linux/kernel/sys.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a,b)   (-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a,b)   (-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a,b)     (-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a,b)     (-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a,b)     (-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a,b)     (-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a,b)        (-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a,b)        (-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)         (-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)         (-EINVAL)
  93#endif
  94
  95/*
  96 * this is where the system-wide overflow UID and GID are defined, for
  97 * architectures that now have 32-bit UID/GID but didn't in the past
  98 */
  99
 100int overflowuid = DEFAULT_OVERFLOWUID;
 101int overflowgid = DEFAULT_OVERFLOWGID;
 102
 103EXPORT_SYMBOL(overflowuid);
 104EXPORT_SYMBOL(overflowgid);
 105
 106/*
 107 * the same as above, but for filesystems which can only store a 16-bit
 108 * UID and GID. as such, this is needed on all architectures
 109 */
 110
 111int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 112int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 113
 114EXPORT_SYMBOL(fs_overflowuid);
 115EXPORT_SYMBOL(fs_overflowgid);
 116
 117/*
 118 * Returns true if current's euid is same as p's uid or euid,
 119 * or has CAP_SYS_NICE to p's user_ns.
 120 *
 121 * Called with rcu_read_lock, creds are safe
 122 */
 123static bool set_one_prio_perm(struct task_struct *p)
 124{
 125        const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 126
 127        if (uid_eq(pcred->uid,  cred->euid) ||
 128            uid_eq(pcred->euid, cred->euid))
 129                return true;
 130        if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 131                return true;
 132        return false;
 133}
 134
 135/*
 136 * set the priority of a task
 137 * - the caller must hold the RCU read lock
 138 */
 139static int set_one_prio(struct task_struct *p, int niceval, int error)
 140{
 141        int no_nice;
 142
 143        if (!set_one_prio_perm(p)) {
 144                error = -EPERM;
 145                goto out;
 146        }
 147        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 148                error = -EACCES;
 149                goto out;
 150        }
 151        no_nice = security_task_setnice(p, niceval);
 152        if (no_nice) {
 153                error = no_nice;
 154                goto out;
 155        }
 156        if (error == -ESRCH)
 157                error = 0;
 158        set_user_nice(p, niceval);
 159out:
 160        return error;
 161}
 162
 163SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 164{
 165        struct task_struct *g, *p;
 166        struct user_struct *user;
 167        const struct cred *cred = current_cred();
 168        int error = -EINVAL;
 169        struct pid *pgrp;
 170        kuid_t uid;
 171
 172        if (which > PRIO_USER || which < PRIO_PROCESS)
 173                goto out;
 174
 175        /* normalize: avoid signed division (rounding problems) */
 176        error = -ESRCH;
 177        if (niceval < MIN_NICE)
 178                niceval = MIN_NICE;
 179        if (niceval > MAX_NICE)
 180                niceval = MAX_NICE;
 181
 182        rcu_read_lock();
 183        read_lock(&tasklist_lock);
 184        switch (which) {
 185                case PRIO_PROCESS:
 186                        if (who)
 187                                p = find_task_by_vpid(who);
 188                        else
 189                                p = current;
 190                        if (p)
 191                                error = set_one_prio(p, niceval, error);
 192                        break;
 193                case PRIO_PGRP:
 194                        if (who)
 195                                pgrp = find_vpid(who);
 196                        else
 197                                pgrp = task_pgrp(current);
 198                        do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 199                                error = set_one_prio(p, niceval, error);
 200                        } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 201                        break;
 202                case PRIO_USER:
 203                        uid = make_kuid(cred->user_ns, who);
 204                        user = cred->user;
 205                        if (!who)
 206                                uid = cred->uid;
 207                        else if (!uid_eq(uid, cred->uid) &&
 208                                 !(user = find_user(uid)))
 209                                goto out_unlock;        /* No processes for this user */
 210
 211                        do_each_thread(g, p) {
 212                                if (uid_eq(task_uid(p), uid))
 213                                        error = set_one_prio(p, niceval, error);
 214                        } while_each_thread(g, p);
 215                        if (!uid_eq(uid, cred->uid))
 216                                free_uid(user);         /* For find_user() */
 217                        break;
 218        }
 219out_unlock:
 220        read_unlock(&tasklist_lock);
 221        rcu_read_unlock();
 222out:
 223        return error;
 224}
 225
 226/*
 227 * Ugh. To avoid negative return values, "getpriority()" will
 228 * not return the normal nice-value, but a negated value that
 229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 230 * to stay compatible.
 231 */
 232SYSCALL_DEFINE2(getpriority, int, which, int, who)
 233{
 234        struct task_struct *g, *p;
 235        struct user_struct *user;
 236        const struct cred *cred = current_cred();
 237        long niceval, retval = -ESRCH;
 238        struct pid *pgrp;
 239        kuid_t uid;
 240
 241        if (which > PRIO_USER || which < PRIO_PROCESS)
 242                return -EINVAL;
 243
 244        rcu_read_lock();
 245        read_lock(&tasklist_lock);
 246        switch (which) {
 247                case PRIO_PROCESS:
 248                        if (who)
 249                                p = find_task_by_vpid(who);
 250                        else
 251                                p = current;
 252                        if (p) {
 253                                niceval = nice_to_rlimit(task_nice(p));
 254                                if (niceval > retval)
 255                                        retval = niceval;
 256                        }
 257                        break;
 258                case PRIO_PGRP:
 259                        if (who)
 260                                pgrp = find_vpid(who);
 261                        else
 262                                pgrp = task_pgrp(current);
 263                        do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 264                                niceval = nice_to_rlimit(task_nice(p));
 265                                if (niceval > retval)
 266                                        retval = niceval;
 267                        } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 268                        break;
 269                case PRIO_USER:
 270                        uid = make_kuid(cred->user_ns, who);
 271                        user = cred->user;
 272                        if (!who)
 273                                uid = cred->uid;
 274                        else if (!uid_eq(uid, cred->uid) &&
 275                                 !(user = find_user(uid)))
 276                                goto out_unlock;        /* No processes for this user */
 277
 278                        do_each_thread(g, p) {
 279                                if (uid_eq(task_uid(p), uid)) {
 280                                        niceval = nice_to_rlimit(task_nice(p));
 281                                        if (niceval > retval)
 282                                                retval = niceval;
 283                                }
 284                        } while_each_thread(g, p);
 285                        if (!uid_eq(uid, cred->uid))
 286                                free_uid(user);         /* for find_user() */
 287                        break;
 288        }
 289out_unlock:
 290        read_unlock(&tasklist_lock);
 291        rcu_read_unlock();
 292
 293        return retval;
 294}
 295
 296/*
 297 * Unprivileged users may change the real gid to the effective gid
 298 * or vice versa.  (BSD-style)
 299 *
 300 * If you set the real gid at all, or set the effective gid to a value not
 301 * equal to the real gid, then the saved gid is set to the new effective gid.
 302 *
 303 * This makes it possible for a setgid program to completely drop its
 304 * privileges, which is often a useful assertion to make when you are doing
 305 * a security audit over a program.
 306 *
 307 * The general idea is that a program which uses just setregid() will be
 308 * 100% compatible with BSD.  A program which uses just setgid() will be
 309 * 100% compatible with POSIX with saved IDs. 
 310 *
 311 * SMP: There are not races, the GIDs are checked only by filesystem
 312 *      operations (as far as semantic preservation is concerned).
 313 */
 314SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 315{
 316        struct user_namespace *ns = current_user_ns();
 317        const struct cred *old;
 318        struct cred *new;
 319        int retval;
 320        kgid_t krgid, kegid;
 321
 322        krgid = make_kgid(ns, rgid);
 323        kegid = make_kgid(ns, egid);
 324
 325        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 326                return -EINVAL;
 327        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 328                return -EINVAL;
 329
 330        new = prepare_creds();
 331        if (!new)
 332                return -ENOMEM;
 333        old = current_cred();
 334
 335        retval = -EPERM;
 336        if (rgid != (gid_t) -1) {
 337                if (gid_eq(old->gid, krgid) ||
 338                    gid_eq(old->egid, krgid) ||
 339                    ns_capable(old->user_ns, CAP_SETGID))
 340                        new->gid = krgid;
 341                else
 342                        goto error;
 343        }
 344        if (egid != (gid_t) -1) {
 345                if (gid_eq(old->gid, kegid) ||
 346                    gid_eq(old->egid, kegid) ||
 347                    gid_eq(old->sgid, kegid) ||
 348                    ns_capable(old->user_ns, CAP_SETGID))
 349                        new->egid = kegid;
 350                else
 351                        goto error;
 352        }
 353
 354        if (rgid != (gid_t) -1 ||
 355            (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 356                new->sgid = new->egid;
 357        new->fsgid = new->egid;
 358
 359        return commit_creds(new);
 360
 361error:
 362        abort_creds(new);
 363        return retval;
 364}
 365
 366/*
 367 * setgid() is implemented like SysV w/ SAVED_IDS 
 368 *
 369 * SMP: Same implicit races as above.
 370 */
 371SYSCALL_DEFINE1(setgid, gid_t, gid)
 372{
 373        struct user_namespace *ns = current_user_ns();
 374        const struct cred *old;
 375        struct cred *new;
 376        int retval;
 377        kgid_t kgid;
 378
 379        kgid = make_kgid(ns, gid);
 380        if (!gid_valid(kgid))
 381                return -EINVAL;
 382
 383        new = prepare_creds();
 384        if (!new)
 385                return -ENOMEM;
 386        old = current_cred();
 387
 388        retval = -EPERM;
 389        if (ns_capable(old->user_ns, CAP_SETGID))
 390                new->gid = new->egid = new->sgid = new->fsgid = kgid;
 391        else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 392                new->egid = new->fsgid = kgid;
 393        else
 394                goto error;
 395
 396        return commit_creds(new);
 397
 398error:
 399        abort_creds(new);
 400        return retval;
 401}
 402
 403/*
 404 * change the user struct in a credentials set to match the new UID
 405 */
 406static int set_user(struct cred *new)
 407{
 408        struct user_struct *new_user;
 409
 410        new_user = alloc_uid(new->uid);
 411        if (!new_user)
 412                return -EAGAIN;
 413
 414        /*
 415         * We don't fail in case of NPROC limit excess here because too many
 416         * poorly written programs don't check set*uid() return code, assuming
 417         * it never fails if called by root.  We may still enforce NPROC limit
 418         * for programs doing set*uid()+execve() by harmlessly deferring the
 419         * failure to the execve() stage.
 420         */
 421        if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 422                        new_user != INIT_USER)
 423                current->flags |= PF_NPROC_EXCEEDED;
 424        else
 425                current->flags &= ~PF_NPROC_EXCEEDED;
 426
 427        free_uid(new->user);
 428        new->user = new_user;
 429        return 0;
 430}
 431
 432/*
 433 * Unprivileged users may change the real uid to the effective uid
 434 * or vice versa.  (BSD-style)
 435 *
 436 * If you set the real uid at all, or set the effective uid to a value not
 437 * equal to the real uid, then the saved uid is set to the new effective uid.
 438 *
 439 * This makes it possible for a setuid program to completely drop its
 440 * privileges, which is often a useful assertion to make when you are doing
 441 * a security audit over a program.
 442 *
 443 * The general idea is that a program which uses just setreuid() will be
 444 * 100% compatible with BSD.  A program which uses just setuid() will be
 445 * 100% compatible with POSIX with saved IDs. 
 446 */
 447SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 448{
 449        struct user_namespace *ns = current_user_ns();
 450        const struct cred *old;
 451        struct cred *new;
 452        int retval;
 453        kuid_t kruid, keuid;
 454
 455        kruid = make_kuid(ns, ruid);
 456        keuid = make_kuid(ns, euid);
 457
 458        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 459                return -EINVAL;
 460        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 461                return -EINVAL;
 462
 463        new = prepare_creds();
 464        if (!new)
 465                return -ENOMEM;
 466        old = current_cred();
 467
 468        retval = -EPERM;
 469        if (ruid != (uid_t) -1) {
 470                new->uid = kruid;
 471                if (!uid_eq(old->uid, kruid) &&
 472                    !uid_eq(old->euid, kruid) &&
 473                    !ns_capable(old->user_ns, CAP_SETUID))
 474                        goto error;
 475        }
 476
 477        if (euid != (uid_t) -1) {
 478                new->euid = keuid;
 479                if (!uid_eq(old->uid, keuid) &&
 480                    !uid_eq(old->euid, keuid) &&
 481                    !uid_eq(old->suid, keuid) &&
 482                    !ns_capable(old->user_ns, CAP_SETUID))
 483                        goto error;
 484        }
 485
 486        if (!uid_eq(new->uid, old->uid)) {
 487                retval = set_user(new);
 488                if (retval < 0)
 489                        goto error;
 490        }
 491        if (ruid != (uid_t) -1 ||
 492            (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 493                new->suid = new->euid;
 494        new->fsuid = new->euid;
 495
 496        retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 497        if (retval < 0)
 498                goto error;
 499
 500        return commit_creds(new);
 501
 502error:
 503        abort_creds(new);
 504        return retval;
 505}
 506                
 507/*
 508 * setuid() is implemented like SysV with SAVED_IDS 
 509 * 
 510 * Note that SAVED_ID's is deficient in that a setuid root program
 511 * like sendmail, for example, cannot set its uid to be a normal 
 512 * user and then switch back, because if you're root, setuid() sets
 513 * the saved uid too.  If you don't like this, blame the bright people
 514 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 515 * will allow a root program to temporarily drop privileges and be able to
 516 * regain them by swapping the real and effective uid.  
 517 */
 518SYSCALL_DEFINE1(setuid, uid_t, uid)
 519{
 520        struct user_namespace *ns = current_user_ns();
 521        const struct cred *old;
 522        struct cred *new;
 523        int retval;
 524        kuid_t kuid;
 525
 526        kuid = make_kuid(ns, uid);
 527        if (!uid_valid(kuid))
 528                return -EINVAL;
 529
 530        new = prepare_creds();
 531        if (!new)
 532                return -ENOMEM;
 533        old = current_cred();
 534
 535        retval = -EPERM;
 536        if (ns_capable(old->user_ns, CAP_SETUID)) {
 537                new->suid = new->uid = kuid;
 538                if (!uid_eq(kuid, old->uid)) {
 539                        retval = set_user(new);
 540                        if (retval < 0)
 541                                goto error;
 542                }
 543        } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 544                goto error;
 545        }
 546
 547        new->fsuid = new->euid = kuid;
 548
 549        retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 550        if (retval < 0)
 551                goto error;
 552
 553        return commit_creds(new);
 554
 555error:
 556        abort_creds(new);
 557        return retval;
 558}
 559
 560
 561/*
 562 * This function implements a generic ability to update ruid, euid,
 563 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 564 */
 565SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 566{
 567        struct user_namespace *ns = current_user_ns();
 568        const struct cred *old;
 569        struct cred *new;
 570        int retval;
 571        kuid_t kruid, keuid, ksuid;
 572
 573        kruid = make_kuid(ns, ruid);
 574        keuid = make_kuid(ns, euid);
 575        ksuid = make_kuid(ns, suid);
 576
 577        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 578                return -EINVAL;
 579
 580        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 581                return -EINVAL;
 582
 583        if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 584                return -EINVAL;
 585
 586        new = prepare_creds();
 587        if (!new)
 588                return -ENOMEM;
 589
 590        old = current_cred();
 591
 592        retval = -EPERM;
 593        if (!ns_capable(old->user_ns, CAP_SETUID)) {
 594                if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 595                    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 596                        goto error;
 597                if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 598                    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 599                        goto error;
 600                if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 601                    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 602                        goto error;
 603        }
 604
 605        if (ruid != (uid_t) -1) {
 606                new->uid = kruid;
 607                if (!uid_eq(kruid, old->uid)) {
 608                        retval = set_user(new);
 609                        if (retval < 0)
 610                                goto error;
 611                }
 612        }
 613        if (euid != (uid_t) -1)
 614                new->euid = keuid;
 615        if (suid != (uid_t) -1)
 616                new->suid = ksuid;
 617        new->fsuid = new->euid;
 618
 619        retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 620        if (retval < 0)
 621                goto error;
 622
 623        return commit_creds(new);
 624
 625error:
 626        abort_creds(new);
 627        return retval;
 628}
 629
 630SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 631{
 632        const struct cred *cred = current_cred();
 633        int retval;
 634        uid_t ruid, euid, suid;
 635
 636        ruid = from_kuid_munged(cred->user_ns, cred->uid);
 637        euid = from_kuid_munged(cred->user_ns, cred->euid);
 638        suid = from_kuid_munged(cred->user_ns, cred->suid);
 639
 640        if (!(retval   = put_user(ruid, ruidp)) &&
 641            !(retval   = put_user(euid, euidp)))
 642                retval = put_user(suid, suidp);
 643
 644        return retval;
 645}
 646
 647/*
 648 * Same as above, but for rgid, egid, sgid.
 649 */
 650SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 651{
 652        struct user_namespace *ns = current_user_ns();
 653        const struct cred *old;
 654        struct cred *new;
 655        int retval;
 656        kgid_t krgid, kegid, ksgid;
 657
 658        krgid = make_kgid(ns, rgid);
 659        kegid = make_kgid(ns, egid);
 660        ksgid = make_kgid(ns, sgid);
 661
 662        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 663                return -EINVAL;
 664        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 665                return -EINVAL;
 666        if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 667                return -EINVAL;
 668
 669        new = prepare_creds();
 670        if (!new)
 671                return -ENOMEM;
 672        old = current_cred();
 673
 674        retval = -EPERM;
 675        if (!ns_capable(old->user_ns, CAP_SETGID)) {
 676                if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 677                    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 678                        goto error;
 679                if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 680                    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 681                        goto error;
 682                if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 683                    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 684                        goto error;
 685        }
 686
 687        if (rgid != (gid_t) -1)
 688                new->gid = krgid;
 689        if (egid != (gid_t) -1)
 690                new->egid = kegid;
 691        if (sgid != (gid_t) -1)
 692                new->sgid = ksgid;
 693        new->fsgid = new->egid;
 694
 695        return commit_creds(new);
 696
 697error:
 698        abort_creds(new);
 699        return retval;
 700}
 701
 702SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 703{
 704        const struct cred *cred = current_cred();
 705        int retval;
 706        gid_t rgid, egid, sgid;
 707
 708        rgid = from_kgid_munged(cred->user_ns, cred->gid);
 709        egid = from_kgid_munged(cred->user_ns, cred->egid);
 710        sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 711
 712        if (!(retval   = put_user(rgid, rgidp)) &&
 713            !(retval   = put_user(egid, egidp)))
 714                retval = put_user(sgid, sgidp);
 715
 716        return retval;
 717}
 718
 719
 720/*
 721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 723 * whatever uid it wants to). It normally shadows "euid", except when
 724 * explicitly set by setfsuid() or for access..
 725 */
 726SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 727{
 728        const struct cred *old;
 729        struct cred *new;
 730        uid_t old_fsuid;
 731        kuid_t kuid;
 732
 733        old = current_cred();
 734        old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 735
 736        kuid = make_kuid(old->user_ns, uid);
 737        if (!uid_valid(kuid))
 738                return old_fsuid;
 739
 740        new = prepare_creds();
 741        if (!new)
 742                return old_fsuid;
 743
 744        if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 745            uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 746            ns_capable(old->user_ns, CAP_SETUID)) {
 747                if (!uid_eq(kuid, old->fsuid)) {
 748                        new->fsuid = kuid;
 749                        if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 750                                goto change_okay;
 751                }
 752        }
 753
 754        abort_creds(new);
 755        return old_fsuid;
 756
 757change_okay:
 758        commit_creds(new);
 759        return old_fsuid;
 760}
 761
 762/*
 763 * Samma på svenska..
 764 */
 765SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 766{
 767        const struct cred *old;
 768        struct cred *new;
 769        gid_t old_fsgid;
 770        kgid_t kgid;
 771
 772        old = current_cred();
 773        old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 774
 775        kgid = make_kgid(old->user_ns, gid);
 776        if (!gid_valid(kgid))
 777                return old_fsgid;
 778
 779        new = prepare_creds();
 780        if (!new)
 781                return old_fsgid;
 782
 783        if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 784            gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 785            ns_capable(old->user_ns, CAP_SETGID)) {
 786                if (!gid_eq(kgid, old->fsgid)) {
 787                        new->fsgid = kgid;
 788                        goto change_okay;
 789                }
 790        }
 791
 792        abort_creds(new);
 793        return old_fsgid;
 794
 795change_okay:
 796        commit_creds(new);
 797        return old_fsgid;
 798}
 799
 800/**
 801 * sys_getpid - return the thread group id of the current process
 802 *
 803 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 804 * the pid are identical unless CLONE_THREAD was specified on clone() in
 805 * which case the tgid is the same in all threads of the same group.
 806 *
 807 * This is SMP safe as current->tgid does not change.
 808 */
 809SYSCALL_DEFINE0(getpid)
 810{
 811        return task_tgid_vnr(current);
 812}
 813
 814/* Thread ID - the internal kernel "pid" */
 815SYSCALL_DEFINE0(gettid)
 816{
 817        return task_pid_vnr(current);
 818}
 819
 820/*
 821 * Accessing ->real_parent is not SMP-safe, it could
 822 * change from under us. However, we can use a stale
 823 * value of ->real_parent under rcu_read_lock(), see
 824 * release_task()->call_rcu(delayed_put_task_struct).
 825 */
 826SYSCALL_DEFINE0(getppid)
 827{
 828        int pid;
 829
 830        rcu_read_lock();
 831        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 832        rcu_read_unlock();
 833
 834        return pid;
 835}
 836
 837SYSCALL_DEFINE0(getuid)
 838{
 839        /* Only we change this so SMP safe */
 840        return from_kuid_munged(current_user_ns(), current_uid());
 841}
 842
 843SYSCALL_DEFINE0(geteuid)
 844{
 845        /* Only we change this so SMP safe */
 846        return from_kuid_munged(current_user_ns(), current_euid());
 847}
 848
 849SYSCALL_DEFINE0(getgid)
 850{
 851        /* Only we change this so SMP safe */
 852        return from_kgid_munged(current_user_ns(), current_gid());
 853}
 854
 855SYSCALL_DEFINE0(getegid)
 856{
 857        /* Only we change this so SMP safe */
 858        return from_kgid_munged(current_user_ns(), current_egid());
 859}
 860
 861void do_sys_times(struct tms *tms)
 862{
 863        cputime_t tgutime, tgstime, cutime, cstime;
 864
 865        spin_lock_irq(&current->sighand->siglock);
 866        thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 867        cutime = current->signal->cutime;
 868        cstime = current->signal->cstime;
 869        spin_unlock_irq(&current->sighand->siglock);
 870        tms->tms_utime = cputime_to_clock_t(tgutime);
 871        tms->tms_stime = cputime_to_clock_t(tgstime);
 872        tms->tms_cutime = cputime_to_clock_t(cutime);
 873        tms->tms_cstime = cputime_to_clock_t(cstime);
 874}
 875
 876SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 877{
 878        if (tbuf) {
 879                struct tms tmp;
 880
 881                do_sys_times(&tmp);
 882                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 883                        return -EFAULT;
 884        }
 885        force_successful_syscall_return();
 886        return (long) jiffies_64_to_clock_t(get_jiffies_64());
 887}
 888
 889/*
 890 * This needs some heavy checking ...
 891 * I just haven't the stomach for it. I also don't fully
 892 * understand sessions/pgrp etc. Let somebody who does explain it.
 893 *
 894 * OK, I think I have the protection semantics right.... this is really
 895 * only important on a multi-user system anyway, to make sure one user
 896 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 897 *
 898 * !PF_FORKNOEXEC check to conform completely to POSIX.
 899 */
 900SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 901{
 902        struct task_struct *p;
 903        struct task_struct *group_leader = current->group_leader;
 904        struct pid *pgrp;
 905        int err;
 906
 907        if (!pid)
 908                pid = task_pid_vnr(group_leader);
 909        if (!pgid)
 910                pgid = pid;
 911        if (pgid < 0)
 912                return -EINVAL;
 913        rcu_read_lock();
 914
 915        /* From this point forward we keep holding onto the tasklist lock
 916         * so that our parent does not change from under us. -DaveM
 917         */
 918        write_lock_irq(&tasklist_lock);
 919
 920        err = -ESRCH;
 921        p = find_task_by_vpid(pid);
 922        if (!p)
 923                goto out;
 924
 925        err = -EINVAL;
 926        if (!thread_group_leader(p))
 927                goto out;
 928
 929        if (same_thread_group(p->real_parent, group_leader)) {
 930                err = -EPERM;
 931                if (task_session(p) != task_session(group_leader))
 932                        goto out;
 933                err = -EACCES;
 934                if (!(p->flags & PF_FORKNOEXEC))
 935                        goto out;
 936        } else {
 937                err = -ESRCH;
 938                if (p != group_leader)
 939                        goto out;
 940        }
 941
 942        err = -EPERM;
 943        if (p->signal->leader)
 944                goto out;
 945
 946        pgrp = task_pid(p);
 947        if (pgid != pid) {
 948                struct task_struct *g;
 949
 950                pgrp = find_vpid(pgid);
 951                g = pid_task(pgrp, PIDTYPE_PGID);
 952                if (!g || task_session(g) != task_session(group_leader))
 953                        goto out;
 954        }
 955
 956        err = security_task_setpgid(p, pgid);
 957        if (err)
 958                goto out;
 959
 960        if (task_pgrp(p) != pgrp)
 961                change_pid(p, PIDTYPE_PGID, pgrp);
 962
 963        err = 0;
 964out:
 965        /* All paths lead to here, thus we are safe. -DaveM */
 966        write_unlock_irq(&tasklist_lock);
 967        rcu_read_unlock();
 968        return err;
 969}
 970
 971SYSCALL_DEFINE1(getpgid, pid_t, pid)
 972{
 973        struct task_struct *p;
 974        struct pid *grp;
 975        int retval;
 976
 977        rcu_read_lock();
 978        if (!pid)
 979                grp = task_pgrp(current);
 980        else {
 981                retval = -ESRCH;
 982                p = find_task_by_vpid(pid);
 983                if (!p)
 984                        goto out;
 985                grp = task_pgrp(p);
 986                if (!grp)
 987                        goto out;
 988
 989                retval = security_task_getpgid(p);
 990                if (retval)
 991                        goto out;
 992        }
 993        retval = pid_vnr(grp);
 994out:
 995        rcu_read_unlock();
 996        return retval;
 997}
 998
 999#ifdef __ARCH_WANT_SYS_GETPGRP
1000
1001SYSCALL_DEFINE0(getpgrp)
1002{
1003        return sys_getpgid(0);
1004}
1005
1006#endif
1007
1008SYSCALL_DEFINE1(getsid, pid_t, pid)
1009{
1010        struct task_struct *p;
1011        struct pid *sid;
1012        int retval;
1013
1014        rcu_read_lock();
1015        if (!pid)
1016                sid = task_session(current);
1017        else {
1018                retval = -ESRCH;
1019                p = find_task_by_vpid(pid);
1020                if (!p)
1021                        goto out;
1022                sid = task_session(p);
1023                if (!sid)
1024                        goto out;
1025
1026                retval = security_task_getsid(p);
1027                if (retval)
1028                        goto out;
1029        }
1030        retval = pid_vnr(sid);
1031out:
1032        rcu_read_unlock();
1033        return retval;
1034}
1035
1036static void set_special_pids(struct pid *pid)
1037{
1038        struct task_struct *curr = current->group_leader;
1039
1040        if (task_session(curr) != pid)
1041                change_pid(curr, PIDTYPE_SID, pid);
1042
1043        if (task_pgrp(curr) != pid)
1044                change_pid(curr, PIDTYPE_PGID, pid);
1045}
1046
1047SYSCALL_DEFINE0(setsid)
1048{
1049        struct task_struct *group_leader = current->group_leader;
1050        struct pid *sid = task_pid(group_leader);
1051        pid_t session = pid_vnr(sid);
1052        int err = -EPERM;
1053
1054        write_lock_irq(&tasklist_lock);
1055        /* Fail if I am already a session leader */
1056        if (group_leader->signal->leader)
1057                goto out;
1058
1059        /* Fail if a process group id already exists that equals the
1060         * proposed session id.
1061         */
1062        if (pid_task(sid, PIDTYPE_PGID))
1063                goto out;
1064
1065        group_leader->signal->leader = 1;
1066        set_special_pids(sid);
1067
1068        proc_clear_tty(group_leader);
1069
1070        err = session;
1071out:
1072        write_unlock_irq(&tasklist_lock);
1073        if (err > 0) {
1074                proc_sid_connector(group_leader);
1075                sched_autogroup_create_attach(group_leader);
1076        }
1077        return err;
1078}
1079
1080DECLARE_RWSEM(uts_sem);
1081
1082#ifdef COMPAT_UTS_MACHINE
1083#define override_architecture(name) \
1084        (personality(current->personality) == PER_LINUX32 && \
1085         copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1086                      sizeof(COMPAT_UTS_MACHINE)))
1087#else
1088#define override_architecture(name)     0
1089#endif
1090
1091/*
1092 * Work around broken programs that cannot handle "Linux 3.0".
1093 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1094 */
1095static int override_release(char __user *release, size_t len)
1096{
1097        int ret = 0;
1098
1099        if (current->personality & UNAME26) {
1100                const char *rest = UTS_RELEASE;
1101                char buf[65] = { 0 };
1102                int ndots = 0;
1103                unsigned v;
1104                size_t copy;
1105
1106                while (*rest) {
1107                        if (*rest == '.' && ++ndots >= 3)
1108                                break;
1109                        if (!isdigit(*rest) && *rest != '.')
1110                                break;
1111                        rest++;
1112                }
1113                v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1114                copy = clamp_t(size_t, len, 1, sizeof(buf));
1115                copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1116                ret = copy_to_user(release, buf, copy + 1);
1117        }
1118        return ret;
1119}
1120
1121SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1122{
1123        int errno = 0;
1124
1125        down_read(&uts_sem);
1126        if (copy_to_user(name, utsname(), sizeof *name))
1127                errno = -EFAULT;
1128        up_read(&uts_sem);
1129
1130        if (!errno && override_release(name->release, sizeof(name->release)))
1131                errno = -EFAULT;
1132        if (!errno && override_architecture(name))
1133                errno = -EFAULT;
1134        return errno;
1135}
1136
1137#ifdef __ARCH_WANT_SYS_OLD_UNAME
1138/*
1139 * Old cruft
1140 */
1141SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1142{
1143        int error = 0;
1144
1145        if (!name)
1146                return -EFAULT;
1147
1148        down_read(&uts_sem);
1149        if (copy_to_user(name, utsname(), sizeof(*name)))
1150                error = -EFAULT;
1151        up_read(&uts_sem);
1152
1153        if (!error && override_release(name->release, sizeof(name->release)))
1154                error = -EFAULT;
1155        if (!error && override_architecture(name))
1156                error = -EFAULT;
1157        return error;
1158}
1159
1160SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1161{
1162        int error;
1163
1164        if (!name)
1165                return -EFAULT;
1166        if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1167                return -EFAULT;
1168
1169        down_read(&uts_sem);
1170        error = __copy_to_user(&name->sysname, &utsname()->sysname,
1171                               __OLD_UTS_LEN);
1172        error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1173        error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1174                                __OLD_UTS_LEN);
1175        error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1176        error |= __copy_to_user(&name->release, &utsname()->release,
1177                                __OLD_UTS_LEN);
1178        error |= __put_user(0, name->release + __OLD_UTS_LEN);
1179        error |= __copy_to_user(&name->version, &utsname()->version,
1180                                __OLD_UTS_LEN);
1181        error |= __put_user(0, name->version + __OLD_UTS_LEN);
1182        error |= __copy_to_user(&name->machine, &utsname()->machine,
1183                                __OLD_UTS_LEN);
1184        error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1185        up_read(&uts_sem);
1186
1187        if (!error && override_architecture(name))
1188                error = -EFAULT;
1189        if (!error && override_release(name->release, sizeof(name->release)))
1190                error = -EFAULT;
1191        return error ? -EFAULT : 0;
1192}
1193#endif
1194
1195SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1196{
1197        int errno;
1198        char tmp[__NEW_UTS_LEN];
1199
1200        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1201                return -EPERM;
1202
1203        if (len < 0 || len > __NEW_UTS_LEN)
1204                return -EINVAL;
1205        down_write(&uts_sem);
1206        errno = -EFAULT;
1207        if (!copy_from_user(tmp, name, len)) {
1208                struct new_utsname *u = utsname();
1209
1210                memcpy(u->nodename, tmp, len);
1211                memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1212                errno = 0;
1213                uts_proc_notify(UTS_PROC_HOSTNAME);
1214        }
1215        up_write(&uts_sem);
1216        return errno;
1217}
1218
1219#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220
1221SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1222{
1223        int i, errno;
1224        struct new_utsname *u;
1225
1226        if (len < 0)
1227                return -EINVAL;
1228        down_read(&uts_sem);
1229        u = utsname();
1230        i = 1 + strlen(u->nodename);
1231        if (i > len)
1232                i = len;
1233        errno = 0;
1234        if (copy_to_user(name, u->nodename, i))
1235                errno = -EFAULT;
1236        up_read(&uts_sem);
1237        return errno;
1238}
1239
1240#endif
1241
1242/*
1243 * Only setdomainname; getdomainname can be implemented by calling
1244 * uname()
1245 */
1246SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1247{
1248        int errno;
1249        char tmp[__NEW_UTS_LEN];
1250
1251        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1252                return -EPERM;
1253        if (len < 0 || len > __NEW_UTS_LEN)
1254                return -EINVAL;
1255
1256        down_write(&uts_sem);
1257        errno = -EFAULT;
1258        if (!copy_from_user(tmp, name, len)) {
1259                struct new_utsname *u = utsname();
1260
1261                memcpy(u->domainname, tmp, len);
1262                memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1263                errno = 0;
1264                uts_proc_notify(UTS_PROC_DOMAINNAME);
1265        }
1266        up_write(&uts_sem);
1267        return errno;
1268}
1269
1270SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1271{
1272        struct rlimit value;
1273        int ret;
1274
1275        ret = do_prlimit(current, resource, NULL, &value);
1276        if (!ret)
1277                ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1278
1279        return ret;
1280}
1281
1282#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1283
1284/*
1285 *      Back compatibility for getrlimit. Needed for some apps.
1286 */
1287 
1288SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1289                struct rlimit __user *, rlim)
1290{
1291        struct rlimit x;
1292        if (resource >= RLIM_NLIMITS)
1293                return -EINVAL;
1294
1295        task_lock(current->group_leader);
1296        x = current->signal->rlim[resource];
1297        task_unlock(current->group_leader);
1298        if (x.rlim_cur > 0x7FFFFFFF)
1299                x.rlim_cur = 0x7FFFFFFF;
1300        if (x.rlim_max > 0x7FFFFFFF)
1301                x.rlim_max = 0x7FFFFFFF;
1302        return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1303}
1304
1305#endif
1306
1307static inline bool rlim64_is_infinity(__u64 rlim64)
1308{
1309#if BITS_PER_LONG < 64
1310        return rlim64 >= ULONG_MAX;
1311#else
1312        return rlim64 == RLIM64_INFINITY;
1313#endif
1314}
1315
1316static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1317{
1318        if (rlim->rlim_cur == RLIM_INFINITY)
1319                rlim64->rlim_cur = RLIM64_INFINITY;
1320        else
1321                rlim64->rlim_cur = rlim->rlim_cur;
1322        if (rlim->rlim_max == RLIM_INFINITY)
1323                rlim64->rlim_max = RLIM64_INFINITY;
1324        else
1325                rlim64->rlim_max = rlim->rlim_max;
1326}
1327
1328static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1329{
1330        if (rlim64_is_infinity(rlim64->rlim_cur))
1331                rlim->rlim_cur = RLIM_INFINITY;
1332        else
1333                rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1334        if (rlim64_is_infinity(rlim64->rlim_max))
1335                rlim->rlim_max = RLIM_INFINITY;
1336        else
1337                rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1338}
1339
1340/* make sure you are allowed to change @tsk limits before calling this */
1341int do_prlimit(struct task_struct *tsk, unsigned int resource,
1342                struct rlimit *new_rlim, struct rlimit *old_rlim)
1343{
1344        struct rlimit *rlim;
1345        int retval = 0;
1346
1347        if (resource >= RLIM_NLIMITS)
1348                return -EINVAL;
1349        if (new_rlim) {
1350                if (new_rlim->rlim_cur > new_rlim->rlim_max)
1351                        return -EINVAL;
1352                if (resource == RLIMIT_NOFILE &&
1353                                new_rlim->rlim_max > sysctl_nr_open)
1354                        return -EPERM;
1355        }
1356
1357        /* protect tsk->signal and tsk->sighand from disappearing */
1358        read_lock(&tasklist_lock);
1359        if (!tsk->sighand) {
1360                retval = -ESRCH;
1361                goto out;
1362        }
1363
1364        rlim = tsk->signal->rlim + resource;
1365        task_lock(tsk->group_leader);
1366        if (new_rlim) {
1367                /* Keep the capable check against init_user_ns until
1368                   cgroups can contain all limits */
1369                if (new_rlim->rlim_max > rlim->rlim_max &&
1370                                !capable(CAP_SYS_RESOURCE))
1371                        retval = -EPERM;
1372                if (!retval)
1373                        retval = security_task_setrlimit(tsk->group_leader,
1374                                        resource, new_rlim);
1375                if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1376                        /*
1377                         * The caller is asking for an immediate RLIMIT_CPU
1378                         * expiry.  But we use the zero value to mean "it was
1379                         * never set".  So let's cheat and make it one second
1380                         * instead
1381                         */
1382                        new_rlim->rlim_cur = 1;
1383                }
1384        }
1385        if (!retval) {
1386                if (old_rlim)
1387                        *old_rlim = *rlim;
1388                if (new_rlim)
1389                        *rlim = *new_rlim;
1390        }
1391        task_unlock(tsk->group_leader);
1392
1393        /*
1394         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1395         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1396         * very long-standing error, and fixing it now risks breakage of
1397         * applications, so we live with it
1398         */
1399         if (!retval && new_rlim && resource == RLIMIT_CPU &&
1400                         new_rlim->rlim_cur != RLIM_INFINITY)
1401                update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1402out:
1403        read_unlock(&tasklist_lock);
1404        return retval;
1405}
1406
1407/* rcu lock must be held */
1408static int check_prlimit_permission(struct task_struct *task)
1409{
1410        const struct cred *cred = current_cred(), *tcred;
1411
1412        if (current == task)
1413                return 0;
1414
1415        tcred = __task_cred(task);
1416        if (uid_eq(cred->uid, tcred->euid) &&
1417            uid_eq(cred->uid, tcred->suid) &&
1418            uid_eq(cred->uid, tcred->uid)  &&
1419            gid_eq(cred->gid, tcred->egid) &&
1420            gid_eq(cred->gid, tcred->sgid) &&
1421            gid_eq(cred->gid, tcred->gid))
1422                return 0;
1423        if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1424                return 0;
1425
1426        return -EPERM;
1427}
1428
1429SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430                const struct rlimit64 __user *, new_rlim,
1431                struct rlimit64 __user *, old_rlim)
1432{
1433        struct rlimit64 old64, new64;
1434        struct rlimit old, new;
1435        struct task_struct *tsk;
1436        int ret;
1437
1438        if (new_rlim) {
1439                if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440                        return -EFAULT;
1441                rlim64_to_rlim(&new64, &new);
1442        }
1443
1444        rcu_read_lock();
1445        tsk = pid ? find_task_by_vpid(pid) : current;
1446        if (!tsk) {
1447                rcu_read_unlock();
1448                return -ESRCH;
1449        }
1450        ret = check_prlimit_permission(tsk);
1451        if (ret) {
1452                rcu_read_unlock();
1453                return ret;
1454        }
1455        get_task_struct(tsk);
1456        rcu_read_unlock();
1457
1458        ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459                        old_rlim ? &old : NULL);
1460
1461        if (!ret && old_rlim) {
1462                rlim_to_rlim64(&old, &old64);
1463                if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464                        ret = -EFAULT;
1465        }
1466
1467        put_task_struct(tsk);
1468        return ret;
1469}
1470
1471SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472{
1473        struct rlimit new_rlim;
1474
1475        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476                return -EFAULT;
1477        return do_prlimit(current, resource, &new_rlim, NULL);
1478}
1479
1480/*
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*.  After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this.  It will make moving the rest of the information
1485 * a lot simpler!  (Which we're not doing right now because we're not
1486 * measuring them yet).
1487 *
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters.  But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums.  We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
1495 *
1496 * Locking:
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for  the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded.  Thread traversal is now safe with
1500 * the siglock held.
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded,  as no one else can take our signal_struct away, no one
1503 * else can  reap the  children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should  place a read memory barrier when we avoid the lock.
1507 * On the writer side,  write memory barrier is implied in  __exit_signal
1508 * as __exit_signal releases  the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
1510 *
1511 */
1512
1513static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1514{
1515        r->ru_nvcsw += t->nvcsw;
1516        r->ru_nivcsw += t->nivcsw;
1517        r->ru_minflt += t->min_flt;
1518        r->ru_majflt += t->maj_flt;
1519        r->ru_inblock += task_io_get_inblock(t);
1520        r->ru_oublock += task_io_get_oublock(t);
1521}
1522
1523static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524{
1525        struct task_struct *t;
1526        unsigned long flags;
1527        cputime_t tgutime, tgstime, utime, stime;
1528        unsigned long maxrss = 0;
1529
1530        memset((char *) r, 0, sizeof *r);
1531        utime = stime = 0;
1532
1533        if (who == RUSAGE_THREAD) {
1534                task_cputime_adjusted(current, &utime, &stime);
1535                accumulate_thread_rusage(p, r);
1536                maxrss = p->signal->maxrss;
1537                goto out;
1538        }
1539
1540        if (!lock_task_sighand(p, &flags))
1541                return;
1542
1543        switch (who) {
1544                case RUSAGE_BOTH:
1545                case RUSAGE_CHILDREN:
1546                        utime = p->signal->cutime;
1547                        stime = p->signal->cstime;
1548                        r->ru_nvcsw = p->signal->cnvcsw;
1549                        r->ru_nivcsw = p->signal->cnivcsw;
1550                        r->ru_minflt = p->signal->cmin_flt;
1551                        r->ru_majflt = p->signal->cmaj_flt;
1552                        r->ru_inblock = p->signal->cinblock;
1553                        r->ru_oublock = p->signal->coublock;
1554                        maxrss = p->signal->cmaxrss;
1555
1556                        if (who == RUSAGE_CHILDREN)
1557                                break;
1558
1559                case RUSAGE_SELF:
1560                        thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1561                        utime += tgutime;
1562                        stime += tgstime;
1563                        r->ru_nvcsw += p->signal->nvcsw;
1564                        r->ru_nivcsw += p->signal->nivcsw;
1565                        r->ru_minflt += p->signal->min_flt;
1566                        r->ru_majflt += p->signal->maj_flt;
1567                        r->ru_inblock += p->signal->inblock;
1568                        r->ru_oublock += p->signal->oublock;
1569                        if (maxrss < p->signal->maxrss)
1570                                maxrss = p->signal->maxrss;
1571                        t = p;
1572                        do {
1573                                accumulate_thread_rusage(t, r);
1574                        } while_each_thread(p, t);
1575                        break;
1576
1577                default:
1578                        BUG();
1579        }
1580        unlock_task_sighand(p, &flags);
1581
1582out:
1583        cputime_to_timeval(utime, &r->ru_utime);
1584        cputime_to_timeval(stime, &r->ru_stime);
1585
1586        if (who != RUSAGE_CHILDREN) {
1587                struct mm_struct *mm = get_task_mm(p);
1588                if (mm) {
1589                        setmax_mm_hiwater_rss(&maxrss, mm);
1590                        mmput(mm);
1591                }
1592        }
1593        r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1594}
1595
1596int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1597{
1598        struct rusage r;
1599        k_getrusage(p, who, &r);
1600        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1601}
1602
1603SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1604{
1605        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1606            who != RUSAGE_THREAD)
1607                return -EINVAL;
1608        return getrusage(current, who, ru);
1609}
1610
1611#ifdef CONFIG_COMPAT
1612COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1613{
1614        struct rusage r;
1615
1616        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1617            who != RUSAGE_THREAD)
1618                return -EINVAL;
1619
1620        k_getrusage(current, who, &r);
1621        return put_compat_rusage(&r, ru);
1622}
1623#endif
1624
1625SYSCALL_DEFINE1(umask, int, mask)
1626{
1627        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1628        return mask;
1629}
1630
1631static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1632{
1633        struct fd exe;
1634        struct inode *inode;
1635        int err;
1636
1637        exe = fdget(fd);
1638        if (!exe.file)
1639                return -EBADF;
1640
1641        inode = file_inode(exe.file);
1642
1643        /*
1644         * Because the original mm->exe_file points to executable file, make
1645         * sure that this one is executable as well, to avoid breaking an
1646         * overall picture.
1647         */
1648        err = -EACCES;
1649        if (!S_ISREG(inode->i_mode)     ||
1650            exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1651                goto exit;
1652
1653        err = inode_permission(inode, MAY_EXEC);
1654        if (err)
1655                goto exit;
1656
1657        down_write(&mm->mmap_sem);
1658
1659        /*
1660         * Forbid mm->exe_file change if old file still mapped.
1661         */
1662        err = -EBUSY;
1663        if (mm->exe_file) {
1664                struct vm_area_struct *vma;
1665
1666                for (vma = mm->mmap; vma; vma = vma->vm_next)
1667                        if (vma->vm_file &&
1668                            path_equal(&vma->vm_file->f_path,
1669                                       &mm->exe_file->f_path))
1670                                goto exit_unlock;
1671        }
1672
1673        /*
1674         * The symlink can be changed only once, just to disallow arbitrary
1675         * transitions malicious software might bring in. This means one
1676         * could make a snapshot over all processes running and monitor
1677         * /proc/pid/exe changes to notice unusual activity if needed.
1678         */
1679        err = -EPERM;
1680        if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1681                goto exit_unlock;
1682
1683        err = 0;
1684        set_mm_exe_file(mm, exe.file);  /* this grabs a reference to exe.file */
1685exit_unlock:
1686        up_write(&mm->mmap_sem);
1687
1688exit:
1689        fdput(exe);
1690        return err;
1691}
1692
1693static int prctl_set_mm(int opt, unsigned long addr,
1694                        unsigned long arg4, unsigned long arg5)
1695{
1696        unsigned long rlim = rlimit(RLIMIT_DATA);
1697        struct mm_struct *mm = current->mm;
1698        struct vm_area_struct *vma;
1699        int error;
1700
1701        if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1702                return -EINVAL;
1703
1704        if (!capable(CAP_SYS_RESOURCE))
1705                return -EPERM;
1706
1707        if (opt == PR_SET_MM_EXE_FILE)
1708                return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1709
1710        if (addr >= TASK_SIZE || addr < mmap_min_addr)
1711                return -EINVAL;
1712
1713        error = -EINVAL;
1714
1715        down_read(&mm->mmap_sem);
1716        vma = find_vma(mm, addr);
1717
1718        switch (opt) {
1719        case PR_SET_MM_START_CODE:
1720                mm->start_code = addr;
1721                break;
1722        case PR_SET_MM_END_CODE:
1723                mm->end_code = addr;
1724                break;
1725        case PR_SET_MM_START_DATA:
1726                mm->start_data = addr;
1727                break;
1728        case PR_SET_MM_END_DATA:
1729                mm->end_data = addr;
1730                break;
1731
1732        case PR_SET_MM_START_BRK:
1733                if (addr <= mm->end_data)
1734                        goto out;
1735
1736                if (rlim < RLIM_INFINITY &&
1737                    (mm->brk - addr) +
1738                    (mm->end_data - mm->start_data) > rlim)
1739                        goto out;
1740
1741                mm->start_brk = addr;
1742                break;
1743
1744        case PR_SET_MM_BRK:
1745                if (addr <= mm->end_data)
1746                        goto out;
1747
1748                if (rlim < RLIM_INFINITY &&
1749                    (addr - mm->start_brk) +
1750                    (mm->end_data - mm->start_data) > rlim)
1751                        goto out;
1752
1753                mm->brk = addr;
1754                break;
1755
1756        /*
1757         * If command line arguments and environment
1758         * are placed somewhere else on stack, we can
1759         * set them up here, ARG_START/END to setup
1760         * command line argumets and ENV_START/END
1761         * for environment.
1762         */
1763        case PR_SET_MM_START_STACK:
1764        case PR_SET_MM_ARG_START:
1765        case PR_SET_MM_ARG_END:
1766        case PR_SET_MM_ENV_START:
1767        case PR_SET_MM_ENV_END:
1768                if (!vma) {
1769                        error = -EFAULT;
1770                        goto out;
1771                }
1772                if (opt == PR_SET_MM_START_STACK)
1773                        mm->start_stack = addr;
1774                else if (opt == PR_SET_MM_ARG_START)
1775                        mm->arg_start = addr;
1776                else if (opt == PR_SET_MM_ARG_END)
1777                        mm->arg_end = addr;
1778                else if (opt == PR_SET_MM_ENV_START)
1779                        mm->env_start = addr;
1780                else if (opt == PR_SET_MM_ENV_END)
1781                        mm->env_end = addr;
1782                break;
1783
1784        /*
1785         * This doesn't move auxiliary vector itself
1786         * since it's pinned to mm_struct, but allow
1787         * to fill vector with new values. It's up
1788         * to a caller to provide sane values here
1789         * otherwise user space tools which use this
1790         * vector might be unhappy.
1791         */
1792        case PR_SET_MM_AUXV: {
1793                unsigned long user_auxv[AT_VECTOR_SIZE];
1794
1795                if (arg4 > sizeof(user_auxv))
1796                        goto out;
1797                up_read(&mm->mmap_sem);
1798
1799                if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1800                        return -EFAULT;
1801
1802                /* Make sure the last entry is always AT_NULL */
1803                user_auxv[AT_VECTOR_SIZE - 2] = 0;
1804                user_auxv[AT_VECTOR_SIZE - 1] = 0;
1805
1806                BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1807
1808                task_lock(current);
1809                memcpy(mm->saved_auxv, user_auxv, arg4);
1810                task_unlock(current);
1811
1812                return 0;
1813        }
1814        default:
1815                goto out;
1816        }
1817
1818        error = 0;
1819out:
1820        up_read(&mm->mmap_sem);
1821        return error;
1822}
1823
1824#ifdef CONFIG_CHECKPOINT_RESTORE
1825static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1826{
1827        return put_user(me->clear_child_tid, tid_addr);
1828}
1829#else
1830static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1831{
1832        return -EINVAL;
1833}
1834#endif
1835
1836SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1837                unsigned long, arg4, unsigned long, arg5)
1838{
1839        struct task_struct *me = current;
1840        unsigned char comm[sizeof(me->comm)];
1841        long error;
1842
1843        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1844        if (error != -ENOSYS)
1845                return error;
1846
1847        error = 0;
1848        switch (option) {
1849        case PR_SET_PDEATHSIG:
1850                if (!valid_signal(arg2)) {
1851                        error = -EINVAL;
1852                        break;
1853                }
1854                me->pdeath_signal = arg2;
1855                break;
1856        case PR_GET_PDEATHSIG:
1857                error = put_user(me->pdeath_signal, (int __user *)arg2);
1858                break;
1859        case PR_GET_DUMPABLE:
1860                error = get_dumpable(me->mm);
1861                break;
1862        case PR_SET_DUMPABLE:
1863                if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1864                        error = -EINVAL;
1865                        break;
1866                }
1867                set_dumpable(me->mm, arg2);
1868                break;
1869
1870        case PR_SET_UNALIGN:
1871                error = SET_UNALIGN_CTL(me, arg2);
1872                break;
1873        case PR_GET_UNALIGN:
1874                error = GET_UNALIGN_CTL(me, arg2);
1875                break;
1876        case PR_SET_FPEMU:
1877                error = SET_FPEMU_CTL(me, arg2);
1878                break;
1879        case PR_GET_FPEMU:
1880                error = GET_FPEMU_CTL(me, arg2);
1881                break;
1882        case PR_SET_FPEXC:
1883                error = SET_FPEXC_CTL(me, arg2);
1884                break;
1885        case PR_GET_FPEXC:
1886                error = GET_FPEXC_CTL(me, arg2);
1887                break;
1888        case PR_GET_TIMING:
1889                error = PR_TIMING_STATISTICAL;
1890                break;
1891        case PR_SET_TIMING:
1892                if (arg2 != PR_TIMING_STATISTICAL)
1893                        error = -EINVAL;
1894                break;
1895        case PR_SET_NAME:
1896                comm[sizeof(me->comm) - 1] = 0;
1897                if (strncpy_from_user(comm, (char __user *)arg2,
1898                                      sizeof(me->comm) - 1) < 0)
1899                        return -EFAULT;
1900                set_task_comm(me, comm);
1901                proc_comm_connector(me);
1902                break;
1903        case PR_GET_NAME:
1904                get_task_comm(comm, me);
1905                if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1906                        return -EFAULT;
1907                break;
1908        case PR_GET_ENDIAN:
1909                error = GET_ENDIAN(me, arg2);
1910                break;
1911        case PR_SET_ENDIAN:
1912                error = SET_ENDIAN(me, arg2);
1913                break;
1914        case PR_GET_SECCOMP:
1915                error = prctl_get_seccomp();
1916                break;
1917        case PR_SET_SECCOMP:
1918                error = prctl_set_seccomp(arg2, (char __user *)arg3);
1919                break;
1920        case PR_GET_TSC:
1921                error = GET_TSC_CTL(arg2);
1922                break;
1923        case PR_SET_TSC:
1924                error = SET_TSC_CTL(arg2);
1925                break;
1926        case PR_TASK_PERF_EVENTS_DISABLE:
1927                error = perf_event_task_disable();
1928                break;
1929        case PR_TASK_PERF_EVENTS_ENABLE:
1930                error = perf_event_task_enable();
1931                break;
1932        case PR_GET_TIMERSLACK:
1933                error = current->timer_slack_ns;
1934                break;
1935        case PR_SET_TIMERSLACK:
1936                if (arg2 <= 0)
1937                        current->timer_slack_ns =
1938                                        current->default_timer_slack_ns;
1939                else
1940                        current->timer_slack_ns = arg2;
1941                break;
1942        case PR_MCE_KILL:
1943                if (arg4 | arg5)
1944                        return -EINVAL;
1945                switch (arg2) {
1946                case PR_MCE_KILL_CLEAR:
1947                        if (arg3 != 0)
1948                                return -EINVAL;
1949                        current->flags &= ~PF_MCE_PROCESS;
1950                        break;
1951                case PR_MCE_KILL_SET:
1952                        current->flags |= PF_MCE_PROCESS;
1953                        if (arg3 == PR_MCE_KILL_EARLY)
1954                                current->flags |= PF_MCE_EARLY;
1955                        else if (arg3 == PR_MCE_KILL_LATE)
1956                                current->flags &= ~PF_MCE_EARLY;
1957                        else if (arg3 == PR_MCE_KILL_DEFAULT)
1958                                current->flags &=
1959                                                ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1960                        else
1961                                return -EINVAL;
1962                        break;
1963                default:
1964                        return -EINVAL;
1965                }
1966                break;
1967        case PR_MCE_KILL_GET:
1968                if (arg2 | arg3 | arg4 | arg5)
1969                        return -EINVAL;
1970                if (current->flags & PF_MCE_PROCESS)
1971                        error = (current->flags & PF_MCE_EARLY) ?
1972                                PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1973                else
1974                        error = PR_MCE_KILL_DEFAULT;
1975                break;
1976        case PR_SET_MM:
1977                error = prctl_set_mm(arg2, arg3, arg4, arg5);
1978                break;
1979        case PR_GET_TID_ADDRESS:
1980                error = prctl_get_tid_address(me, (int __user **)arg2);
1981                break;
1982        case PR_SET_CHILD_SUBREAPER:
1983                me->signal->is_child_subreaper = !!arg2;
1984                break;
1985        case PR_GET_CHILD_SUBREAPER:
1986                error = put_user(me->signal->is_child_subreaper,
1987                                 (int __user *)arg2);
1988                break;
1989        case PR_SET_NO_NEW_PRIVS:
1990                if (arg2 != 1 || arg3 || arg4 || arg5)
1991                        return -EINVAL;
1992
1993                current->no_new_privs = 1;
1994                break;
1995        case PR_GET_NO_NEW_PRIVS:
1996                if (arg2 || arg3 || arg4 || arg5)
1997                        return -EINVAL;
1998                return current->no_new_privs ? 1 : 0;
1999        case PR_GET_THP_DISABLE:
2000                if (arg2 || arg3 || arg4 || arg5)
2001                        return -EINVAL;
2002                error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2003                break;
2004        case PR_SET_THP_DISABLE:
2005                if (arg3 || arg4 || arg5)
2006                        return -EINVAL;
2007                down_write(&me->mm->mmap_sem);
2008                if (arg2)
2009                        me->mm->def_flags |= VM_NOHUGEPAGE;
2010                else
2011                        me->mm->def_flags &= ~VM_NOHUGEPAGE;
2012                up_write(&me->mm->mmap_sem);
2013                break;
2014        default:
2015                error = -EINVAL;
2016                break;
2017        }
2018        return error;
2019}
2020
2021SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2022                struct getcpu_cache __user *, unused)
2023{
2024        int err = 0;
2025        int cpu = raw_smp_processor_id();
2026        if (cpup)
2027                err |= put_user(cpu, cpup);
2028        if (nodep)
2029                err |= put_user(cpu_to_node(cpu), nodep);
2030        return err ? -EFAULT : 0;
2031}
2032
2033/**
2034 * do_sysinfo - fill in sysinfo struct
2035 * @info: pointer to buffer to fill
2036 */
2037static int do_sysinfo(struct sysinfo *info)
2038{
2039        unsigned long mem_total, sav_total;
2040        unsigned int mem_unit, bitcount;
2041        struct timespec tp;
2042
2043        memset(info, 0, sizeof(struct sysinfo));
2044
2045        get_monotonic_boottime(&tp);
2046        info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2047
2048        get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2049
2050        info->procs = nr_threads;
2051
2052        si_meminfo(info);
2053        si_swapinfo(info);
2054
2055        /*
2056         * If the sum of all the available memory (i.e. ram + swap)
2057         * is less than can be stored in a 32 bit unsigned long then
2058         * we can be binary compatible with 2.2.x kernels.  If not,
2059         * well, in that case 2.2.x was broken anyways...
2060         *
2061         *  -Erik Andersen <andersee@debian.org>
2062         */
2063
2064        mem_total = info->totalram + info->totalswap;
2065        if (mem_total < info->totalram || mem_total < info->totalswap)
2066                goto out;
2067        bitcount = 0;
2068        mem_unit = info->mem_unit;
2069        while (mem_unit > 1) {
2070                bitcount++;
2071                mem_unit >>= 1;
2072                sav_total = mem_total;
2073                mem_total <<= 1;
2074                if (mem_total < sav_total)
2075                        goto out;
2076        }
2077
2078        /*
2079         * If mem_total did not overflow, multiply all memory values by
2080         * info->mem_unit and set it to 1.  This leaves things compatible
2081         * with 2.2.x, and also retains compatibility with earlier 2.4.x
2082         * kernels...
2083         */
2084
2085        info->mem_unit = 1;
2086        info->totalram <<= bitcount;
2087        info->freeram <<= bitcount;
2088        info->sharedram <<= bitcount;
2089        info->bufferram <<= bitcount;
2090        info->totalswap <<= bitcount;
2091        info->freeswap <<= bitcount;
2092        info->totalhigh <<= bitcount;
2093        info->freehigh <<= bitcount;
2094
2095out:
2096        return 0;
2097}
2098
2099SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2100{
2101        struct sysinfo val;
2102
2103        do_sysinfo(&val);
2104
2105        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2106                return -EFAULT;
2107
2108        return 0;
2109}
2110
2111#ifdef CONFIG_COMPAT
2112struct compat_sysinfo {
2113        s32 uptime;
2114        u32 loads[3];
2115        u32 totalram;
2116        u32 freeram;
2117        u32 sharedram;
2118        u32 bufferram;
2119        u32 totalswap;
2120        u32 freeswap;
2121        u16 procs;
2122        u16 pad;
2123        u32 totalhigh;
2124        u32 freehigh;
2125        u32 mem_unit;
2126        char _f[20-2*sizeof(u32)-sizeof(int)];
2127};
2128
2129COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2130{
2131        struct sysinfo s;
2132
2133        do_sysinfo(&s);
2134
2135        /* Check to see if any memory value is too large for 32-bit and scale
2136         *  down if needed
2137         */
2138        if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2139                int bitcount = 0;
2140
2141                while (s.mem_unit < PAGE_SIZE) {
2142                        s.mem_unit <<= 1;
2143                        bitcount++;
2144                }
2145
2146                s.totalram >>= bitcount;
2147                s.freeram >>= bitcount;
2148                s.sharedram >>= bitcount;
2149                s.bufferram >>= bitcount;
2150                s.totalswap >>= bitcount;
2151                s.freeswap >>= bitcount;
2152                s.totalhigh >>= bitcount;
2153                s.freehigh >>= bitcount;
2154        }
2155
2156        if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2157            __put_user(s.uptime, &info->uptime) ||
2158            __put_user(s.loads[0], &info->loads[0]) ||
2159            __put_user(s.loads[1], &info->loads[1]) ||
2160            __put_user(s.loads[2], &info->loads[2]) ||
2161            __put_user(s.totalram, &info->totalram) ||
2162            __put_user(s.freeram, &info->freeram) ||
2163            __put_user(s.sharedram, &info->sharedram) ||
2164            __put_user(s.bufferram, &info->bufferram) ||
2165            __put_user(s.totalswap, &info->totalswap) ||
2166            __put_user(s.freeswap, &info->freeswap) ||
2167            __put_user(s.procs, &info->procs) ||
2168            __put_user(s.totalhigh, &info->totalhigh) ||
2169            __put_user(s.freehigh, &info->freehigh) ||
2170            __put_user(s.mem_unit, &info->mem_unit))
2171                return -EFAULT;
2172
2173        return 0;
2174}
2175#endif /* CONFIG_COMPAT */
2176