linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/ftrace_event.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/trace_seq.h>
  10#include <linux/spinlock.h>
  11#include <linux/irq_work.h>
  12#include <linux/debugfs.h>
  13#include <linux/uaccess.h>
  14#include <linux/hardirq.h>
  15#include <linux/kthread.h>      /* for self test */
  16#include <linux/kmemcheck.h>
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/fs.h>
  27
  28#include <asm/local.h>
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37        int ret;
  38
  39        ret = trace_seq_puts(s, "# compressed entry header\n");
  40        ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  41        ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  42        ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
  43        ret = trace_seq_putc(s, '\n');
  44        ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
  45                               RINGBUF_TYPE_PADDING);
  46        ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
  47                               RINGBUF_TYPE_TIME_EXTEND);
  48        ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49                               RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51        return ret;
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 122/*
 123 * A fast way to enable or disable all ring buffers is to
 124 * call tracing_on or tracing_off. Turning off the ring buffers
 125 * prevents all ring buffers from being recorded to.
 126 * Turning this switch on, makes it OK to write to the
 127 * ring buffer, if the ring buffer is enabled itself.
 128 *
 129 * There's three layers that must be on in order to write
 130 * to the ring buffer.
 131 *
 132 * 1) This global flag must be set.
 133 * 2) The ring buffer must be enabled for recording.
 134 * 3) The per cpu buffer must be enabled for recording.
 135 *
 136 * In case of an anomaly, this global flag has a bit set that
 137 * will permantly disable all ring buffers.
 138 */
 139
 140/*
 141 * Global flag to disable all recording to ring buffers
 142 *  This has two bits: ON, DISABLED
 143 *
 144 *  ON   DISABLED
 145 * ---- ----------
 146 *   0      0        : ring buffers are off
 147 *   1      0        : ring buffers are on
 148 *   X      1        : ring buffers are permanently disabled
 149 */
 150
 151enum {
 152        RB_BUFFERS_ON_BIT       = 0,
 153        RB_BUFFERS_DISABLED_BIT = 1,
 154};
 155
 156enum {
 157        RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
 158        RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
 159};
 160
 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
 162
 163/* Used for individual buffers (after the counter) */
 164#define RB_BUFFER_OFF           (1 << 20)
 165
 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 167
 168/**
 169 * tracing_off_permanent - permanently disable ring buffers
 170 *
 171 * This function, once called, will disable all ring buffers
 172 * permanently.
 173 */
 174void tracing_off_permanent(void)
 175{
 176        set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
 177}
 178
 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 180#define RB_ALIGNMENT            4U
 181#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 182#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 183
 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 185# define RB_FORCE_8BYTE_ALIGNMENT       0
 186# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 187#else
 188# define RB_FORCE_8BYTE_ALIGNMENT       1
 189# define RB_ARCH_ALIGNMENT              8U
 190#endif
 191
 192#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 193
 194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 196
 197enum {
 198        RB_LEN_TIME_EXTEND = 8,
 199        RB_LEN_TIME_STAMP = 16,
 200};
 201
 202#define skip_time_extend(event) \
 203        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 204
 205static inline int rb_null_event(struct ring_buffer_event *event)
 206{
 207        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 208}
 209
 210static void rb_event_set_padding(struct ring_buffer_event *event)
 211{
 212        /* padding has a NULL time_delta */
 213        event->type_len = RINGBUF_TYPE_PADDING;
 214        event->time_delta = 0;
 215}
 216
 217static unsigned
 218rb_event_data_length(struct ring_buffer_event *event)
 219{
 220        unsigned length;
 221
 222        if (event->type_len)
 223                length = event->type_len * RB_ALIGNMENT;
 224        else
 225                length = event->array[0];
 226        return length + RB_EVNT_HDR_SIZE;
 227}
 228
 229/*
 230 * Return the length of the given event. Will return
 231 * the length of the time extend if the event is a
 232 * time extend.
 233 */
 234static inline unsigned
 235rb_event_length(struct ring_buffer_event *event)
 236{
 237        switch (event->type_len) {
 238        case RINGBUF_TYPE_PADDING:
 239                if (rb_null_event(event))
 240                        /* undefined */
 241                        return -1;
 242                return  event->array[0] + RB_EVNT_HDR_SIZE;
 243
 244        case RINGBUF_TYPE_TIME_EXTEND:
 245                return RB_LEN_TIME_EXTEND;
 246
 247        case RINGBUF_TYPE_TIME_STAMP:
 248                return RB_LEN_TIME_STAMP;
 249
 250        case RINGBUF_TYPE_DATA:
 251                return rb_event_data_length(event);
 252        default:
 253                BUG();
 254        }
 255        /* not hit */
 256        return 0;
 257}
 258
 259/*
 260 * Return total length of time extend and data,
 261 *   or just the event length for all other events.
 262 */
 263static inline unsigned
 264rb_event_ts_length(struct ring_buffer_event *event)
 265{
 266        unsigned len = 0;
 267
 268        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 269                /* time extends include the data event after it */
 270                len = RB_LEN_TIME_EXTEND;
 271                event = skip_time_extend(event);
 272        }
 273        return len + rb_event_length(event);
 274}
 275
 276/**
 277 * ring_buffer_event_length - return the length of the event
 278 * @event: the event to get the length of
 279 *
 280 * Returns the size of the data load of a data event.
 281 * If the event is something other than a data event, it
 282 * returns the size of the event itself. With the exception
 283 * of a TIME EXTEND, where it still returns the size of the
 284 * data load of the data event after it.
 285 */
 286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 287{
 288        unsigned length;
 289
 290        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 291                event = skip_time_extend(event);
 292
 293        length = rb_event_length(event);
 294        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 295                return length;
 296        length -= RB_EVNT_HDR_SIZE;
 297        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 298                length -= sizeof(event->array[0]);
 299        return length;
 300}
 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 302
 303/* inline for ring buffer fast paths */
 304static void *
 305rb_event_data(struct ring_buffer_event *event)
 306{
 307        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 308                event = skip_time_extend(event);
 309        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 310        /* If length is in len field, then array[0] has the data */
 311        if (event->type_len)
 312                return (void *)&event->array[0];
 313        /* Otherwise length is in array[0] and array[1] has the data */
 314        return (void *)&event->array[1];
 315}
 316
 317/**
 318 * ring_buffer_event_data - return the data of the event
 319 * @event: the event to get the data from
 320 */
 321void *ring_buffer_event_data(struct ring_buffer_event *event)
 322{
 323        return rb_event_data(event);
 324}
 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 326
 327#define for_each_buffer_cpu(buffer, cpu)                \
 328        for_each_cpu(cpu, buffer->cpumask)
 329
 330#define TS_SHIFT        27
 331#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 332#define TS_DELTA_TEST   (~TS_MASK)
 333
 334/* Flag when events were overwritten */
 335#define RB_MISSED_EVENTS        (1 << 31)
 336/* Missed count stored at end */
 337#define RB_MISSED_STORED        (1 << 30)
 338
 339struct buffer_data_page {
 340        u64              time_stamp;    /* page time stamp */
 341        local_t          commit;        /* write committed index */
 342        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 343};
 344
 345/*
 346 * Note, the buffer_page list must be first. The buffer pages
 347 * are allocated in cache lines, which means that each buffer
 348 * page will be at the beginning of a cache line, and thus
 349 * the least significant bits will be zero. We use this to
 350 * add flags in the list struct pointers, to make the ring buffer
 351 * lockless.
 352 */
 353struct buffer_page {
 354        struct list_head list;          /* list of buffer pages */
 355        local_t          write;         /* index for next write */
 356        unsigned         read;          /* index for next read */
 357        local_t          entries;       /* entries on this page */
 358        unsigned long    real_end;      /* real end of data */
 359        struct buffer_data_page *page;  /* Actual data page */
 360};
 361
 362/*
 363 * The buffer page counters, write and entries, must be reset
 364 * atomically when crossing page boundaries. To synchronize this
 365 * update, two counters are inserted into the number. One is
 366 * the actual counter for the write position or count on the page.
 367 *
 368 * The other is a counter of updaters. Before an update happens
 369 * the update partition of the counter is incremented. This will
 370 * allow the updater to update the counter atomically.
 371 *
 372 * The counter is 20 bits, and the state data is 12.
 373 */
 374#define RB_WRITE_MASK           0xfffff
 375#define RB_WRITE_INTCNT         (1 << 20)
 376
 377static void rb_init_page(struct buffer_data_page *bpage)
 378{
 379        local_set(&bpage->commit, 0);
 380}
 381
 382/**
 383 * ring_buffer_page_len - the size of data on the page.
 384 * @page: The page to read
 385 *
 386 * Returns the amount of data on the page, including buffer page header.
 387 */
 388size_t ring_buffer_page_len(void *page)
 389{
 390        return local_read(&((struct buffer_data_page *)page)->commit)
 391                + BUF_PAGE_HDR_SIZE;
 392}
 393
 394/*
 395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 396 * this issue out.
 397 */
 398static void free_buffer_page(struct buffer_page *bpage)
 399{
 400        free_page((unsigned long)bpage->page);
 401        kfree(bpage);
 402}
 403
 404/*
 405 * We need to fit the time_stamp delta into 27 bits.
 406 */
 407static inline int test_time_stamp(u64 delta)
 408{
 409        if (delta & TS_DELTA_TEST)
 410                return 1;
 411        return 0;
 412}
 413
 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 415
 416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 418
 419int ring_buffer_print_page_header(struct trace_seq *s)
 420{
 421        struct buffer_data_page field;
 422        int ret;
 423
 424        ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 425                               "offset:0;\tsize:%u;\tsigned:%u;\n",
 426                               (unsigned int)sizeof(field.time_stamp),
 427                               (unsigned int)is_signed_type(u64));
 428
 429        ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
 430                               "offset:%u;\tsize:%u;\tsigned:%u;\n",
 431                               (unsigned int)offsetof(typeof(field), commit),
 432                               (unsigned int)sizeof(field.commit),
 433                               (unsigned int)is_signed_type(long));
 434
 435        ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
 436                               "offset:%u;\tsize:%u;\tsigned:%u;\n",
 437                               (unsigned int)offsetof(typeof(field), commit),
 438                               1,
 439                               (unsigned int)is_signed_type(long));
 440
 441        ret = trace_seq_printf(s, "\tfield: char data;\t"
 442                               "offset:%u;\tsize:%u;\tsigned:%u;\n",
 443                               (unsigned int)offsetof(typeof(field), data),
 444                               (unsigned int)BUF_PAGE_SIZE,
 445                               (unsigned int)is_signed_type(char));
 446
 447        return ret;
 448}
 449
 450struct rb_irq_work {
 451        struct irq_work                 work;
 452        wait_queue_head_t               waiters;
 453        bool                            waiters_pending;
 454};
 455
 456/*
 457 * head_page == tail_page && head == tail then buffer is empty.
 458 */
 459struct ring_buffer_per_cpu {
 460        int                             cpu;
 461        atomic_t                        record_disabled;
 462        struct ring_buffer              *buffer;
 463        raw_spinlock_t                  reader_lock;    /* serialize readers */
 464        arch_spinlock_t                 lock;
 465        struct lock_class_key           lock_key;
 466        unsigned int                    nr_pages;
 467        struct list_head                *pages;
 468        struct buffer_page              *head_page;     /* read from head */
 469        struct buffer_page              *tail_page;     /* write to tail */
 470        struct buffer_page              *commit_page;   /* committed pages */
 471        struct buffer_page              *reader_page;
 472        unsigned long                   lost_events;
 473        unsigned long                   last_overrun;
 474        local_t                         entries_bytes;
 475        local_t                         entries;
 476        local_t                         overrun;
 477        local_t                         commit_overrun;
 478        local_t                         dropped_events;
 479        local_t                         committing;
 480        local_t                         commits;
 481        unsigned long                   read;
 482        unsigned long                   read_bytes;
 483        u64                             write_stamp;
 484        u64                             read_stamp;
 485        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 486        int                             nr_pages_to_update;
 487        struct list_head                new_pages; /* new pages to add */
 488        struct work_struct              update_pages_work;
 489        struct completion               update_done;
 490
 491        struct rb_irq_work              irq_work;
 492};
 493
 494struct ring_buffer {
 495        unsigned                        flags;
 496        int                             cpus;
 497        atomic_t                        record_disabled;
 498        atomic_t                        resize_disabled;
 499        cpumask_var_t                   cpumask;
 500
 501        struct lock_class_key           *reader_lock_key;
 502
 503        struct mutex                    mutex;
 504
 505        struct ring_buffer_per_cpu      **buffers;
 506
 507#ifdef CONFIG_HOTPLUG_CPU
 508        struct notifier_block           cpu_notify;
 509#endif
 510        u64                             (*clock)(void);
 511
 512        struct rb_irq_work              irq_work;
 513};
 514
 515struct ring_buffer_iter {
 516        struct ring_buffer_per_cpu      *cpu_buffer;
 517        unsigned long                   head;
 518        struct buffer_page              *head_page;
 519        struct buffer_page              *cache_reader_page;
 520        unsigned long                   cache_read;
 521        u64                             read_stamp;
 522};
 523
 524/*
 525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 526 *
 527 * Schedules a delayed work to wake up any task that is blocked on the
 528 * ring buffer waiters queue.
 529 */
 530static void rb_wake_up_waiters(struct irq_work *work)
 531{
 532        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 533
 534        wake_up_all(&rbwork->waiters);
 535}
 536
 537/**
 538 * ring_buffer_wait - wait for input to the ring buffer
 539 * @buffer: buffer to wait on
 540 * @cpu: the cpu buffer to wait on
 541 *
 542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 543 * as data is added to any of the @buffer's cpu buffers. Otherwise
 544 * it will wait for data to be added to a specific cpu buffer.
 545 */
 546int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
 547{
 548        struct ring_buffer_per_cpu *cpu_buffer;
 549        DEFINE_WAIT(wait);
 550        struct rb_irq_work *work;
 551
 552        /*
 553         * Depending on what the caller is waiting for, either any
 554         * data in any cpu buffer, or a specific buffer, put the
 555         * caller on the appropriate wait queue.
 556         */
 557        if (cpu == RING_BUFFER_ALL_CPUS)
 558                work = &buffer->irq_work;
 559        else {
 560                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 561                        return -ENODEV;
 562                cpu_buffer = buffer->buffers[cpu];
 563                work = &cpu_buffer->irq_work;
 564        }
 565
 566
 567        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 568
 569        /*
 570         * The events can happen in critical sections where
 571         * checking a work queue can cause deadlocks.
 572         * After adding a task to the queue, this flag is set
 573         * only to notify events to try to wake up the queue
 574         * using irq_work.
 575         *
 576         * We don't clear it even if the buffer is no longer
 577         * empty. The flag only causes the next event to run
 578         * irq_work to do the work queue wake up. The worse
 579         * that can happen if we race with !trace_empty() is that
 580         * an event will cause an irq_work to try to wake up
 581         * an empty queue.
 582         *
 583         * There's no reason to protect this flag either, as
 584         * the work queue and irq_work logic will do the necessary
 585         * synchronization for the wake ups. The only thing
 586         * that is necessary is that the wake up happens after
 587         * a task has been queued. It's OK for spurious wake ups.
 588         */
 589        work->waiters_pending = true;
 590
 591        if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
 592            (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
 593                schedule();
 594
 595        finish_wait(&work->waiters, &wait);
 596        return 0;
 597}
 598
 599/**
 600 * ring_buffer_poll_wait - poll on buffer input
 601 * @buffer: buffer to wait on
 602 * @cpu: the cpu buffer to wait on
 603 * @filp: the file descriptor
 604 * @poll_table: The poll descriptor
 605 *
 606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 607 * as data is added to any of the @buffer's cpu buffers. Otherwise
 608 * it will wait for data to be added to a specific cpu buffer.
 609 *
 610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 611 * zero otherwise.
 612 */
 613int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 614                          struct file *filp, poll_table *poll_table)
 615{
 616        struct ring_buffer_per_cpu *cpu_buffer;
 617        struct rb_irq_work *work;
 618
 619        if (cpu == RING_BUFFER_ALL_CPUS)
 620                work = &buffer->irq_work;
 621        else {
 622                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 623                        return -EINVAL;
 624
 625                cpu_buffer = buffer->buffers[cpu];
 626                work = &cpu_buffer->irq_work;
 627        }
 628
 629        work->waiters_pending = true;
 630        poll_wait(filp, &work->waiters, poll_table);
 631
 632        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 633            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 634                return POLLIN | POLLRDNORM;
 635        return 0;
 636}
 637
 638/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 639#define RB_WARN_ON(b, cond)                                             \
 640        ({                                                              \
 641                int _____ret = unlikely(cond);                          \
 642                if (_____ret) {                                         \
 643                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 644                                struct ring_buffer_per_cpu *__b =       \
 645                                        (void *)b;                      \
 646                                atomic_inc(&__b->buffer->record_disabled); \
 647                        } else                                          \
 648                                atomic_inc(&b->record_disabled);        \
 649                        WARN_ON(1);                                     \
 650                }                                                       \
 651                _____ret;                                               \
 652        })
 653
 654/* Up this if you want to test the TIME_EXTENTS and normalization */
 655#define DEBUG_SHIFT 0
 656
 657static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 658{
 659        /* shift to debug/test normalization and TIME_EXTENTS */
 660        return buffer->clock() << DEBUG_SHIFT;
 661}
 662
 663u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 664{
 665        u64 time;
 666
 667        preempt_disable_notrace();
 668        time = rb_time_stamp(buffer);
 669        preempt_enable_no_resched_notrace();
 670
 671        return time;
 672}
 673EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 674
 675void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 676                                      int cpu, u64 *ts)
 677{
 678        /* Just stupid testing the normalize function and deltas */
 679        *ts >>= DEBUG_SHIFT;
 680}
 681EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 682
 683/*
 684 * Making the ring buffer lockless makes things tricky.
 685 * Although writes only happen on the CPU that they are on,
 686 * and they only need to worry about interrupts. Reads can
 687 * happen on any CPU.
 688 *
 689 * The reader page is always off the ring buffer, but when the
 690 * reader finishes with a page, it needs to swap its page with
 691 * a new one from the buffer. The reader needs to take from
 692 * the head (writes go to the tail). But if a writer is in overwrite
 693 * mode and wraps, it must push the head page forward.
 694 *
 695 * Here lies the problem.
 696 *
 697 * The reader must be careful to replace only the head page, and
 698 * not another one. As described at the top of the file in the
 699 * ASCII art, the reader sets its old page to point to the next
 700 * page after head. It then sets the page after head to point to
 701 * the old reader page. But if the writer moves the head page
 702 * during this operation, the reader could end up with the tail.
 703 *
 704 * We use cmpxchg to help prevent this race. We also do something
 705 * special with the page before head. We set the LSB to 1.
 706 *
 707 * When the writer must push the page forward, it will clear the
 708 * bit that points to the head page, move the head, and then set
 709 * the bit that points to the new head page.
 710 *
 711 * We also don't want an interrupt coming in and moving the head
 712 * page on another writer. Thus we use the second LSB to catch
 713 * that too. Thus:
 714 *
 715 * head->list->prev->next        bit 1          bit 0
 716 *                              -------        -------
 717 * Normal page                     0              0
 718 * Points to head page             0              1
 719 * New head page                   1              0
 720 *
 721 * Note we can not trust the prev pointer of the head page, because:
 722 *
 723 * +----+       +-----+        +-----+
 724 * |    |------>|  T  |---X--->|  N  |
 725 * |    |<------|     |        |     |
 726 * +----+       +-----+        +-----+
 727 *   ^                           ^ |
 728 *   |          +-----+          | |
 729 *   +----------|  R  |----------+ |
 730 *              |     |<-----------+
 731 *              +-----+
 732 *
 733 * Key:  ---X-->  HEAD flag set in pointer
 734 *         T      Tail page
 735 *         R      Reader page
 736 *         N      Next page
 737 *
 738 * (see __rb_reserve_next() to see where this happens)
 739 *
 740 *  What the above shows is that the reader just swapped out
 741 *  the reader page with a page in the buffer, but before it
 742 *  could make the new header point back to the new page added
 743 *  it was preempted by a writer. The writer moved forward onto
 744 *  the new page added by the reader and is about to move forward
 745 *  again.
 746 *
 747 *  You can see, it is legitimate for the previous pointer of
 748 *  the head (or any page) not to point back to itself. But only
 749 *  temporarially.
 750 */
 751
 752#define RB_PAGE_NORMAL          0UL
 753#define RB_PAGE_HEAD            1UL
 754#define RB_PAGE_UPDATE          2UL
 755
 756
 757#define RB_FLAG_MASK            3UL
 758
 759/* PAGE_MOVED is not part of the mask */
 760#define RB_PAGE_MOVED           4UL
 761
 762/*
 763 * rb_list_head - remove any bit
 764 */
 765static struct list_head *rb_list_head(struct list_head *list)
 766{
 767        unsigned long val = (unsigned long)list;
 768
 769        return (struct list_head *)(val & ~RB_FLAG_MASK);
 770}
 771
 772/*
 773 * rb_is_head_page - test if the given page is the head page
 774 *
 775 * Because the reader may move the head_page pointer, we can
 776 * not trust what the head page is (it may be pointing to
 777 * the reader page). But if the next page is a header page,
 778 * its flags will be non zero.
 779 */
 780static inline int
 781rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 782                struct buffer_page *page, struct list_head *list)
 783{
 784        unsigned long val;
 785
 786        val = (unsigned long)list->next;
 787
 788        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 789                return RB_PAGE_MOVED;
 790
 791        return val & RB_FLAG_MASK;
 792}
 793
 794/*
 795 * rb_is_reader_page
 796 *
 797 * The unique thing about the reader page, is that, if the
 798 * writer is ever on it, the previous pointer never points
 799 * back to the reader page.
 800 */
 801static int rb_is_reader_page(struct buffer_page *page)
 802{
 803        struct list_head *list = page->list.prev;
 804
 805        return rb_list_head(list->next) != &page->list;
 806}
 807
 808/*
 809 * rb_set_list_to_head - set a list_head to be pointing to head.
 810 */
 811static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 812                                struct list_head *list)
 813{
 814        unsigned long *ptr;
 815
 816        ptr = (unsigned long *)&list->next;
 817        *ptr |= RB_PAGE_HEAD;
 818        *ptr &= ~RB_PAGE_UPDATE;
 819}
 820
 821/*
 822 * rb_head_page_activate - sets up head page
 823 */
 824static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 825{
 826        struct buffer_page *head;
 827
 828        head = cpu_buffer->head_page;
 829        if (!head)
 830                return;
 831
 832        /*
 833         * Set the previous list pointer to have the HEAD flag.
 834         */
 835        rb_set_list_to_head(cpu_buffer, head->list.prev);
 836}
 837
 838static void rb_list_head_clear(struct list_head *list)
 839{
 840        unsigned long *ptr = (unsigned long *)&list->next;
 841
 842        *ptr &= ~RB_FLAG_MASK;
 843}
 844
 845/*
 846 * rb_head_page_dactivate - clears head page ptr (for free list)
 847 */
 848static void
 849rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 850{
 851        struct list_head *hd;
 852
 853        /* Go through the whole list and clear any pointers found. */
 854        rb_list_head_clear(cpu_buffer->pages);
 855
 856        list_for_each(hd, cpu_buffer->pages)
 857                rb_list_head_clear(hd);
 858}
 859
 860static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 861                            struct buffer_page *head,
 862                            struct buffer_page *prev,
 863                            int old_flag, int new_flag)
 864{
 865        struct list_head *list;
 866        unsigned long val = (unsigned long)&head->list;
 867        unsigned long ret;
 868
 869        list = &prev->list;
 870
 871        val &= ~RB_FLAG_MASK;
 872
 873        ret = cmpxchg((unsigned long *)&list->next,
 874                      val | old_flag, val | new_flag);
 875
 876        /* check if the reader took the page */
 877        if ((ret & ~RB_FLAG_MASK) != val)
 878                return RB_PAGE_MOVED;
 879
 880        return ret & RB_FLAG_MASK;
 881}
 882
 883static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 884                                   struct buffer_page *head,
 885                                   struct buffer_page *prev,
 886                                   int old_flag)
 887{
 888        return rb_head_page_set(cpu_buffer, head, prev,
 889                                old_flag, RB_PAGE_UPDATE);
 890}
 891
 892static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 893                                 struct buffer_page *head,
 894                                 struct buffer_page *prev,
 895                                 int old_flag)
 896{
 897        return rb_head_page_set(cpu_buffer, head, prev,
 898                                old_flag, RB_PAGE_HEAD);
 899}
 900
 901static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 902                                   struct buffer_page *head,
 903                                   struct buffer_page *prev,
 904                                   int old_flag)
 905{
 906        return rb_head_page_set(cpu_buffer, head, prev,
 907                                old_flag, RB_PAGE_NORMAL);
 908}
 909
 910static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 911                               struct buffer_page **bpage)
 912{
 913        struct list_head *p = rb_list_head((*bpage)->list.next);
 914
 915        *bpage = list_entry(p, struct buffer_page, list);
 916}
 917
 918static struct buffer_page *
 919rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 920{
 921        struct buffer_page *head;
 922        struct buffer_page *page;
 923        struct list_head *list;
 924        int i;
 925
 926        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 927                return NULL;
 928
 929        /* sanity check */
 930        list = cpu_buffer->pages;
 931        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 932                return NULL;
 933
 934        page = head = cpu_buffer->head_page;
 935        /*
 936         * It is possible that the writer moves the header behind
 937         * where we started, and we miss in one loop.
 938         * A second loop should grab the header, but we'll do
 939         * three loops just because I'm paranoid.
 940         */
 941        for (i = 0; i < 3; i++) {
 942                do {
 943                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 944                                cpu_buffer->head_page = page;
 945                                return page;
 946                        }
 947                        rb_inc_page(cpu_buffer, &page);
 948                } while (page != head);
 949        }
 950
 951        RB_WARN_ON(cpu_buffer, 1);
 952
 953        return NULL;
 954}
 955
 956static int rb_head_page_replace(struct buffer_page *old,
 957                                struct buffer_page *new)
 958{
 959        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 960        unsigned long val;
 961        unsigned long ret;
 962
 963        val = *ptr & ~RB_FLAG_MASK;
 964        val |= RB_PAGE_HEAD;
 965
 966        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
 967
 968        return ret == val;
 969}
 970
 971/*
 972 * rb_tail_page_update - move the tail page forward
 973 *
 974 * Returns 1 if moved tail page, 0 if someone else did.
 975 */
 976static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
 977                               struct buffer_page *tail_page,
 978                               struct buffer_page *next_page)
 979{
 980        struct buffer_page *old_tail;
 981        unsigned long old_entries;
 982        unsigned long old_write;
 983        int ret = 0;
 984
 985        /*
 986         * The tail page now needs to be moved forward.
 987         *
 988         * We need to reset the tail page, but without messing
 989         * with possible erasing of data brought in by interrupts
 990         * that have moved the tail page and are currently on it.
 991         *
 992         * We add a counter to the write field to denote this.
 993         */
 994        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
 995        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
 996
 997        /*
 998         * Just make sure we have seen our old_write and synchronize
 999         * with any interrupts that come in.
1000         */
1001        barrier();
1002
1003        /*
1004         * If the tail page is still the same as what we think
1005         * it is, then it is up to us to update the tail
1006         * pointer.
1007         */
1008        if (tail_page == cpu_buffer->tail_page) {
1009                /* Zero the write counter */
1010                unsigned long val = old_write & ~RB_WRITE_MASK;
1011                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012
1013                /*
1014                 * This will only succeed if an interrupt did
1015                 * not come in and change it. In which case, we
1016                 * do not want to modify it.
1017                 *
1018                 * We add (void) to let the compiler know that we do not care
1019                 * about the return value of these functions. We use the
1020                 * cmpxchg to only update if an interrupt did not already
1021                 * do it for us. If the cmpxchg fails, we don't care.
1022                 */
1023                (void)local_cmpxchg(&next_page->write, old_write, val);
1024                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1025
1026                /*
1027                 * No need to worry about races with clearing out the commit.
1028                 * it only can increment when a commit takes place. But that
1029                 * only happens in the outer most nested commit.
1030                 */
1031                local_set(&next_page->page->commit, 0);
1032
1033                old_tail = cmpxchg(&cpu_buffer->tail_page,
1034                                   tail_page, next_page);
1035
1036                if (old_tail == tail_page)
1037                        ret = 1;
1038        }
1039
1040        return ret;
1041}
1042
1043static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044                          struct buffer_page *bpage)
1045{
1046        unsigned long val = (unsigned long)bpage;
1047
1048        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049                return 1;
1050
1051        return 0;
1052}
1053
1054/**
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1056 */
1057static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058                         struct list_head *list)
1059{
1060        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061                return 1;
1062        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063                return 1;
1064        return 0;
1065}
1066
1067/**
1068 * rb_check_pages - integrity check of buffer pages
1069 * @cpu_buffer: CPU buffer with pages to test
1070 *
1071 * As a safety measure we check to make sure the data pages have not
1072 * been corrupted.
1073 */
1074static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075{
1076        struct list_head *head = cpu_buffer->pages;
1077        struct buffer_page *bpage, *tmp;
1078
1079        /* Reset the head page if it exists */
1080        if (cpu_buffer->head_page)
1081                rb_set_head_page(cpu_buffer);
1082
1083        rb_head_page_deactivate(cpu_buffer);
1084
1085        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086                return -1;
1087        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088                return -1;
1089
1090        if (rb_check_list(cpu_buffer, head))
1091                return -1;
1092
1093        list_for_each_entry_safe(bpage, tmp, head, list) {
1094                if (RB_WARN_ON(cpu_buffer,
1095                               bpage->list.next->prev != &bpage->list))
1096                        return -1;
1097                if (RB_WARN_ON(cpu_buffer,
1098                               bpage->list.prev->next != &bpage->list))
1099                        return -1;
1100                if (rb_check_list(cpu_buffer, &bpage->list))
1101                        return -1;
1102        }
1103
1104        rb_head_page_activate(cpu_buffer);
1105
1106        return 0;
1107}
1108
1109static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1110{
1111        int i;
1112        struct buffer_page *bpage, *tmp;
1113
1114        for (i = 0; i < nr_pages; i++) {
1115                struct page *page;
1116                /*
1117                 * __GFP_NORETRY flag makes sure that the allocation fails
1118                 * gracefully without invoking oom-killer and the system is
1119                 * not destabilized.
1120                 */
1121                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1122                                    GFP_KERNEL | __GFP_NORETRY,
1123                                    cpu_to_node(cpu));
1124                if (!bpage)
1125                        goto free_pages;
1126
1127                list_add(&bpage->list, pages);
1128
1129                page = alloc_pages_node(cpu_to_node(cpu),
1130                                        GFP_KERNEL | __GFP_NORETRY, 0);
1131                if (!page)
1132                        goto free_pages;
1133                bpage->page = page_address(page);
1134                rb_init_page(bpage->page);
1135        }
1136
1137        return 0;
1138
1139free_pages:
1140        list_for_each_entry_safe(bpage, tmp, pages, list) {
1141                list_del_init(&bpage->list);
1142                free_buffer_page(bpage);
1143        }
1144
1145        return -ENOMEM;
1146}
1147
1148static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149                             unsigned nr_pages)
1150{
1151        LIST_HEAD(pages);
1152
1153        WARN_ON(!nr_pages);
1154
1155        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156                return -ENOMEM;
1157
1158        /*
1159         * The ring buffer page list is a circular list that does not
1160         * start and end with a list head. All page list items point to
1161         * other pages.
1162         */
1163        cpu_buffer->pages = pages.next;
1164        list_del(&pages);
1165
1166        cpu_buffer->nr_pages = nr_pages;
1167
1168        rb_check_pages(cpu_buffer);
1169
1170        return 0;
1171}
1172
1173static struct ring_buffer_per_cpu *
1174rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1175{
1176        struct ring_buffer_per_cpu *cpu_buffer;
1177        struct buffer_page *bpage;
1178        struct page *page;
1179        int ret;
1180
1181        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182                                  GFP_KERNEL, cpu_to_node(cpu));
1183        if (!cpu_buffer)
1184                return NULL;
1185
1186        cpu_buffer->cpu = cpu;
1187        cpu_buffer->buffer = buffer;
1188        raw_spin_lock_init(&cpu_buffer->reader_lock);
1189        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1190        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1191        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1192        init_completion(&cpu_buffer->update_done);
1193        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1194        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1195
1196        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1197                            GFP_KERNEL, cpu_to_node(cpu));
1198        if (!bpage)
1199                goto fail_free_buffer;
1200
1201        rb_check_bpage(cpu_buffer, bpage);
1202
1203        cpu_buffer->reader_page = bpage;
1204        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205        if (!page)
1206                goto fail_free_reader;
1207        bpage->page = page_address(page);
1208        rb_init_page(bpage->page);
1209
1210        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1211        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1212
1213        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1214        if (ret < 0)
1215                goto fail_free_reader;
1216
1217        cpu_buffer->head_page
1218                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1219        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1220
1221        rb_head_page_activate(cpu_buffer);
1222
1223        return cpu_buffer;
1224
1225 fail_free_reader:
1226        free_buffer_page(cpu_buffer->reader_page);
1227
1228 fail_free_buffer:
1229        kfree(cpu_buffer);
1230        return NULL;
1231}
1232
1233static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234{
1235        struct list_head *head = cpu_buffer->pages;
1236        struct buffer_page *bpage, *tmp;
1237
1238        free_buffer_page(cpu_buffer->reader_page);
1239
1240        rb_head_page_deactivate(cpu_buffer);
1241
1242        if (head) {
1243                list_for_each_entry_safe(bpage, tmp, head, list) {
1244                        list_del_init(&bpage->list);
1245                        free_buffer_page(bpage);
1246                }
1247                bpage = list_entry(head, struct buffer_page, list);
1248                free_buffer_page(bpage);
1249        }
1250
1251        kfree(cpu_buffer);
1252}
1253
1254#ifdef CONFIG_HOTPLUG_CPU
1255static int rb_cpu_notify(struct notifier_block *self,
1256                         unsigned long action, void *hcpu);
1257#endif
1258
1259/**
1260 * __ring_buffer_alloc - allocate a new ring_buffer
1261 * @size: the size in bytes per cpu that is needed.
1262 * @flags: attributes to set for the ring buffer.
1263 *
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1268 */
1269struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270                                        struct lock_class_key *key)
1271{
1272        struct ring_buffer *buffer;
1273        int bsize;
1274        int cpu, nr_pages;
1275
1276        /* keep it in its own cache line */
1277        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278                         GFP_KERNEL);
1279        if (!buffer)
1280                return NULL;
1281
1282        if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283                goto fail_free_buffer;
1284
1285        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1286        buffer->flags = flags;
1287        buffer->clock = trace_clock_local;
1288        buffer->reader_lock_key = key;
1289
1290        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1291        init_waitqueue_head(&buffer->irq_work.waiters);
1292
1293        /* need at least two pages */
1294        if (nr_pages < 2)
1295                nr_pages = 2;
1296
1297        /*
1298         * In case of non-hotplug cpu, if the ring-buffer is allocated
1299         * in early initcall, it will not be notified of secondary cpus.
1300         * In that off case, we need to allocate for all possible cpus.
1301         */
1302#ifdef CONFIG_HOTPLUG_CPU
1303        cpu_notifier_register_begin();
1304        cpumask_copy(buffer->cpumask, cpu_online_mask);
1305#else
1306        cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307#endif
1308        buffer->cpus = nr_cpu_ids;
1309
1310        bsize = sizeof(void *) * nr_cpu_ids;
1311        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312                                  GFP_KERNEL);
1313        if (!buffer->buffers)
1314                goto fail_free_cpumask;
1315
1316        for_each_buffer_cpu(buffer, cpu) {
1317                buffer->buffers[cpu] =
1318                        rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1319                if (!buffer->buffers[cpu])
1320                        goto fail_free_buffers;
1321        }
1322
1323#ifdef CONFIG_HOTPLUG_CPU
1324        buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325        buffer->cpu_notify.priority = 0;
1326        __register_cpu_notifier(&buffer->cpu_notify);
1327        cpu_notifier_register_done();
1328#endif
1329
1330        mutex_init(&buffer->mutex);
1331
1332        return buffer;
1333
1334 fail_free_buffers:
1335        for_each_buffer_cpu(buffer, cpu) {
1336                if (buffer->buffers[cpu])
1337                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1338        }
1339        kfree(buffer->buffers);
1340
1341 fail_free_cpumask:
1342        free_cpumask_var(buffer->cpumask);
1343#ifdef CONFIG_HOTPLUG_CPU
1344        cpu_notifier_register_done();
1345#endif
1346
1347 fail_free_buffer:
1348        kfree(buffer);
1349        return NULL;
1350}
1351EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1352
1353/**
1354 * ring_buffer_free - free a ring buffer.
1355 * @buffer: the buffer to free.
1356 */
1357void
1358ring_buffer_free(struct ring_buffer *buffer)
1359{
1360        int cpu;
1361
1362#ifdef CONFIG_HOTPLUG_CPU
1363        cpu_notifier_register_begin();
1364        __unregister_cpu_notifier(&buffer->cpu_notify);
1365#endif
1366
1367        for_each_buffer_cpu(buffer, cpu)
1368                rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
1370#ifdef CONFIG_HOTPLUG_CPU
1371        cpu_notifier_register_done();
1372#endif
1373
1374        kfree(buffer->buffers);
1375        free_cpumask_var(buffer->cpumask);
1376
1377        kfree(buffer);
1378}
1379EXPORT_SYMBOL_GPL(ring_buffer_free);
1380
1381void ring_buffer_set_clock(struct ring_buffer *buffer,
1382                           u64 (*clock)(void))
1383{
1384        buffer->clock = clock;
1385}
1386
1387static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1388
1389static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1390{
1391        return local_read(&bpage->entries) & RB_WRITE_MASK;
1392}
1393
1394static inline unsigned long rb_page_write(struct buffer_page *bpage)
1395{
1396        return local_read(&bpage->write) & RB_WRITE_MASK;
1397}
1398
1399static int
1400rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1401{
1402        struct list_head *tail_page, *to_remove, *next_page;
1403        struct buffer_page *to_remove_page, *tmp_iter_page;
1404        struct buffer_page *last_page, *first_page;
1405        unsigned int nr_removed;
1406        unsigned long head_bit;
1407        int page_entries;
1408
1409        head_bit = 0;
1410
1411        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1412        atomic_inc(&cpu_buffer->record_disabled);
1413        /*
1414         * We don't race with the readers since we have acquired the reader
1415         * lock. We also don't race with writers after disabling recording.
1416         * This makes it easy to figure out the first and the last page to be
1417         * removed from the list. We unlink all the pages in between including
1418         * the first and last pages. This is done in a busy loop so that we
1419         * lose the least number of traces.
1420         * The pages are freed after we restart recording and unlock readers.
1421         */
1422        tail_page = &cpu_buffer->tail_page->list;
1423
1424        /*
1425         * tail page might be on reader page, we remove the next page
1426         * from the ring buffer
1427         */
1428        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1429                tail_page = rb_list_head(tail_page->next);
1430        to_remove = tail_page;
1431
1432        /* start of pages to remove */
1433        first_page = list_entry(rb_list_head(to_remove->next),
1434                                struct buffer_page, list);
1435
1436        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1437                to_remove = rb_list_head(to_remove)->next;
1438                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1439        }
1440
1441        next_page = rb_list_head(to_remove)->next;
1442
1443        /*
1444         * Now we remove all pages between tail_page and next_page.
1445         * Make sure that we have head_bit value preserved for the
1446         * next page
1447         */
1448        tail_page->next = (struct list_head *)((unsigned long)next_page |
1449                                                head_bit);
1450        next_page = rb_list_head(next_page);
1451        next_page->prev = tail_page;
1452
1453        /* make sure pages points to a valid page in the ring buffer */
1454        cpu_buffer->pages = next_page;
1455
1456        /* update head page */
1457        if (head_bit)
1458                cpu_buffer->head_page = list_entry(next_page,
1459                                                struct buffer_page, list);
1460
1461        /*
1462         * change read pointer to make sure any read iterators reset
1463         * themselves
1464         */
1465        cpu_buffer->read = 0;
1466
1467        /* pages are removed, resume tracing and then free the pages */
1468        atomic_dec(&cpu_buffer->record_disabled);
1469        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1470
1471        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1472
1473        /* last buffer page to remove */
1474        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1475                                list);
1476        tmp_iter_page = first_page;
1477
1478        do {
1479                to_remove_page = tmp_iter_page;
1480                rb_inc_page(cpu_buffer, &tmp_iter_page);
1481
1482                /* update the counters */
1483                page_entries = rb_page_entries(to_remove_page);
1484                if (page_entries) {
1485                        /*
1486                         * If something was added to this page, it was full
1487                         * since it is not the tail page. So we deduct the
1488                         * bytes consumed in ring buffer from here.
1489                         * Increment overrun to account for the lost events.
1490                         */
1491                        local_add(page_entries, &cpu_buffer->overrun);
1492                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1493                }
1494
1495                /*
1496                 * We have already removed references to this list item, just
1497                 * free up the buffer_page and its page
1498                 */
1499                free_buffer_page(to_remove_page);
1500                nr_removed--;
1501
1502        } while (to_remove_page != last_page);
1503
1504        RB_WARN_ON(cpu_buffer, nr_removed);
1505
1506        return nr_removed == 0;
1507}
1508
1509static int
1510rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1511{
1512        struct list_head *pages = &cpu_buffer->new_pages;
1513        int retries, success;
1514
1515        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1516        /*
1517         * We are holding the reader lock, so the reader page won't be swapped
1518         * in the ring buffer. Now we are racing with the writer trying to
1519         * move head page and the tail page.
1520         * We are going to adapt the reader page update process where:
1521         * 1. We first splice the start and end of list of new pages between
1522         *    the head page and its previous page.
1523         * 2. We cmpxchg the prev_page->next to point from head page to the
1524         *    start of new pages list.
1525         * 3. Finally, we update the head->prev to the end of new list.
1526         *
1527         * We will try this process 10 times, to make sure that we don't keep
1528         * spinning.
1529         */
1530        retries = 10;
1531        success = 0;
1532        while (retries--) {
1533                struct list_head *head_page, *prev_page, *r;
1534                struct list_head *last_page, *first_page;
1535                struct list_head *head_page_with_bit;
1536
1537                head_page = &rb_set_head_page(cpu_buffer)->list;
1538                if (!head_page)
1539                        break;
1540                prev_page = head_page->prev;
1541
1542                first_page = pages->next;
1543                last_page  = pages->prev;
1544
1545                head_page_with_bit = (struct list_head *)
1546                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1547
1548                last_page->next = head_page_with_bit;
1549                first_page->prev = prev_page;
1550
1551                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1552
1553                if (r == head_page_with_bit) {
1554                        /*
1555                         * yay, we replaced the page pointer to our new list,
1556                         * now, we just have to update to head page's prev
1557                         * pointer to point to end of list
1558                         */
1559                        head_page->prev = last_page;
1560                        success = 1;
1561                        break;
1562                }
1563        }
1564
1565        if (success)
1566                INIT_LIST_HEAD(pages);
1567        /*
1568         * If we weren't successful in adding in new pages, warn and stop
1569         * tracing
1570         */
1571        RB_WARN_ON(cpu_buffer, !success);
1572        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1573
1574        /* free pages if they weren't inserted */
1575        if (!success) {
1576                struct buffer_page *bpage, *tmp;
1577                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1578                                         list) {
1579                        list_del_init(&bpage->list);
1580                        free_buffer_page(bpage);
1581                }
1582        }
1583        return success;
1584}
1585
1586static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587{
1588        int success;
1589
1590        if (cpu_buffer->nr_pages_to_update > 0)
1591                success = rb_insert_pages(cpu_buffer);
1592        else
1593                success = rb_remove_pages(cpu_buffer,
1594                                        -cpu_buffer->nr_pages_to_update);
1595
1596        if (success)
1597                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1598}
1599
1600static void update_pages_handler(struct work_struct *work)
1601{
1602        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1603                        struct ring_buffer_per_cpu, update_pages_work);
1604        rb_update_pages(cpu_buffer);
1605        complete(&cpu_buffer->update_done);
1606}
1607
1608/**
1609 * ring_buffer_resize - resize the ring buffer
1610 * @buffer: the buffer to resize.
1611 * @size: the new size.
1612 * @cpu_id: the cpu buffer to resize
1613 *
1614 * Minimum size is 2 * BUF_PAGE_SIZE.
1615 *
1616 * Returns 0 on success and < 0 on failure.
1617 */
1618int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1619                        int cpu_id)
1620{
1621        struct ring_buffer_per_cpu *cpu_buffer;
1622        unsigned nr_pages;
1623        int cpu, err = 0;
1624
1625        /*
1626         * Always succeed at resizing a non-existent buffer:
1627         */
1628        if (!buffer)
1629                return size;
1630
1631        /* Make sure the requested buffer exists */
1632        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1633            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1634                return size;
1635
1636        size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1637        size *= BUF_PAGE_SIZE;
1638
1639        /* we need a minimum of two pages */
1640        if (size < BUF_PAGE_SIZE * 2)
1641                size = BUF_PAGE_SIZE * 2;
1642
1643        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1644
1645        /*
1646         * Don't succeed if resizing is disabled, as a reader might be
1647         * manipulating the ring buffer and is expecting a sane state while
1648         * this is true.
1649         */
1650        if (atomic_read(&buffer->resize_disabled))
1651                return -EBUSY;
1652
1653        /* prevent another thread from changing buffer sizes */
1654        mutex_lock(&buffer->mutex);
1655
1656        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1657                /* calculate the pages to update */
1658                for_each_buffer_cpu(buffer, cpu) {
1659                        cpu_buffer = buffer->buffers[cpu];
1660
1661                        cpu_buffer->nr_pages_to_update = nr_pages -
1662                                                        cpu_buffer->nr_pages;
1663                        /*
1664                         * nothing more to do for removing pages or no update
1665                         */
1666                        if (cpu_buffer->nr_pages_to_update <= 0)
1667                                continue;
1668                        /*
1669                         * to add pages, make sure all new pages can be
1670                         * allocated without receiving ENOMEM
1671                         */
1672                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1673                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1674                                                &cpu_buffer->new_pages, cpu)) {
1675                                /* not enough memory for new pages */
1676                                err = -ENOMEM;
1677                                goto out_err;
1678                        }
1679                }
1680
1681                get_online_cpus();
1682                /*
1683                 * Fire off all the required work handlers
1684                 * We can't schedule on offline CPUs, but it's not necessary
1685                 * since we can change their buffer sizes without any race.
1686                 */
1687                for_each_buffer_cpu(buffer, cpu) {
1688                        cpu_buffer = buffer->buffers[cpu];
1689                        if (!cpu_buffer->nr_pages_to_update)
1690                                continue;
1691
1692                        /* The update must run on the CPU that is being updated. */
1693                        preempt_disable();
1694                        if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1695                                rb_update_pages(cpu_buffer);
1696                                cpu_buffer->nr_pages_to_update = 0;
1697                        } else {
1698                                /*
1699                                 * Can not disable preemption for schedule_work_on()
1700                                 * on PREEMPT_RT.
1701                                 */
1702                                preempt_enable();
1703                                schedule_work_on(cpu,
1704                                                &cpu_buffer->update_pages_work);
1705                                preempt_disable();
1706                        }
1707                        preempt_enable();
1708                }
1709
1710                /* wait for all the updates to complete */
1711                for_each_buffer_cpu(buffer, cpu) {
1712                        cpu_buffer = buffer->buffers[cpu];
1713                        if (!cpu_buffer->nr_pages_to_update)
1714                                continue;
1715
1716                        if (cpu_online(cpu))
1717                                wait_for_completion(&cpu_buffer->update_done);
1718                        cpu_buffer->nr_pages_to_update = 0;
1719                }
1720
1721                put_online_cpus();
1722        } else {
1723                /* Make sure this CPU has been intitialized */
1724                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1725                        goto out;
1726
1727                cpu_buffer = buffer->buffers[cpu_id];
1728
1729                if (nr_pages == cpu_buffer->nr_pages)
1730                        goto out;
1731
1732                cpu_buffer->nr_pages_to_update = nr_pages -
1733                                                cpu_buffer->nr_pages;
1734
1735                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1736                if (cpu_buffer->nr_pages_to_update > 0 &&
1737                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1738                                            &cpu_buffer->new_pages, cpu_id)) {
1739                        err = -ENOMEM;
1740                        goto out_err;
1741                }
1742
1743                get_online_cpus();
1744
1745                preempt_disable();
1746                /* The update must run on the CPU that is being updated. */
1747                if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1748                        rb_update_pages(cpu_buffer);
1749                else {
1750                        /*
1751                         * Can not disable preemption for schedule_work_on()
1752                         * on PREEMPT_RT.
1753                         */
1754                        preempt_enable();
1755                        schedule_work_on(cpu_id,
1756                                         &cpu_buffer->update_pages_work);
1757                        wait_for_completion(&cpu_buffer->update_done);
1758                        preempt_disable();
1759                }
1760                preempt_enable();
1761
1762                cpu_buffer->nr_pages_to_update = 0;
1763                put_online_cpus();
1764        }
1765
1766 out:
1767        /*
1768         * The ring buffer resize can happen with the ring buffer
1769         * enabled, so that the update disturbs the tracing as little
1770         * as possible. But if the buffer is disabled, we do not need
1771         * to worry about that, and we can take the time to verify
1772         * that the buffer is not corrupt.
1773         */
1774        if (atomic_read(&buffer->record_disabled)) {
1775                atomic_inc(&buffer->record_disabled);
1776                /*
1777                 * Even though the buffer was disabled, we must make sure
1778                 * that it is truly disabled before calling rb_check_pages.
1779                 * There could have been a race between checking
1780                 * record_disable and incrementing it.
1781                 */
1782                synchronize_sched();
1783                for_each_buffer_cpu(buffer, cpu) {
1784                        cpu_buffer = buffer->buffers[cpu];
1785                        rb_check_pages(cpu_buffer);
1786                }
1787                atomic_dec(&buffer->record_disabled);
1788        }
1789
1790        mutex_unlock(&buffer->mutex);
1791        return size;
1792
1793 out_err:
1794        for_each_buffer_cpu(buffer, cpu) {
1795                struct buffer_page *bpage, *tmp;
1796
1797                cpu_buffer = buffer->buffers[cpu];
1798                cpu_buffer->nr_pages_to_update = 0;
1799
1800                if (list_empty(&cpu_buffer->new_pages))
1801                        continue;
1802
1803                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1804                                        list) {
1805                        list_del_init(&bpage->list);
1806                        free_buffer_page(bpage);
1807                }
1808        }
1809        mutex_unlock(&buffer->mutex);
1810        return err;
1811}
1812EXPORT_SYMBOL_GPL(ring_buffer_resize);
1813
1814void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1815{
1816        mutex_lock(&buffer->mutex);
1817        if (val)
1818                buffer->flags |= RB_FL_OVERWRITE;
1819        else
1820                buffer->flags &= ~RB_FL_OVERWRITE;
1821        mutex_unlock(&buffer->mutex);
1822}
1823EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1824
1825static inline void *
1826__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1827{
1828        return bpage->data + index;
1829}
1830
1831static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1832{
1833        return bpage->page->data + index;
1834}
1835
1836static inline struct ring_buffer_event *
1837rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1838{
1839        return __rb_page_index(cpu_buffer->reader_page,
1840                               cpu_buffer->reader_page->read);
1841}
1842
1843static inline struct ring_buffer_event *
1844rb_iter_head_event(struct ring_buffer_iter *iter)
1845{
1846        return __rb_page_index(iter->head_page, iter->head);
1847}
1848
1849static inline unsigned rb_page_commit(struct buffer_page *bpage)
1850{
1851        return local_read(&bpage->page->commit);
1852}
1853
1854/* Size is determined by what has been committed */
1855static inline unsigned rb_page_size(struct buffer_page *bpage)
1856{
1857        return rb_page_commit(bpage);
1858}
1859
1860static inline unsigned
1861rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1862{
1863        return rb_page_commit(cpu_buffer->commit_page);
1864}
1865
1866static inline unsigned
1867rb_event_index(struct ring_buffer_event *event)
1868{
1869        unsigned long addr = (unsigned long)event;
1870
1871        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1872}
1873
1874static inline int
1875rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1876                   struct ring_buffer_event *event)
1877{
1878        unsigned long addr = (unsigned long)event;
1879        unsigned long index;
1880
1881        index = rb_event_index(event);
1882        addr &= PAGE_MASK;
1883
1884        return cpu_buffer->commit_page->page == (void *)addr &&
1885                rb_commit_index(cpu_buffer) == index;
1886}
1887
1888static void
1889rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1890{
1891        unsigned long max_count;
1892
1893        /*
1894         * We only race with interrupts and NMIs on this CPU.
1895         * If we own the commit event, then we can commit
1896         * all others that interrupted us, since the interruptions
1897         * are in stack format (they finish before they come
1898         * back to us). This allows us to do a simple loop to
1899         * assign the commit to the tail.
1900         */
1901 again:
1902        max_count = cpu_buffer->nr_pages * 100;
1903
1904        while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1905                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1906                        return;
1907                if (RB_WARN_ON(cpu_buffer,
1908                               rb_is_reader_page(cpu_buffer->tail_page)))
1909                        return;
1910                local_set(&cpu_buffer->commit_page->page->commit,
1911                          rb_page_write(cpu_buffer->commit_page));
1912                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1913                cpu_buffer->write_stamp =
1914                        cpu_buffer->commit_page->page->time_stamp;
1915                /* add barrier to keep gcc from optimizing too much */
1916                barrier();
1917        }
1918        while (rb_commit_index(cpu_buffer) !=
1919               rb_page_write(cpu_buffer->commit_page)) {
1920
1921                local_set(&cpu_buffer->commit_page->page->commit,
1922                          rb_page_write(cpu_buffer->commit_page));
1923                RB_WARN_ON(cpu_buffer,
1924                           local_read(&cpu_buffer->commit_page->page->commit) &
1925                           ~RB_WRITE_MASK);
1926                barrier();
1927        }
1928
1929        /* again, keep gcc from optimizing */
1930        barrier();
1931
1932        /*
1933         * If an interrupt came in just after the first while loop
1934         * and pushed the tail page forward, we will be left with
1935         * a dangling commit that will never go forward.
1936         */
1937        if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1938                goto again;
1939}
1940
1941static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1942{
1943        cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1944        cpu_buffer->reader_page->read = 0;
1945}
1946
1947static void rb_inc_iter(struct ring_buffer_iter *iter)
1948{
1949        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951        /*
1952         * The iterator could be on the reader page (it starts there).
1953         * But the head could have moved, since the reader was
1954         * found. Check for this case and assign the iterator
1955         * to the head page instead of next.
1956         */
1957        if (iter->head_page == cpu_buffer->reader_page)
1958                iter->head_page = rb_set_head_page(cpu_buffer);
1959        else
1960                rb_inc_page(cpu_buffer, &iter->head_page);
1961
1962        iter->read_stamp = iter->head_page->page->time_stamp;
1963        iter->head = 0;
1964}
1965
1966/* Slow path, do not inline */
1967static noinline struct ring_buffer_event *
1968rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1969{
1970        event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1971
1972        /* Not the first event on the page? */
1973        if (rb_event_index(event)) {
1974                event->time_delta = delta & TS_MASK;
1975                event->array[0] = delta >> TS_SHIFT;
1976        } else {
1977                /* nope, just zero it */
1978                event->time_delta = 0;
1979                event->array[0] = 0;
1980        }
1981
1982        return skip_time_extend(event);
1983}
1984
1985/**
1986 * rb_update_event - update event type and data
1987 * @event: the even to update
1988 * @type: the type of event
1989 * @length: the size of the event field in the ring buffer
1990 *
1991 * Update the type and data fields of the event. The length
1992 * is the actual size that is written to the ring buffer,
1993 * and with this, we can determine what to place into the
1994 * data field.
1995 */
1996static void
1997rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1998                struct ring_buffer_event *event, unsigned length,
1999                int add_timestamp, u64 delta)
2000{
2001        /* Only a commit updates the timestamp */
2002        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2003                delta = 0;
2004
2005        /*
2006         * If we need to add a timestamp, then we
2007         * add it to the start of the resevered space.
2008         */
2009        if (unlikely(add_timestamp)) {
2010                event = rb_add_time_stamp(event, delta);
2011                length -= RB_LEN_TIME_EXTEND;
2012                delta = 0;
2013        }
2014
2015        event->time_delta = delta;
2016        length -= RB_EVNT_HDR_SIZE;
2017        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2018                event->type_len = 0;
2019                event->array[0] = length;
2020        } else
2021                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2022}
2023
2024/*
2025 * rb_handle_head_page - writer hit the head page
2026 *
2027 * Returns: +1 to retry page
2028 *           0 to continue
2029 *          -1 on error
2030 */
2031static int
2032rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2033                    struct buffer_page *tail_page,
2034                    struct buffer_page *next_page)
2035{
2036        struct buffer_page *new_head;
2037        int entries;
2038        int type;
2039        int ret;
2040
2041        entries = rb_page_entries(next_page);
2042
2043        /*
2044         * The hard part is here. We need to move the head
2045         * forward, and protect against both readers on
2046         * other CPUs and writers coming in via interrupts.
2047         */
2048        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2049                                       RB_PAGE_HEAD);
2050
2051        /*
2052         * type can be one of four:
2053         *  NORMAL - an interrupt already moved it for us
2054         *  HEAD   - we are the first to get here.
2055         *  UPDATE - we are the interrupt interrupting
2056         *           a current move.
2057         *  MOVED  - a reader on another CPU moved the next
2058         *           pointer to its reader page. Give up
2059         *           and try again.
2060         */
2061
2062        switch (type) {
2063        case RB_PAGE_HEAD:
2064                /*
2065                 * We changed the head to UPDATE, thus
2066                 * it is our responsibility to update
2067                 * the counters.
2068                 */
2069                local_add(entries, &cpu_buffer->overrun);
2070                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2071
2072                /*
2073                 * The entries will be zeroed out when we move the
2074                 * tail page.
2075                 */
2076
2077                /* still more to do */
2078                break;
2079
2080        case RB_PAGE_UPDATE:
2081                /*
2082                 * This is an interrupt that interrupt the
2083                 * previous update. Still more to do.
2084                 */
2085                break;
2086        case RB_PAGE_NORMAL:
2087                /*
2088                 * An interrupt came in before the update
2089                 * and processed this for us.
2090                 * Nothing left to do.
2091                 */
2092                return 1;
2093        case RB_PAGE_MOVED:
2094                /*
2095                 * The reader is on another CPU and just did
2096                 * a swap with our next_page.
2097                 * Try again.
2098                 */
2099                return 1;
2100        default:
2101                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2102                return -1;
2103        }
2104
2105        /*
2106         * Now that we are here, the old head pointer is
2107         * set to UPDATE. This will keep the reader from
2108         * swapping the head page with the reader page.
2109         * The reader (on another CPU) will spin till
2110         * we are finished.
2111         *
2112         * We just need to protect against interrupts
2113         * doing the job. We will set the next pointer
2114         * to HEAD. After that, we set the old pointer
2115         * to NORMAL, but only if it was HEAD before.
2116         * otherwise we are an interrupt, and only
2117         * want the outer most commit to reset it.
2118         */
2119        new_head = next_page;
2120        rb_inc_page(cpu_buffer, &new_head);
2121
2122        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2123                                    RB_PAGE_NORMAL);
2124
2125        /*
2126         * Valid returns are:
2127         *  HEAD   - an interrupt came in and already set it.
2128         *  NORMAL - One of two things:
2129         *            1) We really set it.
2130         *            2) A bunch of interrupts came in and moved
2131         *               the page forward again.
2132         */
2133        switch (ret) {
2134        case RB_PAGE_HEAD:
2135        case RB_PAGE_NORMAL:
2136                /* OK */
2137                break;
2138        default:
2139                RB_WARN_ON(cpu_buffer, 1);
2140                return -1;
2141        }
2142
2143        /*
2144         * It is possible that an interrupt came in,
2145         * set the head up, then more interrupts came in
2146         * and moved it again. When we get back here,
2147         * the page would have been set to NORMAL but we
2148         * just set it back to HEAD.
2149         *
2150         * How do you detect this? Well, if that happened
2151         * the tail page would have moved.
2152         */
2153        if (ret == RB_PAGE_NORMAL) {
2154                /*
2155                 * If the tail had moved passed next, then we need
2156                 * to reset the pointer.
2157                 */
2158                if (cpu_buffer->tail_page != tail_page &&
2159                    cpu_buffer->tail_page != next_page)
2160                        rb_head_page_set_normal(cpu_buffer, new_head,
2161                                                next_page,
2162                                                RB_PAGE_HEAD);
2163        }
2164
2165        /*
2166         * If this was the outer most commit (the one that
2167         * changed the original pointer from HEAD to UPDATE),
2168         * then it is up to us to reset it to NORMAL.
2169         */
2170        if (type == RB_PAGE_HEAD) {
2171                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2172                                              tail_page,
2173                                              RB_PAGE_UPDATE);
2174                if (RB_WARN_ON(cpu_buffer,
2175                               ret != RB_PAGE_UPDATE))
2176                        return -1;
2177        }
2178
2179        return 0;
2180}
2181
2182static unsigned rb_calculate_event_length(unsigned length)
2183{
2184        struct ring_buffer_event event; /* Used only for sizeof array */
2185
2186        /* zero length can cause confusions */
2187        if (!length)
2188                length = 1;
2189
2190        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2191                length += sizeof(event.array[0]);
2192
2193        length += RB_EVNT_HDR_SIZE;
2194        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2195
2196        return length;
2197}
2198
2199static inline void
2200rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2201              struct buffer_page *tail_page,
2202              unsigned long tail, unsigned long length)
2203{
2204        struct ring_buffer_event *event;
2205
2206        /*
2207         * Only the event that crossed the page boundary
2208         * must fill the old tail_page with padding.
2209         */
2210        if (tail >= BUF_PAGE_SIZE) {
2211                /*
2212                 * If the page was filled, then we still need
2213                 * to update the real_end. Reset it to zero
2214                 * and the reader will ignore it.
2215                 */
2216                if (tail == BUF_PAGE_SIZE)
2217                        tail_page->real_end = 0;
2218
2219                local_sub(length, &tail_page->write);
2220                return;
2221        }
2222
2223        event = __rb_page_index(tail_page, tail);
2224        kmemcheck_annotate_bitfield(event, bitfield);
2225
2226        /* account for padding bytes */
2227        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2228
2229        /*
2230         * Save the original length to the meta data.
2231         * This will be used by the reader to add lost event
2232         * counter.
2233         */
2234        tail_page->real_end = tail;
2235
2236        /*
2237         * If this event is bigger than the minimum size, then
2238         * we need to be careful that we don't subtract the
2239         * write counter enough to allow another writer to slip
2240         * in on this page.
2241         * We put in a discarded commit instead, to make sure
2242         * that this space is not used again.
2243         *
2244         * If we are less than the minimum size, we don't need to
2245         * worry about it.
2246         */
2247        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2248                /* No room for any events */
2249
2250                /* Mark the rest of the page with padding */
2251                rb_event_set_padding(event);
2252
2253                /* Set the write back to the previous setting */
2254                local_sub(length, &tail_page->write);
2255                return;
2256        }
2257
2258        /* Put in a discarded event */
2259        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2260        event->type_len = RINGBUF_TYPE_PADDING;
2261        /* time delta must be non zero */
2262        event->time_delta = 1;
2263
2264        /* Set write to end of buffer */
2265        length = (tail + length) - BUF_PAGE_SIZE;
2266        local_sub(length, &tail_page->write);
2267}
2268
2269/*
2270 * This is the slow path, force gcc not to inline it.
2271 */
2272static noinline struct ring_buffer_event *
2273rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2274             unsigned long length, unsigned long tail,
2275             struct buffer_page *tail_page, u64 ts)
2276{
2277        struct buffer_page *commit_page = cpu_buffer->commit_page;
2278        struct ring_buffer *buffer = cpu_buffer->buffer;
2279        struct buffer_page *next_page;
2280        int ret;
2281
2282        next_page = tail_page;
2283
2284        rb_inc_page(cpu_buffer, &next_page);
2285
2286        /*
2287         * If for some reason, we had an interrupt storm that made
2288         * it all the way around the buffer, bail, and warn
2289         * about it.
2290         */
2291        if (unlikely(next_page == commit_page)) {
2292                local_inc(&cpu_buffer->commit_overrun);
2293                goto out_reset;
2294        }
2295
2296        /*
2297         * This is where the fun begins!
2298         *
2299         * We are fighting against races between a reader that
2300         * could be on another CPU trying to swap its reader
2301         * page with the buffer head.
2302         *
2303         * We are also fighting against interrupts coming in and
2304         * moving the head or tail on us as well.
2305         *
2306         * If the next page is the head page then we have filled
2307         * the buffer, unless the commit page is still on the
2308         * reader page.
2309         */
2310        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2311
2312                /*
2313                 * If the commit is not on the reader page, then
2314                 * move the header page.
2315                 */
2316                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2317                        /*
2318                         * If we are not in overwrite mode,
2319                         * this is easy, just stop here.
2320                         */
2321                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2322                                local_inc(&cpu_buffer->dropped_events);
2323                                goto out_reset;
2324                        }
2325
2326                        ret = rb_handle_head_page(cpu_buffer,
2327                                                  tail_page,
2328                                                  next_page);
2329                        if (ret < 0)
2330                                goto out_reset;
2331                        if (ret)
2332                                goto out_again;
2333                } else {
2334                        /*
2335                         * We need to be careful here too. The
2336                         * commit page could still be on the reader
2337                         * page. We could have a small buffer, and
2338                         * have filled up the buffer with events
2339                         * from interrupts and such, and wrapped.
2340                         *
2341                         * Note, if the tail page is also the on the
2342                         * reader_page, we let it move out.
2343                         */
2344                        if (unlikely((cpu_buffer->commit_page !=
2345                                      cpu_buffer->tail_page) &&
2346                                     (cpu_buffer->commit_page ==
2347                                      cpu_buffer->reader_page))) {
2348                                local_inc(&cpu_buffer->commit_overrun);
2349                                goto out_reset;
2350                        }
2351                }
2352        }
2353
2354        ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2355        if (ret) {
2356                /*
2357                 * Nested commits always have zero deltas, so
2358                 * just reread the time stamp
2359                 */
2360                ts = rb_time_stamp(buffer);
2361                next_page->page->time_stamp = ts;
2362        }
2363
2364 out_again:
2365
2366        rb_reset_tail(cpu_buffer, tail_page, tail, length);
2367
2368        /* fail and let the caller try again */
2369        return ERR_PTR(-EAGAIN);
2370
2371 out_reset:
2372        /* reset write */
2373        rb_reset_tail(cpu_buffer, tail_page, tail, length);
2374
2375        return NULL;
2376}
2377
2378static struct ring_buffer_event *
2379__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2380                  unsigned long length, u64 ts,
2381                  u64 delta, int add_timestamp)
2382{
2383        struct buffer_page *tail_page;
2384        struct ring_buffer_event *event;
2385        unsigned long tail, write;
2386
2387        /*
2388         * If the time delta since the last event is too big to
2389         * hold in the time field of the event, then we append a
2390         * TIME EXTEND event ahead of the data event.
2391         */
2392        if (unlikely(add_timestamp))
2393                length += RB_LEN_TIME_EXTEND;
2394
2395        tail_page = cpu_buffer->tail_page;
2396        write = local_add_return(length, &tail_page->write);
2397
2398        /* set write to only the index of the write */
2399        write &= RB_WRITE_MASK;
2400        tail = write - length;
2401
2402        /*
2403         * If this is the first commit on the page, then it has the same
2404         * timestamp as the page itself.
2405         */
2406        if (!tail)
2407                delta = 0;
2408
2409        /* See if we shot pass the end of this buffer page */
2410        if (unlikely(write > BUF_PAGE_SIZE))
2411                return rb_move_tail(cpu_buffer, length, tail,
2412                                    tail_page, ts);
2413
2414        /* We reserved something on the buffer */
2415
2416        event = __rb_page_index(tail_page, tail);
2417        kmemcheck_annotate_bitfield(event, bitfield);
2418        rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2419
2420        local_inc(&tail_page->entries);
2421
2422        /*
2423         * If this is the first commit on the page, then update
2424         * its timestamp.
2425         */
2426        if (!tail)
2427                tail_page->page->time_stamp = ts;
2428
2429        /* account for these added bytes */
2430        local_add(length, &cpu_buffer->entries_bytes);
2431
2432        return event;
2433}
2434
2435static inline int
2436rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2437                  struct ring_buffer_event *event)
2438{
2439        unsigned long new_index, old_index;
2440        struct buffer_page *bpage;
2441        unsigned long index;
2442        unsigned long addr;
2443
2444        new_index = rb_event_index(event);
2445        old_index = new_index + rb_event_ts_length(event);
2446        addr = (unsigned long)event;
2447        addr &= PAGE_MASK;
2448
2449        bpage = cpu_buffer->tail_page;
2450
2451        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2452                unsigned long write_mask =
2453                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2454                unsigned long event_length = rb_event_length(event);
2455                /*
2456                 * This is on the tail page. It is possible that
2457                 * a write could come in and move the tail page
2458                 * and write to the next page. That is fine
2459                 * because we just shorten what is on this page.
2460                 */
2461                old_index += write_mask;
2462                new_index += write_mask;
2463                index = local_cmpxchg(&bpage->write, old_index, new_index);
2464                if (index == old_index) {
2465                        /* update counters */
2466                        local_sub(event_length, &cpu_buffer->entries_bytes);
2467                        return 1;
2468                }
2469        }
2470
2471        /* could not discard */
2472        return 0;
2473}
2474
2475static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2476{
2477        local_inc(&cpu_buffer->committing);
2478        local_inc(&cpu_buffer->commits);
2479}
2480
2481static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2482{
2483        unsigned long commits;
2484
2485        if (RB_WARN_ON(cpu_buffer,
2486                       !local_read(&cpu_buffer->committing)))
2487                return;
2488
2489 again:
2490        commits = local_read(&cpu_buffer->commits);
2491        /* synchronize with interrupts */
2492        barrier();
2493        if (local_read(&cpu_buffer->committing) == 1)
2494                rb_set_commit_to_write(cpu_buffer);
2495
2496        local_dec(&cpu_buffer->committing);
2497
2498        /* synchronize with interrupts */
2499        barrier();
2500
2501        /*
2502         * Need to account for interrupts coming in between the
2503         * updating of the commit page and the clearing of the
2504         * committing counter.
2505         */
2506        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2507            !local_read(&cpu_buffer->committing)) {
2508                local_inc(&cpu_buffer->committing);
2509                goto again;
2510        }
2511}
2512
2513static struct ring_buffer_event *
2514rb_reserve_next_event(struct ring_buffer *buffer,
2515                      struct ring_buffer_per_cpu *cpu_buffer,
2516                      unsigned long length)
2517{
2518        struct ring_buffer_event *event;
2519        u64 ts, delta;
2520        int nr_loops = 0;
2521        int add_timestamp;
2522        u64 diff;
2523
2524        rb_start_commit(cpu_buffer);
2525
2526#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2527        /*
2528         * Due to the ability to swap a cpu buffer from a buffer
2529         * it is possible it was swapped before we committed.
2530         * (committing stops a swap). We check for it here and
2531         * if it happened, we have to fail the write.
2532         */
2533        barrier();
2534        if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2535                local_dec(&cpu_buffer->committing);
2536                local_dec(&cpu_buffer->commits);
2537                return NULL;
2538        }
2539#endif
2540
2541        length = rb_calculate_event_length(length);
2542 again:
2543        add_timestamp = 0;
2544        delta = 0;
2545
2546        /*
2547         * We allow for interrupts to reenter here and do a trace.
2548         * If one does, it will cause this original code to loop
2549         * back here. Even with heavy interrupts happening, this
2550         * should only happen a few times in a row. If this happens
2551         * 1000 times in a row, there must be either an interrupt
2552         * storm or we have something buggy.
2553         * Bail!
2554         */
2555        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2556                goto out_fail;
2557
2558        ts = rb_time_stamp(cpu_buffer->buffer);
2559        diff = ts - cpu_buffer->write_stamp;
2560
2561        /* make sure this diff is calculated here */
2562        barrier();
2563
2564        /* Did the write stamp get updated already? */
2565        if (likely(ts >= cpu_buffer->write_stamp)) {
2566                delta = diff;
2567                if (unlikely(test_time_stamp(delta))) {
2568                        int local_clock_stable = 1;
2569#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2570                        local_clock_stable = sched_clock_stable();
2571#endif
2572                        WARN_ONCE(delta > (1ULL << 59),
2573                                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2574                                  (unsigned long long)delta,
2575                                  (unsigned long long)ts,
2576                                  (unsigned long long)cpu_buffer->write_stamp,
2577                                  local_clock_stable ? "" :
2578                                  "If you just came from a suspend/resume,\n"
2579                                  "please switch to the trace global clock:\n"
2580                                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2581                        add_timestamp = 1;
2582                }
2583        }
2584
2585        event = __rb_reserve_next(cpu_buffer, length, ts,
2586                                  delta, add_timestamp);
2587        if (unlikely(PTR_ERR(event) == -EAGAIN))
2588                goto again;
2589
2590        if (!event)
2591                goto out_fail;
2592
2593        return event;
2594
2595 out_fail:
2596        rb_end_commit(cpu_buffer);
2597        return NULL;
2598}
2599
2600#ifdef CONFIG_TRACING
2601
2602/*
2603 * The lock and unlock are done within a preempt disable section.
2604 * The current_context per_cpu variable can only be modified
2605 * by the current task between lock and unlock. But it can
2606 * be modified more than once via an interrupt. To pass this
2607 * information from the lock to the unlock without having to
2608 * access the 'in_interrupt()' functions again (which do show
2609 * a bit of overhead in something as critical as function tracing,
2610 * we use a bitmask trick.
2611 *
2612 *  bit 0 =  NMI context
2613 *  bit 1 =  IRQ context
2614 *  bit 2 =  SoftIRQ context
2615 *  bit 3 =  normal context.
2616 *
2617 * This works because this is the order of contexts that can
2618 * preempt other contexts. A SoftIRQ never preempts an IRQ
2619 * context.
2620 *
2621 * When the context is determined, the corresponding bit is
2622 * checked and set (if it was set, then a recursion of that context
2623 * happened).
2624 *
2625 * On unlock, we need to clear this bit. To do so, just subtract
2626 * 1 from the current_context and AND it to itself.
2627 *
2628 * (binary)
2629 *  101 - 1 = 100
2630 *  101 & 100 = 100 (clearing bit zero)
2631 *
2632 *  1010 - 1 = 1001
2633 *  1010 & 1001 = 1000 (clearing bit 1)
2634 *
2635 * The least significant bit can be cleared this way, and it
2636 * just so happens that it is the same bit corresponding to
2637 * the current context.
2638 */
2639static DEFINE_PER_CPU(unsigned int, current_context);
2640
2641static __always_inline int trace_recursive_lock(void)
2642{
2643        unsigned int val = this_cpu_read(current_context);
2644        int bit;
2645
2646        if (in_interrupt()) {
2647                if (in_nmi())
2648                        bit = 0;
2649                else if (in_irq())
2650                        bit = 1;
2651                else
2652                        bit = 2;
2653        } else
2654                bit = 3;
2655
2656        if (unlikely(val & (1 << bit)))
2657                return 1;
2658
2659        val |= (1 << bit);
2660        this_cpu_write(current_context, val);
2661
2662        return 0;
2663}
2664
2665static __always_inline void trace_recursive_unlock(void)
2666{
2667        unsigned int val = this_cpu_read(current_context);
2668
2669        val--;
2670        val &= this_cpu_read(current_context);
2671        this_cpu_write(current_context, val);
2672}
2673
2674#else
2675
2676#define trace_recursive_lock()          (0)
2677#define trace_recursive_unlock()        do { } while (0)
2678
2679#endif
2680
2681/**
2682 * ring_buffer_lock_reserve - reserve a part of the buffer
2683 * @buffer: the ring buffer to reserve from
2684 * @length: the length of the data to reserve (excluding event header)
2685 *
2686 * Returns a reseverd event on the ring buffer to copy directly to.
2687 * The user of this interface will need to get the body to write into
2688 * and can use the ring_buffer_event_data() interface.
2689 *
2690 * The length is the length of the data needed, not the event length
2691 * which also includes the event header.
2692 *
2693 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2694 * If NULL is returned, then nothing has been allocated or locked.
2695 */
2696struct ring_buffer_event *
2697ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2698{
2699        struct ring_buffer_per_cpu *cpu_buffer;
2700        struct ring_buffer_event *event;
2701        int cpu;
2702
2703        if (ring_buffer_flags != RB_BUFFERS_ON)
2704                return NULL;
2705
2706        /* If we are tracing schedule, we don't want to recurse */
2707        preempt_disable_notrace();
2708
2709        if (atomic_read(&buffer->record_disabled))
2710                goto out_nocheck;
2711
2712        if (trace_recursive_lock())
2713                goto out_nocheck;
2714
2715        cpu = raw_smp_processor_id();
2716
2717        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2718                goto out;
2719
2720        cpu_buffer = buffer->buffers[cpu];
2721
2722        if (atomic_read(&cpu_buffer->record_disabled))
2723                goto out;
2724
2725        if (length > BUF_MAX_DATA_SIZE)
2726                goto out;
2727
2728        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2729        if (!event)
2730                goto out;
2731
2732        return event;
2733
2734 out:
2735        trace_recursive_unlock();
2736
2737 out_nocheck:
2738        preempt_enable_notrace();
2739        return NULL;
2740}
2741EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2742
2743static void
2744rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2745                      struct ring_buffer_event *event)
2746{
2747        u64 delta;
2748
2749        /*
2750         * The event first in the commit queue updates the
2751         * time stamp.
2752         */
2753        if (rb_event_is_commit(cpu_buffer, event)) {
2754                /*
2755                 * A commit event that is first on a page
2756                 * updates the write timestamp with the page stamp
2757                 */
2758                if (!rb_event_index(event))
2759                        cpu_buffer->write_stamp =
2760                                cpu_buffer->commit_page->page->time_stamp;
2761                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2762                        delta = event->array[0];
2763                        delta <<= TS_SHIFT;
2764                        delta += event->time_delta;
2765                        cpu_buffer->write_stamp += delta;
2766                } else
2767                        cpu_buffer->write_stamp += event->time_delta;
2768        }
2769}
2770
2771static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2772                      struct ring_buffer_event *event)
2773{
2774        local_inc(&cpu_buffer->entries);
2775        rb_update_write_stamp(cpu_buffer, event);
2776        rb_end_commit(cpu_buffer);
2777}
2778
2779static __always_inline void
2780rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2781{
2782        if (buffer->irq_work.waiters_pending) {
2783                buffer->irq_work.waiters_pending = false;
2784                /* irq_work_queue() supplies it's own memory barriers */
2785                irq_work_queue(&buffer->irq_work.work);
2786        }
2787
2788        if (cpu_buffer->irq_work.waiters_pending) {
2789                cpu_buffer->irq_work.waiters_pending = false;
2790                /* irq_work_queue() supplies it's own memory barriers */
2791                irq_work_queue(&cpu_buffer->irq_work.work);
2792        }
2793}
2794
2795/**
2796 * ring_buffer_unlock_commit - commit a reserved
2797 * @buffer: The buffer to commit to
2798 * @event: The event pointer to commit.
2799 *
2800 * This commits the data to the ring buffer, and releases any locks held.
2801 *
2802 * Must be paired with ring_buffer_lock_reserve.
2803 */
2804int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2805                              struct ring_buffer_event *event)
2806{
2807        struct ring_buffer_per_cpu *cpu_buffer;
2808        int cpu = raw_smp_processor_id();
2809
2810        cpu_buffer = buffer->buffers[cpu];
2811
2812        rb_commit(cpu_buffer, event);
2813
2814        rb_wakeups(buffer, cpu_buffer);
2815
2816        trace_recursive_unlock();
2817
2818        preempt_enable_notrace();
2819
2820        return 0;
2821}
2822EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2823
2824static inline void rb_event_discard(struct ring_buffer_event *event)
2825{
2826        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2827                event = skip_time_extend(event);
2828
2829        /* array[0] holds the actual length for the discarded event */
2830        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2831        event->type_len = RINGBUF_TYPE_PADDING;
2832        /* time delta must be non zero */
2833        if (!event->time_delta)
2834                event->time_delta = 1;
2835}
2836
2837/*
2838 * Decrement the entries to the page that an event is on.
2839 * The event does not even need to exist, only the pointer
2840 * to the page it is on. This may only be called before the commit
2841 * takes place.
2842 */
2843static inline void
2844rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2845                   struct ring_buffer_event *event)
2846{
2847        unsigned long addr = (unsigned long)event;
2848        struct buffer_page *bpage = cpu_buffer->commit_page;
2849        struct buffer_page *start;
2850
2851        addr &= PAGE_MASK;
2852
2853        /* Do the likely case first */
2854        if (likely(bpage->page == (void *)addr)) {
2855                local_dec(&bpage->entries);
2856                return;
2857        }
2858
2859        /*
2860         * Because the commit page may be on the reader page we
2861         * start with the next page and check the end loop there.
2862         */
2863        rb_inc_page(cpu_buffer, &bpage);
2864        start = bpage;
2865        do {
2866                if (bpage->page == (void *)addr) {
2867                        local_dec(&bpage->entries);
2868                        return;
2869                }
2870                rb_inc_page(cpu_buffer, &bpage);
2871        } while (bpage != start);
2872
2873        /* commit not part of this buffer?? */
2874        RB_WARN_ON(cpu_buffer, 1);
2875}
2876
2877/**
2878 * ring_buffer_commit_discard - discard an event that has not been committed
2879 * @buffer: the ring buffer
2880 * @event: non committed event to discard
2881 *
2882 * Sometimes an event that is in the ring buffer needs to be ignored.
2883 * This function lets the user discard an event in the ring buffer
2884 * and then that event will not be read later.
2885 *
2886 * This function only works if it is called before the the item has been
2887 * committed. It will try to free the event from the ring buffer
2888 * if another event has not been added behind it.
2889 *
2890 * If another event has been added behind it, it will set the event
2891 * up as discarded, and perform the commit.
2892 *
2893 * If this function is called, do not call ring_buffer_unlock_commit on
2894 * the event.
2895 */
2896void ring_buffer_discard_commit(struct ring_buffer *buffer,
2897                                struct ring_buffer_event *event)
2898{
2899        struct ring_buffer_per_cpu *cpu_buffer;
2900        int cpu;
2901
2902        /* The event is discarded regardless */
2903        rb_event_discard(event);
2904
2905        cpu = smp_processor_id();
2906        cpu_buffer = buffer->buffers[cpu];
2907
2908        /*
2909         * This must only be called if the event has not been
2910         * committed yet. Thus we can assume that preemption
2911         * is still disabled.
2912         */
2913        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2914
2915        rb_decrement_entry(cpu_buffer, event);
2916        if (rb_try_to_discard(cpu_buffer, event))
2917                goto out;
2918
2919        /*
2920         * The commit is still visible by the reader, so we
2921         * must still update the timestamp.
2922         */
2923        rb_update_write_stamp(cpu_buffer, event);
2924 out:
2925        rb_end_commit(cpu_buffer);
2926
2927        trace_recursive_unlock();
2928
2929        preempt_enable_notrace();
2930
2931}
2932EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2933
2934/**
2935 * ring_buffer_write - write data to the buffer without reserving
2936 * @buffer: The ring buffer to write to.
2937 * @length: The length of the data being written (excluding the event header)
2938 * @data: The data to write to the buffer.
2939 *
2940 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941 * one function. If you already have the data to write to the buffer, it
2942 * may be easier to simply call this function.
2943 *
2944 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945 * and not the length of the event which would hold the header.
2946 */
2947int ring_buffer_write(struct ring_buffer *buffer,
2948                      unsigned long length,
2949                      void *data)
2950{
2951        struct ring_buffer_per_cpu *cpu_buffer;
2952        struct ring_buffer_event *event;
2953        void *body;
2954        int ret = -EBUSY;
2955        int cpu;
2956
2957        if (ring_buffer_flags != RB_BUFFERS_ON)
2958                return -EBUSY;
2959
2960        preempt_disable_notrace();
2961
2962        if (atomic_read(&buffer->record_disabled))
2963                goto out;
2964
2965        cpu = raw_smp_processor_id();
2966
2967        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2968                goto out;
2969
2970        cpu_buffer = buffer->buffers[cpu];
2971
2972        if (atomic_read(&cpu_buffer->record_disabled))
2973                goto out;
2974
2975        if (length > BUF_MAX_DATA_SIZE)
2976                goto out;
2977
2978        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2979        if (!event)
2980                goto out;
2981
2982        body = rb_event_data(event);
2983
2984        memcpy(body, data, length);
2985
2986        rb_commit(cpu_buffer, event);
2987
2988        rb_wakeups(buffer, cpu_buffer);
2989
2990        ret = 0;
2991 out:
2992        preempt_enable_notrace();
2993
2994        return ret;
2995}
2996EXPORT_SYMBOL_GPL(ring_buffer_write);
2997
2998static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2999{
3000        struct buffer_page *reader = cpu_buffer->reader_page;
3001        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3002        struct buffer_page *commit = cpu_buffer->commit_page;
3003
3004        /* In case of error, head will be NULL */
3005        if (unlikely(!head))
3006                return 1;
3007
3008        return reader->read == rb_page_commit(reader) &&
3009                (commit == reader ||
3010                 (commit == head &&
3011                  head->read == rb_page_commit(commit)));
3012}
3013
3014/**
3015 * ring_buffer_record_disable - stop all writes into the buffer
3016 * @buffer: The ring buffer to stop writes to.
3017 *
3018 * This prevents all writes to the buffer. Any attempt to write
3019 * to the buffer after this will fail and return NULL.
3020 *
3021 * The caller should call synchronize_sched() after this.
3022 */
3023void ring_buffer_record_disable(struct ring_buffer *buffer)
3024{
3025        atomic_inc(&buffer->record_disabled);
3026}
3027EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3028
3029/**
3030 * ring_buffer_record_enable - enable writes to the buffer
3031 * @buffer: The ring buffer to enable writes
3032 *
3033 * Note, multiple disables will need the same number of enables
3034 * to truly enable the writing (much like preempt_disable).
3035 */
3036void ring_buffer_record_enable(struct ring_buffer *buffer)
3037{
3038        atomic_dec(&buffer->record_disabled);
3039}
3040EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3041
3042/**
3043 * ring_buffer_record_off - stop all writes into the buffer
3044 * @buffer: The ring buffer to stop writes to.
3045 *
3046 * This prevents all writes to the buffer. Any attempt to write
3047 * to the buffer after this will fail and return NULL.
3048 *
3049 * This is different than ring_buffer_record_disable() as
3050 * it works like an on/off switch, where as the disable() version
3051 * must be paired with a enable().
3052 */
3053void ring_buffer_record_off(struct ring_buffer *buffer)
3054{
3055        unsigned int rd;
3056        unsigned int new_rd;
3057
3058        do {
3059                rd = atomic_read(&buffer->record_disabled);
3060                new_rd = rd | RB_BUFFER_OFF;
3061        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3062}
3063EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3064
3065/**
3066 * ring_buffer_record_on - restart writes into the buffer
3067 * @buffer: The ring buffer to start writes to.
3068 *
3069 * This enables all writes to the buffer that was disabled by
3070 * ring_buffer_record_off().
3071 *
3072 * This is different than ring_buffer_record_enable() as
3073 * it works like an on/off switch, where as the enable() version
3074 * must be paired with a disable().
3075 */
3076void ring_buffer_record_on(struct ring_buffer *buffer)
3077{
3078        unsigned int rd;
3079        unsigned int new_rd;
3080
3081        do {
3082                rd = atomic_read(&buffer->record_disabled);
3083                new_rd = rd & ~RB_BUFFER_OFF;
3084        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3085}
3086EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3087
3088/**
3089 * ring_buffer_record_is_on - return true if the ring buffer can write
3090 * @buffer: The ring buffer to see if write is enabled
3091 *
3092 * Returns true if the ring buffer is in a state that it accepts writes.
3093 */
3094int ring_buffer_record_is_on(struct ring_buffer *buffer)
3095{
3096        return !atomic_read(&buffer->record_disabled);
3097}
3098
3099/**
3100 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3101 * @buffer: The ring buffer to stop writes to.
3102 * @cpu: The CPU buffer to stop
3103 *
3104 * This prevents all writes to the buffer. Any attempt to write
3105 * to the buffer after this will fail and return NULL.
3106 *
3107 * The caller should call synchronize_sched() after this.
3108 */
3109void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3110{
3111        struct ring_buffer_per_cpu *cpu_buffer;
3112
3113        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3114                return;
3115
3116        cpu_buffer = buffer->buffers[cpu];
3117        atomic_inc(&cpu_buffer->record_disabled);
3118}
3119EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3120
3121/**
3122 * ring_buffer_record_enable_cpu - enable writes to the buffer
3123 * @buffer: The ring buffer to enable writes
3124 * @cpu: The CPU to enable.
3125 *
3126 * Note, multiple disables will need the same number of enables
3127 * to truly enable the writing (much like preempt_disable).
3128 */
3129void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3130{
3131        struct ring_buffer_per_cpu *cpu_buffer;
3132
3133        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3134                return;
3135
3136        cpu_buffer = buffer->buffers[cpu];
3137        atomic_dec(&cpu_buffer->record_disabled);
3138}
3139EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3140
3141/*
3142 * The total entries in the ring buffer is the running counter
3143 * of entries entered into the ring buffer, minus the sum of
3144 * the entries read from the ring buffer and the number of
3145 * entries that were overwritten.
3146 */
3147static inline unsigned long
3148rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3149{
3150        return local_read(&cpu_buffer->entries) -
3151                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3152}
3153
3154/**
3155 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3156 * @buffer: The ring buffer
3157 * @cpu: The per CPU buffer to read from.
3158 */
3159u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3160{
3161        unsigned long flags;
3162        struct ring_buffer_per_cpu *cpu_buffer;
3163        struct buffer_page *bpage;
3164        u64 ret = 0;
3165
3166        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3167                return 0;
3168
3169        cpu_buffer = buffer->buffers[cpu];
3170        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3171        /*
3172         * if the tail is on reader_page, oldest time stamp is on the reader
3173         * page
3174         */
3175        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3176                bpage = cpu_buffer->reader_page;
3177        else
3178                bpage = rb_set_head_page(cpu_buffer);
3179        if (bpage)
3180                ret = bpage->page->time_stamp;
3181        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3182
3183        return ret;
3184}
3185EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3186
3187/**
3188 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3189 * @buffer: The ring buffer
3190 * @cpu: The per CPU buffer to read from.
3191 */
3192unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3193{
3194        struct ring_buffer_per_cpu *cpu_buffer;
3195        unsigned long ret;
3196
3197        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198                return 0;
3199
3200        cpu_buffer = buffer->buffers[cpu];
3201        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3202
3203        return ret;
3204}
3205EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3206
3207/**
3208 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3209 * @buffer: The ring buffer
3210 * @cpu: The per CPU buffer to get the entries from.
3211 */
3212unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3213{
3214        struct ring_buffer_per_cpu *cpu_buffer;
3215
3216        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3217                return 0;
3218
3219        cpu_buffer = buffer->buffers[cpu];
3220
3221        return rb_num_of_entries(cpu_buffer);
3222}
3223EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3224
3225/**
3226 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3227 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3228 * @buffer: The ring buffer
3229 * @cpu: The per CPU buffer to get the number of overruns from
3230 */
3231unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3232{
3233        struct ring_buffer_per_cpu *cpu_buffer;
3234        unsigned long ret;
3235
3236        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3237                return 0;
3238
3239        cpu_buffer = buffer->buffers[cpu];
3240        ret = local_read(&cpu_buffer->overrun);
3241
3242        return ret;
3243}
3244EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3245
3246/**
3247 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3248 * commits failing due to the buffer wrapping around while there are uncommitted
3249 * events, such as during an interrupt storm.
3250 * @buffer: The ring buffer
3251 * @cpu: The per CPU buffer to get the number of overruns from
3252 */
3253unsigned long
3254ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3255{
3256        struct ring_buffer_per_cpu *cpu_buffer;
3257        unsigned long ret;
3258
3259        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3260                return 0;
3261
3262        cpu_buffer = buffer->buffers[cpu];
3263        ret = local_read(&cpu_buffer->commit_overrun);
3264
3265        return ret;
3266}
3267EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3268
3269/**
3270 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3271 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3272 * @buffer: The ring buffer
3273 * @cpu: The per CPU buffer to get the number of overruns from
3274 */
3275unsigned long
3276ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3277{
3278        struct ring_buffer_per_cpu *cpu_buffer;
3279        unsigned long ret;
3280
3281        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3282                return 0;
3283
3284        cpu_buffer = buffer->buffers[cpu];
3285        ret = local_read(&cpu_buffer->dropped_events);
3286
3287        return ret;
3288}
3289EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3290
3291/**
3292 * ring_buffer_read_events_cpu - get the number of events successfully read
3293 * @buffer: The ring buffer
3294 * @cpu: The per CPU buffer to get the number of events read
3295 */
3296unsigned long
3297ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3298{
3299        struct ring_buffer_per_cpu *cpu_buffer;
3300
3301        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302                return 0;
3303
3304        cpu_buffer = buffer->buffers[cpu];
3305        return cpu_buffer->read;
3306}
3307EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3308
3309/**
3310 * ring_buffer_entries - get the number of entries in a buffer
3311 * @buffer: The ring buffer
3312 *
3313 * Returns the total number of entries in the ring buffer
3314 * (all CPU entries)
3315 */
3316unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3317{
3318        struct ring_buffer_per_cpu *cpu_buffer;
3319        unsigned long entries = 0;
3320        int cpu;
3321
3322        /* if you care about this being correct, lock the buffer */
3323        for_each_buffer_cpu(buffer, cpu) {
3324                cpu_buffer = buffer->buffers[cpu];
3325                entries += rb_num_of_entries(cpu_buffer);
3326        }
3327
3328        return entries;
3329}
3330EXPORT_SYMBOL_GPL(ring_buffer_entries);
3331
3332/**
3333 * ring_buffer_overruns - get the number of overruns in buffer
3334 * @buffer: The ring buffer
3335 *
3336 * Returns the total number of overruns in the ring buffer
3337 * (all CPU entries)
3338 */
3339unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3340{
3341        struct ring_buffer_per_cpu *cpu_buffer;
3342        unsigned long overruns = 0;
3343        int cpu;
3344
3345        /* if you care about this being correct, lock the buffer */
3346        for_each_buffer_cpu(buffer, cpu) {
3347                cpu_buffer = buffer->buffers[cpu];
3348                overruns += local_read(&cpu_buffer->overrun);
3349        }
3350
3351        return overruns;
3352}
3353EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3354
3355static void rb_iter_reset(struct ring_buffer_iter *iter)
3356{
3357        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3358
3359        /* Iterator usage is expected to have record disabled */
3360        if (list_empty(&cpu_buffer->reader_page->list)) {
3361                iter->head_page = rb_set_head_page(cpu_buffer);
3362                if (unlikely(!iter->head_page))
3363                        return;
3364                iter->head = iter->head_page->read;
3365        } else {
3366                iter->head_page = cpu_buffer->reader_page;
3367                iter->head = cpu_buffer->reader_page->read;
3368        }
3369        if (iter->head)
3370                iter->read_stamp = cpu_buffer->read_stamp;
3371        else
3372                iter->read_stamp = iter->head_page->page->time_stamp;
3373        iter->cache_reader_page = cpu_buffer->reader_page;
3374        iter->cache_read = cpu_buffer->read;
3375}
3376
3377/**
3378 * ring_buffer_iter_reset - reset an iterator
3379 * @iter: The iterator to reset
3380 *
3381 * Resets the iterator, so that it will start from the beginning
3382 * again.
3383 */
3384void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3385{
3386        struct ring_buffer_per_cpu *cpu_buffer;
3387        unsigned long flags;
3388
3389        if (!iter)
3390                return;
3391
3392        cpu_buffer = iter->cpu_buffer;
3393
3394        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3395        rb_iter_reset(iter);
3396        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3397}
3398EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3399
3400/**
3401 * ring_buffer_iter_empty - check if an iterator has no more to read
3402 * @iter: The iterator to check
3403 */
3404int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3405{
3406        struct ring_buffer_per_cpu *cpu_buffer;
3407
3408        cpu_buffer = iter->cpu_buffer;
3409
3410        return iter->head_page == cpu_buffer->commit_page &&
3411                iter->head == rb_commit_index(cpu_buffer);
3412}
3413EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3414
3415static void
3416rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3417                     struct ring_buffer_event *event)
3418{
3419        u64 delta;
3420
3421        switch (event->type_len) {
3422        case RINGBUF_TYPE_PADDING:
3423                return;
3424
3425        case RINGBUF_TYPE_TIME_EXTEND:
3426                delta = event->array[0];
3427                delta <<= TS_SHIFT;
3428                delta += event->time_delta;
3429                cpu_buffer->read_stamp += delta;
3430                return;
3431
3432        case RINGBUF_TYPE_TIME_STAMP:
3433                /* FIXME: not implemented */
3434                return;
3435
3436        case RINGBUF_TYPE_DATA:
3437                cpu_buffer->read_stamp += event->time_delta;
3438                return;
3439
3440        default:
3441                BUG();
3442        }
3443        return;
3444}
3445
3446static void
3447rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3448                          struct ring_buffer_event *event)
3449{
3450        u64 delta;
3451
3452        switch (event->type_len) {
3453        case RINGBUF_TYPE_PADDING:
3454                return;
3455
3456        case RINGBUF_TYPE_TIME_EXTEND:
3457                delta = event->array[0];
3458                delta <<= TS_SHIFT;
3459                delta += event->time_delta;
3460                iter->read_stamp += delta;
3461                return;
3462
3463        case RINGBUF_TYPE_TIME_STAMP:
3464                /* FIXME: not implemented */
3465                return;
3466
3467        case RINGBUF_TYPE_DATA:
3468                iter->read_stamp += event->time_delta;
3469                return;
3470
3471        default:
3472                BUG();
3473        }
3474        return;
3475}
3476
3477static struct buffer_page *
3478rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3479{
3480        struct buffer_page *reader = NULL;
3481        unsigned long overwrite;
3482        unsigned long flags;
3483        int nr_loops = 0;
3484        int ret;
3485
3486        local_irq_save(flags);
3487        arch_spin_lock(&cpu_buffer->lock);
3488
3489 again:
3490        /*
3491         * This should normally only loop twice. But because the
3492         * start of the reader inserts an empty page, it causes
3493         * a case where we will loop three times. There should be no
3494         * reason to loop four times (that I know of).
3495         */
3496        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3497                reader = NULL;
3498                goto out;
3499        }
3500
3501        reader = cpu_buffer->reader_page;
3502
3503        /* If there's more to read, return this page */
3504        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3505                goto out;
3506
3507        /* Never should we have an index greater than the size */
3508        if (RB_WARN_ON(cpu_buffer,
3509                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3510                goto out;
3511
3512        /* check if we caught up to the tail */
3513        reader = NULL;
3514        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3515                goto out;
3516
3517        /* Don't bother swapping if the ring buffer is empty */
3518        if (rb_num_of_entries(cpu_buffer) == 0)
3519                goto out;
3520
3521        /*
3522         * Reset the reader page to size zero.
3523         */
3524        local_set(&cpu_buffer->reader_page->write, 0);
3525        local_set(&cpu_buffer->reader_page->entries, 0);
3526        local_set(&cpu_buffer->reader_page->page->commit, 0);
3527        cpu_buffer->reader_page->real_end = 0;
3528
3529 spin:
3530        /*
3531         * Splice the empty reader page into the list around the head.
3532         */
3533        reader = rb_set_head_page(cpu_buffer);
3534        if (!reader)
3535                goto out;
3536        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3537        cpu_buffer->reader_page->list.prev = reader->list.prev;
3538
3539        /*
3540         * cpu_buffer->pages just needs to point to the buffer, it
3541         *  has no specific buffer page to point to. Lets move it out
3542         *  of our way so we don't accidentally swap it.
3543         */
3544        cpu_buffer->pages = reader->list.prev;
3545
3546        /* The reader page will be pointing to the new head */
3547        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3548
3549        /*
3550         * We want to make sure we read the overruns after we set up our
3551         * pointers to the next object. The writer side does a
3552         * cmpxchg to cross pages which acts as the mb on the writer
3553         * side. Note, the reader will constantly fail the swap
3554         * while the writer is updating the pointers, so this
3555         * guarantees that the overwrite recorded here is the one we
3556         * want to compare with the last_overrun.
3557         */
3558        smp_mb();
3559        overwrite = local_read(&(cpu_buffer->overrun));
3560
3561        /*
3562         * Here's the tricky part.
3563         *
3564         * We need to move the pointer past the header page.
3565         * But we can only do that if a writer is not currently
3566         * moving it. The page before the header page has the
3567         * flag bit '1' set if it is pointing to the page we want.
3568         * but if the writer is in the process of moving it
3569         * than it will be '2' or already moved '0'.
3570         */
3571
3572        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3573
3574        /*
3575         * If we did not convert it, then we must try again.
3576         */
3577        if (!ret)
3578                goto spin;
3579
3580        /*
3581         * Yeah! We succeeded in replacing the page.
3582         *
3583         * Now make the new head point back to the reader page.
3584         */
3585        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3586        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3587
3588        /* Finally update the reader page to the new head */
3589        cpu_buffer->reader_page = reader;
3590        rb_reset_reader_page(cpu_buffer);
3591
3592        if (overwrite != cpu_buffer->last_overrun) {
3593                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3594                cpu_buffer->last_overrun = overwrite;
3595        }
3596
3597        goto again;
3598
3599 out:
3600        arch_spin_unlock(&cpu_buffer->lock);
3601        local_irq_restore(flags);
3602
3603        return reader;
3604}
3605
3606static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3607{
3608        struct ring_buffer_event *event;
3609        struct buffer_page *reader;
3610        unsigned length;
3611
3612        reader = rb_get_reader_page(cpu_buffer);
3613
3614        /* This function should not be called when buffer is empty */
3615        if (RB_WARN_ON(cpu_buffer, !reader))
3616                return;
3617
3618        event = rb_reader_event(cpu_buffer);
3619
3620        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3621                cpu_buffer->read++;
3622
3623        rb_update_read_stamp(cpu_buffer, event);
3624
3625        length = rb_event_length(event);
3626        cpu_buffer->reader_page->read += length;
3627}
3628
3629static void rb_advance_iter(struct ring_buffer_iter *iter)
3630{
3631        struct ring_buffer_per_cpu *cpu_buffer;
3632        struct ring_buffer_event *event;
3633        unsigned length;
3634
3635        cpu_buffer = iter->cpu_buffer;
3636
3637        /*
3638         * Check if we are at the end of the buffer.
3639         */
3640        if (iter->head >= rb_page_size(iter->head_page)) {
3641                /* discarded commits can make the page empty */
3642                if (iter->head_page == cpu_buffer->commit_page)
3643                        return;
3644                rb_inc_iter(iter);
3645                return;
3646        }
3647
3648        event = rb_iter_head_event(iter);
3649
3650        length = rb_event_length(event);
3651
3652        /*
3653         * This should not be called to advance the header if we are
3654         * at the tail of the buffer.
3655         */
3656        if (RB_WARN_ON(cpu_buffer,
3657                       (iter->head_page == cpu_buffer->commit_page) &&
3658                       (iter->head + length > rb_commit_index(cpu_buffer))))
3659                return;
3660
3661        rb_update_iter_read_stamp(iter, event);
3662
3663        iter->head += length;
3664
3665        /* check for end of page padding */
3666        if ((iter->head >= rb_page_size(iter->head_page)) &&
3667            (iter->head_page != cpu_buffer->commit_page))
3668                rb_inc_iter(iter);
3669}
3670
3671static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3672{
3673        return cpu_buffer->lost_events;
3674}
3675
3676static struct ring_buffer_event *
3677rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3678               unsigned long *lost_events)
3679{
3680        struct ring_buffer_event *event;
3681        struct buffer_page *reader;
3682        int nr_loops = 0;
3683
3684 again:
3685        /*
3686         * We repeat when a time extend is encountered.
3687         * Since the time extend is always attached to a data event,
3688         * we should never loop more than once.
3689         * (We never hit the following condition more than twice).
3690         */
3691        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3692                return NULL;
3693
3694        reader = rb_get_reader_page(cpu_buffer);
3695        if (!reader)
3696                return NULL;
3697
3698        event = rb_reader_event(cpu_buffer);
3699
3700        switch (event->type_len) {
3701        case RINGBUF_TYPE_PADDING:
3702                if (rb_null_event(event))
3703                        RB_WARN_ON(cpu_buffer, 1);
3704                /*
3705                 * Because the writer could be discarding every
3706                 * event it creates (which would probably be bad)
3707                 * if we were to go back to "again" then we may never
3708                 * catch up, and will trigger the warn on, or lock
3709                 * the box. Return the padding, and we will release
3710                 * the current locks, and try again.
3711                 */
3712                return event;
3713
3714        case RINGBUF_TYPE_TIME_EXTEND:
3715                /* Internal data, OK to advance */
3716                rb_advance_reader(cpu_buffer);
3717                goto again;
3718
3719        case RINGBUF_TYPE_TIME_STAMP:
3720                /* FIXME: not implemented */
3721                rb_advance_reader(cpu_buffer);
3722                goto again;
3723
3724        case RINGBUF_TYPE_DATA:
3725                if (ts) {
3726                        *ts = cpu_buffer->read_stamp + event->time_delta;
3727                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3728                                                         cpu_buffer->cpu, ts);
3729                }
3730                if (lost_events)
3731                        *lost_events = rb_lost_events(cpu_buffer);
3732                return event;
3733
3734        default:
3735                BUG();
3736        }
3737
3738        return NULL;
3739}
3740EXPORT_SYMBOL_GPL(ring_buffer_peek);
3741
3742static struct ring_buffer_event *
3743rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3744{
3745        struct ring_buffer *buffer;
3746        struct ring_buffer_per_cpu *cpu_buffer;
3747        struct ring_buffer_event *event;
3748        int nr_loops = 0;
3749
3750        cpu_buffer = iter->cpu_buffer;
3751        buffer = cpu_buffer->buffer;
3752
3753        /*
3754         * Check if someone performed a consuming read to
3755         * the buffer. A consuming read invalidates the iterator
3756         * and we need to reset the iterator in this case.
3757         */
3758        if (unlikely(iter->cache_read != cpu_buffer->read ||
3759                     iter->cache_reader_page != cpu_buffer->reader_page))
3760                rb_iter_reset(iter);
3761
3762 again:
3763        if (ring_buffer_iter_empty(iter))
3764                return NULL;
3765
3766        /*
3767         * We repeat when a time extend is encountered.
3768         * Since the time extend is always attached to a data event,
3769         * we should never loop more than once.
3770         * (We never hit the following condition more than twice).
3771         */
3772        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3773                return NULL;
3774
3775        if (rb_per_cpu_empty(cpu_buffer))
3776                return NULL;
3777
3778        if (iter->head >= local_read(&iter->head_page->page->commit)) {
3779                rb_inc_iter(iter);
3780                goto again;
3781        }
3782
3783        event = rb_iter_head_event(iter);
3784
3785        switch (event->type_len) {
3786        case RINGBUF_TYPE_PADDING:
3787                if (rb_null_event(event)) {
3788                        rb_inc_iter(iter);
3789                        goto again;
3790                }
3791                rb_advance_iter(iter);
3792                return event;
3793
3794        case RINGBUF_TYPE_TIME_EXTEND:
3795                /* Internal data, OK to advance */
3796                rb_advance_iter(iter);
3797                goto again;
3798
3799        case RINGBUF_TYPE_TIME_STAMP:
3800                /* FIXME: not implemented */
3801                rb_advance_iter(iter);
3802                goto again;
3803
3804        case RINGBUF_TYPE_DATA:
3805                if (ts) {
3806                        *ts = iter->read_stamp + event->time_delta;
3807                        ring_buffer_normalize_time_stamp(buffer,
3808                                                         cpu_buffer->cpu, ts);
3809                }
3810                return event;
3811
3812        default:
3813                BUG();
3814        }
3815
3816        return NULL;
3817}
3818EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3819
3820static inline int rb_ok_to_lock(void)
3821{
3822        /*
3823         * If an NMI die dumps out the content of the ring buffer
3824         * do not grab locks. We also permanently disable the ring
3825         * buffer too. A one time deal is all you get from reading
3826         * the ring buffer from an NMI.
3827         */
3828        if (likely(!in_nmi()))
3829                return 1;
3830
3831        tracing_off_permanent();
3832        return 0;
3833}
3834
3835/**
3836 * ring_buffer_peek - peek at the next event to be read
3837 * @buffer: The ring buffer to read
3838 * @cpu: The cpu to peak at
3839 * @ts: The timestamp counter of this event.
3840 * @lost_events: a variable to store if events were lost (may be NULL)
3841 *
3842 * This will return the event that will be read next, but does
3843 * not consume the data.
3844 */
3845struct ring_buffer_event *
3846ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3847                 unsigned long *lost_events)
3848{
3849        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3850        struct ring_buffer_event *event;
3851        unsigned long flags;
3852        int dolock;
3853
3854        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3855                return NULL;
3856
3857        dolock = rb_ok_to_lock();
3858 again:
3859        local_irq_save(flags);
3860        if (dolock)
3861                raw_spin_lock(&cpu_buffer->reader_lock);
3862        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3863        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3864                rb_advance_reader(cpu_buffer);
3865        if (dolock)
3866                raw_spin_unlock(&cpu_buffer->reader_lock);
3867        local_irq_restore(flags);
3868
3869        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3870                goto again;
3871
3872        return event;
3873}
3874
3875/**
3876 * ring_buffer_iter_peek - peek at the next event to be read
3877 * @iter: The ring buffer iterator
3878 * @ts: The timestamp counter of this event.
3879 *
3880 * This will return the event that will be read next, but does
3881 * not increment the iterator.
3882 */
3883struct ring_buffer_event *
3884ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3885{
3886        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3887        struct ring_buffer_event *event;
3888        unsigned long flags;
3889
3890 again:
3891        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3892        event = rb_iter_peek(iter, ts);
3893        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3894
3895        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896                goto again;
3897
3898        return event;
3899}
3900
3901/**
3902 * ring_buffer_consume - return an event and consume it
3903 * @buffer: The ring buffer to get the next event from
3904 * @cpu: the cpu to read the buffer from
3905 * @ts: a variable to store the timestamp (may be NULL)
3906 * @lost_events: a variable to store if events were lost (may be NULL)
3907 *
3908 * Returns the next event in the ring buffer, and that event is consumed.
3909 * Meaning, that sequential reads will keep returning a different event,
3910 * and eventually empty the ring buffer if the producer is slower.
3911 */
3912struct ring_buffer_event *
3913ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3914                    unsigned long *lost_events)
3915{
3916        struct ring_buffer_per_cpu *cpu_buffer;
3917        struct ring_buffer_event *event = NULL;
3918        unsigned long flags;
3919        int dolock;
3920
3921        dolock = rb_ok_to_lock();
3922
3923 again:
3924        /* might be called in atomic */
3925        preempt_disable();
3926
3927        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3928                goto out;
3929
3930        cpu_buffer = buffer->buffers[cpu];
3931        local_irq_save(flags);
3932        if (dolock)
3933                raw_spin_lock(&cpu_buffer->reader_lock);
3934
3935        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3936        if (event) {
3937                cpu_buffer->lost_events = 0;
3938                rb_advance_reader(cpu_buffer);
3939        }
3940
3941        if (dolock)
3942                raw_spin_unlock(&cpu_buffer->reader_lock);
3943        local_irq_restore(flags);
3944
3945 out:
3946        preempt_enable();
3947
3948        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3949                goto again;
3950
3951        return event;
3952}
3953EXPORT_SYMBOL_GPL(ring_buffer_consume);
3954
3955/**
3956 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3957 * @buffer: The ring buffer to read from
3958 * @cpu: The cpu buffer to iterate over
3959 *
3960 * This performs the initial preparations necessary to iterate
3961 * through the buffer.  Memory is allocated, buffer recording
3962 * is disabled, and the iterator pointer is returned to the caller.
3963 *
3964 * Disabling buffer recordng prevents the reading from being
3965 * corrupted. This is not a consuming read, so a producer is not
3966 * expected.
3967 *
3968 * After a sequence of ring_buffer_read_prepare calls, the user is
3969 * expected to make at least one call to ring_buffer_read_prepare_sync.
3970 * Afterwards, ring_buffer_read_start is invoked to get things going
3971 * for real.
3972 *
3973 * This overall must be paired with ring_buffer_read_finish.
3974 */
3975struct ring_buffer_iter *
3976ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3977{
3978        struct ring_buffer_per_cpu *cpu_buffer;
3979        struct ring_buffer_iter *iter;
3980
3981        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3982                return NULL;
3983
3984        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3985        if (!iter)
3986                return NULL;
3987
3988        cpu_buffer = buffer->buffers[cpu];
3989
3990        iter->cpu_buffer = cpu_buffer;
3991
3992        atomic_inc(&buffer->resize_disabled);
3993        atomic_inc(&cpu_buffer->record_disabled);
3994
3995        return iter;
3996}
3997EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3998
3999/**
4000 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4001 *
4002 * All previously invoked ring_buffer_read_prepare calls to prepare
4003 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4004 * calls on those iterators are allowed.
4005 */
4006void
4007ring_buffer_read_prepare_sync(void)
4008{
4009        synchronize_sched();
4010}
4011EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4012
4013/**
4014 * ring_buffer_read_start - start a non consuming read of the buffer
4015 * @iter: The iterator returned by ring_buffer_read_prepare
4016 *
4017 * This finalizes the startup of an iteration through the buffer.
4018 * The iterator comes from a call to ring_buffer_read_prepare and
4019 * an intervening ring_buffer_read_prepare_sync must have been
4020 * performed.
4021 *
4022 * Must be paired with ring_buffer_read_finish.
4023 */
4024void
4025ring_buffer_read_start(struct ring_buffer_iter *iter)
4026{
4027        struct ring_buffer_per_cpu *cpu_buffer;
4028        unsigned long flags;
4029
4030        if (!iter)
4031                return;
4032
4033        cpu_buffer = iter->cpu_buffer;
4034
4035        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4036        arch_spin_lock(&cpu_buffer->lock);
4037        rb_iter_reset(iter);
4038        arch_spin_unlock(&cpu_buffer->lock);
4039        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4040}
4041EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4042
4043/**
4044 * ring_buffer_read_finish - finish reading the iterator of the buffer
4045 * @iter: The iterator retrieved by ring_buffer_start
4046 *
4047 * This re-enables the recording to the buffer, and frees the
4048 * iterator.
4049 */
4050void
4051ring_buffer_read_finish(struct ring_buffer_iter *iter)
4052{
4053        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4054        unsigned long flags;
4055
4056        /*
4057         * Ring buffer is disabled from recording, here's a good place
4058         * to check the integrity of the ring buffer.
4059         * Must prevent readers from trying to read, as the check
4060         * clears the HEAD page and readers require it.
4061         */
4062        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4063        rb_check_pages(cpu_buffer);
4064        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4065
4066        atomic_dec(&cpu_buffer->record_disabled);
4067        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4068        kfree(iter);
4069}
4070EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4071
4072/**
4073 * ring_buffer_read - read the next item in the ring buffer by the iterator
4074 * @iter: The ring buffer iterator
4075 * @ts: The time stamp of the event read.
4076 *
4077 * This reads the next event in the ring buffer and increments the iterator.
4078 */
4079struct ring_buffer_event *
4080ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4081{
4082        struct ring_buffer_event *event;
4083        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4084        unsigned long flags;
4085
4086        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4087 again:
4088        event = rb_iter_peek(iter, ts);
4089        if (!event)
4090                goto out;
4091
4092        if (event->type_len == RINGBUF_TYPE_PADDING)
4093                goto again;
4094
4095        rb_advance_iter(iter);
4096 out:
4097        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4098
4099        return event;
4100}
4101EXPORT_SYMBOL_GPL(ring_buffer_read);
4102
4103/**
4104 * ring_buffer_size - return the size of the ring buffer (in bytes)
4105 * @buffer: The ring buffer.
4106 */
4107unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4108{
4109        /*
4110         * Earlier, this method returned
4111         *      BUF_PAGE_SIZE * buffer->nr_pages
4112         * Since the nr_pages field is now removed, we have converted this to
4113         * return the per cpu buffer value.
4114         */
4115        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4116                return 0;
4117
4118        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4119}
4120EXPORT_SYMBOL_GPL(ring_buffer_size);
4121
4122static void
4123rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4124{
4125        rb_head_page_deactivate(cpu_buffer);
4126
4127        cpu_buffer->head_page
4128                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4129        local_set(&cpu_buffer->head_page->write, 0);
4130        local_set(&cpu_buffer->head_page->entries, 0);
4131        local_set(&cpu_buffer->head_page->page->commit, 0);
4132
4133        cpu_buffer->head_page->read = 0;
4134
4135        cpu_buffer->tail_page = cpu_buffer->head_page;
4136        cpu_buffer->commit_page = cpu_buffer->head_page;
4137
4138        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4139        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4140        local_set(&cpu_buffer->reader_page->write, 0);
4141        local_set(&cpu_buffer->reader_page->entries, 0);
4142        local_set(&cpu_buffer->reader_page->page->commit, 0);
4143        cpu_buffer->reader_page->read = 0;
4144
4145        local_set(&cpu_buffer->entries_bytes, 0);
4146        local_set(&cpu_buffer->overrun, 0);
4147        local_set(&cpu_buffer->commit_overrun, 0);
4148        local_set(&cpu_buffer->dropped_events, 0);
4149        local_set(&cpu_buffer->entries, 0);
4150        local_set(&cpu_buffer->committing, 0);
4151        local_set(&cpu_buffer->commits, 0);
4152        cpu_buffer->read = 0;
4153        cpu_buffer->read_bytes = 0;
4154
4155        cpu_buffer->write_stamp = 0;
4156        cpu_buffer->read_stamp = 0;
4157
4158        cpu_buffer->lost_events = 0;
4159        cpu_buffer->last_overrun = 0;
4160
4161        rb_head_page_activate(cpu_buffer);
4162}
4163
4164/**
4165 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4166 * @buffer: The ring buffer to reset a per cpu buffer of
4167 * @cpu: The CPU buffer to be reset
4168 */
4169void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4170{
4171        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4172        unsigned long flags;
4173
4174        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4175                return;
4176
4177        atomic_inc(&buffer->resize_disabled);
4178        atomic_inc(&cpu_buffer->record_disabled);
4179
4180        /* Make sure all commits have finished */
4181        synchronize_sched();
4182
4183        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4184
4185        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4186                goto out;
4187
4188        arch_spin_lock(&cpu_buffer->lock);
4189
4190        rb_reset_cpu(cpu_buffer);
4191
4192        arch_spin_unlock(&cpu_buffer->lock);
4193
4194 out:
4195        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4196
4197        atomic_dec(&cpu_buffer->record_disabled);
4198        atomic_dec(&buffer->resize_disabled);
4199}
4200EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4201
4202/**
4203 * ring_buffer_reset - reset a ring buffer
4204 * @buffer: The ring buffer to reset all cpu buffers
4205 */
4206void ring_buffer_reset(struct ring_buffer *buffer)
4207{
4208        int cpu;
4209
4210        for_each_buffer_cpu(buffer, cpu)
4211                ring_buffer_reset_cpu(buffer, cpu);
4212}
4213EXPORT_SYMBOL_GPL(ring_buffer_reset);
4214
4215/**
4216 * rind_buffer_empty - is the ring buffer empty?
4217 * @buffer: The ring buffer to test
4218 */
4219int ring_buffer_empty(struct ring_buffer *buffer)
4220{
4221        struct ring_buffer_per_cpu *cpu_buffer;
4222        unsigned long flags;
4223        int dolock;
4224        int cpu;
4225        int ret;
4226
4227        dolock = rb_ok_to_lock();
4228
4229        /* yes this is racy, but if you don't like the race, lock the buffer */
4230        for_each_buffer_cpu(buffer, cpu) {
4231                cpu_buffer = buffer->buffers[cpu];
4232                local_irq_save(flags);
4233                if (dolock)
4234                        raw_spin_lock(&cpu_buffer->reader_lock);
4235                ret = rb_per_cpu_empty(cpu_buffer);
4236                if (dolock)
4237                        raw_spin_unlock(&cpu_buffer->reader_lock);
4238                local_irq_restore(flags);
4239
4240                if (!ret)
4241                        return 0;
4242        }
4243
4244        return 1;
4245}
4246EXPORT_SYMBOL_GPL(ring_buffer_empty);
4247
4248/**
4249 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4250 * @buffer: The ring buffer
4251 * @cpu: The CPU buffer to test
4252 */
4253int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4254{
4255        struct ring_buffer_per_cpu *cpu_buffer;
4256        unsigned long flags;
4257        int dolock;
4258        int ret;
4259
4260        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4261                return 1;
4262
4263        dolock = rb_ok_to_lock();
4264
4265        cpu_buffer = buffer->buffers[cpu];
4266        local_irq_save(flags);
4267        if (dolock)
4268                raw_spin_lock(&cpu_buffer->reader_lock);
4269        ret = rb_per_cpu_empty(cpu_buffer);
4270        if (dolock)
4271                raw_spin_unlock(&cpu_buffer->reader_lock);
4272        local_irq_restore(flags);
4273
4274        return ret;
4275}
4276EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4277
4278#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4279/**
4280 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4281 * @buffer_a: One buffer to swap with
4282 * @buffer_b: The other buffer to swap with
4283 *
4284 * This function is useful for tracers that want to take a "snapshot"
4285 * of a CPU buffer and has another back up buffer lying around.
4286 * it is expected that the tracer handles the cpu buffer not being
4287 * used at the moment.
4288 */
4289int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4290                         struct ring_buffer *buffer_b, int cpu)
4291{
4292        struct ring_buffer_per_cpu *cpu_buffer_a;
4293        struct ring_buffer_per_cpu *cpu_buffer_b;
4294        int ret = -EINVAL;
4295
4296        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4297            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4298                goto out;
4299
4300        cpu_buffer_a = buffer_a->buffers[cpu];
4301        cpu_buffer_b = buffer_b->buffers[cpu];
4302
4303        /* At least make sure the two buffers are somewhat the same */
4304        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4305                goto out;
4306
4307        ret = -EAGAIN;
4308
4309        if (ring_buffer_flags != RB_BUFFERS_ON)
4310                goto out;
4311
4312        if (atomic_read(&buffer_a->record_disabled))
4313                goto out;
4314
4315        if (atomic_read(&buffer_b->record_disabled))
4316                goto out;
4317
4318        if (atomic_read(&cpu_buffer_a->record_disabled))
4319                goto out;
4320
4321        if (atomic_read(&cpu_buffer_b->record_disabled))
4322                goto out;
4323
4324        /*
4325         * We can't do a synchronize_sched here because this
4326         * function can be called in atomic context.
4327         * Normally this will be called from the same CPU as cpu.
4328         * If not it's up to the caller to protect this.
4329         */
4330        atomic_inc(&cpu_buffer_a->record_disabled);
4331        atomic_inc(&cpu_buffer_b->record_disabled);
4332
4333        ret = -EBUSY;
4334        if (local_read(&cpu_buffer_a->committing))
4335                goto out_dec;
4336        if (local_read(&cpu_buffer_b->committing))
4337                goto out_dec;
4338
4339        buffer_a->buffers[cpu] = cpu_buffer_b;
4340        buffer_b->buffers[cpu] = cpu_buffer_a;
4341
4342        cpu_buffer_b->buffer = buffer_a;
4343        cpu_buffer_a->buffer = buffer_b;
4344
4345        ret = 0;
4346
4347out_dec:
4348        atomic_dec(&cpu_buffer_a->record_disabled);
4349        atomic_dec(&cpu_buffer_b->record_disabled);
4350out:
4351        return ret;
4352}
4353EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4354#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4355
4356/**
4357 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4358 * @buffer: the buffer to allocate for.
4359 * @cpu: the cpu buffer to allocate.
4360 *
4361 * This function is used in conjunction with ring_buffer_read_page.
4362 * When reading a full page from the ring buffer, these functions
4363 * can be used to speed up the process. The calling function should
4364 * allocate a few pages first with this function. Then when it
4365 * needs to get pages from the ring buffer, it passes the result
4366 * of this function into ring_buffer_read_page, which will swap
4367 * the page that was allocated, with the read page of the buffer.
4368 *
4369 * Returns:
4370 *  The page allocated, or NULL on error.
4371 */
4372void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4373{
4374        struct buffer_data_page *bpage;
4375        struct page *page;
4376
4377        page = alloc_pages_node(cpu_to_node(cpu),
4378                                GFP_KERNEL | __GFP_NORETRY, 0);
4379        if (!page)
4380                return NULL;
4381
4382        bpage = page_address(page);
4383
4384        rb_init_page(bpage);
4385
4386        return bpage;
4387}
4388EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4389
4390/**
4391 * ring_buffer_free_read_page - free an allocated read page
4392 * @buffer: the buffer the page was allocate for
4393 * @data: the page to free
4394 *
4395 * Free a page allocated from ring_buffer_alloc_read_page.
4396 */
4397void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4398{
4399        free_page((unsigned long)data);
4400}
4401EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4402
4403/**
4404 * ring_buffer_read_page - extract a page from the ring buffer
4405 * @buffer: buffer to extract from
4406 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4407 * @len: amount to extract
4408 * @cpu: the cpu of the buffer to extract
4409 * @full: should the extraction only happen when the page is full.
4410 *
4411 * This function will pull out a page from the ring buffer and consume it.
4412 * @data_page must be the address of the variable that was returned
4413 * from ring_buffer_alloc_read_page. This is because the page might be used
4414 * to swap with a page in the ring buffer.
4415 *
4416 * for example:
4417 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4418 *      if (!rpage)
4419 *              return error;
4420 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4421 *      if (ret >= 0)
4422 *              process_page(rpage, ret);
4423 *
4424 * When @full is set, the function will not return true unless
4425 * the writer is off the reader page.
4426 *
4427 * Note: it is up to the calling functions to handle sleeps and wakeups.
4428 *  The ring buffer can be used anywhere in the kernel and can not
4429 *  blindly call wake_up. The layer that uses the ring buffer must be
4430 *  responsible for that.
4431 *
4432 * Returns:
4433 *  >=0 if data has been transferred, returns the offset of consumed data.
4434 *  <0 if no data has been transferred.
4435 */
4436int ring_buffer_read_page(struct ring_buffer *buffer,
4437                          void **data_page, size_t len, int cpu, int full)
4438{
4439        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4440        struct ring_buffer_event *event;
4441        struct buffer_data_page *bpage;
4442        struct buffer_page *reader;
4443        unsigned long missed_events;
4444        unsigned long flags;
4445        unsigned int commit;
4446        unsigned int read;
4447        u64 save_timestamp;
4448        int ret = -1;
4449
4450        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4451                goto out;
4452
4453        /*
4454         * If len is not big enough to hold the page header, then
4455         * we can not copy anything.
4456         */
4457        if (len <= BUF_PAGE_HDR_SIZE)
4458                goto out;
4459
4460        len -= BUF_PAGE_HDR_SIZE;
4461
4462        if (!data_page)
4463                goto out;
4464
4465        bpage = *data_page;
4466        if (!bpage)
4467                goto out;
4468
4469        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4470
4471        reader = rb_get_reader_page(cpu_buffer);
4472        if (!reader)
4473                goto out_unlock;
4474
4475        event = rb_reader_event(cpu_buffer);
4476
4477        read = reader->read;
4478        commit = rb_page_commit(reader);
4479
4480        /* Check if any events were dropped */
4481        missed_events = cpu_buffer->lost_events;
4482
4483        /*
4484         * If this page has been partially read or
4485         * if len is not big enough to read the rest of the page or
4486         * a writer is still on the page, then
4487         * we must copy the data from the page to the buffer.
4488         * Otherwise, we can simply swap the page with the one passed in.
4489         */
4490        if (read || (len < (commit - read)) ||
4491            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4492                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4493                unsigned int rpos = read;
4494                unsigned int pos = 0;
4495                unsigned int size;
4496
4497                if (full)
4498                        goto out_unlock;
4499
4500                if (len > (commit - read))
4501                        len = (commit - read);
4502
4503                /* Always keep the time extend and data together */
4504                size = rb_event_ts_length(event);
4505
4506                if (len < size)
4507                        goto out_unlock;
4508
4509                /* save the current timestamp, since the user will need it */
4510                save_timestamp = cpu_buffer->read_stamp;
4511
4512                /* Need to copy one event at a time */
4513                do {
4514                        /* We need the size of one event, because
4515                         * rb_advance_reader only advances by one event,
4516                         * whereas rb_event_ts_length may include the size of
4517                         * one or two events.
4518                         * We have already ensured there's enough space if this
4519                         * is a time extend. */
4520                        size = rb_event_length(event);
4521                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4522
4523                        len -= size;
4524
4525                        rb_advance_reader(cpu_buffer);
4526                        rpos = reader->read;
4527                        pos += size;
4528
4529                        if (rpos >= commit)
4530                                break;
4531
4532                        event = rb_reader_event(cpu_buffer);
4533                        /* Always keep the time extend and data together */
4534                        size = rb_event_ts_length(event);
4535                } while (len >= size);
4536
4537                /* update bpage */
4538                local_set(&bpage->commit, pos);
4539                bpage->time_stamp = save_timestamp;
4540
4541                /* we copied everything to the beginning */
4542                read = 0;
4543        } else {
4544                /* update the entry counter */
4545                cpu_buffer->read += rb_page_entries(reader);
4546                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4547
4548                /* swap the pages */
4549                rb_init_page(bpage);
4550                bpage = reader->page;
4551                reader->page = *data_page;
4552                local_set(&reader->write, 0);
4553                local_set(&reader->entries, 0);
4554                reader->read = 0;
4555                *data_page = bpage;
4556
4557                /*
4558                 * Use the real_end for the data size,
4559                 * This gives us a chance to store the lost events
4560                 * on the page.
4561                 */
4562                if (reader->real_end)
4563                        local_set(&bpage->commit, reader->real_end);
4564        }
4565        ret = read;
4566
4567        cpu_buffer->lost_events = 0;
4568
4569        commit = local_read(&bpage->commit);
4570        /*
4571         * Set a flag in the commit field if we lost events
4572         */
4573        if (missed_events) {
4574                /* If there is room at the end of the page to save the
4575                 * missed events, then record it there.
4576                 */
4577                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4578                        memcpy(&bpage->data[commit], &missed_events,
4579                               sizeof(missed_events));
4580                        local_add(RB_MISSED_STORED, &bpage->commit);
4581                        commit += sizeof(missed_events);
4582                }
4583                local_add(RB_MISSED_EVENTS, &bpage->commit);
4584        }
4585
4586        /*
4587         * This page may be off to user land. Zero it out here.
4588         */
4589        if (commit < BUF_PAGE_SIZE)
4590                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4591
4592 out_unlock:
4593        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4594
4595 out:
4596        return ret;
4597}
4598EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4599
4600#ifdef CONFIG_HOTPLUG_CPU
4601static int rb_cpu_notify(struct notifier_block *self,
4602                         unsigned long action, void *hcpu)
4603{
4604        struct ring_buffer *buffer =
4605                container_of(self, struct ring_buffer, cpu_notify);
4606        long cpu = (long)hcpu;
4607        int cpu_i, nr_pages_same;
4608        unsigned int nr_pages;
4609
4610        switch (action) {
4611        case CPU_UP_PREPARE:
4612        case CPU_UP_PREPARE_FROZEN:
4613                if (cpumask_test_cpu(cpu, buffer->cpumask))
4614                        return NOTIFY_OK;
4615
4616                nr_pages = 0;
4617                nr_pages_same = 1;
4618                /* check if all cpu sizes are same */
4619                for_each_buffer_cpu(buffer, cpu_i) {
4620                        /* fill in the size from first enabled cpu */
4621                        if (nr_pages == 0)
4622                                nr_pages = buffer->buffers[cpu_i]->nr_pages;
4623                        if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4624                                nr_pages_same = 0;
4625                                break;
4626                        }
4627                }
4628                /* allocate minimum pages, user can later expand it */
4629                if (!nr_pages_same)
4630                        nr_pages = 2;
4631                buffer->buffers[cpu] =
4632                        rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4633                if (!buffer->buffers[cpu]) {
4634                        WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4635                             cpu);
4636                        return NOTIFY_OK;
4637                }
4638                smp_wmb();
4639                cpumask_set_cpu(cpu, buffer->cpumask);
4640                break;
4641        case CPU_DOWN_PREPARE:
4642        case CPU_DOWN_PREPARE_FROZEN:
4643                /*
4644                 * Do nothing.
4645                 *  If we were to free the buffer, then the user would
4646                 *  lose any trace that was in the buffer.
4647                 */
4648                break;
4649        default:
4650                break;
4651        }
4652        return NOTIFY_OK;
4653}
4654#endif
4655
4656#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4657/*
4658 * This is a basic integrity check of the ring buffer.
4659 * Late in the boot cycle this test will run when configured in.
4660 * It will kick off a thread per CPU that will go into a loop
4661 * writing to the per cpu ring buffer various sizes of data.
4662 * Some of the data will be large items, some small.
4663 *
4664 * Another thread is created that goes into a spin, sending out
4665 * IPIs to the other CPUs to also write into the ring buffer.
4666 * this is to test the nesting ability of the buffer.
4667 *
4668 * Basic stats are recorded and reported. If something in the
4669 * ring buffer should happen that's not expected, a big warning
4670 * is displayed and all ring buffers are disabled.
4671 */
4672static struct task_struct *rb_threads[NR_CPUS] __initdata;
4673
4674struct rb_test_data {
4675        struct ring_buffer      *buffer;
4676        unsigned long           events;
4677        unsigned long           bytes_written;
4678        unsigned long           bytes_alloc;
4679        unsigned long           bytes_dropped;
4680        unsigned long           events_nested;
4681        unsigned long           bytes_written_nested;
4682        unsigned long           bytes_alloc_nested;
4683        unsigned long           bytes_dropped_nested;
4684        int                     min_size_nested;
4685        int                     max_size_nested;
4686        int                     max_size;
4687        int                     min_size;
4688        int                     cpu;
4689        int                     cnt;
4690};
4691
4692static struct rb_test_data rb_data[NR_CPUS] __initdata;
4693
4694/* 1 meg per cpu */
4695#define RB_TEST_BUFFER_SIZE     1048576
4696
4697static char rb_string[] __initdata =
4698        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4699        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4700        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4701
4702static bool rb_test_started __initdata;
4703
4704struct rb_item {
4705        int size;
4706        char str[];
4707};
4708
4709static __init int rb_write_something(struct rb_test_data *data, bool nested)
4710{
4711        struct ring_buffer_event *event;
4712        struct rb_item *item;
4713        bool started;
4714        int event_len;
4715        int size;
4716        int len;
4717        int cnt;
4718
4719        /* Have nested writes different that what is written */
4720        cnt = data->cnt + (nested ? 27 : 0);
4721
4722        /* Multiply cnt by ~e, to make some unique increment */
4723        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4724
4725        len = size + sizeof(struct rb_item);
4726
4727        started = rb_test_started;
4728        /* read rb_test_started before checking buffer enabled */
4729        smp_rmb();
4730
4731        event = ring_buffer_lock_reserve(data->buffer, len);
4732        if (!event) {
4733                /* Ignore dropped events before test starts. */
4734                if (started) {
4735                        if (nested)
4736                                data->bytes_dropped += len;
4737                        else
4738                                data->bytes_dropped_nested += len;
4739                }
4740                return len;
4741        }
4742
4743        event_len = ring_buffer_event_length(event);
4744
4745        if (RB_WARN_ON(data->buffer, event_len < len))
4746                goto out;
4747
4748        item = ring_buffer_event_data(event);
4749        item->size = size;
4750        memcpy(item->str, rb_string, size);
4751
4752        if (nested) {
4753                data->bytes_alloc_nested += event_len;
4754                data->bytes_written_nested += len;
4755                data->events_nested++;
4756                if (!data->min_size_nested || len < data->min_size_nested)
4757                        data->min_size_nested = len;
4758                if (len > data->max_size_nested)
4759                        data->max_size_nested = len;
4760        } else {
4761                data->bytes_alloc += event_len;
4762                data->bytes_written += len;
4763                data->events++;
4764                if (!data->min_size || len < data->min_size)
4765                        data->max_size = len;
4766                if (len > data->max_size)
4767                        data->max_size = len;
4768        }
4769
4770 out:
4771        ring_buffer_unlock_commit(data->buffer, event);
4772
4773        return 0;
4774}
4775
4776static __init int rb_test(void *arg)
4777{
4778        struct rb_test_data *data = arg;
4779
4780        while (!kthread_should_stop()) {
4781                rb_write_something(data, false);
4782                data->cnt++;
4783
4784                set_current_state(TASK_INTERRUPTIBLE);
4785                /* Now sleep between a min of 100-300us and a max of 1ms */
4786                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4787        }
4788
4789        return 0;
4790}
4791
4792static __init void rb_ipi(void *ignore)
4793{
4794        struct rb_test_data *data;
4795        int cpu = smp_processor_id();
4796
4797        data = &rb_data[cpu];
4798        rb_write_something(data, true);
4799}
4800
4801static __init int rb_hammer_test(void *arg)
4802{
4803        while (!kthread_should_stop()) {
4804
4805                /* Send an IPI to all cpus to write data! */
4806                smp_call_function(rb_ipi, NULL, 1);
4807                /* No sleep, but for non preempt, let others run */
4808                schedule();
4809        }
4810
4811        return 0;
4812}
4813
4814static __init int test_ringbuffer(void)
4815{
4816        struct task_struct *rb_hammer;
4817        struct ring_buffer *buffer;
4818        int cpu;
4819        int ret = 0;
4820
4821        pr_info("Running ring buffer tests...\n");
4822
4823        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4824        if (WARN_ON(!buffer))
4825                return 0;
4826
4827        /* Disable buffer so that threads can't write to it yet */
4828        ring_buffer_record_off(buffer);
4829
4830        for_each_online_cpu(cpu) {
4831                rb_data[cpu].buffer = buffer;
4832                rb_data[cpu].cpu = cpu;
4833                rb_data[cpu].cnt = cpu;
4834                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4835                                                 "rbtester/%d", cpu);
4836                if (WARN_ON(!rb_threads[cpu])) {
4837                        pr_cont("FAILED\n");
4838                        ret = -1;
4839                        goto out_free;
4840                }
4841
4842                kthread_bind(rb_threads[cpu], cpu);
4843                wake_up_process(rb_threads[cpu]);
4844        }
4845
4846        /* Now create the rb hammer! */
4847        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4848        if (WARN_ON(!rb_hammer)) {
4849                pr_cont("FAILED\n");
4850                ret = -1;
4851                goto out_free;
4852        }
4853
4854        ring_buffer_record_on(buffer);
4855        /*
4856         * Show buffer is enabled before setting rb_test_started.
4857         * Yes there's a small race window where events could be
4858         * dropped and the thread wont catch it. But when a ring
4859         * buffer gets enabled, there will always be some kind of
4860         * delay before other CPUs see it. Thus, we don't care about
4861         * those dropped events. We care about events dropped after
4862         * the threads see that the buffer is active.
4863         */
4864        smp_wmb();
4865        rb_test_started = true;
4866
4867        set_current_state(TASK_INTERRUPTIBLE);
4868        /* Just run for 10 seconds */;
4869        schedule_timeout(10 * HZ);
4870
4871        kthread_stop(rb_hammer);
4872
4873 out_free:
4874        for_each_online_cpu(cpu) {
4875                if (!rb_threads[cpu])
4876                        break;
4877                kthread_stop(rb_threads[cpu]);
4878        }
4879        if (ret) {
4880                ring_buffer_free(buffer);
4881                return ret;
4882        }
4883
4884        /* Report! */
4885        pr_info("finished\n");
4886        for_each_online_cpu(cpu) {
4887                struct ring_buffer_event *event;
4888                struct rb_test_data *data = &rb_data[cpu];
4889                struct rb_item *item;
4890                unsigned long total_events;
4891                unsigned long total_dropped;
4892                unsigned long total_written;
4893                unsigned long total_alloc;
4894                unsigned long total_read = 0;
4895                unsigned long total_size = 0;
4896                unsigned long total_len = 0;
4897                unsigned long total_lost = 0;
4898                unsigned long lost;
4899                int big_event_size;
4900                int small_event_size;
4901
4902                ret = -1;
4903
4904                total_events = data->events + data->events_nested;
4905                total_written = data->bytes_written + data->bytes_written_nested;
4906                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4907                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4908
4909                big_event_size = data->max_size + data->max_size_nested;
4910                small_event_size = data->min_size + data->min_size_nested;
4911
4912                pr_info("CPU %d:\n", cpu);
4913                pr_info("              events:    %ld\n", total_events);
4914                pr_info("       dropped bytes:    %ld\n", total_dropped);
4915                pr_info("       alloced bytes:    %ld\n", total_alloc);
4916                pr_info("       written bytes:    %ld\n", total_written);
4917                pr_info("       biggest event:    %d\n", big_event_size);
4918                pr_info("      smallest event:    %d\n", small_event_size);
4919
4920                if (RB_WARN_ON(buffer, total_dropped))
4921                        break;
4922
4923                ret = 0;
4924
4925                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4926                        total_lost += lost;
4927                        item = ring_buffer_event_data(event);
4928                        total_len += ring_buffer_event_length(event);
4929                        total_size += item->size + sizeof(struct rb_item);
4930                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4931                                pr_info("FAILED!\n");
4932                                pr_info("buffer had: %.*s\n", item->size, item->str);
4933                                pr_info("expected:   %.*s\n", item->size, rb_string);
4934                                RB_WARN_ON(buffer, 1);
4935                                ret = -1;
4936                                break;
4937                        }
4938                        total_read++;
4939                }
4940                if (ret)
4941                        break;
4942
4943                ret = -1;
4944
4945                pr_info("         read events:   %ld\n", total_read);
4946                pr_info("         lost events:   %ld\n", total_lost);
4947                pr_info("        total events:   %ld\n", total_lost + total_read);
4948                pr_info("  recorded len bytes:   %ld\n", total_len);
4949                pr_info(" recorded size bytes:   %ld\n", total_size);
4950                if (total_lost)
4951                        pr_info(" With dropped events, record len and size may not match\n"
4952                                " alloced and written from above\n");
4953                if (!total_lost) {
4954                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
4955                                       total_size != total_written))
4956                                break;
4957                }
4958                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4959                        break;
4960
4961                ret = 0;
4962        }
4963        if (!ret)
4964                pr_info("Ring buffer PASSED!\n");
4965
4966        ring_buffer_free(buffer);
4967        return 0;
4968}
4969
4970late_initcall(test_ringbuffer);
4971#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4972