1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _UAPI_HYPERV_H 26#define _UAPI_HYPERV_H 27 28#include <linux/uuid.h> 29 30/* 31 * Framework version for util services. 32 */ 33#define UTIL_FW_MINOR 0 34 35#define UTIL_WS2K8_FW_MAJOR 1 36#define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR) 37 38#define UTIL_FW_MAJOR 3 39#define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 40 41 42/* 43 * Implementation of host controlled snapshot of the guest. 44 */ 45 46#define VSS_OP_REGISTER 128 47 48enum hv_vss_op { 49 VSS_OP_CREATE = 0, 50 VSS_OP_DELETE, 51 VSS_OP_HOT_BACKUP, 52 VSS_OP_GET_DM_INFO, 53 VSS_OP_BU_COMPLETE, 54 /* 55 * Following operations are only supported with IC version >= 5.0 56 */ 57 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 58 VSS_OP_THAW, /* Unfreeze the file systems */ 59 VSS_OP_AUTO_RECOVER, 60 VSS_OP_COUNT /* Number of operations, must be last */ 61}; 62 63 64/* 65 * Header for all VSS messages. 66 */ 67struct hv_vss_hdr { 68 __u8 operation; 69 __u8 reserved[7]; 70} __attribute__((packed)); 71 72 73/* 74 * Flag values for the hv_vss_check_feature. Linux supports only 75 * one value. 76 */ 77#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 78 79struct hv_vss_check_feature { 80 __u32 flags; 81} __attribute__((packed)); 82 83struct hv_vss_check_dm_info { 84 __u32 flags; 85} __attribute__((packed)); 86 87struct hv_vss_msg { 88 union { 89 struct hv_vss_hdr vss_hdr; 90 int error; 91 }; 92 union { 93 struct hv_vss_check_feature vss_cf; 94 struct hv_vss_check_dm_info dm_info; 95 }; 96} __attribute__((packed)); 97 98/* 99 * Implementation of a host to guest copy facility. 100 */ 101 102#define FCOPY_VERSION_0 0 103#define FCOPY_CURRENT_VERSION FCOPY_VERSION_0 104#define W_MAX_PATH 260 105 106enum hv_fcopy_op { 107 START_FILE_COPY = 0, 108 WRITE_TO_FILE, 109 COMPLETE_FCOPY, 110 CANCEL_FCOPY, 111}; 112 113struct hv_fcopy_hdr { 114 __u32 operation; 115 uuid_le service_id0; /* currently unused */ 116 uuid_le service_id1; /* currently unused */ 117} __attribute__((packed)); 118 119#define OVER_WRITE 0x1 120#define CREATE_PATH 0x2 121 122struct hv_start_fcopy { 123 struct hv_fcopy_hdr hdr; 124 __u16 file_name[W_MAX_PATH]; 125 __u16 path_name[W_MAX_PATH]; 126 __u32 copy_flags; 127 __u64 file_size; 128} __attribute__((packed)); 129 130/* 131 * The file is chunked into fragments. 132 */ 133#define DATA_FRAGMENT (6 * 1024) 134 135struct hv_do_fcopy { 136 struct hv_fcopy_hdr hdr; 137 __u64 offset; 138 __u32 size; 139 __u8 data[DATA_FRAGMENT]; 140}; 141 142/* 143 * An implementation of HyperV key value pair (KVP) functionality for Linux. 144 * 145 * 146 * Copyright (C) 2010, Novell, Inc. 147 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 148 * 149 */ 150 151/* 152 * Maximum value size - used for both key names and value data, and includes 153 * any applicable NULL terminators. 154 * 155 * Note: This limit is somewhat arbitrary, but falls easily within what is 156 * supported for all native guests (back to Win 2000) and what is reasonable 157 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 158 * limited to 255 character key names. 159 * 160 * MSDN recommends not storing data values larger than 2048 bytes in the 161 * registry. 162 * 163 * Note: This value is used in defining the KVP exchange message - this value 164 * cannot be modified without affecting the message size and compatibility. 165 */ 166 167/* 168 * bytes, including any null terminators 169 */ 170#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 171 172 173/* 174 * Maximum key size - the registry limit for the length of an entry name 175 * is 256 characters, including the null terminator 176 */ 177 178#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 179 180/* 181 * In Linux, we implement the KVP functionality in two components: 182 * 1) The kernel component which is packaged as part of the hv_utils driver 183 * is responsible for communicating with the host and responsible for 184 * implementing the host/guest protocol. 2) A user level daemon that is 185 * responsible for data gathering. 186 * 187 * Host/Guest Protocol: The host iterates over an index and expects the guest 188 * to assign a key name to the index and also return the value corresponding to 189 * the key. The host will have atmost one KVP transaction outstanding at any 190 * given point in time. The host side iteration stops when the guest returns 191 * an error. Microsoft has specified the following mapping of key names to 192 * host specified index: 193 * 194 * Index Key Name 195 * 0 FullyQualifiedDomainName 196 * 1 IntegrationServicesVersion 197 * 2 NetworkAddressIPv4 198 * 3 NetworkAddressIPv6 199 * 4 OSBuildNumber 200 * 5 OSName 201 * 6 OSMajorVersion 202 * 7 OSMinorVersion 203 * 8 OSVersion 204 * 9 ProcessorArchitecture 205 * 206 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 207 * 208 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 209 * data gathering functionality in a user mode daemon. The user level daemon 210 * is also responsible for binding the key name to the index as well. The 211 * kernel and user-level daemon communicate using a connector channel. 212 * 213 * The user mode component first registers with the 214 * the kernel component. Subsequently, the kernel component requests, data 215 * for the specified keys. In response to this message the user mode component 216 * fills in the value corresponding to the specified key. We overload the 217 * sequence field in the cn_msg header to define our KVP message types. 218 * 219 * 220 * The kernel component simply acts as a conduit for communication between the 221 * Windows host and the user-level daemon. The kernel component passes up the 222 * index received from the Host to the user-level daemon. If the index is 223 * valid (supported), the corresponding key as well as its 224 * value (both are strings) is returned. If the index is invalid 225 * (not supported), a NULL key string is returned. 226 */ 227 228 229/* 230 * Registry value types. 231 */ 232 233#define REG_SZ 1 234#define REG_U32 4 235#define REG_U64 8 236 237/* 238 * As we look at expanding the KVP functionality to include 239 * IP injection functionality, we need to maintain binary 240 * compatibility with older daemons. 241 * 242 * The KVP opcodes are defined by the host and it was unfortunate 243 * that I chose to treat the registration operation as part of the 244 * KVP operations defined by the host. 245 * Here is the level of compatibility 246 * (between the user level daemon and the kernel KVP driver) that we 247 * will implement: 248 * 249 * An older daemon will always be supported on a newer driver. 250 * A given user level daemon will require a minimal version of the 251 * kernel driver. 252 * If we cannot handle the version differences, we will fail gracefully 253 * (this can happen when we have a user level daemon that is more 254 * advanced than the KVP driver. 255 * 256 * We will use values used in this handshake for determining if we have 257 * workable user level daemon and the kernel driver. We begin by taking the 258 * registration opcode out of the KVP opcode namespace. We will however, 259 * maintain compatibility with the existing user-level daemon code. 260 */ 261 262/* 263 * Daemon code not supporting IP injection (legacy daemon). 264 */ 265 266#define KVP_OP_REGISTER 4 267 268/* 269 * Daemon code supporting IP injection. 270 * The KVP opcode field is used to communicate the 271 * registration information; so define a namespace that 272 * will be distinct from the host defined KVP opcode. 273 */ 274 275#define KVP_OP_REGISTER1 100 276 277enum hv_kvp_exchg_op { 278 KVP_OP_GET = 0, 279 KVP_OP_SET, 280 KVP_OP_DELETE, 281 KVP_OP_ENUMERATE, 282 KVP_OP_GET_IP_INFO, 283 KVP_OP_SET_IP_INFO, 284 KVP_OP_COUNT /* Number of operations, must be last. */ 285}; 286 287enum hv_kvp_exchg_pool { 288 KVP_POOL_EXTERNAL = 0, 289 KVP_POOL_GUEST, 290 KVP_POOL_AUTO, 291 KVP_POOL_AUTO_EXTERNAL, 292 KVP_POOL_AUTO_INTERNAL, 293 KVP_POOL_COUNT /* Number of pools, must be last. */ 294}; 295 296/* 297 * Some Hyper-V status codes. 298 */ 299 300#define HV_S_OK 0x00000000 301#define HV_E_FAIL 0x80004005 302#define HV_S_CONT 0x80070103 303#define HV_ERROR_NOT_SUPPORTED 0x80070032 304#define HV_ERROR_MACHINE_LOCKED 0x800704F7 305#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 306#define HV_INVALIDARG 0x80070057 307#define HV_GUID_NOTFOUND 0x80041002 308#define HV_ERROR_ALREADY_EXISTS 0x80070050 309 310#define ADDR_FAMILY_NONE 0x00 311#define ADDR_FAMILY_IPV4 0x01 312#define ADDR_FAMILY_IPV6 0x02 313 314#define MAX_ADAPTER_ID_SIZE 128 315#define MAX_IP_ADDR_SIZE 1024 316#define MAX_GATEWAY_SIZE 512 317 318 319struct hv_kvp_ipaddr_value { 320 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 321 __u8 addr_family; 322 __u8 dhcp_enabled; 323 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 324 __u16 sub_net[MAX_IP_ADDR_SIZE]; 325 __u16 gate_way[MAX_GATEWAY_SIZE]; 326 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 327} __attribute__((packed)); 328 329 330struct hv_kvp_hdr { 331 __u8 operation; 332 __u8 pool; 333 __u16 pad; 334} __attribute__((packed)); 335 336struct hv_kvp_exchg_msg_value { 337 __u32 value_type; 338 __u32 key_size; 339 __u32 value_size; 340 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 341 union { 342 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 343 __u32 value_u32; 344 __u64 value_u64; 345 }; 346} __attribute__((packed)); 347 348struct hv_kvp_msg_enumerate { 349 __u32 index; 350 struct hv_kvp_exchg_msg_value data; 351} __attribute__((packed)); 352 353struct hv_kvp_msg_get { 354 struct hv_kvp_exchg_msg_value data; 355}; 356 357struct hv_kvp_msg_set { 358 struct hv_kvp_exchg_msg_value data; 359}; 360 361struct hv_kvp_msg_delete { 362 __u32 key_size; 363 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 364}; 365 366struct hv_kvp_register { 367 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 368}; 369 370struct hv_kvp_msg { 371 union { 372 struct hv_kvp_hdr kvp_hdr; 373 int error; 374 }; 375 union { 376 struct hv_kvp_msg_get kvp_get; 377 struct hv_kvp_msg_set kvp_set; 378 struct hv_kvp_msg_delete kvp_delete; 379 struct hv_kvp_msg_enumerate kvp_enum_data; 380 struct hv_kvp_ipaddr_value kvp_ip_val; 381 struct hv_kvp_register kvp_register; 382 } body; 383} __attribute__((packed)); 384 385struct hv_kvp_ip_msg { 386 __u8 operation; 387 __u8 pool; 388 struct hv_kvp_ipaddr_value kvp_ip_val; 389} __attribute__((packed)); 390 391#endif /* _UAPI_HYPERV_H */ 392