linux/kernel/auditsc.c
<<
>>
Prefs
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
  66#include <linux/tty.h>
  67#include <linux/binfmts.h>
  68#include <linux/highmem.h>
  69#include <linux/syscalls.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74
  75#include "audit.h"
  76
  77/* flags stating the success for a syscall */
  78#define AUDITSC_INVALID 0
  79#define AUDITSC_SUCCESS 1
  80#define AUDITSC_FAILURE 2
  81
  82/* no execve audit message should be longer than this (userspace limits) */
  83#define MAX_EXECVE_AUDIT_LEN 7500
  84
  85/* max length to print of cmdline/proctitle value during audit */
  86#define MAX_PROCTITLE_AUDIT_LEN 128
  87
  88/* number of audit rules */
  89int audit_n_rules;
  90
  91/* determines whether we collect data for signals sent */
  92int audit_signals;
  93
  94struct audit_aux_data {
  95        struct audit_aux_data   *next;
  96        int                     type;
  97};
  98
  99#define AUDIT_AUX_IPCPERM       0
 100
 101/* Number of target pids per aux struct. */
 102#define AUDIT_AUX_PIDS  16
 103
 104struct audit_aux_data_pids {
 105        struct audit_aux_data   d;
 106        pid_t                   target_pid[AUDIT_AUX_PIDS];
 107        kuid_t                  target_auid[AUDIT_AUX_PIDS];
 108        kuid_t                  target_uid[AUDIT_AUX_PIDS];
 109        unsigned int            target_sessionid[AUDIT_AUX_PIDS];
 110        u32                     target_sid[AUDIT_AUX_PIDS];
 111        char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 112        int                     pid_count;
 113};
 114
 115struct audit_aux_data_bprm_fcaps {
 116        struct audit_aux_data   d;
 117        struct audit_cap_data   fcap;
 118        unsigned int            fcap_ver;
 119        struct audit_cap_data   old_pcap;
 120        struct audit_cap_data   new_pcap;
 121};
 122
 123struct audit_tree_refs {
 124        struct audit_tree_refs *next;
 125        struct audit_chunk *c[31];
 126};
 127
 128static inline int open_arg(int flags, int mask)
 129{
 130        int n = ACC_MODE(flags);
 131        if (flags & (O_TRUNC | O_CREAT))
 132                n |= AUDIT_PERM_WRITE;
 133        return n & mask;
 134}
 135
 136static int audit_match_perm(struct audit_context *ctx, int mask)
 137{
 138        unsigned n;
 139        if (unlikely(!ctx))
 140                return 0;
 141        n = ctx->major;
 142
 143        switch (audit_classify_syscall(ctx->arch, n)) {
 144        case 0: /* native */
 145                if ((mask & AUDIT_PERM_WRITE) &&
 146                     audit_match_class(AUDIT_CLASS_WRITE, n))
 147                        return 1;
 148                if ((mask & AUDIT_PERM_READ) &&
 149                     audit_match_class(AUDIT_CLASS_READ, n))
 150                        return 1;
 151                if ((mask & AUDIT_PERM_ATTR) &&
 152                     audit_match_class(AUDIT_CLASS_CHATTR, n))
 153                        return 1;
 154                return 0;
 155        case 1: /* 32bit on biarch */
 156                if ((mask & AUDIT_PERM_WRITE) &&
 157                     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 158                        return 1;
 159                if ((mask & AUDIT_PERM_READ) &&
 160                     audit_match_class(AUDIT_CLASS_READ_32, n))
 161                        return 1;
 162                if ((mask & AUDIT_PERM_ATTR) &&
 163                     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 164                        return 1;
 165                return 0;
 166        case 2: /* open */
 167                return mask & ACC_MODE(ctx->argv[1]);
 168        case 3: /* openat */
 169                return mask & ACC_MODE(ctx->argv[2]);
 170        case 4: /* socketcall */
 171                return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 172        case 5: /* execve */
 173                return mask & AUDIT_PERM_EXEC;
 174        default:
 175                return 0;
 176        }
 177}
 178
 179static int audit_match_filetype(struct audit_context *ctx, int val)
 180{
 181        struct audit_names *n;
 182        umode_t mode = (umode_t)val;
 183
 184        if (unlikely(!ctx))
 185                return 0;
 186
 187        list_for_each_entry(n, &ctx->names_list, list) {
 188                if ((n->ino != -1) &&
 189                    ((n->mode & S_IFMT) == mode))
 190                        return 1;
 191        }
 192
 193        return 0;
 194}
 195
 196/*
 197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 198 * ->first_trees points to its beginning, ->trees - to the current end of data.
 199 * ->tree_count is the number of free entries in array pointed to by ->trees.
 200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 201 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 202 * it's going to remain 1-element for almost any setup) until we free context itself.
 203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 204 */
 205
 206#ifdef CONFIG_AUDIT_TREE
 207static void audit_set_auditable(struct audit_context *ctx)
 208{
 209        if (!ctx->prio) {
 210                ctx->prio = 1;
 211                ctx->current_state = AUDIT_RECORD_CONTEXT;
 212        }
 213}
 214
 215static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 216{
 217        struct audit_tree_refs *p = ctx->trees;
 218        int left = ctx->tree_count;
 219        if (likely(left)) {
 220                p->c[--left] = chunk;
 221                ctx->tree_count = left;
 222                return 1;
 223        }
 224        if (!p)
 225                return 0;
 226        p = p->next;
 227        if (p) {
 228                p->c[30] = chunk;
 229                ctx->trees = p;
 230                ctx->tree_count = 30;
 231                return 1;
 232        }
 233        return 0;
 234}
 235
 236static int grow_tree_refs(struct audit_context *ctx)
 237{
 238        struct audit_tree_refs *p = ctx->trees;
 239        ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 240        if (!ctx->trees) {
 241                ctx->trees = p;
 242                return 0;
 243        }
 244        if (p)
 245                p->next = ctx->trees;
 246        else
 247                ctx->first_trees = ctx->trees;
 248        ctx->tree_count = 31;
 249        return 1;
 250}
 251#endif
 252
 253static void unroll_tree_refs(struct audit_context *ctx,
 254                      struct audit_tree_refs *p, int count)
 255{
 256#ifdef CONFIG_AUDIT_TREE
 257        struct audit_tree_refs *q;
 258        int n;
 259        if (!p) {
 260                /* we started with empty chain */
 261                p = ctx->first_trees;
 262                count = 31;
 263                /* if the very first allocation has failed, nothing to do */
 264                if (!p)
 265                        return;
 266        }
 267        n = count;
 268        for (q = p; q != ctx->trees; q = q->next, n = 31) {
 269                while (n--) {
 270                        audit_put_chunk(q->c[n]);
 271                        q->c[n] = NULL;
 272                }
 273        }
 274        while (n-- > ctx->tree_count) {
 275                audit_put_chunk(q->c[n]);
 276                q->c[n] = NULL;
 277        }
 278        ctx->trees = p;
 279        ctx->tree_count = count;
 280#endif
 281}
 282
 283static void free_tree_refs(struct audit_context *ctx)
 284{
 285        struct audit_tree_refs *p, *q;
 286        for (p = ctx->first_trees; p; p = q) {
 287                q = p->next;
 288                kfree(p);
 289        }
 290}
 291
 292static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 293{
 294#ifdef CONFIG_AUDIT_TREE
 295        struct audit_tree_refs *p;
 296        int n;
 297        if (!tree)
 298                return 0;
 299        /* full ones */
 300        for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 301                for (n = 0; n < 31; n++)
 302                        if (audit_tree_match(p->c[n], tree))
 303                                return 1;
 304        }
 305        /* partial */
 306        if (p) {
 307                for (n = ctx->tree_count; n < 31; n++)
 308                        if (audit_tree_match(p->c[n], tree))
 309                                return 1;
 310        }
 311#endif
 312        return 0;
 313}
 314
 315static int audit_compare_uid(kuid_t uid,
 316                             struct audit_names *name,
 317                             struct audit_field *f,
 318                             struct audit_context *ctx)
 319{
 320        struct audit_names *n;
 321        int rc;
 322 
 323        if (name) {
 324                rc = audit_uid_comparator(uid, f->op, name->uid);
 325                if (rc)
 326                        return rc;
 327        }
 328 
 329        if (ctx) {
 330                list_for_each_entry(n, &ctx->names_list, list) {
 331                        rc = audit_uid_comparator(uid, f->op, n->uid);
 332                        if (rc)
 333                                return rc;
 334                }
 335        }
 336        return 0;
 337}
 338
 339static int audit_compare_gid(kgid_t gid,
 340                             struct audit_names *name,
 341                             struct audit_field *f,
 342                             struct audit_context *ctx)
 343{
 344        struct audit_names *n;
 345        int rc;
 346 
 347        if (name) {
 348                rc = audit_gid_comparator(gid, f->op, name->gid);
 349                if (rc)
 350                        return rc;
 351        }
 352 
 353        if (ctx) {
 354                list_for_each_entry(n, &ctx->names_list, list) {
 355                        rc = audit_gid_comparator(gid, f->op, n->gid);
 356                        if (rc)
 357                                return rc;
 358                }
 359        }
 360        return 0;
 361}
 362
 363static int audit_field_compare(struct task_struct *tsk,
 364                               const struct cred *cred,
 365                               struct audit_field *f,
 366                               struct audit_context *ctx,
 367                               struct audit_names *name)
 368{
 369        switch (f->val) {
 370        /* process to file object comparisons */
 371        case AUDIT_COMPARE_UID_TO_OBJ_UID:
 372                return audit_compare_uid(cred->uid, name, f, ctx);
 373        case AUDIT_COMPARE_GID_TO_OBJ_GID:
 374                return audit_compare_gid(cred->gid, name, f, ctx);
 375        case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 376                return audit_compare_uid(cred->euid, name, f, ctx);
 377        case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 378                return audit_compare_gid(cred->egid, name, f, ctx);
 379        case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 380                return audit_compare_uid(tsk->loginuid, name, f, ctx);
 381        case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 382                return audit_compare_uid(cred->suid, name, f, ctx);
 383        case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 384                return audit_compare_gid(cred->sgid, name, f, ctx);
 385        case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 386                return audit_compare_uid(cred->fsuid, name, f, ctx);
 387        case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 388                return audit_compare_gid(cred->fsgid, name, f, ctx);
 389        /* uid comparisons */
 390        case AUDIT_COMPARE_UID_TO_AUID:
 391                return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 392        case AUDIT_COMPARE_UID_TO_EUID:
 393                return audit_uid_comparator(cred->uid, f->op, cred->euid);
 394        case AUDIT_COMPARE_UID_TO_SUID:
 395                return audit_uid_comparator(cred->uid, f->op, cred->suid);
 396        case AUDIT_COMPARE_UID_TO_FSUID:
 397                return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 398        /* auid comparisons */
 399        case AUDIT_COMPARE_AUID_TO_EUID:
 400                return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 401        case AUDIT_COMPARE_AUID_TO_SUID:
 402                return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 403        case AUDIT_COMPARE_AUID_TO_FSUID:
 404                return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 405        /* euid comparisons */
 406        case AUDIT_COMPARE_EUID_TO_SUID:
 407                return audit_uid_comparator(cred->euid, f->op, cred->suid);
 408        case AUDIT_COMPARE_EUID_TO_FSUID:
 409                return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 410        /* suid comparisons */
 411        case AUDIT_COMPARE_SUID_TO_FSUID:
 412                return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 413        /* gid comparisons */
 414        case AUDIT_COMPARE_GID_TO_EGID:
 415                return audit_gid_comparator(cred->gid, f->op, cred->egid);
 416        case AUDIT_COMPARE_GID_TO_SGID:
 417                return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 418        case AUDIT_COMPARE_GID_TO_FSGID:
 419                return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 420        /* egid comparisons */
 421        case AUDIT_COMPARE_EGID_TO_SGID:
 422                return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 423        case AUDIT_COMPARE_EGID_TO_FSGID:
 424                return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 425        /* sgid comparison */
 426        case AUDIT_COMPARE_SGID_TO_FSGID:
 427                return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 428        default:
 429                WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 430                return 0;
 431        }
 432        return 0;
 433}
 434
 435/* Determine if any context name data matches a rule's watch data */
 436/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 437 * otherwise.
 438 *
 439 * If task_creation is true, this is an explicit indication that we are
 440 * filtering a task rule at task creation time.  This and tsk == current are
 441 * the only situations where tsk->cred may be accessed without an rcu read lock.
 442 */
 443static int audit_filter_rules(struct task_struct *tsk,
 444                              struct audit_krule *rule,
 445                              struct audit_context *ctx,
 446                              struct audit_names *name,
 447                              enum audit_state *state,
 448                              bool task_creation)
 449{
 450        const struct cred *cred;
 451        int i, need_sid = 1;
 452        u32 sid;
 453
 454        cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 455
 456        for (i = 0; i < rule->field_count; i++) {
 457                struct audit_field *f = &rule->fields[i];
 458                struct audit_names *n;
 459                int result = 0;
 460                pid_t pid;
 461
 462                switch (f->type) {
 463                case AUDIT_PID:
 464                        pid = task_pid_nr(tsk);
 465                        result = audit_comparator(pid, f->op, f->val);
 466                        break;
 467                case AUDIT_PPID:
 468                        if (ctx) {
 469                                if (!ctx->ppid)
 470                                        ctx->ppid = task_ppid_nr(tsk);
 471                                result = audit_comparator(ctx->ppid, f->op, f->val);
 472                        }
 473                        break;
 474                case AUDIT_UID:
 475                        result = audit_uid_comparator(cred->uid, f->op, f->uid);
 476                        break;
 477                case AUDIT_EUID:
 478                        result = audit_uid_comparator(cred->euid, f->op, f->uid);
 479                        break;
 480                case AUDIT_SUID:
 481                        result = audit_uid_comparator(cred->suid, f->op, f->uid);
 482                        break;
 483                case AUDIT_FSUID:
 484                        result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 485                        break;
 486                case AUDIT_GID:
 487                        result = audit_gid_comparator(cred->gid, f->op, f->gid);
 488                        if (f->op == Audit_equal) {
 489                                if (!result)
 490                                        result = in_group_p(f->gid);
 491                        } else if (f->op == Audit_not_equal) {
 492                                if (result)
 493                                        result = !in_group_p(f->gid);
 494                        }
 495                        break;
 496                case AUDIT_EGID:
 497                        result = audit_gid_comparator(cred->egid, f->op, f->gid);
 498                        if (f->op == Audit_equal) {
 499                                if (!result)
 500                                        result = in_egroup_p(f->gid);
 501                        } else if (f->op == Audit_not_equal) {
 502                                if (result)
 503                                        result = !in_egroup_p(f->gid);
 504                        }
 505                        break;
 506                case AUDIT_SGID:
 507                        result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 508                        break;
 509                case AUDIT_FSGID:
 510                        result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 511                        break;
 512                case AUDIT_PERS:
 513                        result = audit_comparator(tsk->personality, f->op, f->val);
 514                        break;
 515                case AUDIT_ARCH:
 516                        if (ctx)
 517                                result = audit_comparator(ctx->arch, f->op, f->val);
 518                        break;
 519
 520                case AUDIT_EXIT:
 521                        if (ctx && ctx->return_valid)
 522                                result = audit_comparator(ctx->return_code, f->op, f->val);
 523                        break;
 524                case AUDIT_SUCCESS:
 525                        if (ctx && ctx->return_valid) {
 526                                if (f->val)
 527                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 528                                else
 529                                        result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 530                        }
 531                        break;
 532                case AUDIT_DEVMAJOR:
 533                        if (name) {
 534                                if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 535                                    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 536                                        ++result;
 537                        } else if (ctx) {
 538                                list_for_each_entry(n, &ctx->names_list, list) {
 539                                        if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 540                                            audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 541                                                ++result;
 542                                                break;
 543                                        }
 544                                }
 545                        }
 546                        break;
 547                case AUDIT_DEVMINOR:
 548                        if (name) {
 549                                if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 550                                    audit_comparator(MINOR(name->rdev), f->op, f->val))
 551                                        ++result;
 552                        } else if (ctx) {
 553                                list_for_each_entry(n, &ctx->names_list, list) {
 554                                        if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 555                                            audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 556                                                ++result;
 557                                                break;
 558                                        }
 559                                }
 560                        }
 561                        break;
 562                case AUDIT_INODE:
 563                        if (name)
 564                                result = audit_comparator(name->ino, f->op, f->val);
 565                        else if (ctx) {
 566                                list_for_each_entry(n, &ctx->names_list, list) {
 567                                        if (audit_comparator(n->ino, f->op, f->val)) {
 568                                                ++result;
 569                                                break;
 570                                        }
 571                                }
 572                        }
 573                        break;
 574                case AUDIT_OBJ_UID:
 575                        if (name) {
 576                                result = audit_uid_comparator(name->uid, f->op, f->uid);
 577                        } else if (ctx) {
 578                                list_for_each_entry(n, &ctx->names_list, list) {
 579                                        if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 580                                                ++result;
 581                                                break;
 582                                        }
 583                                }
 584                        }
 585                        break;
 586                case AUDIT_OBJ_GID:
 587                        if (name) {
 588                                result = audit_gid_comparator(name->gid, f->op, f->gid);
 589                        } else if (ctx) {
 590                                list_for_each_entry(n, &ctx->names_list, list) {
 591                                        if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 592                                                ++result;
 593                                                break;
 594                                        }
 595                                }
 596                        }
 597                        break;
 598                case AUDIT_WATCH:
 599                        if (name)
 600                                result = audit_watch_compare(rule->watch, name->ino, name->dev);
 601                        break;
 602                case AUDIT_DIR:
 603                        if (ctx)
 604                                result = match_tree_refs(ctx, rule->tree);
 605                        break;
 606                case AUDIT_LOGINUID:
 607                        result = 0;
 608                        if (ctx)
 609                                result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 610                        break;
 611                case AUDIT_LOGINUID_SET:
 612                        result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 613                        break;
 614                case AUDIT_SUBJ_USER:
 615                case AUDIT_SUBJ_ROLE:
 616                case AUDIT_SUBJ_TYPE:
 617                case AUDIT_SUBJ_SEN:
 618                case AUDIT_SUBJ_CLR:
 619                        /* NOTE: this may return negative values indicating
 620                           a temporary error.  We simply treat this as a
 621                           match for now to avoid losing information that
 622                           may be wanted.   An error message will also be
 623                           logged upon error */
 624                        if (f->lsm_rule) {
 625                                if (need_sid) {
 626                                        security_task_getsecid(tsk, &sid);
 627                                        need_sid = 0;
 628                                }
 629                                result = security_audit_rule_match(sid, f->type,
 630                                                                  f->op,
 631                                                                  f->lsm_rule,
 632                                                                  ctx);
 633                        }
 634                        break;
 635                case AUDIT_OBJ_USER:
 636                case AUDIT_OBJ_ROLE:
 637                case AUDIT_OBJ_TYPE:
 638                case AUDIT_OBJ_LEV_LOW:
 639                case AUDIT_OBJ_LEV_HIGH:
 640                        /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 641                           also applies here */
 642                        if (f->lsm_rule) {
 643                                /* Find files that match */
 644                                if (name) {
 645                                        result = security_audit_rule_match(
 646                                                   name->osid, f->type, f->op,
 647                                                   f->lsm_rule, ctx);
 648                                } else if (ctx) {
 649                                        list_for_each_entry(n, &ctx->names_list, list) {
 650                                                if (security_audit_rule_match(n->osid, f->type,
 651                                                                              f->op, f->lsm_rule,
 652                                                                              ctx)) {
 653                                                        ++result;
 654                                                        break;
 655                                                }
 656                                        }
 657                                }
 658                                /* Find ipc objects that match */
 659                                if (!ctx || ctx->type != AUDIT_IPC)
 660                                        break;
 661                                if (security_audit_rule_match(ctx->ipc.osid,
 662                                                              f->type, f->op,
 663                                                              f->lsm_rule, ctx))
 664                                        ++result;
 665                        }
 666                        break;
 667                case AUDIT_ARG0:
 668                case AUDIT_ARG1:
 669                case AUDIT_ARG2:
 670                case AUDIT_ARG3:
 671                        if (ctx)
 672                                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 673                        break;
 674                case AUDIT_FILTERKEY:
 675                        /* ignore this field for filtering */
 676                        result = 1;
 677                        break;
 678                case AUDIT_PERM:
 679                        result = audit_match_perm(ctx, f->val);
 680                        break;
 681                case AUDIT_FILETYPE:
 682                        result = audit_match_filetype(ctx, f->val);
 683                        break;
 684                case AUDIT_FIELD_COMPARE:
 685                        result = audit_field_compare(tsk, cred, f, ctx, name);
 686                        break;
 687                }
 688                if (!result)
 689                        return 0;
 690        }
 691
 692        if (ctx) {
 693                if (rule->prio <= ctx->prio)
 694                        return 0;
 695                if (rule->filterkey) {
 696                        kfree(ctx->filterkey);
 697                        ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 698                }
 699                ctx->prio = rule->prio;
 700        }
 701        switch (rule->action) {
 702        case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
 703        case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 704        }
 705        return 1;
 706}
 707
 708/* At process creation time, we can determine if system-call auditing is
 709 * completely disabled for this task.  Since we only have the task
 710 * structure at this point, we can only check uid and gid.
 711 */
 712static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 713{
 714        struct audit_entry *e;
 715        enum audit_state   state;
 716
 717        rcu_read_lock();
 718        list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 719                if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 720                                       &state, true)) {
 721                        if (state == AUDIT_RECORD_CONTEXT)
 722                                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 723                        rcu_read_unlock();
 724                        return state;
 725                }
 726        }
 727        rcu_read_unlock();
 728        return AUDIT_BUILD_CONTEXT;
 729}
 730
 731static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 732{
 733        int word, bit;
 734
 735        if (val > 0xffffffff)
 736                return false;
 737
 738        word = AUDIT_WORD(val);
 739        if (word >= AUDIT_BITMASK_SIZE)
 740                return false;
 741
 742        bit = AUDIT_BIT(val);
 743
 744        return rule->mask[word] & bit;
 745}
 746
 747/* At syscall entry and exit time, this filter is called if the
 748 * audit_state is not low enough that auditing cannot take place, but is
 749 * also not high enough that we already know we have to write an audit
 750 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 751 */
 752static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 753                                             struct audit_context *ctx,
 754                                             struct list_head *list)
 755{
 756        struct audit_entry *e;
 757        enum audit_state state;
 758
 759        if (audit_pid && tsk->tgid == audit_pid)
 760                return AUDIT_DISABLED;
 761
 762        rcu_read_lock();
 763        if (!list_empty(list)) {
 764                list_for_each_entry_rcu(e, list, list) {
 765                        if (audit_in_mask(&e->rule, ctx->major) &&
 766                            audit_filter_rules(tsk, &e->rule, ctx, NULL,
 767                                               &state, false)) {
 768                                rcu_read_unlock();
 769                                ctx->current_state = state;
 770                                return state;
 771                        }
 772                }
 773        }
 774        rcu_read_unlock();
 775        return AUDIT_BUILD_CONTEXT;
 776}
 777
 778/*
 779 * Given an audit_name check the inode hash table to see if they match.
 780 * Called holding the rcu read lock to protect the use of audit_inode_hash
 781 */
 782static int audit_filter_inode_name(struct task_struct *tsk,
 783                                   struct audit_names *n,
 784                                   struct audit_context *ctx) {
 785        int h = audit_hash_ino((u32)n->ino);
 786        struct list_head *list = &audit_inode_hash[h];
 787        struct audit_entry *e;
 788        enum audit_state state;
 789
 790        if (list_empty(list))
 791                return 0;
 792
 793        list_for_each_entry_rcu(e, list, list) {
 794                if (audit_in_mask(&e->rule, ctx->major) &&
 795                    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 796                        ctx->current_state = state;
 797                        return 1;
 798                }
 799        }
 800
 801        return 0;
 802}
 803
 804/* At syscall exit time, this filter is called if any audit_names have been
 805 * collected during syscall processing.  We only check rules in sublists at hash
 806 * buckets applicable to the inode numbers in audit_names.
 807 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 808 */
 809void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 810{
 811        struct audit_names *n;
 812
 813        if (audit_pid && tsk->tgid == audit_pid)
 814                return;
 815
 816        rcu_read_lock();
 817
 818        list_for_each_entry(n, &ctx->names_list, list) {
 819                if (audit_filter_inode_name(tsk, n, ctx))
 820                        break;
 821        }
 822        rcu_read_unlock();
 823}
 824
 825/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 826static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 827                                                      int return_valid,
 828                                                      long return_code)
 829{
 830        struct audit_context *context = tsk->audit_context;
 831
 832        if (!context)
 833                return NULL;
 834        context->return_valid = return_valid;
 835
 836        /*
 837         * we need to fix up the return code in the audit logs if the actual
 838         * return codes are later going to be fixed up by the arch specific
 839         * signal handlers
 840         *
 841         * This is actually a test for:
 842         * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 843         * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 844         *
 845         * but is faster than a bunch of ||
 846         */
 847        if (unlikely(return_code <= -ERESTARTSYS) &&
 848            (return_code >= -ERESTART_RESTARTBLOCK) &&
 849            (return_code != -ENOIOCTLCMD))
 850                context->return_code = -EINTR;
 851        else
 852                context->return_code  = return_code;
 853
 854        if (context->in_syscall && !context->dummy) {
 855                audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 856                audit_filter_inodes(tsk, context);
 857        }
 858
 859        tsk->audit_context = NULL;
 860        return context;
 861}
 862
 863static inline void audit_proctitle_free(struct audit_context *context)
 864{
 865        kfree(context->proctitle.value);
 866        context->proctitle.value = NULL;
 867        context->proctitle.len = 0;
 868}
 869
 870static inline void audit_free_names(struct audit_context *context)
 871{
 872        struct audit_names *n, *next;
 873
 874#if AUDIT_DEBUG == 2
 875        if (context->put_count + context->ino_count != context->name_count) {
 876                int i = 0;
 877
 878                pr_err("%s:%d(:%d): major=%d in_syscall=%d"
 879                       " name_count=%d put_count=%d ino_count=%d"
 880                       " [NOT freeing]\n", __FILE__, __LINE__,
 881                       context->serial, context->major, context->in_syscall,
 882                       context->name_count, context->put_count,
 883                       context->ino_count);
 884                list_for_each_entry(n, &context->names_list, list) {
 885                        pr_err("names[%d] = %p = %s\n", i++, n->name,
 886                               n->name->name ?: "(null)");
 887                }
 888                dump_stack();
 889                return;
 890        }
 891#endif
 892#if AUDIT_DEBUG
 893        context->put_count  = 0;
 894        context->ino_count  = 0;
 895#endif
 896
 897        list_for_each_entry_safe(n, next, &context->names_list, list) {
 898                list_del(&n->list);
 899                if (n->name && n->name_put)
 900                        final_putname(n->name);
 901                if (n->should_free)
 902                        kfree(n);
 903        }
 904        context->name_count = 0;
 905        path_put(&context->pwd);
 906        context->pwd.dentry = NULL;
 907        context->pwd.mnt = NULL;
 908}
 909
 910static inline void audit_free_aux(struct audit_context *context)
 911{
 912        struct audit_aux_data *aux;
 913
 914        while ((aux = context->aux)) {
 915                context->aux = aux->next;
 916                kfree(aux);
 917        }
 918        while ((aux = context->aux_pids)) {
 919                context->aux_pids = aux->next;
 920                kfree(aux);
 921        }
 922}
 923
 924static inline struct audit_context *audit_alloc_context(enum audit_state state)
 925{
 926        struct audit_context *context;
 927
 928        context = kzalloc(sizeof(*context), GFP_KERNEL);
 929        if (!context)
 930                return NULL;
 931        context->state = state;
 932        context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 933        INIT_LIST_HEAD(&context->killed_trees);
 934        INIT_LIST_HEAD(&context->names_list);
 935        return context;
 936}
 937
 938/**
 939 * audit_alloc - allocate an audit context block for a task
 940 * @tsk: task
 941 *
 942 * Filter on the task information and allocate a per-task audit context
 943 * if necessary.  Doing so turns on system call auditing for the
 944 * specified task.  This is called from copy_process, so no lock is
 945 * needed.
 946 */
 947int audit_alloc(struct task_struct *tsk)
 948{
 949        struct audit_context *context;
 950        enum audit_state     state;
 951        char *key = NULL;
 952
 953        if (likely(!audit_ever_enabled))
 954                return 0; /* Return if not auditing. */
 955
 956        state = audit_filter_task(tsk, &key);
 957        if (state == AUDIT_DISABLED) {
 958                clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 959                return 0;
 960        }
 961
 962        if (!(context = audit_alloc_context(state))) {
 963                kfree(key);
 964                audit_log_lost("out of memory in audit_alloc");
 965                return -ENOMEM;
 966        }
 967        context->filterkey = key;
 968
 969        tsk->audit_context  = context;
 970        set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 971        return 0;
 972}
 973
 974static inline void audit_free_context(struct audit_context *context)
 975{
 976        audit_free_names(context);
 977        unroll_tree_refs(context, NULL, 0);
 978        free_tree_refs(context);
 979        audit_free_aux(context);
 980        kfree(context->filterkey);
 981        kfree(context->sockaddr);
 982        audit_proctitle_free(context);
 983        kfree(context);
 984}
 985
 986static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 987                                 kuid_t auid, kuid_t uid, unsigned int sessionid,
 988                                 u32 sid, char *comm)
 989{
 990        struct audit_buffer *ab;
 991        char *ctx = NULL;
 992        u32 len;
 993        int rc = 0;
 994
 995        ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 996        if (!ab)
 997                return rc;
 998
 999        audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1000                         from_kuid(&init_user_ns, auid),
1001                         from_kuid(&init_user_ns, uid), sessionid);
1002        if (sid) {
1003                if (security_secid_to_secctx(sid, &ctx, &len)) {
1004                        audit_log_format(ab, " obj=(none)");
1005                        rc = 1;
1006                } else {
1007                        audit_log_format(ab, " obj=%s", ctx);
1008                        security_release_secctx(ctx, len);
1009                }
1010        }
1011        audit_log_format(ab, " ocomm=");
1012        audit_log_untrustedstring(ab, comm);
1013        audit_log_end(ab);
1014
1015        return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates.  We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message.  In one 7500 byte message we can log up to
1026 * about 1000 min size arguments.  That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030                                        struct audit_buffer **ab,
1031                                        int arg_num,
1032                                        size_t *len_sent,
1033                                        const char __user *p,
1034                                        char *buf)
1035{
1036        char arg_num_len_buf[12];
1037        const char __user *tmp_p = p;
1038        /* how many digits are in arg_num? 5 is the length of ' a=""' */
1039        size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040        size_t len, len_left, to_send;
1041        size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042        unsigned int i, has_cntl = 0, too_long = 0;
1043        int ret;
1044
1045        /* strnlen_user includes the null we don't want to send */
1046        len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048        /*
1049         * We just created this mm, if we can't find the strings
1050         * we just copied into it something is _very_ wrong. Similar
1051         * for strings that are too long, we should not have created
1052         * any.
1053         */
1054        if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055                WARN_ON(1);
1056                send_sig(SIGKILL, current, 0);
1057                return -1;
1058        }
1059
1060        /* walk the whole argument looking for non-ascii chars */
1061        do {
1062                if (len_left > MAX_EXECVE_AUDIT_LEN)
1063                        to_send = MAX_EXECVE_AUDIT_LEN;
1064                else
1065                        to_send = len_left;
1066                ret = copy_from_user(buf, tmp_p, to_send);
1067                /*
1068                 * There is no reason for this copy to be short. We just
1069                 * copied them here, and the mm hasn't been exposed to user-
1070                 * space yet.
1071                 */
1072                if (ret) {
1073                        WARN_ON(1);
1074                        send_sig(SIGKILL, current, 0);
1075                        return -1;
1076                }
1077                buf[to_send] = '\0';
1078                has_cntl = audit_string_contains_control(buf, to_send);
1079                if (has_cntl) {
1080                        /*
1081                         * hex messages get logged as 2 bytes, so we can only
1082                         * send half as much in each message
1083                         */
1084                        max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085                        break;
1086                }
1087                len_left -= to_send;
1088                tmp_p += to_send;
1089        } while (len_left > 0);
1090
1091        len_left = len;
1092
1093        if (len > max_execve_audit_len)
1094                too_long = 1;
1095
1096        /* rewalk the argument actually logging the message */
1097        for (i = 0; len_left > 0; i++) {
1098                int room_left;
1099
1100                if (len_left > max_execve_audit_len)
1101                        to_send = max_execve_audit_len;
1102                else
1103                        to_send = len_left;
1104
1105                /* do we have space left to send this argument in this ab? */
1106                room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107                if (has_cntl)
1108                        room_left -= (to_send * 2);
1109                else
1110                        room_left -= to_send;
1111                if (room_left < 0) {
1112                        *len_sent = 0;
1113                        audit_log_end(*ab);
1114                        *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115                        if (!*ab)
1116                                return 0;
1117                }
1118
1119                /*
1120                 * first record needs to say how long the original string was
1121                 * so we can be sure nothing was lost.
1122                 */
1123                if ((i == 0) && (too_long))
1124                        audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125                                         has_cntl ? 2*len : len);
1126
1127                /*
1128                 * normally arguments are small enough to fit and we already
1129                 * filled buf above when we checked for control characters
1130                 * so don't bother with another copy_from_user
1131                 */
1132                if (len >= max_execve_audit_len)
1133                        ret = copy_from_user(buf, p, to_send);
1134                else
1135                        ret = 0;
1136                if (ret) {
1137                        WARN_ON(1);
1138                        send_sig(SIGKILL, current, 0);
1139                        return -1;
1140                }
1141                buf[to_send] = '\0';
1142
1143                /* actually log it */
1144                audit_log_format(*ab, " a%d", arg_num);
1145                if (too_long)
1146                        audit_log_format(*ab, "[%d]", i);
1147                audit_log_format(*ab, "=");
1148                if (has_cntl)
1149                        audit_log_n_hex(*ab, buf, to_send);
1150                else
1151                        audit_log_string(*ab, buf);
1152
1153                p += to_send;
1154                len_left -= to_send;
1155                *len_sent += arg_num_len;
1156                if (has_cntl)
1157                        *len_sent += to_send * 2;
1158                else
1159                        *len_sent += to_send;
1160        }
1161        /* include the null we didn't log */
1162        return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166                                  struct audit_buffer **ab)
1167{
1168        int i, len;
1169        size_t len_sent = 0;
1170        const char __user *p;
1171        char *buf;
1172
1173        p = (const char __user *)current->mm->arg_start;
1174
1175        audit_log_format(*ab, "argc=%d", context->execve.argc);
1176
1177        /*
1178         * we need some kernel buffer to hold the userspace args.  Just
1179         * allocate one big one rather than allocating one of the right size
1180         * for every single argument inside audit_log_single_execve_arg()
1181         * should be <8k allocation so should be pretty safe.
1182         */
1183        buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1184        if (!buf) {
1185                audit_panic("out of memory for argv string");
1186                return;
1187        }
1188
1189        for (i = 0; i < context->execve.argc; i++) {
1190                len = audit_log_single_execve_arg(context, ab, i,
1191                                                  &len_sent, p, buf);
1192                if (len <= 0)
1193                        break;
1194                p += len;
1195        }
1196        kfree(buf);
1197}
1198
1199static void show_special(struct audit_context *context, int *call_panic)
1200{
1201        struct audit_buffer *ab;
1202        int i;
1203
1204        ab = audit_log_start(context, GFP_KERNEL, context->type);
1205        if (!ab)
1206                return;
1207
1208        switch (context->type) {
1209        case AUDIT_SOCKETCALL: {
1210                int nargs = context->socketcall.nargs;
1211                audit_log_format(ab, "nargs=%d", nargs);
1212                for (i = 0; i < nargs; i++)
1213                        audit_log_format(ab, " a%d=%lx", i,
1214                                context->socketcall.args[i]);
1215                break; }
1216        case AUDIT_IPC: {
1217                u32 osid = context->ipc.osid;
1218
1219                audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1220                                 from_kuid(&init_user_ns, context->ipc.uid),
1221                                 from_kgid(&init_user_ns, context->ipc.gid),
1222                                 context->ipc.mode);
1223                if (osid) {
1224                        char *ctx = NULL;
1225                        u32 len;
1226                        if (security_secid_to_secctx(osid, &ctx, &len)) {
1227                                audit_log_format(ab, " osid=%u", osid);
1228                                *call_panic = 1;
1229                        } else {
1230                                audit_log_format(ab, " obj=%s", ctx);
1231                                security_release_secctx(ctx, len);
1232                        }
1233                }
1234                if (context->ipc.has_perm) {
1235                        audit_log_end(ab);
1236                        ab = audit_log_start(context, GFP_KERNEL,
1237                                             AUDIT_IPC_SET_PERM);
1238                        if (unlikely(!ab))
1239                                return;
1240                        audit_log_format(ab,
1241                                "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1242                                context->ipc.qbytes,
1243                                context->ipc.perm_uid,
1244                                context->ipc.perm_gid,
1245                                context->ipc.perm_mode);
1246                }
1247                break; }
1248        case AUDIT_MQ_OPEN: {
1249                audit_log_format(ab,
1250                        "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1251                        "mq_msgsize=%ld mq_curmsgs=%ld",
1252                        context->mq_open.oflag, context->mq_open.mode,
1253                        context->mq_open.attr.mq_flags,
1254                        context->mq_open.attr.mq_maxmsg,
1255                        context->mq_open.attr.mq_msgsize,
1256                        context->mq_open.attr.mq_curmsgs);
1257                break; }
1258        case AUDIT_MQ_SENDRECV: {
1259                audit_log_format(ab,
1260                        "mqdes=%d msg_len=%zd msg_prio=%u "
1261                        "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1262                        context->mq_sendrecv.mqdes,
1263                        context->mq_sendrecv.msg_len,
1264                        context->mq_sendrecv.msg_prio,
1265                        context->mq_sendrecv.abs_timeout.tv_sec,
1266                        context->mq_sendrecv.abs_timeout.tv_nsec);
1267                break; }
1268        case AUDIT_MQ_NOTIFY: {
1269                audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1270                                context->mq_notify.mqdes,
1271                                context->mq_notify.sigev_signo);
1272                break; }
1273        case AUDIT_MQ_GETSETATTR: {
1274                struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1275                audit_log_format(ab,
1276                        "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1277                        "mq_curmsgs=%ld ",
1278                        context->mq_getsetattr.mqdes,
1279                        attr->mq_flags, attr->mq_maxmsg,
1280                        attr->mq_msgsize, attr->mq_curmsgs);
1281                break; }
1282        case AUDIT_CAPSET: {
1283                audit_log_format(ab, "pid=%d", context->capset.pid);
1284                audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1285                audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1286                audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1287                break; }
1288        case AUDIT_MMAP: {
1289                audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1290                                 context->mmap.flags);
1291                break; }
1292        case AUDIT_EXECVE: {
1293                audit_log_execve_info(context, &ab);
1294                break; }
1295        }
1296        audit_log_end(ab);
1297}
1298
1299static inline int audit_proctitle_rtrim(char *proctitle, int len)
1300{
1301        char *end = proctitle + len - 1;
1302        while (end > proctitle && !isprint(*end))
1303                end--;
1304
1305        /* catch the case where proctitle is only 1 non-print character */
1306        len = end - proctitle + 1;
1307        len -= isprint(proctitle[len-1]) == 0;
1308        return len;
1309}
1310
1311static void audit_log_proctitle(struct task_struct *tsk,
1312                         struct audit_context *context)
1313{
1314        int res;
1315        char *buf;
1316        char *msg = "(null)";
1317        int len = strlen(msg);
1318        struct audit_buffer *ab;
1319
1320        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1321        if (!ab)
1322                return; /* audit_panic or being filtered */
1323
1324        audit_log_format(ab, "proctitle=");
1325
1326        /* Not  cached */
1327        if (!context->proctitle.value) {
1328                buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1329                if (!buf)
1330                        goto out;
1331                /* Historically called this from procfs naming */
1332                res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1333                if (res == 0) {
1334                        kfree(buf);
1335                        goto out;
1336                }
1337                res = audit_proctitle_rtrim(buf, res);
1338                if (res == 0) {
1339                        kfree(buf);
1340                        goto out;
1341                }
1342                context->proctitle.value = buf;
1343                context->proctitle.len = res;
1344        }
1345        msg = context->proctitle.value;
1346        len = context->proctitle.len;
1347out:
1348        audit_log_n_untrustedstring(ab, msg, len);
1349        audit_log_end(ab);
1350}
1351
1352static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1353{
1354        int i, call_panic = 0;
1355        struct audit_buffer *ab;
1356        struct audit_aux_data *aux;
1357        struct audit_names *n;
1358
1359        /* tsk == current */
1360        context->personality = tsk->personality;
1361
1362        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1363        if (!ab)
1364                return;         /* audit_panic has been called */
1365        audit_log_format(ab, "arch=%x syscall=%d",
1366                         context->arch, context->major);
1367        if (context->personality != PER_LINUX)
1368                audit_log_format(ab, " per=%lx", context->personality);
1369        if (context->return_valid)
1370                audit_log_format(ab, " success=%s exit=%ld",
1371                                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1372                                 context->return_code);
1373
1374        audit_log_format(ab,
1375                         " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1376                         context->argv[0],
1377                         context->argv[1],
1378                         context->argv[2],
1379                         context->argv[3],
1380                         context->name_count);
1381
1382        audit_log_task_info(ab, tsk);
1383        audit_log_key(ab, context->filterkey);
1384        audit_log_end(ab);
1385
1386        for (aux = context->aux; aux; aux = aux->next) {
1387
1388                ab = audit_log_start(context, GFP_KERNEL, aux->type);
1389                if (!ab)
1390                        continue; /* audit_panic has been called */
1391
1392                switch (aux->type) {
1393
1394                case AUDIT_BPRM_FCAPS: {
1395                        struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1396                        audit_log_format(ab, "fver=%x", axs->fcap_ver);
1397                        audit_log_cap(ab, "fp", &axs->fcap.permitted);
1398                        audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1399                        audit_log_format(ab, " fe=%d", axs->fcap.fE);
1400                        audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1401                        audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1402                        audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1403                        audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1404                        audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1405                        audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1406                        break; }
1407
1408                }
1409                audit_log_end(ab);
1410        }
1411
1412        if (context->type)
1413                show_special(context, &call_panic);
1414
1415        if (context->fds[0] >= 0) {
1416                ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1417                if (ab) {
1418                        audit_log_format(ab, "fd0=%d fd1=%d",
1419                                        context->fds[0], context->fds[1]);
1420                        audit_log_end(ab);
1421                }
1422        }
1423
1424        if (context->sockaddr_len) {
1425                ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1426                if (ab) {
1427                        audit_log_format(ab, "saddr=");
1428                        audit_log_n_hex(ab, (void *)context->sockaddr,
1429                                        context->sockaddr_len);
1430                        audit_log_end(ab);
1431                }
1432        }
1433
1434        for (aux = context->aux_pids; aux; aux = aux->next) {
1435                struct audit_aux_data_pids *axs = (void *)aux;
1436
1437                for (i = 0; i < axs->pid_count; i++)
1438                        if (audit_log_pid_context(context, axs->target_pid[i],
1439                                                  axs->target_auid[i],
1440                                                  axs->target_uid[i],
1441                                                  axs->target_sessionid[i],
1442                                                  axs->target_sid[i],
1443                                                  axs->target_comm[i]))
1444                                call_panic = 1;
1445        }
1446
1447        if (context->target_pid &&
1448            audit_log_pid_context(context, context->target_pid,
1449                                  context->target_auid, context->target_uid,
1450                                  context->target_sessionid,
1451                                  context->target_sid, context->target_comm))
1452                        call_panic = 1;
1453
1454        if (context->pwd.dentry && context->pwd.mnt) {
1455                ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1456                if (ab) {
1457                        audit_log_d_path(ab, " cwd=", &context->pwd);
1458                        audit_log_end(ab);
1459                }
1460        }
1461
1462        i = 0;
1463        list_for_each_entry(n, &context->names_list, list) {
1464                if (n->hidden)
1465                        continue;
1466                audit_log_name(context, n, NULL, i++, &call_panic);
1467        }
1468
1469        audit_log_proctitle(tsk, context);
1470
1471        /* Send end of event record to help user space know we are finished */
1472        ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1473        if (ab)
1474                audit_log_end(ab);
1475        if (call_panic)
1476                audit_panic("error converting sid to string");
1477}
1478
1479/**
1480 * audit_free - free a per-task audit context
1481 * @tsk: task whose audit context block to free
1482 *
1483 * Called from copy_process and do_exit
1484 */
1485void __audit_free(struct task_struct *tsk)
1486{
1487        struct audit_context *context;
1488
1489        context = audit_take_context(tsk, 0, 0);
1490        if (!context)
1491                return;
1492
1493        /* Check for system calls that do not go through the exit
1494         * function (e.g., exit_group), then free context block.
1495         * We use GFP_ATOMIC here because we might be doing this
1496         * in the context of the idle thread */
1497        /* that can happen only if we are called from do_exit() */
1498        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1499                audit_log_exit(context, tsk);
1500        if (!list_empty(&context->killed_trees))
1501                audit_kill_trees(&context->killed_trees);
1502
1503        audit_free_context(context);
1504}
1505
1506/**
1507 * audit_syscall_entry - fill in an audit record at syscall entry
1508 * @arch: architecture type
1509 * @major: major syscall type (function)
1510 * @a1: additional syscall register 1
1511 * @a2: additional syscall register 2
1512 * @a3: additional syscall register 3
1513 * @a4: additional syscall register 4
1514 *
1515 * Fill in audit context at syscall entry.  This only happens if the
1516 * audit context was created when the task was created and the state or
1517 * filters demand the audit context be built.  If the state from the
1518 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1519 * then the record will be written at syscall exit time (otherwise, it
1520 * will only be written if another part of the kernel requests that it
1521 * be written).
1522 */
1523void __audit_syscall_entry(int arch, int major,
1524                         unsigned long a1, unsigned long a2,
1525                         unsigned long a3, unsigned long a4)
1526{
1527        struct task_struct *tsk = current;
1528        struct audit_context *context = tsk->audit_context;
1529        enum audit_state     state;
1530
1531        if (!context)
1532                return;
1533
1534        BUG_ON(context->in_syscall || context->name_count);
1535
1536        if (!audit_enabled)
1537                return;
1538
1539        context->arch       = arch;
1540        context->major      = major;
1541        context->argv[0]    = a1;
1542        context->argv[1]    = a2;
1543        context->argv[2]    = a3;
1544        context->argv[3]    = a4;
1545
1546        state = context->state;
1547        context->dummy = !audit_n_rules;
1548        if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1549                context->prio = 0;
1550                state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1551        }
1552        if (state == AUDIT_DISABLED)
1553                return;
1554
1555        context->serial     = 0;
1556        context->ctime      = CURRENT_TIME;
1557        context->in_syscall = 1;
1558        context->current_state  = state;
1559        context->ppid       = 0;
1560}
1561
1562/**
1563 * audit_syscall_exit - deallocate audit context after a system call
1564 * @success: success value of the syscall
1565 * @return_code: return value of the syscall
1566 *
1567 * Tear down after system call.  If the audit context has been marked as
1568 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1569 * filtering, or because some other part of the kernel wrote an audit
1570 * message), then write out the syscall information.  In call cases,
1571 * free the names stored from getname().
1572 */
1573void __audit_syscall_exit(int success, long return_code)
1574{
1575        struct task_struct *tsk = current;
1576        struct audit_context *context;
1577
1578        if (success)
1579                success = AUDITSC_SUCCESS;
1580        else
1581                success = AUDITSC_FAILURE;
1582
1583        context = audit_take_context(tsk, success, return_code);
1584        if (!context)
1585                return;
1586
1587        if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1588                audit_log_exit(context, tsk);
1589
1590        context->in_syscall = 0;
1591        context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1592
1593        if (!list_empty(&context->killed_trees))
1594                audit_kill_trees(&context->killed_trees);
1595
1596        audit_free_names(context);
1597        unroll_tree_refs(context, NULL, 0);
1598        audit_free_aux(context);
1599        context->aux = NULL;
1600        context->aux_pids = NULL;
1601        context->target_pid = 0;
1602        context->target_sid = 0;
1603        context->sockaddr_len = 0;
1604        context->type = 0;
1605        context->fds[0] = -1;
1606        if (context->state != AUDIT_RECORD_CONTEXT) {
1607                kfree(context->filterkey);
1608                context->filterkey = NULL;
1609        }
1610        tsk->audit_context = context;
1611}
1612
1613static inline void handle_one(const struct inode *inode)
1614{
1615#ifdef CONFIG_AUDIT_TREE
1616        struct audit_context *context;
1617        struct audit_tree_refs *p;
1618        struct audit_chunk *chunk;
1619        int count;
1620        if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1621                return;
1622        context = current->audit_context;
1623        p = context->trees;
1624        count = context->tree_count;
1625        rcu_read_lock();
1626        chunk = audit_tree_lookup(inode);
1627        rcu_read_unlock();
1628        if (!chunk)
1629                return;
1630        if (likely(put_tree_ref(context, chunk)))
1631                return;
1632        if (unlikely(!grow_tree_refs(context))) {
1633                pr_warn("out of memory, audit has lost a tree reference\n");
1634                audit_set_auditable(context);
1635                audit_put_chunk(chunk);
1636                unroll_tree_refs(context, p, count);
1637                return;
1638        }
1639        put_tree_ref(context, chunk);
1640#endif
1641}
1642
1643static void handle_path(const struct dentry *dentry)
1644{
1645#ifdef CONFIG_AUDIT_TREE
1646        struct audit_context *context;
1647        struct audit_tree_refs *p;
1648        const struct dentry *d, *parent;
1649        struct audit_chunk *drop;
1650        unsigned long seq;
1651        int count;
1652
1653        context = current->audit_context;
1654        p = context->trees;
1655        count = context->tree_count;
1656retry:
1657        drop = NULL;
1658        d = dentry;
1659        rcu_read_lock();
1660        seq = read_seqbegin(&rename_lock);
1661        for(;;) {
1662                struct inode *inode = d->d_inode;
1663                if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1664                        struct audit_chunk *chunk;
1665                        chunk = audit_tree_lookup(inode);
1666                        if (chunk) {
1667                                if (unlikely(!put_tree_ref(context, chunk))) {
1668                                        drop = chunk;
1669                                        break;
1670                                }
1671                        }
1672                }
1673                parent = d->d_parent;
1674                if (parent == d)
1675                        break;
1676                d = parent;
1677        }
1678        if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1679                rcu_read_unlock();
1680                if (!drop) {
1681                        /* just a race with rename */
1682                        unroll_tree_refs(context, p, count);
1683                        goto retry;
1684                }
1685                audit_put_chunk(drop);
1686                if (grow_tree_refs(context)) {
1687                        /* OK, got more space */
1688                        unroll_tree_refs(context, p, count);
1689                        goto retry;
1690                }
1691                /* too bad */
1692                pr_warn("out of memory, audit has lost a tree reference\n");
1693                unroll_tree_refs(context, p, count);
1694                audit_set_auditable(context);
1695                return;
1696        }
1697        rcu_read_unlock();
1698#endif
1699}
1700
1701static struct audit_names *audit_alloc_name(struct audit_context *context,
1702                                                unsigned char type)
1703{
1704        struct audit_names *aname;
1705
1706        if (context->name_count < AUDIT_NAMES) {
1707                aname = &context->preallocated_names[context->name_count];
1708                memset(aname, 0, sizeof(*aname));
1709        } else {
1710                aname = kzalloc(sizeof(*aname), GFP_NOFS);
1711                if (!aname)
1712                        return NULL;
1713                aname->should_free = true;
1714        }
1715
1716        aname->ino = (unsigned long)-1;
1717        aname->type = type;
1718        list_add_tail(&aname->list, &context->names_list);
1719
1720        context->name_count++;
1721#if AUDIT_DEBUG
1722        context->ino_count++;
1723#endif
1724        return aname;
1725}
1726
1727/**
1728 * audit_reusename - fill out filename with info from existing entry
1729 * @uptr: userland ptr to pathname
1730 *
1731 * Search the audit_names list for the current audit context. If there is an
1732 * existing entry with a matching "uptr" then return the filename
1733 * associated with that audit_name. If not, return NULL.
1734 */
1735struct filename *
1736__audit_reusename(const __user char *uptr)
1737{
1738        struct audit_context *context = current->audit_context;
1739        struct audit_names *n;
1740
1741        list_for_each_entry(n, &context->names_list, list) {
1742                if (!n->name)
1743                        continue;
1744                if (n->name->uptr == uptr)
1745                        return n->name;
1746        }
1747        return NULL;
1748}
1749
1750/**
1751 * audit_getname - add a name to the list
1752 * @name: name to add
1753 *
1754 * Add a name to the list of audit names for this context.
1755 * Called from fs/namei.c:getname().
1756 */
1757void __audit_getname(struct filename *name)
1758{
1759        struct audit_context *context = current->audit_context;
1760        struct audit_names *n;
1761
1762        if (!context->in_syscall) {
1763#if AUDIT_DEBUG == 2
1764                pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1765                       __FILE__, __LINE__, context->serial, name);
1766                dump_stack();
1767#endif
1768                return;
1769        }
1770
1771#if AUDIT_DEBUG
1772        /* The filename _must_ have a populated ->name */
1773        BUG_ON(!name->name);
1774#endif
1775
1776        n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1777        if (!n)
1778                return;
1779
1780        n->name = name;
1781        n->name_len = AUDIT_NAME_FULL;
1782        n->name_put = true;
1783        name->aname = n;
1784
1785        if (!context->pwd.dentry)
1786                get_fs_pwd(current->fs, &context->pwd);
1787}
1788
1789/* audit_putname - intercept a putname request
1790 * @name: name to intercept and delay for putname
1791 *
1792 * If we have stored the name from getname in the audit context,
1793 * then we delay the putname until syscall exit.
1794 * Called from include/linux/fs.h:putname().
1795 */
1796void audit_putname(struct filename *name)
1797{
1798        struct audit_context *context = current->audit_context;
1799
1800        BUG_ON(!context);
1801        if (!name->aname || !context->in_syscall) {
1802#if AUDIT_DEBUG == 2
1803                pr_err("%s:%d(:%d): final_putname(%p)\n",
1804                       __FILE__, __LINE__, context->serial, name);
1805                if (context->name_count) {
1806                        struct audit_names *n;
1807                        int i = 0;
1808
1809                        list_for_each_entry(n, &context->names_list, list)
1810                                pr_err("name[%d] = %p = %s\n", i++, n->name,
1811                                       n->name->name ?: "(null)");
1812                        }
1813#endif
1814                final_putname(name);
1815        }
1816#if AUDIT_DEBUG
1817        else {
1818                ++context->put_count;
1819                if (context->put_count > context->name_count) {
1820                        pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1821                               " name_count=%d put_count=%d\n",
1822                               __FILE__, __LINE__,
1823                               context->serial, context->major,
1824                               context->in_syscall, name->name,
1825                               context->name_count, context->put_count);
1826                        dump_stack();
1827                }
1828        }
1829#endif
1830}
1831
1832/**
1833 * __audit_inode - store the inode and device from a lookup
1834 * @name: name being audited
1835 * @dentry: dentry being audited
1836 * @flags: attributes for this particular entry
1837 */
1838void __audit_inode(struct filename *name, const struct dentry *dentry,
1839                   unsigned int flags)
1840{
1841        struct audit_context *context = current->audit_context;
1842        const struct inode *inode = dentry->d_inode;
1843        struct audit_names *n;
1844        bool parent = flags & AUDIT_INODE_PARENT;
1845
1846        if (!context->in_syscall)
1847                return;
1848
1849        if (!name)
1850                goto out_alloc;
1851
1852#if AUDIT_DEBUG
1853        /* The struct filename _must_ have a populated ->name */
1854        BUG_ON(!name->name);
1855#endif
1856        /*
1857         * If we have a pointer to an audit_names entry already, then we can
1858         * just use it directly if the type is correct.
1859         */
1860        n = name->aname;
1861        if (n) {
1862                if (parent) {
1863                        if (n->type == AUDIT_TYPE_PARENT ||
1864                            n->type == AUDIT_TYPE_UNKNOWN)
1865                                goto out;
1866                } else {
1867                        if (n->type != AUDIT_TYPE_PARENT)
1868                                goto out;
1869                }
1870        }
1871
1872        list_for_each_entry_reverse(n, &context->names_list, list) {
1873                /* does the name pointer match? */
1874                if (!n->name || n->name->name != name->name)
1875                        continue;
1876
1877                /* match the correct record type */
1878                if (parent) {
1879                        if (n->type == AUDIT_TYPE_PARENT ||
1880                            n->type == AUDIT_TYPE_UNKNOWN)
1881                                goto out;
1882                } else {
1883                        if (n->type != AUDIT_TYPE_PARENT)
1884                                goto out;
1885                }
1886        }
1887
1888out_alloc:
1889        /* unable to find the name from a previous getname(). Allocate a new
1890         * anonymous entry.
1891         */
1892        n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1893        if (!n)
1894                return;
1895out:
1896        if (parent) {
1897                n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1898                n->type = AUDIT_TYPE_PARENT;
1899                if (flags & AUDIT_INODE_HIDDEN)
1900                        n->hidden = true;
1901        } else {
1902                n->name_len = AUDIT_NAME_FULL;
1903                n->type = AUDIT_TYPE_NORMAL;
1904        }
1905        handle_path(dentry);
1906        audit_copy_inode(n, dentry, inode);
1907}
1908
1909/**
1910 * __audit_inode_child - collect inode info for created/removed objects
1911 * @parent: inode of dentry parent
1912 * @dentry: dentry being audited
1913 * @type:   AUDIT_TYPE_* value that we're looking for
1914 *
1915 * For syscalls that create or remove filesystem objects, audit_inode
1916 * can only collect information for the filesystem object's parent.
1917 * This call updates the audit context with the child's information.
1918 * Syscalls that create a new filesystem object must be hooked after
1919 * the object is created.  Syscalls that remove a filesystem object
1920 * must be hooked prior, in order to capture the target inode during
1921 * unsuccessful attempts.
1922 */
1923void __audit_inode_child(const struct inode *parent,
1924                         const struct dentry *dentry,
1925                         const unsigned char type)
1926{
1927        struct audit_context *context = current->audit_context;
1928        const struct inode *inode = dentry->d_inode;
1929        const char *dname = dentry->d_name.name;
1930        struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1931
1932        if (!context->in_syscall)
1933                return;
1934
1935        if (inode)
1936                handle_one(inode);
1937
1938        /* look for a parent entry first */
1939        list_for_each_entry(n, &context->names_list, list) {
1940                if (!n->name || n->type != AUDIT_TYPE_PARENT)
1941                        continue;
1942
1943                if (n->ino == parent->i_ino &&
1944                    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1945                        found_parent = n;
1946                        break;
1947                }
1948        }
1949
1950        /* is there a matching child entry? */
1951        list_for_each_entry(n, &context->names_list, list) {
1952                /* can only match entries that have a name */
1953                if (!n->name || n->type != type)
1954                        continue;
1955
1956                /* if we found a parent, make sure this one is a child of it */
1957                if (found_parent && (n->name != found_parent->name))
1958                        continue;
1959
1960                if (!strcmp(dname, n->name->name) ||
1961                    !audit_compare_dname_path(dname, n->name->name,
1962                                                found_parent ?
1963                                                found_parent->name_len :
1964                                                AUDIT_NAME_FULL)) {
1965                        found_child = n;
1966                        break;
1967                }
1968        }
1969
1970        if (!found_parent) {
1971                /* create a new, "anonymous" parent record */
1972                n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1973                if (!n)
1974                        return;
1975                audit_copy_inode(n, NULL, parent);
1976        }
1977
1978        if (!found_child) {
1979                found_child = audit_alloc_name(context, type);
1980                if (!found_child)
1981                        return;
1982
1983                /* Re-use the name belonging to the slot for a matching parent
1984                 * directory. All names for this context are relinquished in
1985                 * audit_free_names() */
1986                if (found_parent) {
1987                        found_child->name = found_parent->name;
1988                        found_child->name_len = AUDIT_NAME_FULL;
1989                        /* don't call __putname() */
1990                        found_child->name_put = false;
1991                }
1992        }
1993        if (inode)
1994                audit_copy_inode(found_child, dentry, inode);
1995        else
1996                found_child->ino = (unsigned long)-1;
1997}
1998EXPORT_SYMBOL_GPL(__audit_inode_child);
1999
2000/**
2001 * auditsc_get_stamp - get local copies of audit_context values
2002 * @ctx: audit_context for the task
2003 * @t: timespec to store time recorded in the audit_context
2004 * @serial: serial value that is recorded in the audit_context
2005 *
2006 * Also sets the context as auditable.
2007 */
2008int auditsc_get_stamp(struct audit_context *ctx,
2009                       struct timespec *t, unsigned int *serial)
2010{
2011        if (!ctx->in_syscall)
2012                return 0;
2013        if (!ctx->serial)
2014                ctx->serial = audit_serial();
2015        t->tv_sec  = ctx->ctime.tv_sec;
2016        t->tv_nsec = ctx->ctime.tv_nsec;
2017        *serial    = ctx->serial;
2018        if (!ctx->prio) {
2019                ctx->prio = 1;
2020                ctx->current_state = AUDIT_RECORD_CONTEXT;
2021        }
2022        return 1;
2023}
2024
2025/* global counter which is incremented every time something logs in */
2026static atomic_t session_id = ATOMIC_INIT(0);
2027
2028static int audit_set_loginuid_perm(kuid_t loginuid)
2029{
2030        /* if we are unset, we don't need privs */
2031        if (!audit_loginuid_set(current))
2032                return 0;
2033        /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2034        if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2035                return -EPERM;
2036        /* it is set, you need permission */
2037        if (!capable(CAP_AUDIT_CONTROL))
2038                return -EPERM;
2039        /* reject if this is not an unset and we don't allow that */
2040        if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2041                return -EPERM;
2042        return 0;
2043}
2044
2045static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2046                                   unsigned int oldsessionid, unsigned int sessionid,
2047                                   int rc)
2048{
2049        struct audit_buffer *ab;
2050        uid_t uid, oldloginuid, loginuid;
2051
2052        if (!audit_enabled)
2053                return;
2054
2055        uid = from_kuid(&init_user_ns, task_uid(current));
2056        oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2057        loginuid = from_kuid(&init_user_ns, kloginuid),
2058
2059        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2060        if (!ab)
2061                return;
2062        audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2063        audit_log_task_context(ab);
2064        audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2065                         oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2066        audit_log_end(ab);
2067}
2068
2069/**
2070 * audit_set_loginuid - set current task's audit_context loginuid
2071 * @loginuid: loginuid value
2072 *
2073 * Returns 0.
2074 *
2075 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2076 */
2077int audit_set_loginuid(kuid_t loginuid)
2078{
2079        struct task_struct *task = current;
2080        unsigned int oldsessionid, sessionid = (unsigned int)-1;
2081        kuid_t oldloginuid;
2082        int rc;
2083
2084        oldloginuid = audit_get_loginuid(current);
2085        oldsessionid = audit_get_sessionid(current);
2086
2087        rc = audit_set_loginuid_perm(loginuid);
2088        if (rc)
2089                goto out;
2090
2091        /* are we setting or clearing? */
2092        if (uid_valid(loginuid))
2093                sessionid = (unsigned int)atomic_inc_return(&session_id);
2094
2095        task->sessionid = sessionid;
2096        task->loginuid = loginuid;
2097out:
2098        audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2099        return rc;
2100}
2101
2102/**
2103 * __audit_mq_open - record audit data for a POSIX MQ open
2104 * @oflag: open flag
2105 * @mode: mode bits
2106 * @attr: queue attributes
2107 *
2108 */
2109void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2110{
2111        struct audit_context *context = current->audit_context;
2112
2113        if (attr)
2114                memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2115        else
2116                memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2117
2118        context->mq_open.oflag = oflag;
2119        context->mq_open.mode = mode;
2120
2121        context->type = AUDIT_MQ_OPEN;
2122}
2123
2124/**
2125 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2126 * @mqdes: MQ descriptor
2127 * @msg_len: Message length
2128 * @msg_prio: Message priority
2129 * @abs_timeout: Message timeout in absolute time
2130 *
2131 */
2132void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2133                        const struct timespec *abs_timeout)
2134{
2135        struct audit_context *context = current->audit_context;
2136        struct timespec *p = &context->mq_sendrecv.abs_timeout;
2137
2138        if (abs_timeout)
2139                memcpy(p, abs_timeout, sizeof(struct timespec));
2140        else
2141                memset(p, 0, sizeof(struct timespec));
2142
2143        context->mq_sendrecv.mqdes = mqdes;
2144        context->mq_sendrecv.msg_len = msg_len;
2145        context->mq_sendrecv.msg_prio = msg_prio;
2146
2147        context->type = AUDIT_MQ_SENDRECV;
2148}
2149
2150/**
2151 * __audit_mq_notify - record audit data for a POSIX MQ notify
2152 * @mqdes: MQ descriptor
2153 * @notification: Notification event
2154 *
2155 */
2156
2157void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2158{
2159        struct audit_context *context = current->audit_context;
2160
2161        if (notification)
2162                context->mq_notify.sigev_signo = notification->sigev_signo;
2163        else
2164                context->mq_notify.sigev_signo = 0;
2165
2166        context->mq_notify.mqdes = mqdes;
2167        context->type = AUDIT_MQ_NOTIFY;
2168}
2169
2170/**
2171 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2172 * @mqdes: MQ descriptor
2173 * @mqstat: MQ flags
2174 *
2175 */
2176void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2177{
2178        struct audit_context *context = current->audit_context;
2179        context->mq_getsetattr.mqdes = mqdes;
2180        context->mq_getsetattr.mqstat = *mqstat;
2181        context->type = AUDIT_MQ_GETSETATTR;
2182}
2183
2184/**
2185 * audit_ipc_obj - record audit data for ipc object
2186 * @ipcp: ipc permissions
2187 *
2188 */
2189void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2190{
2191        struct audit_context *context = current->audit_context;
2192        context->ipc.uid = ipcp->uid;
2193        context->ipc.gid = ipcp->gid;
2194        context->ipc.mode = ipcp->mode;
2195        context->ipc.has_perm = 0;
2196        security_ipc_getsecid(ipcp, &context->ipc.osid);
2197        context->type = AUDIT_IPC;
2198}
2199
2200/**
2201 * audit_ipc_set_perm - record audit data for new ipc permissions
2202 * @qbytes: msgq bytes
2203 * @uid: msgq user id
2204 * @gid: msgq group id
2205 * @mode: msgq mode (permissions)
2206 *
2207 * Called only after audit_ipc_obj().
2208 */
2209void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2210{
2211        struct audit_context *context = current->audit_context;
2212
2213        context->ipc.qbytes = qbytes;
2214        context->ipc.perm_uid = uid;
2215        context->ipc.perm_gid = gid;
2216        context->ipc.perm_mode = mode;
2217        context->ipc.has_perm = 1;
2218}
2219
2220void __audit_bprm(struct linux_binprm *bprm)
2221{
2222        struct audit_context *context = current->audit_context;
2223
2224        context->type = AUDIT_EXECVE;
2225        context->execve.argc = bprm->argc;
2226}
2227
2228
2229/**
2230 * audit_socketcall - record audit data for sys_socketcall
2231 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2232 * @args: args array
2233 *
2234 */
2235int __audit_socketcall(int nargs, unsigned long *args)
2236{
2237        struct audit_context *context = current->audit_context;
2238
2239        if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2240                return -EINVAL;
2241        context->type = AUDIT_SOCKETCALL;
2242        context->socketcall.nargs = nargs;
2243        memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2244        return 0;
2245}
2246
2247/**
2248 * __audit_fd_pair - record audit data for pipe and socketpair
2249 * @fd1: the first file descriptor
2250 * @fd2: the second file descriptor
2251 *
2252 */
2253void __audit_fd_pair(int fd1, int fd2)
2254{
2255        struct audit_context *context = current->audit_context;
2256        context->fds[0] = fd1;
2257        context->fds[1] = fd2;
2258}
2259
2260/**
2261 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2262 * @len: data length in user space
2263 * @a: data address in kernel space
2264 *
2265 * Returns 0 for success or NULL context or < 0 on error.
2266 */
2267int __audit_sockaddr(int len, void *a)
2268{
2269        struct audit_context *context = current->audit_context;
2270
2271        if (!context->sockaddr) {
2272                void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2273                if (!p)
2274                        return -ENOMEM;
2275                context->sockaddr = p;
2276        }
2277
2278        context->sockaddr_len = len;
2279        memcpy(context->sockaddr, a, len);
2280        return 0;
2281}
2282
2283void __audit_ptrace(struct task_struct *t)
2284{
2285        struct audit_context *context = current->audit_context;
2286
2287        context->target_pid = task_pid_nr(t);
2288        context->target_auid = audit_get_loginuid(t);
2289        context->target_uid = task_uid(t);
2290        context->target_sessionid = audit_get_sessionid(t);
2291        security_task_getsecid(t, &context->target_sid);
2292        memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2293}
2294
2295/**
2296 * audit_signal_info - record signal info for shutting down audit subsystem
2297 * @sig: signal value
2298 * @t: task being signaled
2299 *
2300 * If the audit subsystem is being terminated, record the task (pid)
2301 * and uid that is doing that.
2302 */
2303int __audit_signal_info(int sig, struct task_struct *t)
2304{
2305        struct audit_aux_data_pids *axp;
2306        struct task_struct *tsk = current;
2307        struct audit_context *ctx = tsk->audit_context;
2308        kuid_t uid = current_uid(), t_uid = task_uid(t);
2309
2310        if (audit_pid && t->tgid == audit_pid) {
2311                if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2312                        audit_sig_pid = task_pid_nr(tsk);
2313                        if (uid_valid(tsk->loginuid))
2314                                audit_sig_uid = tsk->loginuid;
2315                        else
2316                                audit_sig_uid = uid;
2317                        security_task_getsecid(tsk, &audit_sig_sid);
2318                }
2319                if (!audit_signals || audit_dummy_context())
2320                        return 0;
2321        }
2322
2323        /* optimize the common case by putting first signal recipient directly
2324         * in audit_context */
2325        if (!ctx->target_pid) {
2326                ctx->target_pid = task_tgid_nr(t);
2327                ctx->target_auid = audit_get_loginuid(t);
2328                ctx->target_uid = t_uid;
2329                ctx->target_sessionid = audit_get_sessionid(t);
2330                security_task_getsecid(t, &ctx->target_sid);
2331                memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2332                return 0;
2333        }
2334
2335        axp = (void *)ctx->aux_pids;
2336        if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2337                axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2338                if (!axp)
2339                        return -ENOMEM;
2340
2341                axp->d.type = AUDIT_OBJ_PID;
2342                axp->d.next = ctx->aux_pids;
2343                ctx->aux_pids = (void *)axp;
2344        }
2345        BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2346
2347        axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2348        axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2349        axp->target_uid[axp->pid_count] = t_uid;
2350        axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2351        security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2352        memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2353        axp->pid_count++;
2354
2355        return 0;
2356}
2357
2358/**
2359 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2360 * @bprm: pointer to the bprm being processed
2361 * @new: the proposed new credentials
2362 * @old: the old credentials
2363 *
2364 * Simply check if the proc already has the caps given by the file and if not
2365 * store the priv escalation info for later auditing at the end of the syscall
2366 *
2367 * -Eric
2368 */
2369int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2370                           const struct cred *new, const struct cred *old)
2371{
2372        struct audit_aux_data_bprm_fcaps *ax;
2373        struct audit_context *context = current->audit_context;
2374        struct cpu_vfs_cap_data vcaps;
2375        struct dentry *dentry;
2376
2377        ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2378        if (!ax)
2379                return -ENOMEM;
2380
2381        ax->d.type = AUDIT_BPRM_FCAPS;
2382        ax->d.next = context->aux;
2383        context->aux = (void *)ax;
2384
2385        dentry = dget(bprm->file->f_dentry);
2386        get_vfs_caps_from_disk(dentry, &vcaps);
2387        dput(dentry);
2388
2389        ax->fcap.permitted = vcaps.permitted;
2390        ax->fcap.inheritable = vcaps.inheritable;
2391        ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2392        ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2393
2394        ax->old_pcap.permitted   = old->cap_permitted;
2395        ax->old_pcap.inheritable = old->cap_inheritable;
2396        ax->old_pcap.effective   = old->cap_effective;
2397
2398        ax->new_pcap.permitted   = new->cap_permitted;
2399        ax->new_pcap.inheritable = new->cap_inheritable;
2400        ax->new_pcap.effective   = new->cap_effective;
2401        return 0;
2402}
2403
2404/**
2405 * __audit_log_capset - store information about the arguments to the capset syscall
2406 * @new: the new credentials
2407 * @old: the old (current) credentials
2408 *
2409 * Record the aguments userspace sent to sys_capset for later printing by the
2410 * audit system if applicable
2411 */
2412void __audit_log_capset(const struct cred *new, const struct cred *old)
2413{
2414        struct audit_context *context = current->audit_context;
2415        context->capset.pid = task_pid_nr(current);
2416        context->capset.cap.effective   = new->cap_effective;
2417        context->capset.cap.inheritable = new->cap_effective;
2418        context->capset.cap.permitted   = new->cap_permitted;
2419        context->type = AUDIT_CAPSET;
2420}
2421
2422void __audit_mmap_fd(int fd, int flags)
2423{
2424        struct audit_context *context = current->audit_context;
2425        context->mmap.fd = fd;
2426        context->mmap.flags = flags;
2427        context->type = AUDIT_MMAP;
2428}
2429
2430static void audit_log_task(struct audit_buffer *ab)
2431{
2432        kuid_t auid, uid;
2433        kgid_t gid;
2434        unsigned int sessionid;
2435        struct mm_struct *mm = current->mm;
2436
2437        auid = audit_get_loginuid(current);
2438        sessionid = audit_get_sessionid(current);
2439        current_uid_gid(&uid, &gid);
2440
2441        audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2442                         from_kuid(&init_user_ns, auid),
2443                         from_kuid(&init_user_ns, uid),
2444                         from_kgid(&init_user_ns, gid),
2445                         sessionid);
2446        audit_log_task_context(ab);
2447        audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2448        audit_log_untrustedstring(ab, current->comm);
2449        if (mm) {
2450                down_read(&mm->mmap_sem);
2451                if (mm->exe_file)
2452                        audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2453                up_read(&mm->mmap_sem);
2454        } else
2455                audit_log_format(ab, " exe=(null)");
2456}
2457
2458/**
2459 * audit_core_dumps - record information about processes that end abnormally
2460 * @signr: signal value
2461 *
2462 * If a process ends with a core dump, something fishy is going on and we
2463 * should record the event for investigation.
2464 */
2465void audit_core_dumps(long signr)
2466{
2467        struct audit_buffer *ab;
2468
2469        if (!audit_enabled)
2470                return;
2471
2472        if (signr == SIGQUIT)   /* don't care for those */
2473                return;
2474
2475        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2476        if (unlikely(!ab))
2477                return;
2478        audit_log_task(ab);
2479        audit_log_format(ab, " sig=%ld", signr);
2480        audit_log_end(ab);
2481}
2482
2483void __audit_seccomp(unsigned long syscall, long signr, int code)
2484{
2485        struct audit_buffer *ab;
2486
2487        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2488        if (unlikely(!ab))
2489                return;
2490        audit_log_task(ab);
2491        audit_log_format(ab, " sig=%ld", signr);
2492        audit_log_format(ab, " syscall=%ld", syscall);
2493        audit_log_format(ab, " compat=%d", is_compat_task());
2494        audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2495        audit_log_format(ab, " code=0x%x", code);
2496        audit_log_end(ab);
2497}
2498
2499struct list_head *audit_killed_trees(void)
2500{
2501        struct audit_context *ctx = current->audit_context;
2502        if (likely(!ctx || !ctx->in_syscall))
2503                return NULL;
2504        return &ctx->killed_trees;
2505}
2506