may span a physical page boundary in a buffer
2345                 * and hence be split into two separate vectors for writing into
2346                 * the log. Hence we need to trim nbits back to the length of
2347                 * the current region being copied out of the log.
2348                 */
2349                if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2350                        nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2351
2352                /*
2353                 * Do a sanity check if this is a dquot buffer. Just checking
2354                 * the first dquot in the buffer should do. XXXThis is
2355                 * probably a good thing to do for other buf types also.
2356                 */
2357                error = 0;
2358                if (buf_f->blf_flags &
2359                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2360                        if (item->ri_buf[i].i_addr == NULL) {
2361                                xfs_alert(mp,
2362                                        "XFS: NULL dquot in %s.", __func__);
2363                                goto next;
2364                        }
2365                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2366                                xfs_alert(mp,
2367                                        "XFS: dquot too small (%d) in %s.",
2368                                        item->ri_buf[i].i_len, __func__);
2369                                goto next;
2370                        }
2371                        error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2372                                               -1, 0, XFS_QMOPT_DOWARN,
2373                                               "dquot_buf_recover");
2374                        if (error)
2375                                goto next;
2376                }
2377
2378                memcpy(xfs_buf_offset(bp,
2379                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
2380                        item->ri_buf[i].i_addr,         /* source */
2381                        nbits<<XFS_BLF_SHIFT);          /* length */
2382 next:
2383                i++;
2384                bit += nbits;
2385        }
2386
2387        /* Shouldn't be any more regions */
2388        ASSERT(i == item->ri_total);
2389
2390        /*
2391         * We can only do post recovery validation on items on CRC enabled
2392         * fielsystems as we need to know when the buffer was written to be able
2393         * to determine if we should have replayed the item. If we replay old
2394         * metadata over a newer buffer, then it will enter a temporarily
2395         * inconsistent state resulting in verification failures. Hence for now
2396         * just avoid the verification stage for non-crc filesystems
2397         */
2398        if (xfs_sb_version_hascrc(&mp->m_sb))
2399                xlog_recover_validate_buf_type(mp, bp, buf_f);
2400}
2401
2402/*
2403 * Perform a dquot buffer recovery.
2404 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2405 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2406 * Else, treat it as a regular buffer and do recovery.
2407 */
2408STATIC void
2409xlog_recover_do_dquot_buffer(
2410        struct xfs_mount                *mp,
2411        struct xlog                     *log,
2412        struct xlog_recover_item        *item,
2413        struct xfs_buf                  *bp,
2414        struct xfs_buf_log_format       *buf_f)
2415{
2416        uint                    type;
2417
2418        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2419
2420        /*
2421         * Filesystems are required to send in quota flags at mount time.
2422         */
2423        if (mp->m_qflags == 0) {
2424                return;
2425        }
2426
2427        type = 0;
2428        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2429                type |= XFS_DQ_USER;
2430        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2431                type |= XFS_DQ_PROJ;
2432        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2433                type |= XFS_DQ_GROUP;
2434        /*
2435         * This type of quotas was turned off, so ignore this buffer
2436         */
2437        if (log->l_quotaoffs_flag & type)
2438                return;
2439
2440        xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2441}
2442
2443/*
2444 * This routine replays a modification made to a buffer at runtime.
2445 * There are actually two types of buffer, regular and inode, which
2446 * are handled differently.  Inode buffers are handled differently
2447 * in that we only recover a specific set of data from them, namely
2448 * the inode di_next_unlinked fields.  This is because all other inode
2449 * data is actually logged via inode records and any data we replay
2450 * here which overlaps that may be stale.
2451 *
2452 * When meta-data buffers are freed at run time we log a buffer item
2453 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2454 * of the buffer in the log should not be replayed at recovery time.
2455 * This is so that if the blocks covered by the buffer are reused for
2456 * file data before we crash we don't end up replaying old, freed
2457 * meta-data into a user's file.
2458 *
2459 * To handle the cancellation of buffer log items, we make two passes
2460 * over the log during recovery.  During the first we build a table of
2461 * those buffers which have been cancelled, and during the second we
2462 * only replay those buffers which do not have corresponding cancel
2463 * records in the table.  See xlog_recover_buffer_pass[1,2] above
2464 * for more details on the implementation of the table of cancel records.
2465 */
2466STATIC int
2467xlog_recover_buffer_pass2(
2468        struct xlog                     *log,
2469        struct list_head                *buffer_list,
2470        struct xlog_recover_item        *item,
2471        xfs_lsn_t                       current_lsn)
2472{
2473        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2474        xfs_mount_t             *mp = log->l_mp;
2475        xfs_buf_t               *bp;
2476        int                     error;
2477        uint                    buf_flags;
2478        xfs_lsn_t               lsn;
2479
2480        /*
2481         * In this pass we only want to recover all the buffers which have
2482         * not been cancelled and are not cancellation buffers themselves.
2483         */
2484        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2485                        buf_f->blf_len, buf_f->blf_flags)) {
2486                trace_xfs_log_recover_buf_cancel(log, buf_f);
2487                return 0;
2488        }
2489
2490        trace_xfs_log_recover_buf_recover(log, buf_f);
2491
2492        buf_flags = 0;
2493        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2494                buf_flags |= XBF_UNMAPPED;
2495
2496        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2497                          buf_flags, NULL);
2498        if (!bp)
2499                return XFS_ERROR(ENOMEM);
2500        error = bp->b_error;
2501        if (error) {
2502                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2503                goto out_release;
2504        }
2505
2506        /*
2507         * recover the buffer only if we get an LSN from it and it's less than
2508         * the lsn of the transaction we are replaying.
2509         */
2510        lsn = xlog_recover_get_buf_lsn(mp, bp);
2511        if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2512                goto out_release;
2513
2514        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2515                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2516        } else if (buf_f->blf_flags &
2517                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2518                xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2519        } else {
2520                xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2521        }
2522        if (error)
2523                goto out_release;
2524
2525        /*
2526         * Perform delayed write on the buffer.  Asynchronous writes will be
2527         * slower when taking into account all the buffers to be flushed.
2528         *
2529         * Also make sure that only inode buffers with good sizes stay in
2530         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2531         * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2532         * buffers in the log can be a different size if the log was generated
2533         * by an older kernel using unclustered inode buffers or a newer kernel
2534         * running with a different inode cluster size.  Regardless, if the
2535         * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2536         * for *our* value of mp->m_inode_cluster_size, then we need to keep
2537         * the buffer out of the buffer cache so that the buffer won't
2538         * overlap with future reads of those inodes.
2539         */
2540        if (XFS_DINODE_MAGIC ==
2541            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2542            (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2543                        (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2544                xfs_buf_stale(bp);
2545                error = xfs_bwrite(bp);
2546        } else {
2547                ASSERT(bp->b_target->bt_mount == mp);
2548                bp->b_iodone = xlog_recover_iodone;
2549                xfs_buf_delwri_queue(bp, buffer_list);
2550        }
2551
2552out_release:
2553        xfs_buf_relse(bp);
2554        return error;
2555}
2556
2557/*
2558 * Inode fork owner changes
2559 *
2560 * If we have been told that we have to reparent the inode fork, it's because an
2561 * extent swap operation on a CRC enabled filesystem has been done and we are
2562 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2563 * owners of it.
2564 *
2565 * The complexity here is that we don't have an inode context to work with, so
2566 * after we've replayed the inode we need to instantiate one.  This is where the
2567 * fun begins.
2568 *
2569 * We are in the middle of log recovery, so we can't run transactions. That
2570 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2571 * that will result in the corresponding iput() running the inode through
2572 * xfs_inactive(). If we've just replayed an inode core that changes the link
2573 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2574 * transactions (bad!).
2575 *
2576 * So, to avoid this, we instantiate an inode directly from the inode core we've
2577 * just recovered. We have the buffer still locked, and all we really need to
2578 * instantiate is the inode core and the forks being modified. We can do this
2579 * manually, then run the inode btree owner change, and then tear down the
2580 * xfs_inode without having to run any transactions at all.
2581 *
2582 * Also, because we don't have a transaction context available here but need to
2583 * gather all the buffers we modify for writeback so we pass the buffer_list
2584 * instead for the operation to use.
2585 */
2586
2587STATIC int
2588xfs_recover_inode_owner_change(
2589        struct xfs_mount        *mp,
2590        struct xfs_dinode       *dip,
2591        struct xfs_inode_log_format *in_f,
2592        struct list_head        *buffer_list)
2593{
2594        struct xfs_inode        *ip;
2595        int                     error;
2596
2597        ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2598
2599        ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2600        if (!ip)
2601                return ENOMEM;
2602
2603        /* instantiate the inode */
2604        xfs_dinode_from_disk(&ip->i_d, dip);
2605        ASSERT(ip->i_d.di_version >= 3);
2606
2607        error = xfs_iformat_fork(ip, dip);
2608        if (error)
2609                goto out_free_ip;
2610
2611
2612        if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2613                ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2614                error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2615                                              ip->i_ino, buffer_list);
2616                if (error)
2617                        goto out_free_ip;
2618        }
2619
2620        if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2621                ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2622                error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2623                                              ip->i_ino, buffer_list);
2624                if (error)
2625                        goto out_free_ip;
2626        }
2627
2628out_free_ip:
2629        xfs_inode_free(ip);
2630        return error;
2631}
2632
2633STATIC int
2634xlog_recover_inode_pass2(
2635        struct xlog                     *log,
2636        struct list_head                *buffer_list,
2637        struct xlog_recover_item        *item,
2638        xfs_lsn_t                       current_lsn)
2639{
2640        xfs_inode_log_format_t  *in_f;
2641        xfs_mount_t             *mp = log->l_mp;
2642        xfs_buf_t               *bp;
2643        xfs_dinode_t            *dip;
2644        int                     len;
2645        xfs_caddr_t             src;
2646        xfs_caddr_t             dest;
2647        int                     error;
2648        int                     attr_index;
2649        uint                    fields;
2650        xfs_icdinode_t          *dicp;
2651        uint                    isize;
2652        int                     need_free = 0;
2653
2654        if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2655                in_f = item->ri_buf[0].i_addr;
2656        } else {
2657                in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2658                need_free = 1;
2659                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2660                if (error)
2661                        goto error;
2662        }
2663
2664        /*
2665         * Inode buffers can be freed, look out for it,
2666         * and do not replay the inode.
2667         */
2668        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2669                                        in_f->ilf_len, 0)) {
2670                error = 0;
2671                trace_xfs_log_recover_inode_cancel(log, in_f);
2672                goto error;
2673        }
2674        trace_xfs_log_recover_inode_recover(log, in_f);
2675
2676        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2677                          &xfs_inode_buf_ops);
2678        if (!bp) {
2679                error = ENOMEM;
2680                goto error;
2681        }
2682        error = bp->b_error;
2683        if (error) {
2684                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2685                goto out_release;
2686        }
2687        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2688        dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2689
2690        /*
2691         * Make sure the place we're flushing out to really looks
2692         * like an inode!
2693         */
2694        if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2695                xfs_alert(mp,
2696        "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2697                        __func__, dip, bp, in_f->ilf_ino);
2698                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2699                                 XFS_ERRLEVEL_LOW, mp);
2700                error = EFSCORRUPTED;
2701                goto out_release;
2702        }
2703        dicp = item->ri_buf[1].i_addr;
2704        if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2705                xfs_alert(mp,
2706                        "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2707                        __func__, item, in_f->ilf_ino);
2708                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2709                                 XFS_ERRLEVEL_LOW, mp);
2710                error = EFSCORRUPTED;
2711                goto out_release;
2712        }
2713
2714        /*
2715         * If the inode has an LSN in it, recover the inode only if it's less
2716         * than the lsn of the transaction we are replaying. Note: we still
2717         * need to replay an owner change even though the inode is more recent
2718         * than the transaction as there is no guarantee that all the btree
2719         * blocks are more recent than this transaction, too.
2720         */
2721        if (dip->di_version >= 3) {
2722                xfs_lsn_t       lsn = be64_to_cpu(dip->di_lsn);
2723
2724                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2725                        trace_xfs_log_recover_inode_skip(log, in_f);
2726                        error = 0;
2727                        goto out_owner_change;
2728                }
2729        }
2730
2731        /*
2732         * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2733         * are transactional and if ordering is necessary we can determine that
2734         * more accurately by the LSN field in the V3 inode core. Don't trust
2735         * the inode versions we might be changing them here - use the
2736         * superblock flag to determine whether we need to look at di_flushiter
2737         * to skip replay when the on disk inode is newer than the log one
2738         */
2739        if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2740            dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2741                /*
2742                 * Deal with the wrap case, DI_MAX_FLUSH is less
2743                 * than smaller numbers
2744                 */
2745                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2746                    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2747                        /* do nothing */
2748                } else {
2749                        trace_xfs_log_recover_inode_skip(log, in_f);
2750                        error = 0;
2751                        goto out_release;
2752                }
2753        }
2754
2755        /* Take the opportunity to reset the flush iteration count */
2756        dicp->di_flushiter = 0;
2757
2758        if (unlikely(S_ISREG(dicp->di_mode))) {
2759                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2760                    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2761                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2762                                         XFS_ERRLEVEL_LOW, mp, dicp);
2763                        xfs_alert(mp,
2764                "%s: Bad regular inode log record, rec ptr 0x%p, "
2765                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2766                                __func__, item, dip, bp, in_f->ilf_ino);
2767                        error = EFSCORRUPTED;
2768                        goto out_release;
2769                }
2770        } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2771                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2772                    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2773                    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2774                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2775                                             XFS_ERRLEVEL_LOW, mp, dicp);
2776                        xfs_alert(mp,
2777                "%s: Bad dir inode log record, rec ptr 0x%p, "
2778                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2779                                __func__, item, dip, bp, in_f->ilf_ino);
2780                        error = EFSCORRUPTED;
2781                        goto out_release;
2782                }
2783        }
2784        if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2785                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2786                                     XFS_ERRLEVEL_LOW, mp, dicp);
2787                xfs_alert(mp,
2788        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2789        "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2790                        __func__, item, dip, bp, in_f->ilf_ino,
2791                        dicp->di_nextents + dicp->di_anextents,
2792                        dicp->di_nblocks);
2793                error = EFSCORRUPTED;
2794                goto out_release;
2795        }
2796        if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2797                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2798                                     XFS_ERRLEVEL_LOW, mp, dicp);
2799                xfs_alert(mp,
2800        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2801        "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2802                        item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2803                error = EFSCORRUPTED;
2804                goto out_release;
2805        }
2806        isize = xfs_icdinode_size(dicp->di_version);
2807        if (unlikely(item->ri_buf[1].i_len > isize)) {
2808                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2809                                     XFS_ERRLEVEL_LOW, mp, dicp);
2810                xfs_alert(mp,
2811                        "%s: Bad inode log record length %d, rec ptr 0x%p",
2812                        __func__, item->ri_buf[1].i_len, item);
2813                error = EFSCORRUPTED;
2814                goto out_release;
2815        }
2816
2817        /* The core is in in-core format */
2818        xfs_dinode_to_disk(dip, dicp);
2819
2820        /* the rest is in on-disk format */
2821        if (item->ri_buf[1].i_len > isize) {
2822                memcpy((char *)dip + isize,
2823                        item->ri_buf[1].i_addr + isize,
2824                        item->ri_buf[1].i_len - isize);
2825        }
2826
2827        fields = in_f->ilf_fields;
2828        switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2829        case XFS_ILOG_DEV:
2830                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2831                break;
2832        case XFS_ILOG_UUID:
2833                memcpy(XFS_DFORK_DPTR(dip),
2834                       &in_f->ilf_u.ilfu_uuid,
2835                       sizeof(uuid_t));
2836                break;
2837        }
2838
2839        if (in_f->ilf_size == 2)
2840                goto out_owner_change;
2841        len = item->ri_buf[2].i_len;
2842        src = item->ri_buf[2].i_addr;
2843        ASSERT(in_f->ilf_size <= 4);
2844        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2845        ASSERT(!(fields & XFS_ILOG_DFORK) ||
2846               (len == in_f->ilf_dsize));
2847
2848        switch (fields & XFS_ILOG_DFORK) {
2849        case XFS_ILOG_DDATA:
2850        case XFS_ILOG_DEXT:
2851                memcpy(XFS_DFORK_DPTR(dip), src, len);
2852                break;
2853
2854        case XFS_ILOG_DBROOT:
2855                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2856                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2857                                 XFS_DFORK_DSIZE(dip, mp));
2858                break;
2859
2860        default:
2861                /*
2862                 * There are no data fork flags set.
2863                 */
2864                ASSERT((fields & XFS_ILOG_DFORK) == 0);
2865                break;
2866        }
2867
2868        /*
2869         * If we logged any attribute data, recover it.  There may or
2870         * may not have been any other non-core data logged in this
2871         * transaction.
2872         */
2873        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2874                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2875                        attr_index = 3;
2876                } else {
2877                        attr_index = 2;
2878                }
2879                len = item->ri_buf[attr_index].i_len;
2880                src = item->ri_buf[attr_index].i_addr;
2881                ASSERT(len == in_f->ilf_asize);
2882
2883                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2884                case XFS_ILOG_ADATA:
2885                case XFS_ILOG_AEXT:
2886                        dest = XFS_DFORK_APTR(dip);
2887                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2888                        memcpy(dest, src, len);
2889                        break;
2890
2891                case XFS_ILOG_ABROOT:
2892                        dest = XFS_DFORK_APTR(dip);
2893                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2894                                         len, (xfs_bmdr_block_t*)dest,
2895                                         XFS_DFORK_ASIZE(dip, mp));
2896                        break;
2897
2898                default:
2899                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2900                        ASSERT(0);
2901                        error = EIO;
2902                        goto out_release;
2903                }
2904        }
2905
2906out_owner_change:
2907        if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2908                error = xfs_recover_inode_owner_change(mp, dip, in_f,
2909                                                       buffer_list);
2910        /* re-generate the checksum. */
2911        xfs_dinode_calc_crc(log->l_mp, dip);
2912
2913        ASSERT(bp->b_target->bt_mount == mp);
2914        bp->b_iodone = xlog_recover_iodone;
2915        xfs_buf_delwri_queue(bp, buffer_list);
2916
2917out_release:
2918        xfs_buf_relse(bp);
2919error:
2920        if (need_free)
2921                kmem_free(in_f);
2922        return XFS_ERROR(error);
2923}
2924
2925/*
2926 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2927 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2928 * of that type.
2929 */
2930STATIC int
2931xlog_recover_quotaoff_pass1(
2932        struct xlog                     *log,
2933        struct xlog_recover_item        *item)
2934{
2935        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
2936        ASSERT(qoff_f);
2937
2938        /*
2939         * The logitem format's flag tells us if this was user quotaoff,
2940         * group/project quotaoff or both.
2941         */
2942        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2943                log->l_quotaoffs_flag |= XFS_DQ_USER;
2944        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2945                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2946        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2947                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2948
2949        return (0);
2950}
2951
2952/*
2953 * Recover a dquot record
2954 */
2955STATIC int
2956xlog_recover_dquot_pass2(
2957        struct xlog                     *log,
2958        struct list_head                *buffer_list,
2959        struct xlog_recover_item        *item,
2960        xfs_lsn_t                       current_lsn)
2961{
2962        xfs_mount_t             *mp = log->l_mp;
2963        xfs_buf_t               *bp;
2964        struct xfs_disk_dquot   *ddq, *recddq;
2965        int                     error;
2966        xfs_dq_logformat_t      *dq_f;
2967        uint                    type;
2968
2969
2970        /*
2971         * Filesystems are required to send in quota flags at mount time.
2972         */
2973        if (mp->m_qflags == 0)
2974                return (0);
2975
2976        recddq = item->ri_buf[1].i_addr;
2977        if (recddq == NULL) {
2978                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2979                return XFS_ERROR(EIO);
2980        }
2981        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2982                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2983                        item->ri_buf[1].i_len, __func__);
2984                return XFS_ERROR(EIO);
2985        }
2986
2987        /*
2988         * This type of quotas was turned off, so ignore this record.
2989         */
2990        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2991        ASSERT(type);
2992        if (log->l_quotaoffs_flag & type)
2993                return (0);
2994
2995        /*
2996         * At this point we know that quota was _not_ turned off.
2997         * Since the mount flags are not indicating to us otherwise, this
2998         * must mean that quota is on, and the dquot needs to be replayed.
2999         * Remember that we may not have fully recovered the superblock yet,
3000         * so we can't do the usual trick of looking at the SB quota bits.
3001         *
3002         * The other possibility, of course, is that the quota subsystem was
3003         * removed since the last mount - ENOSYS.
3004         */
3005        dq_f = item->ri_buf[0].i_addr;
3006        ASSERT(dq_f);
3007        error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3008                           "xlog_recover_dquot_pass2 (log copy)");
3009        if (error)
3010                return XFS_ERROR(EIO);
3011        ASSERT(dq_f->qlf_len == 1);
3012
3013        error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3014                                   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3015                                   NULL);
3016        if (error)
3017                return error;
3018
3019        ASSERT(bp);
3020        ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3021
3022        /*
3023         * At least the magic num portion should be on disk because this
3024         * was among a chunk of dquots created earlier, and we did some
3025         * minimal initialization then.
3026         */
3027        error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3028                           "xlog_recover_dquot_pass2");
3029        if (error) {
3030                xfs_buf_relse(bp);
3031                return XFS_ERROR(EIO);
3032        }
3033
3034        /*
3035         * If the dquot has an LSN in it, recover the dquot only if it's less
3036         * than the lsn of the transaction we are replaying.
3037         */
3038        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3039                struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3040                xfs_lsn_t       lsn = be64_to_cpu(dqb->dd_lsn);
3041
3042                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3043                        goto out_release;
3044                }
3045        }
3046
3047        memcpy(ddq, recddq, item->ri_buf[1].i_len);
3048        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3049                xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3050                                 XFS_DQUOT_CRC_OFF);
3051        }
3052
3053        ASSERT(dq_f->qlf_size == 2);
3054        ASSERT(bp->b_target->bt_mount == mp);
3055        bp->b_iodone = xlog_recover_iodone;
3056        xfs_buf_delwri_queue(bp, buffer_list);
3057
3058out_release:
3059        xfs_buf_relse(bp);
3060        return 0;
3061}
3062
3063/*
3064 * This routine is called to create an in-core extent free intent
3065 * item from the efi format structure which was logged on disk.
3066 * It allocates an in-core efi, copies the extents from the format
3067 * structure into it, and adds the efi to the AIL with the given
3068 * LSN.
3069 */
3070STATIC int
3071xlog_recover_efi_pass2(
3072        struct xlog                     *log,
3073        struct xlog_recover_item        *item,
3074        xfs_lsn_t                       lsn)
3075{
3076        int                     error;
3077        xfs_mount_t             *mp = log->l_mp;
3078        xfs_efi_log_item_t      *efip;
3079        xfs_efi_log_format_t    *efi_formatp;
3080
3081        efi_formatp = item->ri_buf[0].i_addr;
3082
3083        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3084        if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3085                                         &(efip->efi_format)))) {
3086                xfs_efi_item_free(efip);
3087                return error;
3088        }
3089        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3090
3091        spin_lock(&log->l_ailp->xa_lock);
3092        /*
3093         * xfs_trans_ail_update() drops the AIL lock.
3094         */
3095        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3096        return 0;
3097}
3098
3099
3100/*
3101 * This routine is called when an efd format structure is found in
3102 * a committed transaction in the log.  It's purpose is to cancel
3103 * the corresponding efi if it was still in the log.  To do this
3104 * it searches the AIL for the efi with an id equal to that in the
3105 * efd format structure.  If we find it, we remove the efi from the
3106 * AIL and free it.
3107 */
3108STATIC int
3109xlog_recover_efd_pass2(
3110        struct xlog                     *log,
3111        struct xlog_recover_item        *item)
3112{
3113        xfs_efd_log_format_t    *efd_formatp;
3114        xfs_efi_log_item_t      *efip = NULL;
3115        xfs_log_item_t          *lip;
3116        __uint64_t              efi_id;
3117        struct xfs_ail_cursor   cur;
3118        struct xfs_ail          *ailp = log->l_ailp;
3119
3120        efd_formatp = item->ri_buf[0].i_addr;
3121        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3122                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3123               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3124                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3125        efi_id = efd_formatp->efd_efi_id;
3126
3127        /*
3128         * Search for the efi with the id in the efd format structure
3129         * in the AIL.
3130         */
3131        spin_lock(&ailp->xa_lock);
3132        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3133        while (lip != NULL) {
3134                if (lip->li_type == XFS_LI_EFI) {
3135                        efip = (xfs_efi_log_item_t *)lip;
3136                        if (efip->efi_format.efi_id == efi_id) {
3137                                /*
3138                                 * xfs_trans_ail_delete() drops the
3139                                 * AIL lock.
3140                                 */
3141                                xfs_trans_ail_delete(ailp, lip,
3142                                                     SHUTDOWN_CORRUPT_INCORE);
3143                                xfs_efi_item_free(efip);
3144                                spin_lock(&ailp->xa_lock);
3145                                break;
3146                        }
3147                }
3148                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3149        }
3150        xfs_trans_ail_cursor_done(&cur);
3151        spin_unlock(&ailp->xa_lock);
3152
3153        return 0;
3154}
3155
3156/*
3157 * This routine is called when an inode create format structure is found in a
3158 * committed transaction in the log.  It's purpose is to initialise the inodes
3159 * being allocated on disk. This requires us to get inode cluster buffers that
3160 * match the range to be intialised, stamped with inode templates and written
3161 * by delayed write so that subsequent modifications will hit the cached buffer
3162 * and only need writing out at the end of recovery.
3163 */
3164STATIC int
3165xlog_recover_do_icreate_pass2(
3166        struct xlog             *log,
3167        struct list_head        *buffer_list,
3168        xlog_recover_item_t     *item)
3169{
3170        struct xfs_mount        *mp = log->l_mp;
3171        struct xfs_icreate_log  *icl;
3172        xfs_agnumber_t          agno;
3173        xfs_agblock_t           agbno;
3174        unsigned int            count;
3175        unsigned int            isize;
3176        xfs_agblock_t           length;
3177
3178        icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3179        if (icl->icl_type != XFS_LI_ICREATE) {
3180                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3181                return EINVAL;
3182        }
3183
3184        if (icl->icl_size != 1) {
3185                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3186                return EINVAL;
3187        }
3188
3189        agno = be32_to_cpu(icl->icl_ag);
3190        if (agno >= mp->m_sb.sb_agcount) {
3191                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3192                return EINVAL;
3193        }
3194        agbno = be32_to_cpu(icl->icl_agbno);
3195        if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3196                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3197                return EINVAL;
3198        }
3199        isize = be32_to_cpu(icl->icl_isize);
3200        if (isize != mp->m_sb.sb_inodesize) {
3201                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3202                return EINVAL;
3203        }
3204        count = be32_to_cpu(icl->icl_count);
3205        if (!count) {
3206                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3207                return EINVAL;
3208        }
3209        length = be32_to_cpu(icl->icl_length);
3210        if (!length || length >= mp->m_sb.sb_agblocks) {
3211                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3212                return EINVAL;
3213        }
3214
3215        /* existing allocation is fixed value */
3216        ASSERT(count == mp->m_ialloc_inos);
3217        ASSERT(length == mp->m_ialloc_blks);
3218        if (count != mp->m_ialloc_inos ||
3219             length != mp->m_ialloc_blks) {
3220                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3221                return EINVAL;
3222        }
3223
3224        /*
3225         * Inode buffers can be freed. Do not replay the inode initialisation as
3226         * we could be overwriting something written after this inode buffer was
3227         * cancelled.
3228         *
3229         * XXX: we need to iterate all buffers and only init those that are not
3230         * cancelled. I think that a more fine grained factoring of
3231         * xfs_ialloc_inode_init may be appropriate here to enable this to be
3232         * done easily.
3233         */
3234        if (xlog_check_buffer_cancelled(log,
3235                        XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3236                return 0;
3237
3238        xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3239                                        be32_to_cpu(icl->icl_gen));
3240        return 0;
3241}
3242
3243/*
3244 * Free up any resources allocated by the transaction
3245 *
3246 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3247 */
3248STATIC void
3249xlog_recover_free_trans(
3250        struct xlog_recover     *trans)
3251{
3252        xlog_recover_item_t     *item, *n;
3253        int                     i;
3254
3255        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3256                /* Free the regions in the item. */
3257                list_del(&item->ri_list);
3258                for (i = 0; i < item->ri_cnt; i++)
3259                        kmem_free(item->ri_buf[i].i_addr);
3260                /* Free the item itself */
3261                kmem_free(item->ri_buf);
3262                kmem_free(item);
3263        }
3264        /* Free the transaction recover structure */
3265        kmem_free(trans);
3266}
3267
3268STATIC void
3269xlog_recover_buffer_ra_pass2(
3270        struct xlog                     *log,
3271        struct xlog_recover_item        *item)
3272{
3273        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
3274        struct xfs_mount                *mp = log->l_mp;
3275
3276        if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3277                        buf_f->blf_len, buf_f->blf_flags)) {
3278                return;
3279        }
3280
3281        xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3282                                buf_f->blf_len, NULL);
3283}
3284
3285STATIC void
3286xlog_recover_inode_ra_pass2(
3287        struct xlog                     *log,
3288        struct xlog_recover_item        *item)
3289{
3290        struct xfs_inode_log_format     ilf_buf;
3291        struct xfs_inode_log_format     *ilfp;
3292        struct xfs_mount                *mp = log->l_mp;
3293        int                     error;
3294
3295        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3296                ilfp = item->ri_buf[0].i_addr;
3297        } else {
3298                ilfp = &ilf_buf;
3299                memset(ilfp, 0, sizeof(*ilfp));
3300                error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3301                if (error)
3302                        return;
3303        }
3304
3305        if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3306                return;
3307
3308        xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3309                                ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3310}
3311
3312STATIC void
3313xlog_recover_dquot_ra_pass2(
3314        struct xlog                     *log,
3315        struct xlog_recover_item        *item)
3316{
3317        struct xfs_mount        *mp = log->l_mp;
3318        struct xfs_disk_dquot   *recddq;
3319        struct xfs_dq_logformat *dq_f;
3320        uint                    type;
3321
3322
3323        if (mp->m_qflags == 0)
3324                return;
3325
3326        recddq = item->ri_buf[1].i_addr;
3327        if (recddq == NULL)
3328                return;
3329        if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3330                return;
3331
3332        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3333        ASSERT(type);
3334        if (log->l_quotaoffs_flag & type)
3335                return;
3336
3337        dq_f = item->ri_buf[0].i_addr;
3338        ASSERT(dq_f);
3339        ASSERT(dq_f->qlf_len == 1);
3340
3341        xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
3342                          XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
3343}
3344
3345STATIC void
3346xlog_recover_ra_pass2(
3347        struct xlog                     *log,
3348        struct xlog_recover_item        *item)
3349{
3350        switch (ITEM_TYPE(item)) {
3351        case XFS_LI_BUF:
3352                xlog_recover_buffer_ra_pass2(log, item);
3353                break;
3354        case XFS_LI_INODE:
3355                xlog_recover_inode_ra_pass2(log, item);
3356                break;
3357        case XFS_LI_DQUOT:
3358                xlog_recover_dquot_ra_pass2(log, item);
3359                break;
3360        case XFS_LI_EFI:
3361        case XFS_LI_EFD:
3362        case XFS_LI_QUOTAOFF:
3363        default:
3364                break;
3365        }
3366}
3367
3368STATIC int
3369xlog_recover_commit_pass1(
3370        struct xlog                     *log,
3371        struct xlog_recover             *trans,
3372        struct xlog_recover_item        *item)
3373{
3374        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3375
3376        switch (ITEM_TYPE(item)) {
3377        case XFS_LI_BUF:
3378                return xlog_recover_buffer_pass1(log, item);
3379        case XFS_LI_QUOTAOFF:
3380                return xlog_recover_quotaoff_pass1(log, item);
3381        case XFS_LI_INODE:
3382        case XFS_LI_EFI:
3383        case XFS_LI_EFD:
3384        case XFS_LI_DQUOT:
3385        case XFS_LI_ICREATE:
3386                /* nothing to do in pass 1 */
3387                return 0;
3388        default:
3389                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3390                        __func__, ITEM_TYPE(item));
3391                ASSERT(0);
3392                return XFS_ERROR(EIO);
3393        }
3394}
3395
3396STATIC int
3397xlog_recover_commit_pass2(
3398        struct xlog                     *log,
3399        struct xlog_recover             *trans,
3400        struct list_head                *buffer_list,
3401        struct xlog_recover_item        *item)
3402{
3403        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3404
3405        switch (ITEM_TYPE(item)) {
3406        case XFS_LI_BUF:
3407                return xlog_recover_buffer_pass2(log, buffer_list, item,
3408                                                 trans->r_lsn);
3409        case XFS_LI_INODE:
3410                return xlog_recover_inode_pass2(log, buffer_list, item,
3411                                                 trans->r_lsn);
3412        case XFS_LI_EFI:
3413                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3414        case XFS_LI_EFD:
3415                return xlog_recover_efd_pass2(log, item);
3416        case XFS_LI_DQUOT:
3417                return xlog_recover_dquot_pass2(log, buffer_list, item,
3418                                                trans->r_lsn);
3419        case XFS_LI_ICREATE:
3420                return xlog_recover_do_icreate_pass2(log, buffer_list, item);
3421        case XFS_LI_QUOTAOFF:
3422                /* nothing to do in pass2 */
3423                return 0;
3424        default:
3425                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3426                        __func__, ITEM_TYPE(item));
3427                ASSERT(0);
3428                return XFS_ERROR(EIO);
3429        }
3430}
3431
3432STATIC int
3433xlog_recover_items_pass2(
3434        struct xlog                     *log,
3435        struct xlog_recover             *trans,
3436        struct list_head                *buffer_list,
3437        struct list_head                *item_list)
3438{
3439        struct xlog_recover_item        *item;
3440        int                             error = 0;
3441
3442        list_for_each_entry(item, item_list, ri_list) {
3443                error = xlog_recover_commit_pass2(log, trans,
3444                                          buffer_list, item);
3445                if (error)
3446                        return error;
3447        }
3448
3449        return error;
3450}
3451
3452/*
3453 * Perform the transaction.
3454 *
3455 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3456 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3457 */
3458STATIC int
3459xlog_recover_commit_trans(
3460        struct xlog             *log,
3461        struct xlog_recover     *trans,
3462        int                     pass)
3463{
3464        int                             error = 0;
3465        int                             error2;
3466        int                             items_queued = 0;
3467        struct xlog_recover_item        *item;
3468        struct xlog_recover_item        *next;
3469        LIST_HEAD                       (buffer_list);
3470        LIST_HEAD                       (ra_list);
3471        LIST_HEAD                       (done_list);
3472
3473        #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3474
3475        hlist_del(&trans->r_list);
3476
3477        error = xlog_recover_reorder_trans(log, trans, pass);
3478        if (error)
3479                return error;
3480
3481        list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
3482                switch (pass) {
3483                case XLOG_RECOVER_PASS1:
3484                        error = xlog_recover_commit_pass1(log, trans, item);
3485                        break;
3486                case XLOG_RECOVER_PASS2:
3487                        xlog_recover_ra_pass2(log, item);
3488                        list_move_tail(&item->ri_list, &ra_list);
3489                        items_queued++;
3490                        if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3491                                error = xlog_recover_items_pass2(log, trans,
3492                                                &buffer_list, &ra_list);
3493                                list_splice_tail_init(&ra_list, &done_list);
3494                                items_queued = 0;
3495                        }
3496
3497                        break;
3498                default:
3499                        ASSERT(0);
3500                }
3501
3502                if (error)
3503                        goto out;
3504        }
3505
3506out:
3507        if (!list_empty(&ra_list)) {
3508                if (!error)
3509                        error = xlog_recover_items_pass2(log, trans,
3510                                        &buffer_list, &ra_list);
3511                list_splice_tail_init(&ra_list, &done_list);
3512        }
3513
3514        if (!list_empty(&done_list))
3515                list_splice_init(&done_list, &trans->r_itemq);
3516
3517        xlog_recover_free_trans(trans);
3518
3519        error2 = xfs_buf_delwri_submit(&buffer_list);
3520        return error ? error : error2;
3521}
3522
3523STATIC int
3524xlog_recover_unmount_trans(
3525        struct xlog             *log)
3526{
3527        /* Do nothing now */
3528        xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3529        return 0;
3530}
3531
3532/*
3533 * There are two valid states of the r_state field.  0 indicates that the
3534 * transaction structure is in a normal state.  We have either seen the
3535 * start of the transaction or the last operation we added was not a partial
3536 * operation.  If the last operation we added to the transaction was a
3537 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3538 *
3539 * NOTE: skip LRs with 0 data length.
3540 */
3541STATIC int
3542xlog_recover_process_data(
3543        struct xlog             *log,
3544        struct hlist_head       rhash[],
3545        struct xlog_rec_header  *rhead,
3546        xfs_caddr_t             dp,
3547        int                     pass)
3548{
3549        xfs_caddr_t             lp;
3550        int                     num_logops;
3551        xlog_op_header_t        *ohead;
3552        xlog_recover_t          *trans;
3553        xlog_tid_t              tid;
3554        int                     error;
3555        unsigned long           hash;
3556        uint                    flags;
3557
3558        lp = dp + be32_to_cpu(rhead->h_len);
3559        num_logops = be32_to_cpu(rhead->h_num_logops);
3560
3561        /* check the log format matches our own - else we can't recover */
3562        if (xlog_header_check_recover(log->l_mp, rhead))
3563                return (XFS_ERROR(EIO));
3564
3565        while ((dp < lp) && num_logops) {
3566                ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3567                ohead = (xlog_op_header_t *)dp;
3568                dp += sizeof(xlog_op_header_t);
3569                if (ohead->oh_clientid != XFS_TRANSACTION &&
3570                    ohead->oh_clientid != XFS_LOG) {
3571                        xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3572                                        __func__, ohead->oh_clientid);
3573                        ASSERT(0);
3574                        return (XFS_ERROR(EIO));
3575                }
3576                tid = be32_to_cpu(ohead->oh_tid);
3577                hash = XLOG_RHASH(tid);
3578                trans = xlog_recover_find_tid(&rhash[hash], tid);
3579                if (trans == NULL) {               /* not found; add new tid */
3580                        if (ohead->oh_flags & XLOG_START_TRANS)
3581                                xlog_recover_new_tid(&rhash[hash], tid,
3582                                        be64_to_cpu(rhead->h_lsn));
3583                } else {
3584                        if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3585                                xfs_warn(log->l_mp, "%s: bad length 0x%x",
3586                                        __func__, be32_to_cpu(ohead->oh_len));
3587                                WARN_ON(1);
3588                                return (XFS_ERROR(EIO));
3589                        }
3590                        flags = ohead->oh_flags & ~XLOG_END_TRANS;
3591                        if (flags & XLOG_WAS_CONT_TRANS)
3592                                flags &= ~XLOG_CONTINUE_TRANS;
3593                        switch (flags) {
3594                        case XLOG_COMMIT_TRANS:
3595                                error = xlog_recover_commit_trans(log,
3596                                                                trans, pass);
3597                                break;
3598                        case XLOG_UNMOUNT_TRANS:
3599                                error = xlog_recover_unmount_trans(log);
3600                                break;
3601                        case XLOG_WAS_CONT_TRANS:
3602                                error = xlog_recover_add_to_cont_trans(log,
3603                                                trans, dp,
3604                                                be32_to_cpu(ohead->oh_len));
3605                                break;
3606                        case XLOG_START_TRANS:
3607                                xfs_warn(log->l_mp, "%s: bad transaction",
3608                                        __func__);
3609                                ASSERT(0);
3610                                error = XFS_ERROR(EIO);
3611                                break;
3612                        case 0:
3613                        case XLOG_CONTINUE_TRANS:
3614                                error = xlog_recover_add_to_trans(log, trans,
3615                                                dp, be32_to_cpu(ohead->oh_len));
3616                                break;
3617                        default:
3618                                xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3619                                        __func__, flags);
3620                                ASSERT(0);
3621                                error = XFS_ERROR(EIO);
3622                                break;
3623                        }
3624                        if (error) {
3625                                xlog_recover_free_trans(trans);
3626                                return error;
3627                        }
3628                }
3629                dp += be32_to_cpu(ohead->oh_len);
3630                num_logops--;
3631        }
3632        return 0;
3633}
3634
3635/*
3636 * Process an extent free intent item that was recovered from
3637 * the log.  We need to free the extents that it describes.
3638 */
3639STATIC int
3640xlog_recover_process_efi(
3641        xfs_mount_t             *mp,
3642        xfs_efi_log_item_t      *efip)
3643{
3644        xfs_efd_log_item_t      *efdp;
3645        xfs_trans_t             *tp;
3646        int                     i;
3647        int                     error = 0;
3648        xfs_extent_t            *extp;
3649        xfs_fsblock_t           startblock_fsb;
3650
3651        ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3652
3653        /*
3654         * First check the validity of the extents described by the
3655         * EFI.  If any are bad, then assume that all are bad and
3656         * just toss the EFI.
3657         */
3658        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3659                extp = &(efip->efi_format.efi_extents[i]);
3660                startblock_fsb = XFS_BB_TO_FSB(mp,
3661                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3662                if ((startblock_fsb == 0) ||
3663                    (extp->ext_len == 0) ||
3664                    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3665                    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3666                        /*
3667                         * This will pull the EFI from the AIL and
3668                         * free the memory associated with it.
3669                         */
3670                        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3671                        xfs_efi_release(efip, efip->efi_format.efi_nextents);
3672                        return XFS_ERROR(EIO);
3673                }
3674        }
3675
3676        tp = xfs_trans_alloc(mp, 0);
3677        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
3678        if (error)
3679                goto abort_error;
3680        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3681
3682        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3683                extp = &(efip->efi_format.efi_extents[i]);
3684                error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3685                if (error)
3686                        goto abort_error;
3687                xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3688                                         extp->ext_len);
3689        }
3690
3691        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3692        error = xfs_trans_commit(tp, 0);
3693        return error;
3694
3695abort_error:
3696        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3697        return error;
3698}
3699
3700/*
3701 * When this is called, all of the EFIs which did not have
3702 * corresponding EFDs should be in the AIL.  What we do now
3703 * is free the extents associated with each one.
3704 *
3705 * Since we process the EFIs in normal transactions, they
3706 * will be removed at some point after the commit.  This prevents
3707 * us from just walking down the list processing each one.
3708 * We'll use a flag in the EFI to skip those that we've already
3709 * processed and use the AIL iteration mechanism's generation
3710 * count to try to speed this up at least a bit.
3711 *
3712 * When we start, we know that the EFIs are the only things in
3713 * the AIL.  As we process them, however, other items are added
3714 * to the AIL.  Since everything added to the AIL must come after
3715 * everything already in the AIL, we stop processing as soon as
3716 * we see something other than an EFI in the AIL.
3717 */
3718STATIC int
3719xlog_recover_process_efis(
3720        struct xlog     *log)
3721{
3722        xfs_log_item_t          *lip;
3723        xfs_efi_log_item_t      *efip;
3724        int                     error = 0;
3725        struct xfs_ail_cursor   cur;
3726        struct xfs_ail          *ailp;
3727
3728        ailp = log->l_ailp;
3729        spin_lock(&ailp->xa_lock);
3730        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3731        while (lip != NULL) {
3732                /*
3733                 * We're done when we see something other than an EFI.
3734                 * There should be no EFIs left in the AIL now.
3735                 */
3736                if (lip->li_type != XFS_LI_EFI) {
3737#ifdef DEBUG
3738                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3739                                ASSERT(lip->li_type != XFS_LI_EFI);
3740#endif
3741                        break;
3742                }
3743
3744                /*
3745                 * Skip EFIs that we've already processed.
3746                 */
3747                efip = (xfs_efi_log_item_t *)lip;
3748                if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3749                        lip = xfs_trans_ail_cursor_next(ailp, &cur);
3750                        continue;
3751                }
3752
3753                spin_unlock(&ailp->xa_lock);
3754                error = xlog_recover_process_efi(log->l_mp, efip);
3755                spin_lock(&ailp->xa_lock);
3756                if (error)
3757                        goto out;
3758                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3759        }
3760out:
3761        xfs_trans_ail_cursor_done(&cur);
3762        spin_unlock(&ailp->xa_lock);
3763        return error;
3764}
3765
3766/*
3767 * This routine performs a transaction to null out a bad inode pointer
3768 * in an agi unlinked inode hash bucket.
3769 */
3770STATIC void
3771xlog_recover_clear_agi_bucket(
3772        xfs_mount_t     *mp,
3773        xfs_agnumber_t  agno,
3774        int             bucket)
3775{
3776        xfs_trans_t     *tp;
3777        xfs_agi_t       *agi;
3778        xfs_buf_t       *agibp;
3779        int             offset;
3780        int             error;
3781
3782        tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3783        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
3784        if (error)
3785                goto out_abort;
3786
3787        error = xfs_read_agi(mp, tp, agno, &agibp);
3788        if (error)
3789                goto out_abort;
3790
3791        agi = XFS_BUF_TO_AGI(agibp);
3792        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3793        offset = offsetof(xfs_agi_t, agi_unlinked) +
3794                 (sizeof(xfs_agino_t) * bucket);
3795        xfs_trans_log_buf(tp, agibp, offset,
3796                          (offset + sizeof(xfs_agino_t) - 1));
3797
3798        error = xfs_trans_commit(tp, 0);
3799        if (error)
3800                goto out_error;
3801        return;
3802
3803out_abort:
3804        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3805out_error:
3806        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3807        return;
3808}
3809
3810STATIC xfs_agino_t
3811xlog_recover_process_one_iunlink(
3812        struct xfs_mount                *mp,
3813        xfs_agnumber_t                  agno,
3814        xfs_agino_t                     agino,
3815        int                             bucket)
3816{
3817        struct xfs_buf                  *ibp;
3818        struct xfs_dinode               *dip;
3819        struct xfs_inode                *ip;
3820        xfs_ino_t                       ino;
3821        int                             error;
3822
3823        ino = XFS_AGINO_TO_INO(mp, agno, agino);
3824        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3825        if (error)
3826                goto fail;
3827
3828        /*
3829         * Get the on disk inode to find the next inode in the bucket.
3830         */
3831        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3832        if (error)
3833                goto fail_iput;
3834
3835        ASSERT(ip->i_d.di_nlink == 0);
3836        ASSERT(ip->i_d.di_mode != 0);
3837
3838        /* setup for the next pass */
3839        agino = be32_to_cpu(dip->di_next_unlinked);
3840        xfs_buf_relse(ibp);
3841
3842        /*
3843         * Prevent any DMAPI event from being sent when the reference on
3844         * the inode is dropped.
3845         */
3846        ip->i_d.di_dmevmask = 0;
3847
3848        IRELE(ip);
3849        return agino;
3850
3851 fail_iput:
3852        IRELE(ip);
3853 fail:
3854        /*
3855         * We can't read in the inode this bucket points to, or this inode
3856         * is messed up.  Just ditch this bucket of inodes.  We will lose
3857         * some inodes and space, but at least we won't hang.
3858         *
3859         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3860         * clear the inode pointer in the bucket.
3861         */
3862        xlog_recover_clear_agi_bucket(mp, agno, bucket);
3863        return NULLAGINO;
3864}
3865
3866/*
3867 * xlog_iunlink_recover
3868 *
3869 * This is called during recovery to process any inodes which
3870 * we unlinked but not freed when the system crashed.  These
3871 * inodes will be on the lists in the AGI blocks.  What we do
3872 * here is scan all the AGIs and fully truncate and free any
3873 * inodes found on the lists.  Each inode is removed from the
3874 * lists when it has been fully truncated and is freed.  The
3875 * freeing of the inode and its removal from the list must be
3876 * atomic.
3877 */
3878STATIC void
3879xlog_recover_process_iunlinks(
3880        struct xlog     *log)
3881{
3882        xfs_mount_t     *mp;
3883        xfs_agnumber_t  agno;
3884        xfs_agi_t       *agi;
3885        xfs_buf_t       *agibp;
3886        xfs_agino_t     agino;
3887        int             bucket;
3888        int             error;
3889        uint            mp_dmevmask;
3890
3891        mp = log->l_mp;
3892
3893        /*
3894         * Prevent any DMAPI event from being sent while in this function.
3895         */
3896        mp_dmevmask = mp->m_dmevmask;
3897        mp->m_dmevmask = 0;
3898
3899        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3900                /*
3901                 * Find the agi for this ag.
3902                 */
3903                error = xfs_read_agi(mp, NULL, agno, &agibp);
3904                if (error) {
3905                        /*
3906                         * AGI is b0rked. Don't process it.
3907                         *
3908                         * We should probably mark the filesystem as corrupt
3909                         * after we've recovered all the ag's we can....
3910                         */
3911                        continue;
3912                }
3913                /*
3914                 * Unlock the buffer so that it can be acquired in the normal
3915                 * course of the transaction to truncate and free each inode.
3916                 * Because we are not racing with anyone else here for the AGI
3917                 * buffer, we don't even need to hold it locked to read the
3918                 * initial unlinked bucket entries out of the buffer. We keep
3919                 * buffer reference though, so that it stays pinned in memory
3920                 * while we need the buffer.
3921                 */
3922                agi = XFS_BUF_TO_AGI(agibp);
3923                xfs_buf_unlock(agibp);
3924
3925                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3926                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3927                        while (agino != NULLAGINO) {
3928                                agino = xlog_recover_process_one_iunlink(mp,
3929                                                        agno, agino, bucket);
3930                        }
3931                }
3932                xfs_buf_rele(agibp);
3933        }
3934
3935        mp->m_dmevmask = mp_dmevmask;
3936}
3937
3938/*
3939 * Upack the log buffer data and crc check it. If the check fails, issue a
3940 * warning if and only if the CRC in the header is non-zero. This makes the
3941 * check an advisory warning, and the zero CRC check will prevent failure
3942 * warnings from being emitted when upgrading the kernel from one that does not
3943 * add CRCs by default.
3944 *
3945 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3946 * corruption failure
3947 */
3948STATIC int
3949xlog_unpack_data_crc(
3950        struct xlog_rec_header  *rhead,
3951        xfs_caddr_t             dp,
3952        struct xlog             *log)
3953{
3954        __le32                  crc;
3955
3956        crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3957        if (crc != rhead->h_crc) {
3958                if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3959                        xfs_alert(log->l_mp,
3960                "log record CRC mismatch: found 0x%x, expected 0x%x.",
3961                                        le32_to_cpu(rhead->h_crc),
3962                                        le32_to_cpu(crc));
3963                        xfs_hex_dump(dp, 32);
3964                }
3965
3966                /*
3967                 * If we've detected a log record corruption, then we can't
3968                 * recover past this point. Abort recovery if we are enforcing
3969                 * CRC protection by punting an error back up the stack.
3970                 */
3971                if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3972                        return EFSCORRUPTED;
3973        }
3974
3975        return 0;
3976}
3977
3978STATIC int
3979xlog_unpack_data(
3980        struct xlog_rec_header  *rhead,
3981        xfs_caddr_t             dp,
3982        struct xlog             *log)
3983{
3984        int                     i, j, k;
3985        int                     error;
3986
3987        error = xlog_unpack_data_crc(rhead, dp, log);
3988        if (error)
3989                return error;
3990
3991        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3992                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3993                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3994                dp += BBSIZE;
3995        }
3996
3997        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3998                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3999                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
4000                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4001                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4002                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
4003                        dp += BBSIZE;
4004                }
4005        }
4006
4007        return 0;
4008}
4009
4010STATIC int
4011xlog_valid_rec_header(
4012        struct xlog             *log,
4013        struct xlog_rec_header  *rhead,
4014        xfs_daddr_t             blkno)
4015{
4016        int                     hlen;
4017
4018        if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
4019                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4020                                XFS_ERRLEVEL_LOW, log->l_mp);
4021                return XFS_ERROR(EFSCORRUPTED);
4022        }
4023        if (unlikely(
4024            (!rhead->h_version ||
4025            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
4026                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
4027                        __func__, be32_to_cpu(rhead->h_version));
4028                return XFS_ERROR(EIO);
4029        }
4030
4031        /* LR body must have data or it wouldn't have been written */
4032        hlen = be32_to_cpu(rhead->h_len);
4033        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4034                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4035                                XFS_ERRLEVEL_LOW, log->l_mp);
4036                return XFS_ERROR(EFSCORRUPTED);
4037        }
4038        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4039                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4040                                XFS_ERRLEVEL_LOW, log->l_mp);
4041                return XFS_ERROR(EFSCORRUPTED);
4042        }
4043        return 0;
4044}
4045
4046/*
4047 * Read the log from tail to head and process the log records found.
4048 * Handle the two cases where the tail and head are in the same cycle
4049 * and where the active portion of the log wraps around the end of
4050 * the physical log separately.  The pass parameter is passed through
4051 * to the routines called to process the data and is not looked at
4052 * here.
4053 */
4054STATIC int
4055xlog_do_recovery_pass(
4056        struct xlog             *log,
4057        xfs_daddr_t             head_blk,
4058        xfs_daddr_t             tail_blk,
4059        int                     pass)
4060{
4061        xlog_rec_header_t       *rhead;
4062        xfs_daddr_t             blk_no;
4063        xfs_caddr_t             offset;
4064        xfs_buf_t               *hbp, *dbp;
4065        int                     error = 0, h_size;
4066        int                     bblks, split_bblks;
4067        int                     hblks, split_hblks, wrapped_hblks;
4068        struct hlist_head       rhash[XLOG_RHASH_SIZE];
4069
4070        ASSERT(head_blk != tail_blk);
4071
4072        /*
4073         * Read the header of the tail block and get the iclog buffer size from
4074         * h_size.  Use this to tell how many sectors make up the log header.
4075         */
4076        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
4077                /*
4078                 * When using variable length iclogs, read first sector of
4079                 * iclog header and extract the header size from it.  Get a
4080                 * new hbp that is the correct size.
4081                 */
4082                hbp = xlog_get_bp(log, 1);
4083                if (!hbp)
4084                        return ENOMEM;
4085
4086                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4087                if (error)
4088                        goto bread_err1;
4089
4090                rhead = (xlog_rec_header_t *)offset;
4091                error = xlog_valid_rec_header(log, rhead, tail_blk);
4092                if (error)
4093                        goto bread_err1;
4094                h_size = be32_to_cpu(rhead->h_size);
4095                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
4096                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4097                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4098                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
4099                                hblks++;
4100                        xlog_put_bp(hbp);
4101                        hbp = xlog_get_bp(log, hblks);
4102                } else {
4103                        hblks = 1;
4104                }
4105        } else {
4106                ASSERT(log->l_sectBBsize == 1);
4107                hblks = 1;
4108                hbp = xlog_get_bp(log, 1);
4109                h_size = XLOG_BIG_RECORD_BSIZE;
4110        }
4111
4112        if (!hbp)
4113                return ENOMEM;
4114        dbp = xlog_get_bp(log, BTOBB(h_size));
4115        if (!dbp) {
4116                xlog_put_bp(hbp);
4117                return ENOMEM;
4118        }
4119
4120        memset(rhash, 0, sizeof(rhash));
4121        if (tail_blk <= head_blk) {
4122                for (blk_no = tail_blk; blk_no < head_blk; ) {
4123                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4124                        if (error)
4125                                goto bread_err2;
4126
4127                        rhead = (xlog_rec_header_t *)offset;
4128                        error = xlog_valid_rec_header(log, rhead, blk_no);
4129                        if (error)
4130                                goto bread_err2;
4131
4132                        /* blocks in data section */
4133                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4134                        error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4135                                           &offset);
4136                        if (error)
4137                                goto bread_err2;
4138
4139                        error = xlog_unpack_data(rhead, offset, log);
4140                        if (error)
4141                                goto bread_err2;
4142
4143                        error = xlog_recover_process_data(log,
4144                                                rhash, rhead, offset, pass);
4145                        if (error)
4146                                goto bread_err2;
4147                        blk_no += bblks + hblks;
4148                }
4149        } else {
4150                /*
4151                 * Perform recovery around the end of the physical log.
4152                 * When the head is not on the same cycle number as the tail,
4153                 * we can't do a sequential recovery as above.
4154                 */
4155                blk_no = tail_blk;
4156                while (blk_no < log->l_logBBsize) {
4157                        /*
4158                         * Check for header wrapping around physical end-of-log
4159                         */
4160                        offset = hbp->b_addr;
4161                        split_hblks = 0;
4162                        wrapped_hblks = 0;
4163                        if (blk_no + hblks <= log->l_logBBsize) {
4164                                /* Read header in one read */
4165                                error = xlog_bread(log, blk_no, hblks, hbp,
4166                                                   &offset);
4167                                if (error)
4168                                        goto bread_err2;
4169                        } else {
4170                                /* This LR is split across physical log end */
4171                                if (blk_no != log->l_logBBsize) {
4172                                        /* some data before physical log end */
4173                                        ASSERT(blk_no <= INT_MAX);
4174                                        split_hblks = log->l_logBBsize - (int)blk_no;
4175                                        ASSERT(split_hblks > 0);
4176                                        error = xlog_bread(log, blk_no,
4177                                                           split_hblks, hbp,
4178                                                           &offset);
4179                                        if (error)
4180                                                goto bread_err2;
4181                                }
4182
4183                                /*
4184                                 * Note: this black magic still works with
4185                                 * large sector sizes (non-512) only because:
4186                                 * - we increased the buffer size originally
4187                                 *   by 1 sector giving us enough extra space
4188                                 *   for the second read;
4189                                 * - the log start is guaranteed to be sector
4190                                 *   aligned;
4191                                 * - we read the log end (LR header start)
4192                                 *   _first_, then the log start (LR header end)
4193                                 *   - order is important.
4194                                 */
4195                                wrapped_hblks = hblks - split_hblks;
4196                                error = xlog_bread_offset(log, 0,
4197                                                wrapped_hblks, hbp,
4198                                                offset + BBTOB(split_hblks));
4199                                if (error)
4200                                        goto bread_err2;
4201                        }
4202                        rhead = (xlog_rec_header_t *)offset;
4203                        error = xlog_valid_rec_header(log, rhead,
4204                                                split_hblks ? blk_no : 0);
4205                        if (error)
4206                                goto bread_err2;
4207
4208                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4209                        blk_no += hblks;
4210
4211                        /* Read in data for log record */
4212                        if (blk_no + bblks <= log->l_logBBsize) {
4213                                error = xlog_bread(log, blk_no, bblks, dbp,
4214                                                   &offset);
4215                                if (error)
4216                                        goto bread_err2;
4217                        } else {
4218                                /* This log record is split across the
4219                                 * physical end of log */
4220                                offset = dbp->b_addr;
4221                                split_bblks = 0;
4222                                if (blk_no != log->l_logBBsize) {
4223                                        /* some data is before the physical
4224                                         * end of log */
4225                                        ASSERT(!wrapped_hblks);
4226                                        ASSERT(blk_no <= INT_MAX);
4227                                        split_bblks =
4228                                                log->l_logBBsize - (int)blk_no;
4229                                        ASSERT(split_bblks > 0);
4230                                        error = xlog_bread(log, blk_no,
4231                                                        split_bblks, dbp,
4232                                                        &offset);
4233                                        if (error)
4234                                                goto bread_err2;
4235                                }
4236
4237                                /*
4238                                 * Note: this black magic still works with
4239                                 * large sector sizes (non-512) only because:
4240                                 * - we increased the buffer size originally
4241                                 *   by 1 sector giving us enough extra space
4242                                 *   for the second read;
4243                                 * - the log start is guaranteed to be sector
4244                                 *   aligned;
4245                                 * - we read the log end (LR header start)
4246                                 *   _first_, then the log start (LR header end)
4247                                 *   - order is important.
4248                                 */
4249                                error = xlog_bread_offset(log, 0,
4250                                                bblks - split_bblks, dbp,
4251                                                offset + BBTOB(split_bblks));
4252                                if (error)
4253                                        goto bread_err2;
4254                        }
4255
4256                        error = xlog_unpack_data(rhead, offset, log);
4257                        if (error)
4258                                goto bread_err2;
4259
4260                        error = xlog_recover_process_data(log, rhash,
4261                                                        rhead, offset, pass);
4262                        if (error)
4263                                goto bread_err2;
4264                        blk_no += bblks;
4265                }
4266
4267                ASSERT(blk_no >= log->l_logBBsize);
4268                blk_no -= log->l_logBBsize;
4269
4270                /* read first part of physical log */
4271                while (blk_no < head_blk) {
4272                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4273                        if (error)
4274                                goto bread_err2;
4275
4276                        rhead = (xlog_rec_header_t *)offset;
4277                        error = xlog_valid_rec_header(log, rhead, blk_no);
4278                        if (error)
4279                                goto bread_err2;
4280
4281                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4282                        error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4283                                           &offset);
4284                        if (error)
4285                                goto bread_err2;
4286
4287                        error = xlog_unpack_data(rhead, offset, log);
4288                        if (error)
4289                                goto bread_err2;
4290
4291                        error = xlog_recover_process_data(log, rhash,
4292                                                        rhead, offset, pass);
4293                        if (error)
4294                                goto bread_err2;
4295                        blk_no += bblks + hblks;
4296                }
4297        }
4298
4299 bread_err2:
4300        xlog_put_bp(dbp);
4301 bread_err1:
4302        xlog_put_bp(hbp);
4303        return error;
4304}
4305
4306/*
4307 * Do the recovery of the log.  We actually do this in two phases.
4308 * The two passes are necessary in order to implement the function
4309 * of cancelling a record written into the log.  The first pass
4310 * determines those things which have been cancelled, and the
4311 * second pass replays log items normally except for those which
4312 * have been cancelled.  The handling of the replay and cancellations
4313 * takes place in the log item type specific routines.
4314 *
4315 * The table of items which have cancel records in the log is allocated
4316 * and freed at this level, since only here do we know when all of
4317 * the log recovery has been completed.
4318 */
4319STATIC int
4320xlog_do_log_recovery(
4321        struct xlog     *log,
4322        xfs_daddr_t     head_blk,
4323        xfs_daddr_t     tail_blk)
4324{
4325        int             error, i;
4326
4327        ASSERT(head_blk != tail_blk);
4328
4329        /*
4330         * First do a pass to find all of the cancelled buf log items.
4331         * Store them in the buf_cancel_table for use in the second pass.
4332         */
4333        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4334                                                 sizeof(struct list_head),
4335                                                 KM_SLEEP);
4336        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4337                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4338
4339        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4340                                      XLOG_RECOVER_PASS1);
4341        if (error != 0) {
4342                kmem_free(log->l_buf_cancel_table);
4343                log->l_buf_cancel_table = NULL;
4344                return error;
4345        }
4346        /*
4347         * Then do a second pass to actually recover the items in the log.
4348         * When it is complete free the table of buf cancel items.
4349         */
4350        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4351                                      XLOG_RECOVER_PASS2);
4352#ifdef DEBUG
4353        if (!error) {
4354                int     i;
4355
4356                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4357                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
4358        }
4359#endif  /* DEBUG */
4360
4361        kmem_free(log->l_buf_cancel_table);
4362        log->l_buf_cancel_table = NULL;
4363
4364        return error;
4365}
4366
4367/*
4368 * Do the actual recovery
4369 */
4370STATIC int
4371xlog_do_recover(
4372        struct xlog     *log,
4373        xfs_daddr_t     head_blk,
4374        xfs_daddr_t     tail_blk)
4375{
4376        int             error;
4377        xfs_buf_t       *bp;
4378        xfs_sb_t        *sbp;
4379
4380        /*
4381         * First replay the images in the log.
4382         */
4383        error = xlog_do_log_recovery(log, head_blk, tail_blk);
4384        if (error)
4385                return error;
4386
4387        /*
4388         * If IO errors happened during recovery, bail out.
4389         */
4390        if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4391                return (EIO);
4392        }
4393
4394        /*
4395         * We now update the tail_lsn since much of the recovery has completed
4396         * and there may be space available to use.  If there were no extent
4397         * or iunlinks, we can free up the entire log and set the tail_lsn to
4398         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
4399         * lsn of the last known good LR on disk.  If there are extent frees
4400         * or iunlinks they will have some entries in the AIL; so we look at
4401         * the AIL to determine how to set the tail_lsn.
4402         */
4403        xlog_assign_tail_lsn(log->l_mp);
4404
4405        /*
4406         * Now that we've finished replaying all buffer and inode
4407         * updates, re-read in the superblock and reverify it.
4408         */
4409        bp = xfs_getsb(log->l_mp, 0);
4410        XFS_BUF_UNDONE(bp);
4411        ASSERT(!(XFS_BUF_ISWRITE(bp)));
4412        XFS_BUF_READ(bp);
4413        XFS_BUF_UNASYNC(bp);
4414        bp->b_ops = &xfs_sb_buf_ops;
4415
4416        if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4417                xfs_buf_relse(bp);
4418                return XFS_ERROR(EIO);
4419        }
4420
4421        xfs_buf_iorequest(bp);
4422        error = xfs_buf_iowait(bp);
4423        if (error) {
4424                xfs_buf_ioerror_alert(bp, __func__);
4425                ASSERT(0);
4426                xfs_buf_relse(bp);
4427                return error;
4428        }
4429
4430        /* Convert superblock from on-disk format */
4431        sbp = &log->l_mp->m_sb;
4432        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4433        ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4434        ASSERT(xfs_sb_good_version(sbp));
4435        xfs_buf_relse(bp);
4436
4437        /* We've re-read the superblock so re-initialize per-cpu counters */
4438        xfs_icsb_reinit_counters(log->l_mp);
4439
4440        xlog_recover_check_summary(log);
4441
4442        /* Normal transactions can now occur */
4443        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4444        return 0;
4445}
4446
4447/*
4448 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4449 *
4450 * Return error or zero.
4451 */
4452int
4453xlog_recover(
4454        struct xlog     *log)
4455{
4456        xfs_daddr_t     head_blk, tail_blk;
4457        int             error;
4458
4459        /* find the tail of the log */
4460        if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4461                return error;
4462
4463        if (tail_blk != head_blk) {
4464                /* There used to be a comment here:
4465                 *
4466                 * disallow recovery on read-only mounts.  note -- mount
4467                 * checks for ENOSPC and turns it into an intelligent
4468                 * error message.
4469                 * ...but this is no longer true.  Now, unless you specify
4470                 * NORECOVERY (in which case this function would never be
4471                 * called), we just go ahead and recover.  We do this all
4472                 * under the vfs layer, so we can get away with it unless
4473                 * the device itself is read-only, in which case we fail.
4474                 */
4475                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4476                        return error;
4477                }
4478
4479                /*
4480                 * Version 5 superblock log feature mask validation. We know the
4481                 * log is dirty so check if there are any unknown log features
4482                 * in what we need to recover. If there are unknown features
4483                 * (e.g. unsupported transactions, then simply reject the
4484                 * attempt at recovery before touching anything.
4485                 */
4486                if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4487                    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4488                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4489                        xfs_warn(log->l_mp,
4490"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4491"The log can not be fully and/or safely recovered by this kernel.\n"
4492"Please recover the log on a kernel that supports the unknown features.",
4493                                (log->l_mp->m_sb.sb_features_log_incompat &
4494                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4495                        return EINVAL;
4496                }
4497
4498                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4499                                log->l_mp->m_logname ? log->l_mp->m_logname
4500                                                     : "internal");
4501
4502                error = xlog_do_recover(log, head_blk, tail_blk);
4503                log->l_flags |= XLOG_RECOVERY_NEEDED;
4504        }
4505        return error;
4506}
4507
4508/*
4509 * In the first part of recovery we replay inodes and buffers and build
4510 * up the list of extent free items which need to be processed.  Here
4511 * we process the extent free items and clean up the on disk unlinked
4512 * inode lists.  This is separated from the first part of recovery so
4513 * that the root and real-time bitmap inodes can be read in from disk in
4514 * between the two stages.  This is necessary so that we can free space
4515 * in the real-time portion of the file system.
4516 */
4517int
4518xlog_recover_finish(
4519        struct xlog     *log)
4520{
4521        /*
4522         * Now we're ready to do the transactions needed for the
4523         * rest of recovery.  Start with completing all the extent
4524         * free intent records and then process the unlinked inode
4525         * lists.  At this point, we essentially run in normal mode
4526         * except that we're still performing recovery actions
4527         * rather than accepting new requests.
4528         */
4529        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4530                int     error;
4531                error = xlog_recover_process_efis(log);
4532                if (error) {
4533                        xfs_alert(log->l_mp, "Failed to recover EFIs");
4534                        return error;
4535                }
4536                /*
4537                 * Sync the log to get all the EFIs out of the AIL.
4538                 * This isn't absolutely necessary, but it helps in
4539                 * case the unlink transactions would have problems
4540                 * pushing the EFIs out of the way.
4541                 */
4542                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4543
4544                xlog_recover_process_iunlinks(log);
4545
4546                xlog_recover_check_summary(log);
4547
4548                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4549                                log->l_mp->m_logname ? log->l_mp->m_logname
4550                                                     : "internal");
4551                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4552        } else {
4553                xfs_info(log->l_mp, "Ending clean mount");
4554        }
4555        return 0;
4556}
4557
4558
4559#if defined(DEBUG)
4560/*
4561 * Read all of the agf and agi counters and check that they
4562 * are consistent with the superblock counters.
4563 */
4564void
4565xlog_recover_check_summary(
4566        struct xlog     *log)
4567{
4568        xfs_mount_t     *mp;
4569        xfs_agf_t       *agfp;
4570        xfs_buf_t       *agfbp;
4571        xfs_buf_t       *agibp;
4572        xfs_agnumber_t  agno;
4573        __uint64_t      freeblks;
4574        __uint64_t      itotal;
4575        __uint64_t      ifree;
4576        int             error;
4577
4578        mp = log->l_mp;
4579
4580        freeblks = 0LL;
4581        itotal = 0LL;
4582        ifree = 0LL;
4583        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4584                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4585                if (error) {
4586                        xfs_alert(mp, "%s agf read failed agno %d error %d",
4587                                                __func__, agno, error);
4588                } else {
4589                        agfp = XFS_BUF_TO_AGF(agfbp);
4590                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
4591                                    be32_to_cpu(agfp->agf_flcount);
4592                        xfs_buf_relse(agfbp);
4593                }
4594
4595                error = xfs_read_agi(mp, NULL, agno, &agibp);
4596                if (error) {
4597                        xfs_alert(mp, "%s agi read failed agno %d error %d",
4598                                                __func__, agno, error);
4599                } else {
4600                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
4601
4602                        itotal += be32_to_cpu(agi->agi_count);
4603                        ifree += be32_to_cpu(agi->agi_freecount);
4604                        xfs_buf_relse(agibp);
4605                }
4606        }
4607}
4608#endif /* DEBUG */
4609