linux/kernel/workqueue.c
<<
>>
Prefs
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002           Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010           SUSE Linux Products GmbH
  15 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55        /*
  56         * worker_pool flags
  57         *
  58         * A bound pool is either associated or disassociated with its CPU.
  59         * While associated (!DISASSOCIATED), all workers are bound to the
  60         * CPU and none has %WORKER_UNBOUND set and concurrency management
  61         * is in effect.
  62         *
  63         * While DISASSOCIATED, the cpu may be offline and all workers have
  64         * %WORKER_UNBOUND set and concurrency management disabled, and may
  65         * be executing on any CPU.  The pool behaves as an unbound one.
  66         *
  67         * Note that DISASSOCIATED should be flipped only while holding
  68         * attach_mutex to avoid changing binding state while
  69         * worker_attach_to_pool() is in progress.
  70         */
  71        POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
  72
  73        /* worker flags */
  74        WORKER_DIE              = 1 << 1,       /* die die die */
  75        WORKER_IDLE             = 1 << 2,       /* is idle */
  76        WORKER_PREP             = 1 << 3,       /* preparing to run works */
  77        WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
  78        WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
  79        WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
  80
  81        WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
  82                                  WORKER_UNBOUND | WORKER_REBOUND,
  83
  84        NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
  85
  86        UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
  87        BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
  88
  89        MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
  90        IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
  91
  92        MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93                                                /* call for help after 10ms
  94                                                   (min two ticks) */
  95        MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
  96        CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
  97
  98        /*
  99         * Rescue workers are used only on emergencies and shared by
 100         * all cpus.  Give MIN_NICE.
 101         */
 102        RESCUER_NICE_LEVEL      = MIN_NICE,
 103        HIGHPRI_NICE_LEVEL      = MIN_NICE,
 104
 105        WQ_NAME_LEN             = 24,
 106};
 107
 108/*
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * WQ: wq->mutex protected.
 131 *
 132 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 133 *
 134 * MD: wq_mayday_lock protected.
 135 */
 136
 137/* struct worker is defined in workqueue_internal.h */
 138
 139struct worker_pool {
 140        spinlock_t              lock;           /* the pool lock */
 141        int                     cpu;            /* I: the associated cpu */
 142        int                     node;           /* I: the associated node ID */
 143        int                     id;             /* I: pool ID */
 144        unsigned int            flags;          /* X: flags */
 145
 146        struct list_head        worklist;       /* L: list of pending works */
 147        int                     nr_workers;     /* L: total number of workers */
 148
 149        /* nr_idle includes the ones off idle_list for rebinding */
 150        int                     nr_idle;        /* L: currently idle ones */
 151
 152        struct list_head        idle_list;      /* X: list of idle workers */
 153        struct timer_list       idle_timer;     /* L: worker idle timeout */
 154        struct timer_list       mayday_timer;   /* L: SOS timer for workers */
 155
 156        /* a workers is either on busy_hash or idle_list, or the manager */
 157        DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 158                                                /* L: hash of busy workers */
 159
 160        /* see manage_workers() for details on the two manager mutexes */
 161        struct mutex            manager_arb;    /* manager arbitration */
 162        struct mutex            attach_mutex;   /* attach/detach exclusion */
 163        struct list_head        workers;        /* A: attached workers */
 164        struct completion       *detach_completion; /* all workers detached */
 165
 166        struct ida              worker_ida;     /* worker IDs for task name */
 167
 168        struct workqueue_attrs  *attrs;         /* I: worker attributes */
 169        struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
 170        int                     refcnt;         /* PL: refcnt for unbound pools */
 171
 172        /*
 173         * The current concurrency level.  As it's likely to be accessed
 174         * from other CPUs during try_to_wake_up(), put it in a separate
 175         * cacheline.
 176         */
 177        atomic_t                nr_running ____cacheline_aligned_in_smp;
 178
 179        /*
 180         * Destruction of pool is sched-RCU protected to allow dereferences
 181         * from get_work_pool().
 182         */
 183        struct rcu_head         rcu;
 184} ____cacheline_aligned_in_smp;
 185
 186/*
 187 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 188 * of work_struct->data are used for flags and the remaining high bits
 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 190 * number of flag bits.
 191 */
 192struct pool_workqueue {
 193        struct worker_pool      *pool;          /* I: the associated pool */
 194        struct workqueue_struct *wq;            /* I: the owning workqueue */
 195        int                     work_color;     /* L: current color */
 196        int                     flush_color;    /* L: flushing color */
 197        int                     refcnt;         /* L: reference count */
 198        int                     nr_in_flight[WORK_NR_COLORS];
 199                                                /* L: nr of in_flight works */
 200        int                     nr_active;      /* L: nr of active works */
 201        int                     max_active;     /* L: max active works */
 202        struct list_head        delayed_works;  /* L: delayed works */
 203        struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
 204        struct list_head        mayday_node;    /* MD: node on wq->maydays */
 205
 206        /*
 207         * Release of unbound pwq is punted to system_wq.  See put_pwq()
 208         * and pwq_unbound_release_workfn() for details.  pool_workqueue
 209         * itself is also sched-RCU protected so that the first pwq can be
 210         * determined without grabbing wq->mutex.
 211         */
 212        struct work_struct      unbound_release_work;
 213        struct rcu_head         rcu;
 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 215
 216/*
 217 * Structure used to wait for workqueue flush.
 218 */
 219struct wq_flusher {
 220        struct list_head        list;           /* WQ: list of flushers */
 221        int                     flush_color;    /* WQ: flush color waiting for */
 222        struct completion       done;           /* flush completion */
 223};
 224
 225struct wq_device;
 226
 227/*
 228 * The externally visible workqueue.  It relays the issued work items to
 229 * the appropriate worker_pool through its pool_workqueues.
 230 */
 231struct workqueue_struct {
 232        struct list_head        pwqs;           /* WR: all pwqs of this wq */
 233        struct list_head        list;           /* PL: list of all workqueues */
 234
 235        struct mutex            mutex;          /* protects this wq */
 236        int                     work_color;     /* WQ: current work color */
 237        int                     flush_color;    /* WQ: current flush color */
 238        atomic_t                nr_pwqs_to_flush; /* flush in progress */
 239        struct wq_flusher       *first_flusher; /* WQ: first flusher */
 240        struct list_head        flusher_queue;  /* WQ: flush waiters */
 241        struct list_head        flusher_overflow; /* WQ: flush overflow list */
 242
 243        struct list_head        maydays;        /* MD: pwqs requesting rescue */
 244        struct worker           *rescuer;       /* I: rescue worker */
 245
 246        int                     nr_drainers;    /* WQ: drain in progress */
 247        int                     saved_max_active; /* WQ: saved pwq max_active */
 248
 249        struct workqueue_attrs  *unbound_attrs; /* WQ: only for unbound wqs */
 250        struct pool_workqueue   *dfl_pwq;       /* WQ: only for unbound wqs */
 251
 252#ifdef CONFIG_SYSFS
 253        struct wq_device        *wq_dev;        /* I: for sysfs interface */
 254#endif
 255#ifdef CONFIG_LOCKDEP
 256        struct lockdep_map      lockdep_map;
 257#endif
 258        char                    name[WQ_NAME_LEN]; /* I: workqueue name */
 259
 260        /* hot fields used during command issue, aligned to cacheline */
 261        unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
 262        struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 263        struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
 264};
 265
 266static struct kmem_cache *pwq_cache;
 267
 268static int wq_numa_tbl_len;             /* highest possible NUMA node id + 1 */
 269static cpumask_var_t *wq_numa_possible_cpumask;
 270                                        /* possible CPUs of each node */
 271
 272static bool wq_disable_numa;
 273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 274
 275/* see the comment above the definition of WQ_POWER_EFFICIENT */
 276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
 277static bool wq_power_efficient = true;
 278#else
 279static bool wq_power_efficient;
 280#endif
 281
 282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 283
 284static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
 285
 286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 288
 289static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
 291
 292static LIST_HEAD(workqueues);           /* PL: list of all workqueues */
 293static bool workqueue_freezing;         /* PL: have wqs started freezing? */
 294
 295/* the per-cpu worker pools */
 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 297                                     cpu_worker_pools);
 298
 299static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
 300
 301/* PL: hash of all unbound pools keyed by pool->attrs */
 302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 303
 304/* I: attributes used when instantiating standard unbound pools on demand */
 305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 306
 307/* I: attributes used when instantiating ordered pools on demand */
 308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 309
 310struct workqueue_struct *system_wq __read_mostly;
 311EXPORT_SYMBOL(system_wq);
 312struct workqueue_struct *system_highpri_wq __read_mostly;
 313EXPORT_SYMBOL_GPL(system_highpri_wq);
 314struct workqueue_struct *system_long_wq __read_mostly;
 315EXPORT_SYMBOL_GPL(system_long_wq);
 316struct workqueue_struct *system_unbound_wq __read_mostly;
 317EXPORT_SYMBOL_GPL(system_unbound_wq);
 318struct workqueue_struct *system_freezable_wq __read_mostly;
 319EXPORT_SYMBOL_GPL(system_freezable_wq);
 320struct workqueue_struct *system_power_efficient_wq __read_mostly;
 321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 324
 325static int worker_thread(void *__worker);
 326static void copy_workqueue_attrs(struct workqueue_attrs *to,
 327                                 const struct workqueue_attrs *from);
 328
 329#define CREATE_TRACE_POINTS
 330#include <trace/events/workqueue.h>
 331
 332#define assert_rcu_or_pool_mutex()                                      \
 333        rcu_lockdep_assert(rcu_read_lock_sched_held() ||                \
 334                           lockdep_is_held(&wq_pool_mutex),             \
 335                           "sched RCU or wq_pool_mutex should be held")
 336
 337#define assert_rcu_or_wq_mutex(wq)                                      \
 338        rcu_lockdep_assert(rcu_read_lock_sched_held() ||                \
 339                           lockdep_is_held(&wq->mutex),                 \
 340                           "sched RCU or wq->mutex should be held")
 341
 342#define for_each_cpu_worker_pool(pool, cpu)                             \
 343        for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
 344             (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 345             (pool)++)
 346
 347/**
 348 * for_each_pool - iterate through all worker_pools in the system
 349 * @pool: iteration cursor
 350 * @pi: integer used for iteration
 351 *
 352 * This must be called either with wq_pool_mutex held or sched RCU read
 353 * locked.  If the pool needs to be used beyond the locking in effect, the
 354 * caller is responsible for guaranteeing that the pool stays online.
 355 *
 356 * The if/else clause exists only for the lockdep assertion and can be
 357 * ignored.
 358 */
 359#define for_each_pool(pool, pi)                                         \
 360        idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
 361                if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
 362                else
 363
 364/**
 365 * for_each_pool_worker - iterate through all workers of a worker_pool
 366 * @worker: iteration cursor
 367 * @pool: worker_pool to iterate workers of
 368 *
 369 * This must be called with @pool->attach_mutex.
 370 *
 371 * The if/else clause exists only for the lockdep assertion and can be
 372 * ignored.
 373 */
 374#define for_each_pool_worker(worker, pool)                              \
 375        list_for_each_entry((worker), &(pool)->workers, node)           \
 376                if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 377                else
 378
 379/**
 380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 381 * @pwq: iteration cursor
 382 * @wq: the target workqueue
 383 *
 384 * This must be called either with wq->mutex held or sched RCU read locked.
 385 * If the pwq needs to be used beyond the locking in effect, the caller is
 386 * responsible for guaranteeing that the pwq stays online.
 387 *
 388 * The if/else clause exists only for the lockdep assertion and can be
 389 * ignored.
 390 */
 391#define for_each_pwq(pwq, wq)                                           \
 392        list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)          \
 393                if (({ assert_rcu_or_wq_mutex(wq); false; })) { }       \
 394                else
 395
 396#ifdef CONFIG_DEBUG_OBJECTS_WORK
 397
 398static struct debug_obj_descr work_debug_descr;
 399
 400static void *work_debug_hint(void *addr)
 401{
 402        return ((struct work_struct *) addr)->func;
 403}
 404
 405/*
 406 * fixup_init is called when:
 407 * - an active object is initialized
 408 */
 409static int work_fixup_init(void *addr, enum debug_obj_state state)
 410{
 411        struct work_struct *work = addr;
 412
 413        switch (state) {
 414        case ODEBUG_STATE_ACTIVE:
 415                cancel_work_sync(work);
 416                debug_object_init(work, &work_debug_descr);
 417                return 1;
 418        default:
 419                return 0;
 420        }
 421}
 422
 423/*
 424 * fixup_activate is called when:
 425 * - an active object is activated
 426 * - an unknown object is activated (might be a statically initialized object)
 427 */
 428static int work_fixup_activate(void *addr, enum debug_obj_state state)
 429{
 430        struct work_struct *work = addr;
 431
 432        switch (state) {
 433
 434        case ODEBUG_STATE_NOTAVAILABLE:
 435                /*
 436                 * This is not really a fixup. The work struct was
 437                 * statically initialized. We just make sure that it
 438                 * is tracked in the object tracker.
 439                 */
 440                if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 441                        debug_object_init(work, &work_debug_descr);
 442                        debug_object_activate(work, &work_debug_descr);
 443                        return 0;
 444                }
 445                WARN_ON_ONCE(1);
 446                return 0;
 447
 448        case ODEBUG_STATE_ACTIVE:
 449                WARN_ON(1);
 450
 451        default:
 452                return 0;
 453        }
 454}
 455
 456/*
 457 * fixup_free is called when:
 458 * - an active object is freed
 459 */
 460static int work_fixup_free(void *addr, enum debug_obj_state state)
 461{
 462        struct work_struct *work = addr;
 463
 464        switch (state) {
 465        case ODEBUG_STATE_ACTIVE:
 466                cancel_work_sync(work);
 467                debug_object_free(work, &work_debug_descr);
 468                return 1;
 469        default:
 470                return 0;
 471        }
 472}
 473
 474static struct debug_obj_descr work_debug_descr = {
 475        .name           = "work_struct",
 476        .debug_hint     = work_debug_hint,
 477        .fixup_init     = work_fixup_init,
 478        .fixup_activate = work_fixup_activate,
 479        .fixup_free     = work_fixup_free,
 480};
 481
 482static inline void debug_work_activate(struct work_struct *work)
 483{
 484        debug_object_activate(work, &work_debug_descr);
 485}
 486
 487static inline void debug_work_deactivate(struct work_struct *work)
 488{
 489        debug_object_deactivate(work, &work_debug_descr);
 490}
 491
 492void __init_work(struct work_struct *work, int onstack)
 493{
 494        if (onstack)
 495                debug_object_init_on_stack(work, &work_debug_descr);
 496        else
 497                debug_object_init(work, &work_debug_descr);
 498}
 499EXPORT_SYMBOL_GPL(__init_work);
 500
 501void destroy_work_on_stack(struct work_struct *work)
 502{
 503        debug_object_free(work, &work_debug_descr);
 504}
 505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 506
 507void destroy_delayed_work_on_stack(struct delayed_work *work)
 508{
 509        destroy_timer_on_stack(&work->timer);
 510        debug_object_free(&work->work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 513
 514#else
 515static inline void debug_work_activate(struct work_struct *work) { }
 516static inline void debug_work_deactivate(struct work_struct *work) { }
 517#endif
 518
 519/**
 520 * worker_pool_assign_id - allocate ID and assing it to @pool
 521 * @pool: the pool pointer of interest
 522 *
 523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 524 * successfully, -errno on failure.
 525 */
 526static int worker_pool_assign_id(struct worker_pool *pool)
 527{
 528        int ret;
 529
 530        lockdep_assert_held(&wq_pool_mutex);
 531
 532        ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 533                        GFP_KERNEL);
 534        if (ret >= 0) {
 535                pool->id = ret;
 536                return 0;
 537        }
 538        return ret;
 539}
 540
 541/**
 542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 543 * @wq: the target workqueue
 544 * @node: the node ID
 545 *
 546 * This must be called either with pwq_lock held or sched RCU read locked.
 547 * If the pwq needs to be used beyond the locking in effect, the caller is
 548 * responsible for guaranteeing that the pwq stays online.
 549 *
 550 * Return: The unbound pool_workqueue for @node.
 551 */
 552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 553                                                  int node)
 554{
 555        assert_rcu_or_wq_mutex(wq);
 556        return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 557}
 558
 559static unsigned int work_color_to_flags(int color)
 560{
 561        return color << WORK_STRUCT_COLOR_SHIFT;
 562}
 563
 564static int get_work_color(struct work_struct *work)
 565{
 566        return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 567                ((1 << WORK_STRUCT_COLOR_BITS) - 1);
 568}
 569
 570static int work_next_color(int color)
 571{
 572        return (color + 1) % WORK_NR_COLORS;
 573}
 574
 575/*
 576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 577 * contain the pointer to the queued pwq.  Once execution starts, the flag
 578 * is cleared and the high bits contain OFFQ flags and pool ID.
 579 *
 580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 581 * and clear_work_data() can be used to set the pwq, pool or clear
 582 * work->data.  These functions should only be called while the work is
 583 * owned - ie. while the PENDING bit is set.
 584 *
 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 586 * corresponding to a work.  Pool is available once the work has been
 587 * queued anywhere after initialization until it is sync canceled.  pwq is
 588 * available only while the work item is queued.
 589 *
 590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 591 * canceled.  While being canceled, a work item may have its PENDING set
 592 * but stay off timer and worklist for arbitrarily long and nobody should
 593 * try to steal the PENDING bit.
 594 */
 595static inline void set_work_data(struct work_struct *work, unsigned long data,
 596                                 unsigned long flags)
 597{
 598        WARN_ON_ONCE(!work_pending(work));
 599        atomic_long_set(&work->data, data | flags | work_static(work));
 600}
 601
 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 603                         unsigned long extra_flags)
 604{
 605        set_work_data(work, (unsigned long)pwq,
 606                      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 607}
 608
 609static void set_work_pool_and_keep_pending(struct work_struct *work,
 610                                           int pool_id)
 611{
 612        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 613                      WORK_STRUCT_PENDING);
 614}
 615
 616static void set_work_pool_and_clear_pending(struct work_struct *work,
 617                                            int pool_id)
 618{
 619        /*
 620         * The following wmb is paired with the implied mb in
 621         * test_and_set_bit(PENDING) and ensures all updates to @work made
 622         * here are visible to and precede any updates by the next PENDING
 623         * owner.
 624         */
 625        smp_wmb();
 626        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 627}
 628
 629static void clear_work_data(struct work_struct *work)
 630{
 631        smp_wmb();      /* see set_work_pool_and_clear_pending() */
 632        set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 633}
 634
 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 636{
 637        unsigned long data = atomic_long_read(&work->data);
 638
 639        if (data & WORK_STRUCT_PWQ)
 640                return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 641        else
 642                return NULL;
 643}
 644
 645/**
 646 * get_work_pool - return the worker_pool a given work was associated with
 647 * @work: the work item of interest
 648 *
 649 * Pools are created and destroyed under wq_pool_mutex, and allows read
 650 * access under sched-RCU read lock.  As such, this function should be
 651 * called under wq_pool_mutex or with preemption disabled.
 652 *
 653 * All fields of the returned pool are accessible as long as the above
 654 * mentioned locking is in effect.  If the returned pool needs to be used
 655 * beyond the critical section, the caller is responsible for ensuring the
 656 * returned pool is and stays online.
 657 *
 658 * Return: The worker_pool @work was last associated with.  %NULL if none.
 659 */
 660static struct worker_pool *get_work_pool(struct work_struct *work)
 661{
 662        unsigned long data = atomic_long_read(&work->data);
 663        int pool_id;
 664
 665        assert_rcu_or_pool_mutex();
 666
 667        if (data & WORK_STRUCT_PWQ)
 668                return ((struct pool_workqueue *)
 669                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 670
 671        pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 672        if (pool_id == WORK_OFFQ_POOL_NONE)
 673                return NULL;
 674
 675        return idr_find(&worker_pool_idr, pool_id);
 676}
 677
 678/**
 679 * get_work_pool_id - return the worker pool ID a given work is associated with
 680 * @work: the work item of interest
 681 *
 682 * Return: The worker_pool ID @work was last associated with.
 683 * %WORK_OFFQ_POOL_NONE if none.
 684 */
 685static int get_work_pool_id(struct work_struct *work)
 686{
 687        unsigned long data = atomic_long_read(&work->data);
 688
 689        if (data & WORK_STRUCT_PWQ)
 690                return ((struct pool_workqueue *)
 691                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 692
 693        return data >> WORK_OFFQ_POOL_SHIFT;
 694}
 695
 696static void mark_work_canceling(struct work_struct *work)
 697{
 698        unsigned long pool_id = get_work_pool_id(work);
 699
 700        pool_id <<= WORK_OFFQ_POOL_SHIFT;
 701        set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 702}
 703
 704static bool work_is_canceling(struct work_struct *work)
 705{
 706        unsigned long data = atomic_long_read(&work->data);
 707
 708        return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 709}
 710
 711/*
 712 * Policy functions.  These define the policies on how the global worker
 713 * pools are managed.  Unless noted otherwise, these functions assume that
 714 * they're being called with pool->lock held.
 715 */
 716
 717static bool __need_more_worker(struct worker_pool *pool)
 718{
 719        return !atomic_read(&pool->nr_running);
 720}
 721
 722/*
 723 * Need to wake up a worker?  Called from anything but currently
 724 * running workers.
 725 *
 726 * Note that, because unbound workers never contribute to nr_running, this
 727 * function will always return %true for unbound pools as long as the
 728 * worklist isn't empty.
 729 */
 730static bool need_more_worker(struct worker_pool *pool)
 731{
 732        return !list_empty(&pool->worklist) && __need_more_worker(pool);
 733}
 734
 735/* Can I start working?  Called from busy but !running workers. */
 736static bool may_start_working(struct worker_pool *pool)
 737{
 738        return pool->nr_idle;
 739}
 740
 741/* Do I need to keep working?  Called from currently running workers. */
 742static bool keep_working(struct worker_pool *pool)
 743{
 744        return !list_empty(&pool->worklist) &&
 745                atomic_read(&pool->nr_running) <= 1;
 746}
 747
 748/* Do we need a new worker?  Called from manager. */
 749static bool need_to_create_worker(struct worker_pool *pool)
 750{
 751        return need_more_worker(pool) && !may_start_working(pool);
 752}
 753
 754/* Do we have too many workers and should some go away? */
 755static bool too_many_workers(struct worker_pool *pool)
 756{
 757        bool managing = mutex_is_locked(&pool->manager_arb);
 758        int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 759        int nr_busy = pool->nr_workers - nr_idle;
 760
 761        /*
 762         * nr_idle and idle_list may disagree if idle rebinding is in
 763         * progress.  Never return %true if idle_list is empty.
 764         */
 765        if (list_empty(&pool->idle_list))
 766                return false;
 767
 768        return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 769}
 770
 771/*
 772 * Wake up functions.
 773 */
 774
 775/* Return the first idle worker.  Safe with preemption disabled */
 776static struct worker *first_idle_worker(struct worker_pool *pool)
 777{
 778        if (unlikely(list_empty(&pool->idle_list)))
 779                return NULL;
 780
 781        return list_first_entry(&pool->idle_list, struct worker, entry);
 782}
 783
 784/**
 785 * wake_up_worker - wake up an idle worker
 786 * @pool: worker pool to wake worker from
 787 *
 788 * Wake up the first idle worker of @pool.
 789 *
 790 * CONTEXT:
 791 * spin_lock_irq(pool->lock).
 792 */
 793static void wake_up_worker(struct worker_pool *pool)
 794{
 795        struct worker *worker = first_idle_worker(pool);
 796
 797        if (likely(worker))
 798                wake_up_process(worker->task);
 799}
 800
 801/**
 802 * wq_worker_waking_up - a worker is waking up
 803 * @task: task waking up
 804 * @cpu: CPU @task is waking up to
 805 *
 806 * This function is called during try_to_wake_up() when a worker is
 807 * being awoken.
 808 *
 809 * CONTEXT:
 810 * spin_lock_irq(rq->lock)
 811 */
 812void wq_worker_waking_up(struct task_struct *task, int cpu)
 813{
 814        struct worker *worker = kthread_data(task);
 815
 816        if (!(worker->flags & WORKER_NOT_RUNNING)) {
 817                WARN_ON_ONCE(worker->pool->cpu != cpu);
 818                atomic_inc(&worker->pool->nr_running);
 819        }
 820}
 821
 822/**
 823 * wq_worker_sleeping - a worker is going to sleep
 824 * @task: task going to sleep
 825 * @cpu: CPU in question, must be the current CPU number
 826 *
 827 * This function is called during schedule() when a busy worker is
 828 * going to sleep.  Worker on the same cpu can be woken up by
 829 * returning pointer to its task.
 830 *
 831 * CONTEXT:
 832 * spin_lock_irq(rq->lock)
 833 *
 834 * Return:
 835 * Worker task on @cpu to wake up, %NULL if none.
 836 */
 837struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
 838{
 839        struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 840        struct worker_pool *pool;
 841
 842        /*
 843         * Rescuers, which may not have all the fields set up like normal
 844         * workers, also reach here, let's not access anything before
 845         * checking NOT_RUNNING.
 846         */
 847        if (worker->flags & WORKER_NOT_RUNNING)
 848                return NULL;
 849
 850        pool = worker->pool;
 851
 852        /* this can only happen on the local cpu */
 853        if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
 854                return NULL;
 855
 856        /*
 857         * The counterpart of the following dec_and_test, implied mb,
 858         * worklist not empty test sequence is in insert_work().
 859         * Please read comment there.
 860         *
 861         * NOT_RUNNING is clear.  This means that we're bound to and
 862         * running on the local cpu w/ rq lock held and preemption
 863         * disabled, which in turn means that none else could be
 864         * manipulating idle_list, so dereferencing idle_list without pool
 865         * lock is safe.
 866         */
 867        if (atomic_dec_and_test(&pool->nr_running) &&
 868            !list_empty(&pool->worklist))
 869                to_wakeup = first_idle_worker(pool);
 870        return to_wakeup ? to_wakeup->task : NULL;
 871}
 872
 873/**
 874 * worker_set_flags - set worker flags and adjust nr_running accordingly
 875 * @worker: self
 876 * @flags: flags to set
 877 * @wakeup: wakeup an idle worker if necessary
 878 *
 879 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 880 * nr_running becomes zero and @wakeup is %true, an idle worker is
 881 * woken up.
 882 *
 883 * CONTEXT:
 884 * spin_lock_irq(pool->lock)
 885 */
 886static inline void worker_set_flags(struct worker *worker, unsigned int flags,
 887                                    bool wakeup)
 888{
 889        struct worker_pool *pool = worker->pool;
 890
 891        WARN_ON_ONCE(worker->task != current);
 892
 893        /*
 894         * If transitioning into NOT_RUNNING, adjust nr_running and
 895         * wake up an idle worker as necessary if requested by
 896         * @wakeup.
 897         */
 898        if ((flags & WORKER_NOT_RUNNING) &&
 899            !(worker->flags & WORKER_NOT_RUNNING)) {
 900                if (wakeup) {
 901                        if (atomic_dec_and_test(&pool->nr_running) &&
 902                            !list_empty(&pool->worklist))
 903                                wake_up_worker(pool);
 904                } else
 905                        atomic_dec(&pool->nr_running);
 906        }
 907
 908        worker->flags |= flags;
 909}
 910
 911/**
 912 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 913 * @worker: self
 914 * @flags: flags to clear
 915 *
 916 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 917 *
 918 * CONTEXT:
 919 * spin_lock_irq(pool->lock)
 920 */
 921static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 922{
 923        struct worker_pool *pool = worker->pool;
 924        unsigned int oflags = worker->flags;
 925
 926        WARN_ON_ONCE(worker->task != current);
 927
 928        worker->flags &= ~flags;
 929
 930        /*
 931         * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 932         * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 933         * of multiple flags, not a single flag.
 934         */
 935        if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 936                if (!(worker->flags & WORKER_NOT_RUNNING))
 937                        atomic_inc(&pool->nr_running);
 938}
 939
 940/**
 941 * find_worker_executing_work - find worker which is executing a work
 942 * @pool: pool of interest
 943 * @work: work to find worker for
 944 *
 945 * Find a worker which is executing @work on @pool by searching
 946 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 947 * to match, its current execution should match the address of @work and
 948 * its work function.  This is to avoid unwanted dependency between
 949 * unrelated work executions through a work item being recycled while still
 950 * being executed.
 951 *
 952 * This is a bit tricky.  A work item may be freed once its execution
 953 * starts and nothing prevents the freed area from being recycled for
 954 * another work item.  If the same work item address ends up being reused
 955 * before the original execution finishes, workqueue will identify the
 956 * recycled work item as currently executing and make it wait until the
 957 * current execution finishes, introducing an unwanted dependency.
 958 *
 959 * This function checks the work item address and work function to avoid
 960 * false positives.  Note that this isn't complete as one may construct a
 961 * work function which can introduce dependency onto itself through a
 962 * recycled work item.  Well, if somebody wants to shoot oneself in the
 963 * foot that badly, there's only so much we can do, and if such deadlock
 964 * actually occurs, it should be easy to locate the culprit work function.
 965 *
 966 * CONTEXT:
 967 * spin_lock_irq(pool->lock).
 968 *
 969 * Return:
 970 * Pointer to worker which is executing @work if found, %NULL
 971 * otherwise.
 972 */
 973static struct worker *find_worker_executing_work(struct worker_pool *pool,
 974                                                 struct work_struct *work)
 975{
 976        struct worker *worker;
 977
 978        hash_for_each_possible(pool->busy_hash, worker, hentry,
 979                               (unsigned long)work)
 980                if (worker->current_work == work &&
 981                    worker->current_func == work->func)
 982                        return worker;
 983
 984        return NULL;
 985}
 986
 987/**
 988 * move_linked_works - move linked works to a list
 989 * @work: start of series of works to be scheduled
 990 * @head: target list to append @work to
 991 * @nextp: out paramter for nested worklist walking
 992 *
 993 * Schedule linked works starting from @work to @head.  Work series to
 994 * be scheduled starts at @work and includes any consecutive work with
 995 * WORK_STRUCT_LINKED set in its predecessor.
 996 *
 997 * If @nextp is not NULL, it's updated to point to the next work of
 998 * the last scheduled work.  This allows move_linked_works() to be
 999 * nested inside outer list_for_each_entry_safe().
1000 *
1001 * CONTEXT:
1002 * spin_lock_irq(pool->lock).
1003 */
1004static void move_linked_works(struct work_struct *work, struct list_head *head,
1005                              struct work_struct **nextp)
1006{
1007        struct work_struct *n;
1008
1009        /*
1010         * Linked worklist will always end before the end of the list,
1011         * use NULL for list head.
1012         */
1013        list_for_each_entry_safe_from(work, n, NULL, entry) {
1014                list_move_tail(&work->entry, head);
1015                if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1016                        break;
1017        }
1018
1019        /*
1020         * If we're already inside safe list traversal and have moved
1021         * multiple works to the scheduled queue, the next position
1022         * needs to be updated.
1023         */
1024        if (nextp)
1025                *nextp = n;
1026}
1027
1028/**
1029 * get_pwq - get an extra reference on the specified pool_workqueue
1030 * @pwq: pool_workqueue to get
1031 *
1032 * Obtain an extra reference on @pwq.  The caller should guarantee that
1033 * @pwq has positive refcnt and be holding the matching pool->lock.
1034 */
1035static void get_pwq(struct pool_workqueue *pwq)
1036{
1037        lockdep_assert_held(&pwq->pool->lock);
1038        WARN_ON_ONCE(pwq->refcnt <= 0);
1039        pwq->refcnt++;
1040}
1041
1042/**
1043 * put_pwq - put a pool_workqueue reference
1044 * @pwq: pool_workqueue to put
1045 *
1046 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1047 * destruction.  The caller should be holding the matching pool->lock.
1048 */
1049static void put_pwq(struct pool_workqueue *pwq)
1050{
1051        lockdep_assert_held(&pwq->pool->lock);
1052        if (likely(--pwq->refcnt))
1053                return;
1054        if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1055                return;
1056        /*
1057         * @pwq can't be released under pool->lock, bounce to
1058         * pwq_unbound_release_workfn().  This never recurses on the same
1059         * pool->lock as this path is taken only for unbound workqueues and
1060         * the release work item is scheduled on a per-cpu workqueue.  To
1061         * avoid lockdep warning, unbound pool->locks are given lockdep
1062         * subclass of 1 in get_unbound_pool().
1063         */
1064        schedule_work(&pwq->unbound_release_work);
1065}
1066
1067/**
1068 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1069 * @pwq: pool_workqueue to put (can be %NULL)
1070 *
1071 * put_pwq() with locking.  This function also allows %NULL @pwq.
1072 */
1073static void put_pwq_unlocked(struct pool_workqueue *pwq)
1074{
1075        if (pwq) {
1076                /*
1077                 * As both pwqs and pools are sched-RCU protected, the
1078                 * following lock operations are safe.
1079                 */
1080                spin_lock_irq(&pwq->pool->lock);
1081                put_pwq(pwq);
1082                spin_unlock_irq(&pwq->pool->lock);
1083        }
1084}
1085
1086static void pwq_activate_delayed_work(struct work_struct *work)
1087{
1088        struct pool_workqueue *pwq = get_work_pwq(work);
1089
1090        trace_workqueue_activate_work(work);
1091        move_linked_works(work, &pwq->pool->worklist, NULL);
1092        __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093        pwq->nr_active++;
1094}
1095
1096static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097{
1098        struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099                                                    struct work_struct, entry);
1100
1101        pwq_activate_delayed_work(work);
1102}
1103
1104/**
1105 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1106 * @pwq: pwq of interest
1107 * @color: color of work which left the queue
1108 *
1109 * A work either has completed or is removed from pending queue,
1110 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111 *
1112 * CONTEXT:
1113 * spin_lock_irq(pool->lock).
1114 */
1115static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116{
1117        /* uncolored work items don't participate in flushing or nr_active */
1118        if (color == WORK_NO_COLOR)
1119                goto out_put;
1120
1121        pwq->nr_in_flight[color]--;
1122
1123        pwq->nr_active--;
1124        if (!list_empty(&pwq->delayed_works)) {
1125                /* one down, submit a delayed one */
1126                if (pwq->nr_active < pwq->max_active)
1127                        pwq_activate_first_delayed(pwq);
1128        }
1129
1130        /* is flush in progress and are we at the flushing tip? */
1131        if (likely(pwq->flush_color != color))
1132                goto out_put;
1133
1134        /* are there still in-flight works? */
1135        if (pwq->nr_in_flight[color])
1136                goto out_put;
1137
1138        /* this pwq is done, clear flush_color */
1139        pwq->flush_color = -1;
1140
1141        /*
1142         * If this was the last pwq, wake up the first flusher.  It
1143         * will handle the rest.
1144         */
1145        if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1146                complete(&pwq->wq->first_flusher->done);
1147out_put:
1148        put_pwq(pwq);
1149}
1150
1151/**
1152 * try_to_grab_pending - steal work item from worklist and disable irq
1153 * @work: work item to steal
1154 * @is_dwork: @work is a delayed_work
1155 * @flags: place to store irq state
1156 *
1157 * Try to grab PENDING bit of @work.  This function can handle @work in any
1158 * stable state - idle, on timer or on worklist.
1159 *
1160 * Return:
1161 *  1           if @work was pending and we successfully stole PENDING
1162 *  0           if @work was idle and we claimed PENDING
1163 *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1164 *  -ENOENT     if someone else is canceling @work, this state may persist
1165 *              for arbitrarily long
1166 *
1167 * Note:
1168 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1169 * interrupted while holding PENDING and @work off queue, irq must be
1170 * disabled on entry.  This, combined with delayed_work->timer being
1171 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1172 *
1173 * On successful return, >= 0, irq is disabled and the caller is
1174 * responsible for releasing it using local_irq_restore(*@flags).
1175 *
1176 * This function is safe to call from any context including IRQ handler.
1177 */
1178static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1179                               unsigned long *flags)
1180{
1181        struct worker_pool *pool;
1182        struct pool_workqueue *pwq;
1183
1184        local_irq_save(*flags);
1185
1186        /* try to steal the timer if it exists */
1187        if (is_dwork) {
1188                struct delayed_work *dwork = to_delayed_work(work);
1189
1190                /*
1191                 * dwork->timer is irqsafe.  If del_timer() fails, it's
1192                 * guaranteed that the timer is not queued anywhere and not
1193                 * running on the local CPU.
1194                 */
1195                if (likely(del_timer(&dwork->timer)))
1196                        return 1;
1197        }
1198
1199        /* try to claim PENDING the normal way */
1200        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1201                return 0;
1202
1203        /*
1204         * The queueing is in progress, or it is already queued. Try to
1205         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1206         */
1207        pool = get_work_pool(work);
1208        if (!pool)
1209                goto fail;
1210
1211        spin_lock(&pool->lock);
1212        /*
1213         * work->data is guaranteed to point to pwq only while the work
1214         * item is queued on pwq->wq, and both updating work->data to point
1215         * to pwq on queueing and to pool on dequeueing are done under
1216         * pwq->pool->lock.  This in turn guarantees that, if work->data
1217         * points to pwq which is associated with a locked pool, the work
1218         * item is currently queued on that pool.
1219         */
1220        pwq = get_work_pwq(work);
1221        if (pwq && pwq->pool == pool) {
1222                debug_work_deactivate(work);
1223
1224                /*
1225                 * A delayed work item cannot be grabbed directly because
1226                 * it might have linked NO_COLOR work items which, if left
1227                 * on the delayed_list, will confuse pwq->nr_active
1228                 * management later on and cause stall.  Make sure the work
1229                 * item is activated before grabbing.
1230                 */
1231                if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1232                        pwq_activate_delayed_work(work);
1233
1234                list_del_init(&work->entry);
1235                pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1236
1237                /* work->data points to pwq iff queued, point to pool */
1238                set_work_pool_and_keep_pending(work, pool->id);
1239
1240                spin_unlock(&pool->lock);
1241                return 1;
1242        }
1243        spin_unlock(&pool->lock);
1244fail:
1245        local_irq_restore(*flags);
1246        if (work_is_canceling(work))
1247                return -ENOENT;
1248        cpu_relax();
1249        return -EAGAIN;
1250}
1251
1252/**
1253 * insert_work - insert a work into a pool
1254 * @pwq: pwq @work belongs to
1255 * @work: work to insert
1256 * @head: insertion point
1257 * @extra_flags: extra WORK_STRUCT_* flags to set
1258 *
1259 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1260 * work_struct flags.
1261 *
1262 * CONTEXT:
1263 * spin_lock_irq(pool->lock).
1264 */
1265static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1266                        struct list_head *head, unsigned int extra_flags)
1267{
1268        struct worker_pool *pool = pwq->pool;
1269
1270        /* we own @work, set data and link */
1271        set_work_pwq(work, pwq, extra_flags);
1272        list_add_tail(&work->entry, head);
1273        get_pwq(pwq);
1274
1275        /*
1276         * Ensure either wq_worker_sleeping() sees the above
1277         * list_add_tail() or we see zero nr_running to avoid workers lying
1278         * around lazily while there are works to be processed.
1279         */
1280        smp_mb();
1281
1282        if (__need_more_worker(pool))
1283                wake_up_worker(pool);
1284}
1285
1286/*
1287 * Test whether @work is being queued from another work executing on the
1288 * same workqueue.
1289 */
1290static bool is_chained_work(struct workqueue_struct *wq)
1291{
1292        struct worker *worker;
1293
1294        worker = current_wq_worker();
1295        /*
1296         * Return %true iff I'm a worker execuing a work item on @wq.  If
1297         * I'm @worker, it's safe to dereference it without locking.
1298         */
1299        return worker && worker->current_pwq->wq == wq;
1300}
1301
1302static void __queue_work(int cpu, struct workqueue_struct *wq,
1303                         struct work_struct *work)
1304{
1305        struct pool_workqueue *pwq;
1306        struct worker_pool *last_pool;
1307        struct list_head *worklist;
1308        unsigned int work_flags;
1309        unsigned int req_cpu = cpu;
1310
1311        /*
1312         * While a work item is PENDING && off queue, a task trying to
1313         * steal the PENDING will busy-loop waiting for it to either get
1314         * queued or lose PENDING.  Grabbing PENDING and queueing should
1315         * happen with IRQ disabled.
1316         */
1317        WARN_ON_ONCE(!irqs_disabled());
1318
1319        debug_work_activate(work);
1320
1321        /* if draining, only works from the same workqueue are allowed */
1322        if (unlikely(wq->flags & __WQ_DRAINING) &&
1323            WARN_ON_ONCE(!is_chained_work(wq)))
1324                return;
1325retry:
1326        if (req_cpu == WORK_CPU_UNBOUND)
1327                cpu = raw_smp_processor_id();
1328
1329        /* pwq which will be used unless @work is executing elsewhere */
1330        if (!(wq->flags & WQ_UNBOUND))
1331                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1332        else
1333                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1334
1335        /*
1336         * If @work was previously on a different pool, it might still be
1337         * running there, in which case the work needs to be queued on that
1338         * pool to guarantee non-reentrancy.
1339         */
1340        last_pool = get_work_pool(work);
1341        if (last_pool && last_pool != pwq->pool) {
1342                struct worker *worker;
1343
1344                spin_lock(&last_pool->lock);
1345
1346                worker = find_worker_executing_work(last_pool, work);
1347
1348                if (worker && worker->current_pwq->wq == wq) {
1349                        pwq = worker->current_pwq;
1350                } else {
1351                        /* meh... not running there, queue here */
1352                        spin_unlock(&last_pool->lock);
1353                        spin_lock(&pwq->pool->lock);
1354                }
1355        } else {
1356                spin_lock(&pwq->pool->lock);
1357        }
1358
1359        /*
1360         * pwq is determined and locked.  For unbound pools, we could have
1361         * raced with pwq release and it could already be dead.  If its
1362         * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1363         * without another pwq replacing it in the numa_pwq_tbl or while
1364         * work items are executing on it, so the retrying is guaranteed to
1365         * make forward-progress.
1366         */
1367        if (unlikely(!pwq->refcnt)) {
1368                if (wq->flags & WQ_UNBOUND) {
1369                        spin_unlock(&pwq->pool->lock);
1370                        cpu_relax();
1371                        goto retry;
1372                }
1373                /* oops */
1374                WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1375                          wq->name, cpu);
1376        }
1377
1378        /* pwq determined, queue */
1379        trace_workqueue_queue_work(req_cpu, pwq, work);
1380
1381        if (WARN_ON(!list_empty(&work->entry))) {
1382                spin_unlock(&pwq->pool->lock);
1383                return;
1384        }
1385
1386        pwq->nr_in_flight[pwq->work_color]++;
1387        work_flags = work_color_to_flags(pwq->work_color);
1388
1389        if (likely(pwq->nr_active < pwq->max_active)) {
1390                trace_workqueue_activate_work(work);
1391                pwq->nr_active++;
1392                worklist = &pwq->pool->worklist;
1393        } else {
1394                work_flags |= WORK_STRUCT_DELAYED;
1395                worklist = &pwq->delayed_works;
1396        }
1397
1398        insert_work(pwq, work, worklist, work_flags);
1399
1400        spin_unlock(&pwq->pool->lock);
1401}
1402
1403/**
1404 * queue_work_on - queue work on specific cpu
1405 * @cpu: CPU number to execute work on
1406 * @wq: workqueue to use
1407 * @work: work to queue
1408 *
1409 * We queue the work to a specific CPU, the caller must ensure it
1410 * can't go away.
1411 *
1412 * Return: %false if @work was already on a queue, %true otherwise.
1413 */
1414bool queue_work_on(int cpu, struct workqueue_struct *wq,
1415                   struct work_struct *work)
1416{
1417        bool ret = false;
1418        unsigned long flags;
1419
1420        local_irq_save(flags);
1421
1422        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1423                __queue_work(cpu, wq, work);
1424                ret = true;
1425        }
1426
1427        local_irq_restore(flags);
1428        return ret;
1429}
1430EXPORT_SYMBOL(queue_work_on);
1431
1432void delayed_work_timer_fn(unsigned long __data)
1433{
1434        struct delayed_work *dwork = (struct delayed_work *)__data;
1435
1436        /* should have been called from irqsafe timer with irq already off */
1437        __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1438}
1439EXPORT_SYMBOL(delayed_work_timer_fn);
1440
1441static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1442                                struct delayed_work *dwork, unsigned long delay)
1443{
1444        struct timer_list *timer = &dwork->timer;
1445        struct work_struct *work = &dwork->work;
1446
1447        WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1448                     timer->data != (unsigned long)dwork);
1449        WARN_ON_ONCE(timer_pending(timer));
1450        WARN_ON_ONCE(!list_empty(&work->entry));
1451
1452        /*
1453         * If @delay is 0, queue @dwork->work immediately.  This is for
1454         * both optimization and correctness.  The earliest @timer can
1455         * expire is on the closest next tick and delayed_work users depend
1456         * on that there's no such delay when @delay is 0.
1457         */
1458        if (!delay) {
1459                __queue_work(cpu, wq, &dwork->work);
1460                return;
1461        }
1462
1463        timer_stats_timer_set_start_info(&dwork->timer);
1464
1465        dwork->wq = wq;
1466        dwork->cpu = cpu;
1467        timer->expires = jiffies + delay;
1468
1469        if (unlikely(cpu != WORK_CPU_UNBOUND))
1470                add_timer_on(timer, cpu);
1471        else
1472                add_timer(timer);
1473}
1474
1475/**
1476 * queue_delayed_work_on - queue work on specific CPU after delay
1477 * @cpu: CPU number to execute work on
1478 * @wq: workqueue to use
1479 * @dwork: work to queue
1480 * @delay: number of jiffies to wait before queueing
1481 *
1482 * Return: %false if @work was already on a queue, %true otherwise.  If
1483 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1484 * execution.
1485 */
1486bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1487                           struct delayed_work *dwork, unsigned long delay)
1488{
1489        struct work_struct *work = &dwork->work;
1490        bool ret = false;
1491        unsigned long flags;
1492
1493        /* read the comment in __queue_work() */
1494        local_irq_save(flags);
1495
1496        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1497                __queue_delayed_work(cpu, wq, dwork, delay);
1498                ret = true;
1499        }
1500
1501        local_irq_restore(flags);
1502        return ret;
1503}
1504EXPORT_SYMBOL(queue_delayed_work_on);
1505
1506/**
1507 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1508 * @cpu: CPU number to execute work on
1509 * @wq: workqueue to use
1510 * @dwork: work to queue
1511 * @delay: number of jiffies to wait before queueing
1512 *
1513 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1514 * modify @dwork's timer so that it expires after @delay.  If @delay is
1515 * zero, @work is guaranteed to be scheduled immediately regardless of its
1516 * current state.
1517 *
1518 * Return: %false if @dwork was idle and queued, %true if @dwork was
1519 * pending and its timer was modified.
1520 *
1521 * This function is safe to call from any context including IRQ handler.
1522 * See try_to_grab_pending() for details.
1523 */
1524bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1525                         struct delayed_work *dwork, unsigned long delay)
1526{
1527        unsigned long flags;
1528        int ret;
1529
1530        do {
1531                ret = try_to_grab_pending(&dwork->work, true, &flags);
1532        } while (unlikely(ret == -EAGAIN));
1533
1534        if (likely(ret >= 0)) {
1535                __queue_delayed_work(cpu, wq, dwork, delay);
1536                local_irq_restore(flags);
1537        }
1538
1539        /* -ENOENT from try_to_grab_pending() becomes %true */
1540        return ret;
1541}
1542EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1543
1544/**
1545 * worker_enter_idle - enter idle state
1546 * @worker: worker which is entering idle state
1547 *
1548 * @worker is entering idle state.  Update stats and idle timer if
1549 * necessary.
1550 *
1551 * LOCKING:
1552 * spin_lock_irq(pool->lock).
1553 */
1554static void worker_enter_idle(struct worker *worker)
1555{
1556        struct worker_pool *pool = worker->pool;
1557
1558        if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1559            WARN_ON_ONCE(!list_empty(&worker->entry) &&
1560                         (worker->hentry.next || worker->hentry.pprev)))
1561                return;
1562
1563        /* can't use worker_set_flags(), also called from start_worker() */
1564        worker->flags |= WORKER_IDLE;
1565        pool->nr_idle++;
1566        worker->last_active = jiffies;
1567
1568        /* idle_list is LIFO */
1569        list_add(&worker->entry, &pool->idle_list);
1570
1571        if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1572                mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1573
1574        /*
1575         * Sanity check nr_running.  Because wq_unbind_fn() releases
1576         * pool->lock between setting %WORKER_UNBOUND and zapping
1577         * nr_running, the warning may trigger spuriously.  Check iff
1578         * unbind is not in progress.
1579         */
1580        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1581                     pool->nr_workers == pool->nr_idle &&
1582                     atomic_read(&pool->nr_running));
1583}
1584
1585/**
1586 * worker_leave_idle - leave idle state
1587 * @worker: worker which is leaving idle state
1588 *
1589 * @worker is leaving idle state.  Update stats.
1590 *
1591 * LOCKING:
1592 * spin_lock_irq(pool->lock).
1593 */
1594static void worker_leave_idle(struct worker *worker)
1595{
1596        struct worker_pool *pool = worker->pool;
1597
1598        if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1599                return;
1600        worker_clr_flags(worker, WORKER_IDLE);
1601        pool->nr_idle--;
1602        list_del_init(&worker->entry);
1603}
1604
1605static struct worker *alloc_worker(void)
1606{
1607        struct worker *worker;
1608
1609        worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1610        if (worker) {
1611                INIT_LIST_HEAD(&worker->entry);
1612                INIT_LIST_HEAD(&worker->scheduled);
1613                INIT_LIST_HEAD(&worker->node);
1614                /* on creation a worker is in !idle && prep state */
1615                worker->flags = WORKER_PREP;
1616        }
1617        return worker;
1618}
1619
1620/**
1621 * worker_attach_to_pool() - attach a worker to a pool
1622 * @worker: worker to be attached
1623 * @pool: the target pool
1624 *
1625 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1626 * cpu-binding of @worker are kept coordinated with the pool across
1627 * cpu-[un]hotplugs.
1628 */
1629static void worker_attach_to_pool(struct worker *worker,
1630                                   struct worker_pool *pool)
1631{
1632        mutex_lock(&pool->attach_mutex);
1633
1634        /*
1635         * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1636         * online CPUs.  It'll be re-applied when any of the CPUs come up.
1637         */
1638        set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1639
1640        /*
1641         * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1642         * stable across this function.  See the comments above the
1643         * flag definition for details.
1644         */
1645        if (pool->flags & POOL_DISASSOCIATED)
1646                worker->flags |= WORKER_UNBOUND;
1647
1648        list_add_tail(&worker->node, &pool->workers);
1649
1650        mutex_unlock(&pool->attach_mutex);
1651}
1652
1653/**
1654 * worker_detach_from_pool() - detach a worker from its pool
1655 * @worker: worker which is attached to its pool
1656 * @pool: the pool @worker is attached to
1657 *
1658 * Undo the attaching which had been done in worker_attach_to_pool().  The
1659 * caller worker shouldn't access to the pool after detached except it has
1660 * other reference to the pool.
1661 */
1662static void worker_detach_from_pool(struct worker *worker,
1663                                    struct worker_pool *pool)
1664{
1665        struct completion *detach_completion = NULL;
1666
1667        mutex_lock(&pool->attach_mutex);
1668        list_del(&worker->node);
1669        if (list_empty(&pool->workers))
1670                detach_completion = pool->detach_completion;
1671        mutex_unlock(&pool->attach_mutex);
1672
1673        if (detach_completion)
1674                complete(detach_completion);
1675}
1676
1677/**
1678 * create_worker - create a new workqueue worker
1679 * @pool: pool the new worker will belong to
1680 *
1681 * Create a new worker which is attached to @pool.  The new worker must be
1682 * started by start_worker().
1683 *
1684 * CONTEXT:
1685 * Might sleep.  Does GFP_KERNEL allocations.
1686 *
1687 * Return:
1688 * Pointer to the newly created worker.
1689 */
1690static struct worker *create_worker(struct worker_pool *pool)
1691{
1692        struct worker *worker = NULL;
1693        int id = -1;
1694        char id_buf[16];
1695
1696        /* ID is needed to determine kthread name */
1697        id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1698        if (id < 0)
1699                goto fail;
1700
1701        worker = alloc_worker();
1702        if (!worker)
1703                goto fail;
1704
1705        worker->pool = pool;
1706        worker->id = id;
1707
1708        if (pool->cpu >= 0)
1709                snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1710                         pool->attrs->nice < 0  ? "H" : "");
1711        else
1712                snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1713
1714        worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1715                                              "kworker/%s", id_buf);
1716        if (IS_ERR(worker->task))
1717                goto fail;
1718
1719        set_user_nice(worker->task, pool->attrs->nice);
1720
1721        /* prevent userland from meddling with cpumask of workqueue workers */
1722        worker->task->flags |= PF_NO_SETAFFINITY;
1723
1724        /* successful, attach the worker to the pool */
1725        worker_attach_to_pool(worker, pool);
1726
1727        return worker;
1728
1729fail:
1730        if (id >= 0)
1731                ida_simple_remove(&pool->worker_ida, id);
1732        kfree(worker);
1733        return NULL;
1734}
1735
1736/**
1737 * start_worker - start a newly created worker
1738 * @worker: worker to start
1739 *
1740 * Make the pool aware of @worker and start it.
1741 *
1742 * CONTEXT:
1743 * spin_lock_irq(pool->lock).
1744 */
1745static void start_worker(struct worker *worker)
1746{
1747        worker->pool->nr_workers++;
1748        worker_enter_idle(worker);
1749        wake_up_process(worker->task);
1750}
1751
1752/**
1753 * create_and_start_worker - create and start a worker for a pool
1754 * @pool: the target pool
1755 *
1756 * Grab the managership of @pool and create and start a new worker for it.
1757 *
1758 * Return: 0 on success. A negative error code otherwise.
1759 */
1760static int create_and_start_worker(struct worker_pool *pool)
1761{
1762        struct worker *worker;
1763
1764        worker = create_worker(pool);
1765        if (worker) {
1766                spin_lock_irq(&pool->lock);
1767                start_worker(worker);
1768                spin_unlock_irq(&pool->lock);
1769        }
1770
1771        return worker ? 0 : -ENOMEM;
1772}
1773
1774/**
1775 * destroy_worker - destroy a workqueue worker
1776 * @worker: worker to be destroyed
1777 *
1778 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1779 * be idle.
1780 *
1781 * CONTEXT:
1782 * spin_lock_irq(pool->lock).
1783 */
1784static void destroy_worker(struct worker *worker)
1785{
1786        struct worker_pool *pool = worker->pool;
1787
1788        lockdep_assert_held(&pool->lock);
1789
1790        /* sanity check frenzy */
1791        if (WARN_ON(worker->current_work) ||
1792            WARN_ON(!list_empty(&worker->scheduled)) ||
1793            WARN_ON(!(worker->flags & WORKER_IDLE)))
1794                return;
1795
1796        pool->nr_workers--;
1797        pool->nr_idle--;
1798
1799        list_del_init(&worker->entry);
1800        worker->flags |= WORKER_DIE;
1801        wake_up_process(worker->task);
1802}
1803
1804static void idle_worker_timeout(unsigned long __pool)
1805{
1806        struct worker_pool *pool = (void *)__pool;
1807
1808        spin_lock_irq(&pool->lock);
1809
1810        while (too_many_workers(pool)) {
1811                struct worker *worker;
1812                unsigned long expires;
1813
1814                /* idle_list is kept in LIFO order, check the last one */
1815                worker = list_entry(pool->idle_list.prev, struct worker, entry);
1816                expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1817
1818                if (time_before(jiffies, expires)) {
1819                        mod_timer(&pool->idle_timer, expires);
1820                        break;
1821                }
1822
1823                destroy_worker(worker);
1824        }
1825
1826        spin_unlock_irq(&pool->lock);
1827}
1828
1829static void send_mayday(struct work_struct *work)
1830{
1831        struct pool_workqueue *pwq = get_work_pwq(work);
1832        struct workqueue_struct *wq = pwq->wq;
1833
1834        lockdep_assert_held(&wq_mayday_lock);
1835
1836        if (!wq->rescuer)
1837                return;
1838
1839        /* mayday mayday mayday */
1840        if (list_empty(&pwq->mayday_node)) {
1841                /*
1842                 * If @pwq is for an unbound wq, its base ref may be put at
1843                 * any time due to an attribute change.  Pin @pwq until the
1844                 * rescuer is done with it.
1845                 */
1846                get_pwq(pwq);
1847                list_add_tail(&pwq->mayday_node, &wq->maydays);
1848                wake_up_process(wq->rescuer->task);
1849        }
1850}
1851
1852static void pool_mayday_timeout(unsigned long __pool)
1853{
1854        struct worker_pool *pool = (void *)__pool;
1855        struct work_struct *work;
1856
1857        spin_lock_irq(&wq_mayday_lock);         /* for wq->maydays */
1858        spin_lock(&pool->lock);
1859
1860        if (need_to_create_worker(pool)) {
1861                /*
1862                 * We've been trying to create a new worker but
1863                 * haven't been successful.  We might be hitting an
1864                 * allocation deadlock.  Send distress signals to
1865                 * rescuers.
1866                 */
1867                list_for_each_entry(work, &pool->worklist, entry)
1868                        send_mayday(work);
1869        }
1870
1871        spin_unlock(&pool->lock);
1872        spin_unlock_irq(&wq_mayday_lock);
1873
1874        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1875}
1876
1877/**
1878 * maybe_create_worker - create a new worker if necessary
1879 * @pool: pool to create a new worker for
1880 *
1881 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1882 * have at least one idle worker on return from this function.  If
1883 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1884 * sent to all rescuers with works scheduled on @pool to resolve
1885 * possible allocation deadlock.
1886 *
1887 * On return, need_to_create_worker() is guaranteed to be %false and
1888 * may_start_working() %true.
1889 *
1890 * LOCKING:
1891 * spin_lock_irq(pool->lock) which may be released and regrabbed
1892 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1893 * manager.
1894 *
1895 * Return:
1896 * %false if no action was taken and pool->lock stayed locked, %true
1897 * otherwise.
1898 */
1899static bool maybe_create_worker(struct worker_pool *pool)
1900__releases(&pool->lock)
1901__acquires(&pool->lock)
1902{
1903        if (!need_to_create_worker(pool))
1904                return false;
1905restart:
1906        spin_unlock_irq(&pool->lock);
1907
1908        /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1909        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1910
1911        while (true) {
1912                struct worker *worker;
1913
1914                worker = create_worker(pool);
1915                if (worker) {
1916                        del_timer_sync(&pool->mayday_timer);
1917                        spin_lock_irq(&pool->lock);
1918                        start_worker(worker);
1919                        if (WARN_ON_ONCE(need_to_create_worker(pool)))
1920                                goto restart;
1921                        return true;
1922                }
1923
1924                if (!need_to_create_worker(pool))
1925                        break;
1926
1927                __set_current_state(TASK_INTERRUPTIBLE);
1928                schedule_timeout(CREATE_COOLDOWN);
1929
1930                if (!need_to_create_worker(pool))
1931                        break;
1932        }
1933
1934        del_timer_sync(&pool->mayday_timer);
1935        spin_lock_irq(&pool->lock);
1936        if (need_to_create_worker(pool))
1937                goto restart;
1938        return true;
1939}
1940
1941/**
1942 * manage_workers - manage worker pool
1943 * @worker: self
1944 *
1945 * Assume the manager role and manage the worker pool @worker belongs
1946 * to.  At any given time, there can be only zero or one manager per
1947 * pool.  The exclusion is handled automatically by this function.
1948 *
1949 * The caller can safely start processing works on false return.  On
1950 * true return, it's guaranteed that need_to_create_worker() is false
1951 * and may_start_working() is true.
1952 *
1953 * CONTEXT:
1954 * spin_lock_irq(pool->lock) which may be released and regrabbed
1955 * multiple times.  Does GFP_KERNEL allocations.
1956 *
1957 * Return:
1958 * %false if the pool don't need management and the caller can safely start
1959 * processing works, %true indicates that the function released pool->lock
1960 * and reacquired it to perform some management function and that the
1961 * conditions that the caller verified while holding the lock before
1962 * calling the function might no longer be true.
1963 */
1964static bool manage_workers(struct worker *worker)
1965{
1966        struct worker_pool *pool = worker->pool;
1967        bool ret = false;
1968
1969        /*
1970         * Anyone who successfully grabs manager_arb wins the arbitration
1971         * and becomes the manager.  mutex_trylock() on pool->manager_arb
1972         * failure while holding pool->lock reliably indicates that someone
1973         * else is managing the pool and the worker which failed trylock
1974         * can proceed to executing work items.  This means that anyone
1975         * grabbing manager_arb is responsible for actually performing
1976         * manager duties.  If manager_arb is grabbed and released without
1977         * actual management, the pool may stall indefinitely.
1978         */
1979        if (!mutex_trylock(&pool->manager_arb))
1980                return ret;
1981
1982        ret |= maybe_create_worker(pool);
1983
1984        mutex_unlock(&pool->manager_arb);
1985        return ret;
1986}
1987
1988/**
1989 * process_one_work - process single work
1990 * @worker: self
1991 * @work: work to process
1992 *
1993 * Process @work.  This function contains all the logics necessary to
1994 * process a single work including synchronization against and
1995 * interaction with other workers on the same cpu, queueing and
1996 * flushing.  As long as context requirement is met, any worker can
1997 * call this function to process a work.
1998 *
1999 * CONTEXT:
2000 * spin_lock_irq(pool->lock) which is released and regrabbed.
2001 */
2002static void process_one_work(struct worker *worker, struct work_struct *work)
2003__releases(&pool->lock)
2004__acquires(&pool->lock)
2005{
2006        struct pool_workqueue *pwq = get_work_pwq(work);
2007        struct worker_pool *pool = worker->pool;
2008        bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2009        int work_color;
2010        struct worker *collision;
2011#ifdef CONFIG_LOCKDEP
2012        /*
2013         * It is permissible to free the struct work_struct from
2014         * inside the function that is called from it, this we need to
2015         * take into account for lockdep too.  To avoid bogus "held
2016         * lock freed" warnings as well as problems when looking into
2017         * work->lockdep_map, make a copy and use that here.
2018         */
2019        struct lockdep_map lockdep_map;
2020
2021        lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2022#endif
2023        /*
2024         * Ensure we're on the correct CPU.  DISASSOCIATED test is
2025         * necessary to avoid spurious warnings from rescuers servicing the
2026         * unbound or a disassociated pool.
2027         */
2028        WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2029                     !(pool->flags & POOL_DISASSOCIATED) &&
2030                     raw_smp_processor_id() != pool->cpu);
2031
2032        /*
2033         * A single work shouldn't be executed concurrently by
2034         * multiple workers on a single cpu.  Check whether anyone is
2035         * already processing the work.  If so, defer the work to the
2036         * currently executing one.
2037         */
2038        collision = find_worker_executing_work(pool, work);
2039        if (unlikely(collision)) {
2040                move_linked_works(work, &collision->scheduled, NULL);
2041                return;
2042        }
2043
2044        /* claim and dequeue */
2045        debug_work_deactivate(work);
2046        hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2047        worker->current_work = work;
2048        worker->current_func = work->func;
2049        worker->current_pwq = pwq;
2050        work_color = get_work_color(work);
2051
2052        list_del_init(&work->entry);
2053
2054        /*
2055         * CPU intensive works don't participate in concurrency
2056         * management.  They're the scheduler's responsibility.
2057         */
2058        if (unlikely(cpu_intensive))
2059                worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2060
2061        /*
2062         * Unbound pool isn't concurrency managed and work items should be
2063         * executed ASAP.  Wake up another worker if necessary.
2064         */
2065        if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2066                wake_up_worker(pool);
2067
2068        /*
2069         * Record the last pool and clear PENDING which should be the last
2070         * update to @work.  Also, do this inside @pool->lock so that
2071         * PENDING and queued state changes happen together while IRQ is
2072         * disabled.
2073         */
2074        set_work_pool_and_clear_pending(work, pool->id);
2075
2076        spin_unlock_irq(&pool->lock);
2077
2078        lock_map_acquire_read(&pwq->wq->lockdep_map);
2079        lock_map_acquire(&lockdep_map);
2080        trace_workqueue_execute_start(work);
2081        worker->current_func(work);
2082        /*
2083         * While we must be careful to not use "work" after this, the trace
2084         * point will only record its address.
2085         */
2086        trace_workqueue_execute_end(work);
2087        lock_map_release(&lockdep_map);
2088        lock_map_release(&pwq->wq->lockdep_map);
2089
2090        if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2091                pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2092                       "     last function: %pf\n",
2093                       current->comm, preempt_count(), task_pid_nr(current),
2094                       worker->current_func);
2095                debug_show_held_locks(current);
2096                dump_stack();
2097        }
2098
2099        /*
2100         * The following prevents a kworker from hogging CPU on !PREEMPT
2101         * kernels, where a requeueing work item waiting for something to
2102         * happen could deadlock with stop_machine as such work item could
2103         * indefinitely requeue itself while all other CPUs are trapped in
2104         * stop_machine.
2105         */
2106        cond_resched();
2107
2108        spin_lock_irq(&pool->lock);
2109
2110        /* clear cpu intensive status */
2111        if (unlikely(cpu_intensive))
2112                worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2113
2114        /* we're done with it, release */
2115        hash_del(&worker->hentry);
2116        worker->current_work = NULL;
2117        worker->current_func = NULL;
2118        worker->current_pwq = NULL;
2119        worker->desc_valid = false;
2120        pwq_dec_nr_in_flight(pwq, work_color);
2121}
2122
2123/**
2124 * process_scheduled_works - process scheduled works
2125 * @worker: self
2126 *
2127 * Process all scheduled works.  Please note that the scheduled list
2128 * may change while processing a work, so this function repeatedly
2129 * fetches a work from the top and executes it.
2130 *
2131 * CONTEXT:
2132 * spin_lock_irq(pool->lock) which may be released and regrabbed
2133 * multiple times.
2134 */
2135static void process_scheduled_works(struct worker *worker)
2136{
2137        while (!list_empty(&worker->scheduled)) {
2138                struct work_struct *work = list_first_entry(&worker->scheduled,
2139                                                struct work_struct, entry);
2140                process_one_work(worker, work);
2141        }
2142}
2143
2144/**
2145 * worker_thread - the worker thread function
2146 * @__worker: self
2147 *
2148 * The worker thread function.  All workers belong to a worker_pool -
2149 * either a per-cpu one or dynamic unbound one.  These workers process all
2150 * work items regardless of their specific target workqueue.  The only
2151 * exception is work items which belong to workqueues with a rescuer which
2152 * will be explained in rescuer_thread().
2153 *
2154 * Return: 0
2155 */
2156static int worker_thread(void *__worker)
2157{
2158        struct worker *worker = __worker;
2159        struct worker_pool *pool = worker->pool;
2160
2161        /* tell the scheduler that this is a workqueue worker */
2162        worker->task->flags |= PF_WQ_WORKER;
2163woke_up:
2164        spin_lock_irq(&pool->lock);
2165
2166        /* am I supposed to die? */
2167        if (unlikely(worker->flags & WORKER_DIE)) {
2168                spin_unlock_irq(&pool->lock);
2169                WARN_ON_ONCE(!list_empty(&worker->entry));
2170                worker->task->flags &= ~PF_WQ_WORKER;
2171
2172                set_task_comm(worker->task, "kworker/dying");
2173                ida_simple_remove(&pool->worker_ida, worker->id);
2174                worker_detach_from_pool(worker, pool);
2175                kfree(worker);
2176                return 0;
2177        }
2178
2179        worker_leave_idle(worker);
2180recheck:
2181        /* no more worker necessary? */
2182        if (!need_more_worker(pool))
2183                goto sleep;
2184
2185        /* do we need to manage? */
2186        if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2187                goto recheck;
2188
2189        /*
2190         * ->scheduled list can only be filled while a worker is
2191         * preparing to process a work or actually processing it.
2192         * Make sure nobody diddled with it while I was sleeping.
2193         */
2194        WARN_ON_ONCE(!list_empty(&worker->scheduled));
2195
2196        /*
2197         * Finish PREP stage.  We're guaranteed to have at least one idle
2198         * worker or that someone else has already assumed the manager
2199         * role.  This is where @worker starts participating in concurrency
2200         * management if applicable and concurrency management is restored
2201         * after being rebound.  See rebind_workers() for details.
2202         */
2203        worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2204
2205        do {
2206                struct work_struct *work =
2207                        list_first_entry(&pool->worklist,
2208                                         struct work_struct, entry);
2209
2210                if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2211                        /* optimization path, not strictly necessary */
2212                        process_one_work(worker, work);
2213                        if (unlikely(!list_empty(&worker->scheduled)))
2214                                process_scheduled_works(worker);
2215                } else {
2216                        move_linked_works(work, &worker->scheduled, NULL);
2217                        process_scheduled_works(worker);
2218                }
2219        } while (keep_working(pool));
2220
2221        worker_set_flags(worker, WORKER_PREP, false);
2222sleep:
2223        /*
2224         * pool->lock is held and there's no work to process and no need to
2225         * manage, sleep.  Workers are woken up only while holding
2226         * pool->lock or from local cpu, so setting the current state
2227         * before releasing pool->lock is enough to prevent losing any
2228         * event.
2229         */
2230        worker_enter_idle(worker);
2231        __set_current_state(TASK_INTERRUPTIBLE);
2232        spin_unlock_irq(&pool->lock);
2233        schedule();
2234        goto woke_up;
2235}
2236
2237/**
2238 * rescuer_thread - the rescuer thread function
2239 * @__rescuer: self
2240 *
2241 * Workqueue rescuer thread function.  There's one rescuer for each
2242 * workqueue which has WQ_MEM_RECLAIM set.
2243 *
2244 * Regular work processing on a pool may block trying to create a new
2245 * worker which uses GFP_KERNEL allocation which has slight chance of
2246 * developing into deadlock if some works currently on the same queue
2247 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2248 * the problem rescuer solves.
2249 *
2250 * When such condition is possible, the pool summons rescuers of all
2251 * workqueues which have works queued on the pool and let them process
2252 * those works so that forward progress can be guaranteed.
2253 *
2254 * This should happen rarely.
2255 *
2256 * Return: 0
2257 */
2258static int rescuer_thread(void *__rescuer)
2259{
2260        struct worker *rescuer = __rescuer;
2261        struct workqueue_struct *wq = rescuer->rescue_wq;
2262        struct list_head *scheduled = &rescuer->scheduled;
2263        bool should_stop;
2264
2265        set_user_nice(current, RESCUER_NICE_LEVEL);
2266
2267        /*
2268         * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2269         * doesn't participate in concurrency management.
2270         */
2271        rescuer->task->flags |= PF_WQ_WORKER;
2272repeat:
2273        set_current_state(TASK_INTERRUPTIBLE);
2274
2275        /*
2276         * By the time the rescuer is requested to stop, the workqueue
2277         * shouldn't have any work pending, but @wq->maydays may still have
2278         * pwq(s) queued.  This can happen by non-rescuer workers consuming
2279         * all the work items before the rescuer got to them.  Go through
2280         * @wq->maydays processing before acting on should_stop so that the
2281         * list is always empty on exit.
2282         */
2283        should_stop = kthread_should_stop();
2284
2285        /* see whether any pwq is asking for help */
2286        spin_lock_irq(&wq_mayday_lock);
2287
2288        while (!list_empty(&wq->maydays)) {
2289                struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2290                                        struct pool_workqueue, mayday_node);
2291                struct worker_pool *pool = pwq->pool;
2292                struct work_struct *work, *n;
2293
2294                __set_current_state(TASK_RUNNING);
2295                list_del_init(&pwq->mayday_node);
2296
2297                spin_unlock_irq(&wq_mayday_lock);
2298
2299                worker_attach_to_pool(rescuer, pool);
2300
2301                spin_lock_irq(&pool->lock);
2302                rescuer->pool = pool;
2303
2304                /*
2305                 * Slurp in all works issued via this workqueue and
2306                 * process'em.
2307                 */
2308                WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2309                list_for_each_entry_safe(work, n, &pool->worklist, entry)
2310                        if (get_work_pwq(work) == pwq)
2311                                move_linked_works(work, scheduled, &n);
2312
2313                process_scheduled_works(rescuer);
2314                spin_unlock_irq(&pool->lock);
2315
2316                worker_detach_from_pool(rescuer, pool);
2317
2318                spin_lock_irq(&pool->lock);
2319
2320                /*
2321                 * Put the reference grabbed by send_mayday().  @pool won't
2322                 * go away while we're holding its lock.
2323                 */
2324                put_pwq(pwq);
2325
2326                /*
2327                 * Leave this pool.  If keep_working() is %true, notify a
2328                 * regular worker; otherwise, we end up with 0 concurrency
2329                 * and stalling the execution.
2330                 */
2331                if (keep_working(pool))
2332                        wake_up_worker(pool);
2333
2334                rescuer->pool = NULL;
2335                spin_unlock(&pool->lock);
2336                spin_lock(&wq_mayday_lock);
2337        }
2338
2339        spin_unlock_irq(&wq_mayday_lock);
2340
2341        if (should_stop) {
2342                __set_current_state(TASK_RUNNING);
2343                rescuer->task->flags &= ~PF_WQ_WORKER;
2344                return 0;
2345        }
2346
2347        /* rescuers should never participate in concurrency management */
2348        WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2349        schedule();
2350        goto repeat;
2351}
2352
2353struct wq_barrier {
2354        struct work_struct      work;
2355        struct completion       done;
2356};
2357
2358static void wq_barrier_func(struct work_struct *work)
2359{
2360        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2361        complete(&barr->done);
2362}
2363
2364/**
2365 * insert_wq_barrier - insert a barrier work
2366 * @pwq: pwq to insert barrier into
2367 * @barr: wq_barrier to insert
2368 * @target: target work to attach @barr to
2369 * @worker: worker currently executing @target, NULL if @target is not executing
2370 *
2371 * @barr is linked to @target such that @barr is completed only after
2372 * @target finishes execution.  Please note that the ordering
2373 * guarantee is observed only with respect to @target and on the local
2374 * cpu.
2375 *
2376 * Currently, a queued barrier can't be canceled.  This is because
2377 * try_to_grab_pending() can't determine whether the work to be
2378 * grabbed is at the head of the queue and thus can't clear LINKED
2379 * flag of the previous work while there must be a valid next work
2380 * after a work with LINKED flag set.
2381 *
2382 * Note that when @worker is non-NULL, @target may be modified
2383 * underneath us, so we can't reliably determine pwq from @target.
2384 *
2385 * CONTEXT:
2386 * spin_lock_irq(pool->lock).
2387 */
2388static void insert_wq_barrier(struct pool_workqueue *pwq,
2389                              struct wq_barrier *barr,
2390                              struct work_struct *target, struct worker *worker)
2391{
2392        struct list_head *head;
2393        unsigned int linked = 0;
2394
2395        /*
2396         * debugobject calls are safe here even with pool->lock locked
2397         * as we know for sure that this will not trigger any of the
2398         * checks and call back into the fixup functions where we
2399         * might deadlock.
2400         */
2401        INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2402        __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2403        init_completion(&barr->done);
2404
2405        /*
2406         * If @target is currently being executed, schedule the
2407         * barrier to the worker; otherwise, put it after @target.
2408         */
2409        if (worker)
2410                head = worker->scheduled.next;
2411        else {
2412                unsigned long *bits = work_data_bits(target);
2413
2414                head = target->entry.next;
2415                /* there can already be other linked works, inherit and set */
2416                linked = *bits & WORK_STRUCT_LINKED;
2417                __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2418        }
2419
2420        debug_work_activate(&barr->work);
2421        insert_work(pwq, &barr->work, head,
2422                    work_color_to_flags(WORK_NO_COLOR) | linked);
2423}
2424
2425/**
2426 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2427 * @wq: workqueue being flushed
2428 * @flush_color: new flush color, < 0 for no-op
2429 * @work_color: new work color, < 0 for no-op
2430 *
2431 * Prepare pwqs for workqueue flushing.
2432 *
2433 * If @flush_color is non-negative, flush_color on all pwqs should be
2434 * -1.  If no pwq has in-flight commands at the specified color, all
2435 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2436 * has in flight commands, its pwq->flush_color is set to
2437 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2438 * wakeup logic is armed and %true is returned.
2439 *
2440 * The caller should have initialized @wq->first_flusher prior to
2441 * calling this function with non-negative @flush_color.  If
2442 * @flush_color is negative, no flush color update is done and %false
2443 * is returned.
2444 *
2445 * If @work_color is non-negative, all pwqs should have the same
2446 * work_color which is previous to @work_color and all will be
2447 * advanced to @work_color.
2448 *
2449 * CONTEXT:
2450 * mutex_lock(wq->mutex).
2451 *
2452 * Return:
2453 * %true if @flush_color >= 0 and there's something to flush.  %false
2454 * otherwise.
2455 */
2456static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2457                                      int flush_color, int work_color)
2458{
2459        bool wait = false;
2460        struct pool_workqueue *pwq;
2461
2462        if (flush_color >= 0) {
2463                WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2464                atomic_set(&wq->nr_pwqs_to_flush, 1);
2465        }
2466
2467        for_each_pwq(pwq, wq) {
2468                struct worker_pool *pool = pwq->pool;
2469
2470                spin_lock_irq(&pool->lock);
2471
2472                if (flush_color >= 0) {
2473                        WARN_ON_ONCE(pwq->flush_color != -1);
2474
2475                        if (pwq->nr_in_flight[flush_color]) {
2476                                pwq->flush_color = flush_color;
2477                                atomic_inc(&wq->nr_pwqs_to_flush);
2478                                wait = true;
2479                        }
2480                }
2481
2482                if (work_color >= 0) {
2483                        WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2484                        pwq->work_color = work_color;
2485                }
2486
2487                spin_unlock_irq(&pool->lock);
2488        }
2489
2490        if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2491                complete(&wq->first_flusher->done);
2492
2493        return wait;
2494}
2495
2496/**
2497 * flush_workqueue - ensure that any scheduled work has run to completion.
2498 * @wq: workqueue to flush
2499 *
2500 * This function sleeps until all work items which were queued on entry
2501 * have finished execution, but it is not livelocked by new incoming ones.
2502 */
2503void flush_workqueue(struct workqueue_struct *wq)
2504{
2505        struct wq_flusher this_flusher = {
2506                .list = LIST_HEAD_INIT(this_flusher.list),
2507                .flush_color = -1,
2508                .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2509        };
2510        int next_color;
2511
2512        lock_map_acquire(&wq->lockdep_map);
2513        lock_map_release(&wq->lockdep_map);
2514
2515        mutex_lock(&wq->mutex);
2516
2517        /*
2518         * Start-to-wait phase
2519         */
2520        next_color = work_next_color(wq->work_color);
2521
2522        if (next_color != wq->flush_color) {
2523                /*
2524                 * Color space is not full.  The current work_color
2525                 * becomes our flush_color and work_color is advanced
2526                 * by one.
2527                 */
2528                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2529                this_flusher.flush_color = wq->work_color;
2530                wq->work_color = next_color;
2531
2532                if (!wq->first_flusher) {
2533                        /* no flush in progress, become the first flusher */
2534                        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2535
2536                        wq->first_flusher = &this_flusher;
2537
2538                        if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2539                                                       wq->work_color)) {
2540                                /* nothing to flush, done */
2541                                wq->flush_color = next_color;
2542                                wq->first_flusher = NULL;
2543                                goto out_unlock;
2544                        }
2545                } else {
2546                        /* wait in queue */
2547                        WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2548                        list_add_tail(&this_flusher.list, &wq->flusher_queue);
2549                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2550                }
2551        } else {
2552                /*
2553                 * Oops, color space is full, wait on overflow queue.
2554                 * The next flush completion will assign us
2555                 * flush_color and transfer to flusher_queue.
2556                 */
2557                list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2558        }
2559
2560        mutex_unlock(&wq->mutex);
2561
2562        wait_for_completion(&this_flusher.done);
2563
2564        /*
2565         * Wake-up-and-cascade phase
2566         *
2567         * First flushers are responsible for cascading flushes and
2568         * handling overflow.  Non-first flushers can simply return.
2569         */
2570        if (wq->first_flusher != &this_flusher)
2571                return;
2572
2573        mutex_lock(&wq->mutex);
2574
2575        /* we might have raced, check again with mutex held */
2576        if (wq->first_flusher != &this_flusher)
2577                goto out_unlock;
2578
2579        wq->first_flusher = NULL;
2580
2581        WARN_ON_ONCE(!list_empty(&this_flusher.list));
2582        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2583
2584        while (true) {
2585                struct wq_flusher *next, *tmp;
2586
2587                /* complete all the flushers sharing the current flush color */
2588                list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2589                        if (next->flush_color != wq->flush_color)
2590                                break;
2591                        list_del_init(&next->list);
2592                        complete(&next->done);
2593                }
2594
2595                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2596                             wq->flush_color != work_next_color(wq->work_color));
2597
2598                /* this flush_color is finished, advance by one */
2599                wq->flush_color = work_next_color(wq->flush_color);
2600
2601                /* one color has been freed, handle overflow queue */
2602                if (!list_empty(&wq->flusher_overflow)) {
2603                        /*
2604                         * Assign the same color to all overflowed
2605                         * flushers, advance work_color and append to
2606                         * flusher_queue.  This is the start-to-wait
2607                         * phase for these overflowed flushers.
2608                         */
2609                        list_for_each_entry(tmp, &wq->flusher_overflow, list)
2610                                tmp->flush_color = wq->work_color;
2611
2612                        wq->work_color = work_next_color(wq->work_color);
2613
2614                        list_splice_tail_init(&wq->flusher_overflow,
2615                                              &wq->flusher_queue);
2616                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2617                }
2618
2619                if (list_empty(&wq->flusher_queue)) {
2620                        WARN_ON_ONCE(wq->flush_color != wq->work_color);
2621                        break;
2622                }
2623
2624                /*
2625                 * Need to flush more colors.  Make the next flusher
2626                 * the new first flusher and arm pwqs.
2627                 */
2628                WARN_ON_ONCE(wq->flush_color == wq->work_color);
2629                WARN_ON_ONCE(wq->flush_color != next->flush_color);
2630
2631                list_del_init(&next->list);
2632                wq->first_flusher = next;
2633
2634                if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2635                        break;
2636
2637                /*
2638                 * Meh... this color is already done, clear first
2639                 * flusher and repeat cascading.
2640                 */
2641                wq->first_flusher = NULL;
2642        }
2643
2644out_unlock:
2645        mutex_unlock(&wq->mutex);
2646}
2647EXPORT_SYMBOL_GPL(flush_workqueue);
2648
2649/**
2650 * drain_workqueue - drain a workqueue
2651 * @wq: workqueue to drain
2652 *
2653 * Wait until the workqueue becomes empty.  While draining is in progress,
2654 * only chain queueing is allowed.  IOW, only currently pending or running
2655 * work items on @wq can queue further work items on it.  @wq is flushed
2656 * repeatedly until it becomes empty.  The number of flushing is detemined
2657 * by the depth of chaining and should be relatively short.  Whine if it
2658 * takes too long.
2659 */
2660void drain_workqueue(struct workqueue_struct *wq)
2661{
2662        unsigned int flush_cnt = 0;
2663        struct pool_workqueue *pwq;
2664
2665        /*
2666         * __queue_work() needs to test whether there are drainers, is much
2667         * hotter than drain_workqueue() and already looks at @wq->flags.
2668         * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2669         */
2670        mutex_lock(&wq->mutex);
2671        if (!wq->nr_drainers++)
2672                wq->flags |= __WQ_DRAINING;
2673        mutex_unlock(&wq->mutex);
2674reflush:
2675        flush_workqueue(wq);
2676
2677        mutex_lock(&wq->mutex);
2678
2679        for_each_pwq(pwq, wq) {
2680                bool drained;
2681
2682                spin_lock_irq(&pwq->pool->lock);
2683                drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2684                spin_unlock_irq(&pwq->pool->lock);
2685
2686                if (drained)
2687                        continue;
2688
2689                if (++flush_cnt == 10 ||
2690                    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2691                        pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2692                                wq->name, flush_cnt);
2693
2694                mutex_unlock(&wq->mutex);
2695                goto reflush;
2696        }
2697
2698        if (!--wq->nr_drainers)
2699                wq->flags &= ~__WQ_DRAINING;
2700        mutex_unlock(&wq->mutex);
2701}
2702EXPORT_SYMBOL_GPL(drain_workqueue);
2703
2704static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2705{
2706        struct worker *worker = NULL;
2707        struct worker_pool *pool;
2708        struct pool_workqueue *pwq;
2709
2710        might_sleep();
2711
2712        local_irq_disable();
2713        pool = get_work_pool(work);
2714        if (!pool) {
2715                local_irq_enable();
2716                return false;
2717        }
2718
2719        spin_lock(&pool->lock);
2720        /* see the comment in try_to_grab_pending() with the same code */
2721        pwq = get_work_pwq(work);
2722        if (pwq) {
2723                if (unlikely(pwq->pool != pool))
2724                        goto already_gone;
2725        } else {
2726                worker = find_worker_executing_work(pool, work);
2727                if (!worker)
2728                        goto already_gone;
2729                pwq = worker->current_pwq;
2730        }
2731
2732        insert_wq_barrier(pwq, barr, work, worker);
2733        spin_unlock_irq(&pool->lock);
2734
2735        /*
2736         * If @max_active is 1 or rescuer is in use, flushing another work
2737         * item on the same workqueue may lead to deadlock.  Make sure the
2738         * flusher is not running on the same workqueue by verifying write
2739         * access.
2740         */
2741        if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2742                lock_map_acquire(&pwq->wq->lockdep_map);
2743        else
2744                lock_map_acquire_read(&pwq->wq->lockdep_map);
2745        lock_map_release(&pwq->wq->lockdep_map);
2746
2747        return true;
2748already_gone:
2749        spin_unlock_irq(&pool->lock);
2750        return false;
2751}
2752
2753/**
2754 * flush_work - wait for a work to finish executing the last queueing instance
2755 * @work: the work to flush
2756 *
2757 * Wait until @work has finished execution.  @work is guaranteed to be idle
2758 * on return if it hasn't been requeued since flush started.
2759 *
2760 * Return:
2761 * %true if flush_work() waited for the work to finish execution,
2762 * %false if it was already idle.
2763 */
2764bool flush_work(struct work_struct *work)
2765{
2766        struct wq_barrier barr;
2767
2768        lock_map_acquire(&work->lockdep_map);
2769        lock_map_release(&work->lockdep_map);
2770
2771        if (start_flush_work(work, &barr)) {
2772                wait_for_completion(&barr.done);
2773                destroy_work_on_stack(&barr.work);
2774                return true;
2775        } else {
2776                return false;
2777        }
2778}
2779EXPORT_SYMBOL_GPL(flush_work);
2780
2781static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2782{
2783        unsigned long flags;
2784        int ret;
2785
2786        do {
2787                ret = try_to_grab_pending(work, is_dwork, &flags);
2788                /*
2789                 * If someone else is canceling, wait for the same event it
2790                 * would be waiting for before retrying.
2791                 */
2792                if (unlikely(ret == -ENOENT))
2793                        flush_work(work);
2794        } while (unlikely(ret < 0));
2795
2796        /* tell other tasks trying to grab @work to back off */
2797        mark_work_canceling(work);
2798        local_irq_restore(flags);
2799
2800        flush_work(work);
2801        clear_work_data(work);
2802        return ret;
2803}
2804
2805/**
2806 * cancel_work_sync - cancel a work and wait for it to finish
2807 * @work: the work to cancel
2808 *
2809 * Cancel @work and wait for its execution to finish.  This function
2810 * can be used even if the work re-queues itself or migrates to
2811 * another workqueue.  On return from this function, @work is
2812 * guaranteed to be not pending or executing on any CPU.
2813 *
2814 * cancel_work_sync(&delayed_work->work) must not be used for
2815 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2816 *
2817 * The caller must ensure that the workqueue on which @work was last
2818 * queued can't be destroyed before this function returns.
2819 *
2820 * Return:
2821 * %true if @work was pending, %false otherwise.
2822 */
2823bool cancel_work_sync(struct work_struct *work)
2824{
2825        return __cancel_work_timer(work, false);
2826}
2827EXPORT_SYMBOL_GPL(cancel_work_sync);
2828
2829/**
2830 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2831 * @dwork: the delayed work to flush
2832 *
2833 * Delayed timer is cancelled and the pending work is queued for
2834 * immediate execution.  Like flush_work(), this function only
2835 * considers the last queueing instance of @dwork.
2836 *
2837 * Return:
2838 * %true if flush_work() waited for the work to finish execution,
2839 * %false if it was already idle.
2840 */
2841bool flush_delayed_work(struct delayed_work *dwork)
2842{
2843        local_irq_disable();
2844        if (del_timer_sync(&dwork->timer))
2845                __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2846        local_irq_enable();
2847        return flush_work(&dwork->work);
2848}
2849EXPORT_SYMBOL(flush_delayed_work);
2850
2851/**
2852 * cancel_delayed_work - cancel a delayed work
2853 * @dwork: delayed_work to cancel
2854 *
2855 * Kill off a pending delayed_work.
2856 *
2857 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2858 * pending.
2859 *
2860 * Note:
2861 * The work callback function may still be running on return, unless
2862 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2863 * use cancel_delayed_work_sync() to wait on it.
2864 *
2865 * This function is safe to call from any context including IRQ handler.
2866 */
2867bool cancel_delayed_work(struct delayed_work *dwork)
2868{
2869        unsigned long flags;
2870        int ret;
2871
2872        do {
2873                ret = try_to_grab_pending(&dwork->work, true, &flags);
2874        } while (unlikely(ret == -EAGAIN));
2875
2876        if (unlikely(ret < 0))
2877                return false;
2878
2879        set_work_pool_and_clear_pending(&dwork->work,
2880                                        get_work_pool_id(&dwork->work));
2881        local_irq_restore(flags);
2882        return ret;
2883}
2884EXPORT_SYMBOL(cancel_delayed_work);
2885
2886/**
2887 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2888 * @dwork: the delayed work cancel
2889 *
2890 * This is cancel_work_sync() for delayed works.
2891 *
2892 * Return:
2893 * %true if @dwork was pending, %false otherwise.
2894 */
2895bool cancel_delayed_work_sync(struct delayed_work *dwork)
2896{
2897        return __cancel_work_timer(&dwork->work, true);
2898}
2899EXPORT_SYMBOL(cancel_delayed_work_sync);
2900
2901/**
2902 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2903 * @func: the function to call
2904 *
2905 * schedule_on_each_cpu() executes @func on each online CPU using the
2906 * system workqueue and blocks until all CPUs have completed.
2907 * schedule_on_each_cpu() is very slow.
2908 *
2909 * Return:
2910 * 0 on success, -errno on failure.
2911 */
2912int schedule_on_each_cpu(work_func_t func)
2913{
2914        int cpu;
2915        struct work_struct __percpu *works;
2916
2917        works = alloc_percpu(struct work_struct);
2918        if (!works)
2919                return -ENOMEM;
2920
2921        get_online_cpus();
2922
2923        for_each_online_cpu(cpu) {
2924                struct work_struct *work = per_cpu_ptr(works, cpu);
2925
2926                INIT_WORK(work, func);
2927                schedule_work_on(cpu, work);
2928        }
2929
2930        for_each_online_cpu(cpu)
2931                flush_work(per_cpu_ptr(works, cpu));
2932
2933        put_online_cpus();
2934        free_percpu(works);
2935        return 0;
2936}
2937
2938/**
2939 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2940 *
2941 * Forces execution of the kernel-global workqueue and blocks until its
2942 * completion.
2943 *
2944 * Think twice before calling this function!  It's very easy to get into
2945 * trouble if you don't take great care.  Either of the following situations
2946 * will lead to deadlock:
2947 *
2948 *      One of the work items currently on the workqueue needs to acquire
2949 *      a lock held by your code or its caller.
2950 *
2951 *      Your code is running in the context of a work routine.
2952 *
2953 * They will be detected by lockdep when they occur, but the first might not
2954 * occur very often.  It depends on what work items are on the workqueue and
2955 * what locks they need, which you have no control over.
2956 *
2957 * In most situations flushing the entire workqueue is overkill; you merely
2958 * need to know that a particular work item isn't queued and isn't running.
2959 * In such cases you should use cancel_delayed_work_sync() or
2960 * cancel_work_sync() instead.
2961 */
2962void flush_scheduled_work(void)
2963{
2964        flush_workqueue(system_wq);
2965}
2966EXPORT_SYMBOL(flush_scheduled_work);
2967
2968/**
2969 * execute_in_process_context - reliably execute the routine with user context
2970 * @fn:         the function to execute
2971 * @ew:         guaranteed storage for the execute work structure (must
2972 *              be available when the work executes)
2973 *
2974 * Executes the function immediately if process context is available,
2975 * otherwise schedules the function for delayed execution.
2976 *
2977 * Return:      0 - function was executed
2978 *              1 - function was scheduled for execution
2979 */
2980int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2981{
2982        if (!in_interrupt()) {
2983                fn(&ew->work);
2984                return 0;
2985        }
2986
2987        INIT_WORK(&ew->work, fn);
2988        schedule_work(&ew->work);
2989
2990        return 1;
2991}
2992EXPORT_SYMBOL_GPL(execute_in_process_context);
2993
2994#ifdef CONFIG_SYSFS
2995/*
2996 * Workqueues with WQ_SYSFS flag set is visible to userland via
2997 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
2998 * following attributes.
2999 *
3000 *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
3001 *  max_active  RW int  : maximum number of in-flight work items
3002 *
3003 * Unbound workqueues have the following extra attributes.
3004 *
3005 *  id          RO int  : the associated pool ID
3006 *  nice        RW int  : nice value of the workers
3007 *  cpumask     RW mask : bitmask of allowed CPUs for the workers
3008 */
3009struct wq_device {
3010        struct workqueue_struct         *wq;
3011        struct device                   dev;
3012};
3013
3014static struct workqueue_struct *dev_to_wq(struct device *dev)
3015{
3016        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3017
3018        return wq_dev->wq;
3019}
3020
3021static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3022                            char *buf)
3023{
3024        struct workqueue_struct *wq = dev_to_wq(dev);
3025
3026        return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3027}
3028static DEVICE_ATTR_RO(per_cpu);
3029
3030static ssize_t max_active_show(struct device *dev,
3031                               struct device_attribute *attr, char *buf)
3032{
3033        struct workqueue_struct *wq = dev_to_wq(dev);
3034
3035        return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3036}
3037
3038static ssize_t max_active_store(struct device *dev,
3039                                struct device_attribute *attr, const char *buf,
3040                                size_t count)
3041{
3042        struct workqueue_struct *wq = dev_to_wq(dev);
3043        int val;
3044
3045        if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3046                return -EINVAL;
3047
3048        workqueue_set_max_active(wq, val);
3049        return count;
3050}
3051static DEVICE_ATTR_RW(max_active);
3052
3053static struct attribute *wq_sysfs_attrs[] = {
3054        &dev_attr_per_cpu.attr,
3055        &dev_attr_max_active.attr,
3056        NULL,
3057};
3058ATTRIBUTE_GROUPS(wq_sysfs);
3059
3060static ssize_t wq_pool_ids_show(struct device *dev,
3061                                struct device_attribute *attr, char *buf)
3062{
3063        struct workqueue_struct *wq = dev_to_wq(dev);
3064        const char *delim = "";
3065        int node, written = 0;
3066
3067        rcu_read_lock_sched();
3068        for_each_node(node) {
3069                written += scnprintf(buf + written, PAGE_SIZE - written,
3070                                     "%s%d:%d", delim, node,
3071                                     unbound_pwq_by_node(wq, node)->pool->id);
3072                delim = " ";
3073        }
3074        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3075        rcu_read_unlock_sched();
3076
3077        return written;
3078}
3079
3080static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3081                            char *buf)
3082{
3083        struct workqueue_struct *wq = dev_to_wq(dev);
3084        int written;
3085
3086        mutex_lock(&wq->mutex);
3087        written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3088        mutex_unlock(&wq->mutex);
3089
3090        return written;
3091}
3092
3093/* prepare workqueue_attrs for sysfs store operations */
3094static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3095{
3096        struct workqueue_attrs *attrs;
3097
3098        attrs = alloc_workqueue_attrs(GFP_KERNEL);
3099        if (!attrs)
3100                return NULL;
3101
3102        mutex_lock(&wq->mutex);
3103        copy_workqueue_attrs(attrs, wq->unbound_attrs);
3104        mutex_unlock(&wq->mutex);
3105        return attrs;
3106}
3107
3108static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3109                             const char *buf, size_t count)
3110{
3111        struct workqueue_struct *wq = dev_to_wq(dev);
3112        struct workqueue_attrs *attrs;
3113        int ret;
3114
3115        attrs = wq_sysfs_prep_attrs(wq);
3116        if (!attrs)
3117                return -ENOMEM;
3118
3119        if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3120            attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3121                ret = apply_workqueue_attrs(wq, attrs);
3122        else
3123                ret = -EINVAL;
3124
3125        free_workqueue_attrs(attrs);
3126        return ret ?: count;
3127}
3128
3129static ssize_t wq_cpumask_show(struct device *dev,
3130                               struct device_attribute *attr, char *buf)
3131{
3132        struct workqueue_struct *wq = dev_to_wq(dev);
3133        int written;
3134
3135        mutex_lock(&wq->mutex);
3136        written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3137        mutex_unlock(&wq->mutex);
3138
3139        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3140        return written;
3141}
3142
3143static ssize_t wq_cpumask_store(struct device *dev,
3144                                struct device_attribute *attr,
3145                                const char *buf, size_t count)
3146{
3147        struct workqueue_struct *wq = dev_to_wq(dev);
3148        struct workqueue_attrs *attrs;
3149        int ret;
3150
3151        attrs = wq_sysfs_prep_attrs(wq);
3152        if (!attrs)
3153                return -ENOMEM;
3154
3155        ret = cpumask_parse(buf, attrs->cpumask);
3156        if (!ret)
3157                ret = apply_workqueue_attrs(wq, attrs);
3158
3159        free_workqueue_attrs(attrs);
3160        return ret ?: count;
3161}
3162
3163static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3164                            char *buf)
3165{
3166        struct workqueue_struct *wq = dev_to_wq(dev);
3167        int written;
3168
3169        mutex_lock(&wq->mutex);
3170        written = scnprintf(buf, PAGE_SIZE, "%d\n",
3171                            !wq->unbound_attrs->no_numa);
3172        mutex_unlock(&wq->mutex);
3173
3174        return written;
3175}
3176
3177static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3178                             const char *buf, size_t count)
3179{
3180        struct workqueue_struct *wq = dev_to_wq(dev);
3181        struct workqueue_attrs *attrs;
3182        int v, ret;
3183
3184        attrs = wq_sysfs_prep_attrs(wq);
3185        if (!attrs)
3186                return -ENOMEM;
3187
3188        ret = -EINVAL;
3189        if (sscanf(buf, "%d", &v) == 1) {
3190                attrs->no_numa = !v;
3191                ret = apply_workqueue_attrs(wq, attrs);
3192        }
3193
3194        free_workqueue_attrs(attrs);
3195        return ret ?: count;
3196}
3197
3198static struct device_attribute wq_sysfs_unbound_attrs[] = {
3199        __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3200        __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3201        __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3202        __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3203        __ATTR_NULL,
3204};
3205
3206static struct bus_type wq_subsys = {
3207        .name                           = "workqueue",
3208        .dev_groups                     = wq_sysfs_groups,
3209};
3210
3211static int __init wq_sysfs_init(void)
3212{
3213        return subsys_virtual_register(&wq_subsys, NULL);
3214}
3215core_initcall(wq_sysfs_init);
3216
3217static void wq_device_release(struct device *dev)
3218{
3219        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3220
3221        kfree(wq_dev);
3222}
3223
3224/**
3225 * workqueue_sysfs_register - make a workqueue visible in sysfs
3226 * @wq: the workqueue to register
3227 *
3228 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3229 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3230 * which is the preferred method.
3231 *
3232 * Workqueue user should use this function directly iff it wants to apply
3233 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3234 * apply_workqueue_attrs() may race against userland updating the
3235 * attributes.
3236 *
3237 * Return: 0 on success, -errno on failure.
3238 */
3239int workqueue_sysfs_register(struct workqueue_struct *wq)
3240{
3241        struct wq_device *wq_dev;
3242        int ret;
3243
3244        /*
3245         * Adjusting max_active or creating new pwqs by applyting
3246         * attributes breaks ordering guarantee.  Disallow exposing ordered
3247         * workqueues.
3248         */
3249        if (WARN_ON(wq->flags & __WQ_ORDERED))
3250                return -EINVAL;
3251
3252        wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3253        if (!wq_dev)
3254                return -ENOMEM;
3255
3256        wq_dev->wq = wq;
3257        wq_dev->dev.bus = &wq_subsys;
3258        wq_dev->dev.init_name = wq->name;
3259        wq_dev->dev.release = wq_device_release;
3260
3261        /*
3262         * unbound_attrs are created separately.  Suppress uevent until
3263         * everything is ready.
3264         */
3265        dev_set_uevent_suppress(&wq_dev->dev, true);
3266
3267        ret = device_register(&wq_dev->dev);
3268        if (ret) {
3269                kfree(wq_dev);
3270                wq->wq_dev = NULL;
3271                return ret;
3272        }
3273
3274        if (wq->flags & WQ_UNBOUND) {
3275                struct device_attribute *attr;
3276
3277                for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3278                        ret = device_create_file(&wq_dev->dev, attr);
3279                        if (ret) {
3280                                device_unregister(&wq_dev->dev);
3281                                wq->wq_dev = NULL;
3282                                return ret;
3283                        }
3284                }
3285        }
3286
3287        dev_set_uevent_suppress(&wq_dev->dev, false);
3288        kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3289        return 0;
3290}
3291
3292/**
3293 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3294 * @wq: the workqueue to unregister
3295 *
3296 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3297 */
3298static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3299{
3300        struct wq_device *wq_dev = wq->wq_dev;
3301
3302        if (!wq->wq_dev)
3303                return;
3304
3305        wq->wq_dev = NULL;
3306        device_unregister(&wq_dev->dev);
3307}
3308#else   /* CONFIG_SYSFS */
3309static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
3310#endif  /* CONFIG_SYSFS */
3311
3312/**
3313 * free_workqueue_attrs - free a workqueue_attrs
3314 * @attrs: workqueue_attrs to free
3315 *
3316 * Undo alloc_workqueue_attrs().
3317 */
3318void free_workqueue_attrs(struct workqueue_attrs *attrs)
3319{
3320        if (attrs) {
3321                free_cpumask_var(attrs->cpumask);
3322                kfree(attrs);
3323        }
3324}
3325
3326/**
3327 * alloc_workqueue_attrs - allocate a workqueue_attrs
3328 * @gfp_mask: allocation mask to use
3329 *
3330 * Allocate a new workqueue_attrs, initialize with default settings and
3331 * return it.
3332 *
3333 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3334 */
3335struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3336{
3337        struct workqueue_attrs *attrs;
3338
3339        attrs = kzalloc(sizeof(*attrs), gfp_mask);
3340        if (!attrs)
3341                goto fail;
3342        if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3343                goto fail;
3344
3345        cpumask_copy(attrs->cpumask, cpu_possible_mask);
3346        return attrs;
3347fail:
3348        free_workqueue_attrs(attrs);
3349        return NULL;
3350}
3351
3352static void copy_workqueue_attrs(struct workqueue_attrs *to,
3353                                 const struct workqueue_attrs *from)
3354{
3355        to->nice = from->nice;
3356        cpumask_copy(to->cpumask, from->cpumask);
3357        /*
3358         * Unlike hash and equality test, this function doesn't ignore
3359         * ->no_numa as it is used for both pool and wq attrs.  Instead,
3360         * get_unbound_pool() explicitly clears ->no_numa after copying.
3361         */
3362        to->no_numa = from->no_numa;
3363}
3364
3365/* hash value of the content of @attr */
3366static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3367{
3368        u32 hash = 0;
3369
3370        hash = jhash_1word(attrs->nice, hash);
3371        hash = jhash(cpumask_bits(attrs->cpumask),
3372                     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3373        return hash;
3374}
3375
3376/* content equality test */
3377static bool wqattrs_equal(const struct workqueue_attrs *a,
3378                          const struct workqueue_attrs *b)
3379{
3380        if (a->nice != b->nice)
3381                return false;
3382        if (!cpumask_equal(a->cpumask, b->cpumask))
3383                return false;
3384        return true;
3385}
3386
3387/**
3388 * init_worker_pool - initialize a newly zalloc'd worker_pool
3389 * @pool: worker_pool to initialize
3390 *
3391 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3392 *
3393 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3394 * inside @pool proper are initialized and put_unbound_pool() can be called
3395 * on @pool safely to release it.
3396 */
3397static int init_worker_pool(struct worker_pool *pool)
3398{
3399        spin_lock_init(&pool->lock);
3400        pool->id = -1;
3401        pool->cpu = -1;
3402        pool->node = NUMA_NO_NODE;
3403        pool->flags |= POOL_DISASSOCIATED;
3404        INIT_LIST_HEAD(&pool->worklist);
3405        INIT_LIST_HEAD(&pool->idle_list);
3406        hash_init(pool->busy_hash);
3407
3408        init_timer_deferrable(&pool->idle_timer);
3409        pool->idle_timer.function = idle_worker_timeout;
3410        pool->idle_timer.data = (unsigned long)pool;
3411
3412        setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3413                    (unsigned long)pool);
3414
3415        mutex_init(&pool->manager_arb);
3416        mutex_init(&pool->attach_mutex);
3417        INIT_LIST_HEAD(&pool->workers);
3418
3419        ida_init(&pool->worker_ida);
3420        INIT_HLIST_NODE(&pool->hash_node);
3421        pool->refcnt = 1;
3422
3423        /* shouldn't fail above this point */
3424        pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3425        if (!pool->attrs)
3426                return -ENOMEM;
3427        return 0;
3428}
3429
3430static void rcu_free_pool(struct rcu_head *rcu)
3431{
3432        struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3433
3434        ida_destroy(&pool->worker_ida);
3435        free_workqueue_attrs(pool->attrs);
3436        kfree(pool);
3437}
3438
3439/**
3440 * put_unbound_pool - put a worker_pool
3441 * @pool: worker_pool to put
3442 *
3443 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3444 * safe manner.  get_unbound_pool() calls this function on its failure path
3445 * and this function should be able to release pools which went through,
3446 * successfully or not, init_worker_pool().
3447 *
3448 * Should be called with wq_pool_mutex held.
3449 */
3450static void put_unbound_pool(struct worker_pool *pool)
3451{
3452        DECLARE_COMPLETION_ONSTACK(detach_completion);
3453        struct worker *worker;
3454
3455        lockdep_assert_held(&wq_pool_mutex);
3456
3457        if (--pool->refcnt)
3458                return;
3459
3460        /* sanity checks */
3461        if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3462            WARN_ON(!list_empty(&pool->worklist)))
3463                return;
3464
3465        /* release id and unhash */
3466        if (pool->id >= 0)
3467                idr_remove(&worker_pool_idr, pool->id);
3468        hash_del(&pool->hash_node);
3469
3470        /*
3471         * Become the manager and destroy all workers.  Grabbing
3472         * manager_arb prevents @pool's workers from blocking on
3473         * attach_mutex.
3474         */
3475        mutex_lock(&pool->manager_arb);
3476
3477        spin_lock_irq(&pool->lock);
3478        while ((worker = first_idle_worker(pool)))
3479                destroy_worker(worker);
3480        WARN_ON(pool->nr_workers || pool->nr_idle);
3481        spin_unlock_irq(&pool->lock);
3482
3483        mutex_lock(&pool->attach_mutex);
3484        if (!list_empty(&pool->workers))
3485                pool->detach_completion = &detach_completion;
3486        mutex_unlock(&pool->attach_mutex);
3487
3488        if (pool->detach_completion)
3489                wait_for_completion(pool->detach_completion);
3490
3491        mutex_unlock(&pool->manager_arb);
3492
3493        /* shut down the timers */
3494        del_timer_sync(&pool->idle_timer);
3495        del_timer_sync(&pool->mayday_timer);
3496
3497        /* sched-RCU protected to allow dereferences from get_work_pool() */
3498        call_rcu_sched(&pool->rcu, rcu_free_pool);
3499}
3500
3501/**
3502 * get_unbound_pool - get a worker_pool with the specified attributes
3503 * @attrs: the attributes of the worker_pool to get
3504 *
3505 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3506 * reference count and return it.  If there already is a matching
3507 * worker_pool, it will be used; otherwise, this function attempts to
3508 * create a new one.
3509 *
3510 * Should be called with wq_pool_mutex held.
3511 *
3512 * Return: On success, a worker_pool with the same attributes as @attrs.
3513 * On failure, %NULL.
3514 */
3515static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3516{
3517        u32 hash = wqattrs_hash(attrs);
3518        struct worker_pool *pool;
3519        int node;
3520
3521        lockdep_assert_held(&wq_pool_mutex);
3522
3523        /* do we already have a matching pool? */
3524        hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3525                if (wqattrs_equal(pool->attrs, attrs)) {
3526                        pool->refcnt++;
3527                        goto out_unlock;
3528                }
3529        }
3530
3531        /* nope, create a new one */
3532        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3533        if (!pool || init_worker_pool(pool) < 0)
3534                goto fail;
3535
3536        lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3537        copy_workqueue_attrs(pool->attrs, attrs);
3538
3539        /*
3540         * no_numa isn't a worker_pool attribute, always clear it.  See
3541         * 'struct workqueue_attrs' comments for detail.
3542         */
3543        pool->attrs->no_numa = false;
3544
3545        /* if cpumask is contained inside a NUMA node, we belong to that node */
3546        if (wq_numa_enabled) {
3547                for_each_node(node) {
3548                        if (cpumask_subset(pool->attrs->cpumask,
3549                                           wq_numa_possible_cpumask[node])) {
3550                                pool->node = node;
3551                                break;
3552                        }
3553                }
3554        }
3555
3556        if (worker_pool_assign_id(pool) < 0)
3557                goto fail;
3558
3559        /* create and start the initial worker */
3560        if (create_and_start_worker(pool) < 0)
3561                goto fail;
3562
3563        /* install */
3564        hash_add(unbound_pool_hash, &pool->hash_node, hash);
3565out_unlock:
3566        return pool;
3567fail:
3568        if (pool)
3569                put_unbound_pool(pool);
3570        return NULL;
3571}
3572
3573static void rcu_free_pwq(struct rcu_head *rcu)
3574{
3575        kmem_cache_free(pwq_cache,
3576                        container_of(rcu, struct pool_workqueue, rcu));
3577}
3578
3579/*
3580 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3581 * and needs to be destroyed.
3582 */
3583static void pwq_unbound_release_workfn(struct work_struct *work)
3584{
3585        struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3586                                                  unbound_release_work);
3587        struct workqueue_struct *wq = pwq->wq;
3588        struct worker_pool *pool = pwq->pool;
3589        bool is_last;
3590
3591        if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3592                return;
3593
3594        /*
3595         * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3596         * necessary on release but do it anyway.  It's easier to verify
3597         * and consistent with the linking path.
3598         */
3599        mutex_lock(&wq->mutex);
3600        list_del_rcu(&pwq->pwqs_node);
3601        is_last = list_empty(&wq->pwqs);
3602        mutex_unlock(&wq->mutex);
3603
3604        mutex_lock(&wq_pool_mutex);
3605        put_unbound_pool(pool);
3606        mutex_unlock(&wq_pool_mutex);
3607
3608        call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3609
3610        /*
3611         * If we're the last pwq going away, @wq is already dead and no one
3612         * is gonna access it anymore.  Free it.
3613         */
3614        if (is_last) {
3615                free_workqueue_attrs(wq->unbound_attrs);
3616                kfree(wq);
3617        }
3618}
3619
3620/**
3621 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3622 * @pwq: target pool_workqueue
3623 *
3624 * If @pwq isn't freezing, set @pwq->max_active to the associated
3625 * workqueue's saved_max_active and activate delayed work items
3626 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3627 */
3628static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3629{
3630        struct workqueue_struct *wq = pwq->wq;
3631        bool freezable = wq->flags & WQ_FREEZABLE;
3632
3633        /* for @wq->saved_max_active */
3634        lockdep_assert_held(&wq->mutex);
3635
3636        /* fast exit for non-freezable wqs */
3637        if (!freezable && pwq->max_active == wq->saved_max_active)
3638                return;
3639
3640        spin_lock_irq(&pwq->pool->lock);
3641
3642        /*
3643         * During [un]freezing, the caller is responsible for ensuring that
3644         * this function is called at least once after @workqueue_freezing
3645         * is updated and visible.
3646         */
3647        if (!freezable || !workqueue_freezing) {
3648                pwq->max_active = wq->saved_max_active;
3649
3650                while (!list_empty(&pwq->delayed_works) &&
3651                       pwq->nr_active < pwq->max_active)
3652                        pwq_activate_first_delayed(pwq);
3653
3654                /*
3655                 * Need to kick a worker after thawed or an unbound wq's
3656                 * max_active is bumped.  It's a slow path.  Do it always.
3657                 */
3658                wake_up_worker(pwq->pool);
3659        } else {
3660                pwq->max_active = 0;
3661        }
3662
3663        spin_unlock_irq(&pwq->pool->lock);
3664}
3665
3666/* initialize newly alloced @pwq which is associated with @wq and @pool */
3667static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3668                     struct worker_pool *pool)
3669{
3670        BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3671
3672        memset(pwq, 0, sizeof(*pwq));
3673
3674        pwq->pool = pool;
3675        pwq->wq = wq;
3676        pwq->flush_color = -1;
3677        pwq->refcnt = 1;
3678        INIT_LIST_HEAD(&pwq->delayed_works);
3679        INIT_LIST_HEAD(&pwq->pwqs_node);
3680        INIT_LIST_HEAD(&pwq->mayday_node);
3681        INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3682}
3683
3684/* sync @pwq with the current state of its associated wq and link it */
3685static void link_pwq(struct pool_workqueue *pwq)
3686{
3687        struct workqueue_struct *wq = pwq->wq;
3688
3689        lockdep_assert_held(&wq->mutex);
3690
3691        /* may be called multiple times, ignore if already linked */
3692        if (!list_empty(&pwq->pwqs_node))
3693                return;
3694
3695        /*
3696         * Set the matching work_color.  This is synchronized with
3697         * wq->mutex to avoid confusing flush_workqueue().
3698         */
3699        pwq->work_color = wq->work_color;
3700
3701        /* sync max_active to the current setting */
3702        pwq_adjust_max_active(pwq);
3703
3704        /* link in @pwq */
3705        list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3706}
3707
3708/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3709static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3710                                        const struct workqueue_attrs *attrs)
3711{
3712        struct worker_pool *pool;
3713        struct pool_workqueue *pwq;
3714
3715        lockdep_assert_held(&wq_pool_mutex);
3716
3717        pool = get_unbound_pool(attrs);
3718        if (!pool)
3719                return NULL;
3720
3721        pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3722        if (!pwq) {
3723                put_unbound_pool(pool);
3724                return NULL;
3725        }
3726
3727        init_pwq(pwq, wq, pool);
3728        return pwq;
3729}
3730
3731/* undo alloc_unbound_pwq(), used only in the error path */
3732static void free_unbound_pwq(struct pool_workqueue *pwq)
3733{
3734        lockdep_assert_held(&wq_pool_mutex);
3735
3736        if (pwq) {
3737                put_unbound_pool(pwq->pool);
3738                kmem_cache_free(pwq_cache, pwq);
3739        }
3740}
3741
3742/**
3743 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3744 * @attrs: the wq_attrs of interest
3745 * @node: the target NUMA node
3746 * @cpu_going_down: if >= 0, the CPU to consider as offline
3747 * @cpumask: outarg, the resulting cpumask
3748 *
3749 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3750 * @cpu_going_down is >= 0, that cpu is considered offline during
3751 * calculation.  The result is stored in @cpumask.
3752 *
3753 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3754 * enabled and @node has online CPUs requested by @attrs, the returned
3755 * cpumask is the intersection of the possible CPUs of @node and
3756 * @attrs->cpumask.
3757 *
3758 * The caller is responsible for ensuring that the cpumask of @node stays
3759 * stable.
3760 *
3761 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3762 * %false if equal.
3763 */
3764static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3765                                 int cpu_going_down, cpumask_t *cpumask)
3766{
3767        if (!wq_numa_enabled || attrs->no_numa)
3768                goto use_dfl;
3769
3770        /* does @node have any online CPUs @attrs wants? */
3771        cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3772        if (cpu_going_down >= 0)
3773                cpumask_clear_cpu(cpu_going_down, cpumask);
3774
3775        if (cpumask_empty(cpumask))
3776                goto use_dfl;
3777
3778        /* yeap, return possible CPUs in @node that @attrs wants */
3779        cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3780        return !cpumask_equal(cpumask, attrs->cpumask);
3781
3782use_dfl:
3783        cpumask_copy(cpumask, attrs->cpumask);
3784        return false;
3785}
3786
3787/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3788static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3789                                                   int node,
3790                                                   struct pool_workqueue *pwq)
3791{
3792        struct pool_workqueue *old_pwq;
3793
3794        lockdep_assert_held(&wq->mutex);
3795
3796        /* link_pwq() can handle duplicate calls */
3797        link_pwq(pwq);
3798
3799        old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3800        rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3801        return old_pwq;
3802}
3803
3804/**
3805 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3806 * @wq: the target workqueue
3807 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3808 *
3809 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3810 * machines, this function maps a separate pwq to each NUMA node with
3811 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3812 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3813 * items finish.  Note that a work item which repeatedly requeues itself
3814 * back-to-back will stay on its current pwq.
3815 *
3816 * Performs GFP_KERNEL allocations.
3817 *
3818 * Return: 0 on success and -errno on failure.
3819 */
3820int apply_workqueue_attrs(struct workqueue_struct *wq,
3821                          const struct workqueue_attrs *attrs)
3822{
3823        struct workqueue_attrs *new_attrs, *tmp_attrs;
3824        struct pool_workqueue **pwq_tbl, *dfl_pwq;
3825        int node, ret;
3826
3827        /* only unbound workqueues can change attributes */
3828        if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3829                return -EINVAL;
3830
3831        /* creating multiple pwqs breaks ordering guarantee */
3832        if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3833                return -EINVAL;
3834
3835        pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3836        new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3837        tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3838        if (!pwq_tbl || !new_attrs || !tmp_attrs)
3839                goto enomem;
3840
3841        /* make a copy of @attrs and sanitize it */
3842        copy_workqueue_attrs(new_attrs, attrs);
3843        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3844
3845        /*
3846         * We may create multiple pwqs with differing cpumasks.  Make a
3847         * copy of @new_attrs which will be modified and used to obtain
3848         * pools.
3849         */
3850        copy_workqueue_attrs(tmp_attrs, new_attrs);
3851
3852        /*
3853         * CPUs should stay stable across pwq creations and installations.
3854         * Pin CPUs, determine the target cpumask for each node and create
3855         * pwqs accordingly.
3856         */
3857        get_online_cpus();
3858
3859        mutex_lock(&wq_pool_mutex);
3860
3861        /*
3862         * If something goes wrong during CPU up/down, we'll fall back to
3863         * the default pwq covering whole @attrs->cpumask.  Always create
3864         * it even if we don't use it immediately.
3865         */
3866        dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3867        if (!dfl_pwq)
3868                goto enomem_pwq;
3869
3870        for_each_node(node) {
3871                if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3872                        pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3873                        if (!pwq_tbl[node])
3874                                goto enomem_pwq;
3875                } else {
3876                        dfl_pwq->refcnt++;
3877                        pwq_tbl[node] = dfl_pwq;
3878                }
3879        }
3880
3881        mutex_unlock(&wq_pool_mutex);
3882
3883        /* all pwqs have been created successfully, let's install'em */
3884        mutex_lock(&wq->mutex);
3885
3886        copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3887
3888        /* save the previous pwq and install the new one */
3889        for_each_node(node)
3890                pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3891
3892        /* @dfl_pwq might not have been used, ensure it's linked */
3893        link_pwq(dfl_pwq);
3894        swap(wq->dfl_pwq, dfl_pwq);
3895
3896        mutex_unlock(&wq->mutex);
3897
3898        /* put the old pwqs */
3899        for_each_node(node)
3900                put_pwq_unlocked(pwq_tbl[node]);
3901        put_pwq_unlocked(dfl_pwq);
3902
3903        put_online_cpus();
3904        ret = 0;
3905        /* fall through */
3906out_free:
3907        free_workqueue_attrs(tmp_attrs);
3908        free_workqueue_attrs(new_attrs);
3909        kfree(pwq_tbl);
3910        return ret;
3911
3912enomem_pwq:
3913        free_unbound_pwq(dfl_pwq);
3914        for_each_node(node)
3915                if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3916                        free_unbound_pwq(pwq_tbl[node]);
3917        mutex_unlock(&wq_pool_mutex);
3918        put_online_cpus();
3919enomem:
3920        ret = -ENOMEM;
3921        goto out_free;
3922}
3923
3924/**
3925 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3926 * @wq: the target workqueue
3927 * @cpu: the CPU coming up or going down
3928 * @online: whether @cpu is coming up or going down
3929 *
3930 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3931 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3932 * @wq accordingly.
3933 *
3934 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3935 * falls back to @wq->dfl_pwq which may not be optimal but is always
3936 * correct.
3937 *
3938 * Note that when the last allowed CPU of a NUMA node goes offline for a
3939 * workqueue with a cpumask spanning multiple nodes, the workers which were
3940 * already executing the work items for the workqueue will lose their CPU
3941 * affinity and may execute on any CPU.  This is similar to how per-cpu
3942 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3943 * affinity, it's the user's responsibility to flush the work item from
3944 * CPU_DOWN_PREPARE.
3945 */
3946static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3947                                   bool online)
3948{
3949        int node = cpu_to_node(cpu);
3950        int cpu_off = online ? -1 : cpu;
3951        struct pool_workqueue *old_pwq = NULL, *pwq;
3952        struct workqueue_attrs *target_attrs;
3953        cpumask_t *cpumask;
3954
3955        lockdep_assert_held(&wq_pool_mutex);
3956
3957        if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3958                return;
3959
3960        /*
3961         * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3962         * Let's use a preallocated one.  The following buf is protected by
3963         * CPU hotplug exclusion.
3964         */
3965        target_attrs = wq_update_unbound_numa_attrs_buf;
3966        cpumask = target_attrs->cpumask;
3967
3968        mutex_lock(&wq->mutex);
3969        if (wq->unbound_attrs->no_numa)
3970                goto out_unlock;
3971
3972        copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3973        pwq = unbound_pwq_by_node(wq, node);
3974
3975        /*
3976         * Let's determine what needs to be done.  If the target cpumask is
3977         * different from wq's, we need to compare it to @pwq's and create
3978         * a new one if they don't match.  If the target cpumask equals
3979         * wq's, the default pwq should be used.
3980         */
3981        if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3982                if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3983                        goto out_unlock;
3984        } else {
3985                goto use_dfl_pwq;
3986        }
3987
3988        mutex_unlock(&wq->mutex);
3989
3990        /* create a new pwq */
3991        pwq = alloc_unbound_pwq(wq, target_attrs);
3992        if (!pwq) {
3993                pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3994                        wq->name);
3995                mutex_lock(&wq->mutex);
3996                goto use_dfl_pwq;
3997        }
3998
3999        /*
4000         * Install the new pwq.  As this function is called only from CPU
4001         * hotplug callbacks and applying a new attrs is wrapped with
4002         * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4003         * inbetween.
4004         */
4005        mutex_lock(&wq->mutex);
4006        old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4007        goto out_unlock;
4008
4009use_dfl_pwq:
4010        spin_lock_irq(&wq->dfl_pwq->pool->lock);
4011        get_pwq(wq->dfl_pwq);
4012        spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4013        old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4014out_unlock:
4015        mutex_unlock(&wq->mutex);
4016        put_pwq_unlocked(old_pwq);
4017}
4018
4019static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4020{
4021        bool highpri = wq->flags & WQ_HIGHPRI;
4022        int cpu, ret;
4023
4024        if (!(wq->flags & WQ_UNBOUND)) {
4025                wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4026                if (!wq->cpu_pwqs)
4027                        return -ENOMEM;
4028
4029                for_each_possible_cpu(cpu) {
4030                        struct pool_workqueue *pwq =
4031                                per_cpu_ptr(wq->cpu_pwqs, cpu);
4032                        struct worker_pool *cpu_pools =
4033                                per_cpu(cpu_worker_pools, cpu);
4034
4035                        init_pwq(pwq, wq, &cpu_pools[highpri]);
4036
4037                        mutex_lock(&wq->mutex);
4038                        link_pwq(pwq);
4039                        mutex_unlock(&wq->mutex);
4040                }
4041                return 0;
4042        } else if (wq->flags & __WQ_ORDERED) {
4043                ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4044                /* there should only be single pwq for ordering guarantee */
4045                WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4046                              wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4047                     "ordering guarantee broken for workqueue %s\n", wq->name);
4048                return ret;
4049        } else {
4050                return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4051        }
4052}
4053
4054static int wq_clamp_max_active(int max_active, unsigned int flags,
4055                               const char *name)
4056{
4057        int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4058
4059        if (max_active < 1 || max_active > lim)
4060                pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4061                        max_active, name, 1, lim);
4062
4063        return clamp_val(max_active, 1, lim);
4064}
4065
4066struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4067                                               unsigned int flags,
4068                                               int max_active,
4069                                               struct lock_class_key *key,
4070                                               const char *lock_name, ...)
4071{
4072        size_t tbl_size = 0;
4073        va_list args;
4074        struct workqueue_struct *wq;
4075        struct pool_workqueue *pwq;
4076
4077        /* see the comment above the definition of WQ_POWER_EFFICIENT */
4078        if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4079                flags |= WQ_UNBOUND;
4080
4081        /* allocate wq and format name */
4082        if (flags & WQ_UNBOUND)
4083                tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4084
4085        wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4086        if (!wq)
4087                return NULL;
4088
4089        if (flags & WQ_UNBOUND) {
4090                wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4091                if (!wq->unbound_attrs)
4092                        goto err_free_wq;
4093        }
4094
4095        va_start(args, lock_name);
4096        vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4097        va_end(args);
4098
4099        max_active = max_active ?: WQ_DFL_ACTIVE;
4100        max_active = wq_clamp_max_active(max_active, flags, wq->name);
4101
4102        /* init wq */
4103        wq->flags = flags;
4104        wq->saved_max_active = max_active;
4105        mutex_init(&wq->mutex);
4106        atomic_set(&wq->nr_pwqs_to_flush, 0);
4107        INIT_LIST_HEAD(&wq->pwqs);
4108        INIT_LIST_HEAD(&wq->flusher_queue);
4109        INIT_LIST_HEAD(&wq->flusher_overflow);
4110        INIT_LIST_HEAD(&wq->maydays);
4111
4112        lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4113        INIT_LIST_HEAD(&wq->list);
4114
4115        if (alloc_and_link_pwqs(wq) < 0)
4116                goto err_free_wq;
4117
4118        /*
4119         * Workqueues which may be used during memory reclaim should
4120         * have a rescuer to guarantee forward progress.
4121         */
4122        if (flags & WQ_MEM_RECLAIM) {
4123                struct worker *rescuer;
4124
4125                rescuer = alloc_worker();
4126                if (!rescuer)
4127                        goto err_destroy;
4128
4129                rescuer->rescue_wq = wq;
4130                rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4131                                               wq->name);
4132                if (IS_ERR(rescuer->task)) {
4133                        kfree(rescuer);
4134                        goto err_destroy;
4135                }
4136
4137                wq->rescuer = rescuer;
4138                rescuer->task->flags |= PF_NO_SETAFFINITY;
4139                wake_up_process(rescuer->task);
4140        }
4141
4142        if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4143                goto err_destroy;
4144
4145        /*
4146         * wq_pool_mutex protects global freeze state and workqueues list.
4147         * Grab it, adjust max_active and add the new @wq to workqueues
4148         * list.
4149         */
4150        mutex_lock(&wq_pool_mutex);
4151
4152        mutex_lock(&wq->mutex);
4153        for_each_pwq(pwq, wq)
4154                pwq_adjust_max_active(pwq);
4155        mutex_unlock(&wq->mutex);
4156
4157        list_add(&wq->list, &workqueues);
4158
4159        mutex_unlock(&wq_pool_mutex);
4160
4161        return wq;
4162
4163err_free_wq:
4164        free_workqueue_attrs(wq->unbound_attrs);
4165        kfree(wq);
4166        return NULL;
4167err_destroy:
4168        destroy_workqueue(wq);
4169        return NULL;
4170}
4171EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4172
4173/**
4174 * destroy_workqueue - safely terminate a workqueue
4175 * @wq: target workqueue
4176 *
4177 * Safely destroy a workqueue. All work currently pending will be done first.
4178 */
4179void destroy_workqueue(struct workqueue_struct *wq)
4180{
4181        struct pool_workqueue *pwq;
4182        int node;
4183
4184        /* drain it before proceeding with destruction */
4185        drain_workqueue(wq);
4186
4187        /* sanity checks */
4188        mutex_lock(&wq->mutex);
4189        for_each_pwq(pwq, wq) {
4190                int i;
4191
4192                for (i = 0; i < WORK_NR_COLORS; i++) {
4193                        if (WARN_ON(pwq->nr_in_flight[i])) {
4194                                mutex_unlock(&wq->mutex);
4195                                return;
4196                        }
4197                }
4198
4199                if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4200                    WARN_ON(pwq->nr_active) ||
4201                    WARN_ON(!list_empty(&pwq->delayed_works))) {
4202                        mutex_unlock(&wq->mutex);
4203                        return;
4204                }
4205        }
4206        mutex_unlock(&wq->mutex);
4207
4208        /*
4209         * wq list is used to freeze wq, remove from list after
4210         * flushing is complete in case freeze races us.
4211         */
4212        mutex_lock(&wq_pool_mutex);
4213        list_del_init(&wq->list);
4214        mutex_unlock(&wq_pool_mutex);
4215
4216        workqueue_sysfs_unregister(wq);
4217
4218        if (wq->rescuer) {
4219                kthread_stop(wq->rescuer->task);
4220                kfree(wq->rescuer);
4221                wq->rescuer = NULL;
4222        }
4223
4224        if (!(wq->flags & WQ_UNBOUND)) {
4225                /*
4226                 * The base ref is never dropped on per-cpu pwqs.  Directly
4227                 * free the pwqs and wq.
4228                 */
4229                free_percpu(wq->cpu_pwqs);
4230                kfree(wq);
4231        } else {
4232                /*
4233                 * We're the sole accessor of @wq at this point.  Directly
4234                 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4235                 * @wq will be freed when the last pwq is released.
4236                 */
4237                for_each_node(node) {
4238                        pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4239                        RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4240                        put_pwq_unlocked(pwq);
4241                }
4242
4243                /*
4244                 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4245                 * put.  Don't access it afterwards.
4246                 */
4247                pwq = wq->dfl_pwq;
4248                wq->dfl_pwq = NULL;
4249                put_pwq_unlocked(pwq);
4250        }
4251}
4252EXPORT_SYMBOL_GPL(destroy_workqueue);
4253
4254/**
4255 * workqueue_set_max_active - adjust max_active of a workqueue
4256 * @wq: target workqueue
4257 * @max_active: new max_active value.
4258 *
4259 * Set max_active of @wq to @max_active.
4260 *
4261 * CONTEXT:
4262 * Don't call from IRQ context.
4263 */
4264void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4265{
4266        struct pool_workqueue *pwq;
4267
4268        /* disallow meddling with max_active for ordered workqueues */
4269        if (WARN_ON(wq->flags & __WQ_ORDERED))
4270                return;
4271
4272        max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4273
4274        mutex_lock(&wq->mutex);
4275
4276        wq->saved_max_active = max_active;
4277
4278        for_each_pwq(pwq, wq)
4279                pwq_adjust_max_active(pwq);
4280
4281        mutex_unlock(&wq->mutex);
4282}
4283EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4284
4285/**
4286 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4287 *
4288 * Determine whether %current is a workqueue rescuer.  Can be used from
4289 * work functions to determine whether it's being run off the rescuer task.
4290 *
4291 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4292 */
4293bool current_is_workqueue_rescuer(void)
4294{
4295        struct worker *worker = current_wq_worker();
4296
4297        return worker && worker->rescue_wq;
4298}
4299
4300/**
4301 * workqueue_congested - test whether a workqueue is congested
4302 * @cpu: CPU in question
4303 * @wq: target workqueue
4304 *
4305 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4306 * no synchronization around this function and the test result is
4307 * unreliable and only useful as advisory hints or for debugging.
4308 *
4309 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4310 * Note that both per-cpu and unbound workqueues may be associated with
4311 * multiple pool_workqueues which have separate congested states.  A
4312 * workqueue being congested on one CPU doesn't mean the workqueue is also
4313 * contested on other CPUs / NUMA nodes.
4314 *
4315 * Return:
4316 * %true if congested, %false otherwise.
4317 */
4318bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4319{
4320        struct pool_workqueue *pwq;
4321        bool ret;
4322
4323        rcu_read_lock_sched();
4324
4325        if (cpu == WORK_CPU_UNBOUND)
4326                cpu = smp_processor_id();
4327
4328        if (!(wq->flags & WQ_UNBOUND))
4329                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4330        else
4331                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4332
4333        ret = !list_empty(&pwq->delayed_works);
4334        rcu_read_unlock_sched();
4335
4336        return ret;
4337}
4338EXPORT_SYMBOL_GPL(workqueue_congested);
4339
4340/**
4341 * work_busy - test whether a work is currently pending or running
4342 * @work: the work to be tested
4343 *
4344 * Test whether @work is currently pending or running.  There is no
4345 * synchronization around this function and the test result is
4346 * unreliable and only useful as advisory hints or for debugging.
4347 *
4348 * Return:
4349 * OR'd bitmask of WORK_BUSY_* bits.
4350 */
4351unsigned int work_busy(struct work_struct *work)
4352{
4353        struct worker_pool *pool;
4354        unsigned long flags;
4355        unsigned int ret = 0;
4356
4357        if (work_pending(work))
4358                ret |= WORK_BUSY_PENDING;
4359
4360        local_irq_save(flags);
4361        pool = get_work_pool(work);
4362        if (pool) {
4363                spin_lock(&pool->lock);
4364                if (find_worker_executing_work(pool, work))
4365                        ret |= WORK_BUSY_RUNNING;
4366                spin_unlock(&pool->lock);
4367        }
4368        local_irq_restore(flags);
4369
4370        return ret;
4371}
4372EXPORT_SYMBOL_GPL(work_busy);
4373
4374/**
4375 * set_worker_desc - set description for the current work item
4376 * @fmt: printf-style format string
4377 * @...: arguments for the format string
4378 *
4379 * This function can be called by a running work function to describe what
4380 * the work item is about.  If the worker task gets dumped, this
4381 * information will be printed out together to help debugging.  The
4382 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4383 */
4384void set_worker_desc(const char *fmt, ...)
4385{
4386        struct worker *worker = current_wq_worker();
4387        va_list args;
4388
4389        if (worker) {
4390                va_start(args, fmt);
4391                vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4392                va_end(args);
4393                worker->desc_valid = true;
4394        }
4395}
4396
4397/**
4398 * print_worker_info - print out worker information and description
4399 * @log_lvl: the log level to use when printing
4400 * @task: target task
4401 *
4402 * If @task is a worker and currently executing a work item, print out the
4403 * name of the workqueue being serviced and worker description set with
4404 * set_worker_desc() by the currently executing work item.
4405 *
4406 * This function can be safely called on any task as long as the
4407 * task_struct itself is accessible.  While safe, this function isn't
4408 * synchronized and may print out mixups or garbages of limited length.
4409 */
4410void print_worker_info(const char *log_lvl, struct task_struct *task)
4411{
4412        work_func_t *fn = NULL;
4413        char name[WQ_NAME_LEN] = { };
4414        char desc[WORKER_DESC_LEN] = { };
4415        struct pool_workqueue *pwq = NULL;
4416        struct workqueue_struct *wq = NULL;
4417        bool desc_valid = false;
4418        struct worker *worker;
4419
4420        if (!(task->flags & PF_WQ_WORKER))
4421                return;
4422
4423        /*
4424         * This function is called without any synchronization and @task
4425         * could be in any state.  Be careful with dereferences.
4426         */
4427        worker = probe_kthread_data(task);
4428
4429        /*
4430         * Carefully copy the associated workqueue's workfn and name.  Keep
4431         * the original last '\0' in case the original contains garbage.
4432         */
4433        probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4434        probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4435        probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4436        probe_kernel_read(name, wq->name, sizeof(name) - 1);
4437
4438        /* copy worker description */
4439        probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4440        if (desc_valid)
4441                probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4442
4443        if (fn || name[0] || desc[0]) {
4444                printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4445                if (desc[0])
4446                        pr_cont(" (%s)", desc);
4447                pr_cont("\n");
4448        }
4449}
4450
4451/*
4452 * CPU hotplug.
4453 *
4454 * There are two challenges in supporting CPU hotplug.  Firstly, there
4455 * are a lot of assumptions on strong associations among work, pwq and
4456 * pool which make migrating pending and scheduled works very
4457 * difficult to implement without impacting hot paths.  Secondly,
4458 * worker pools serve mix of short, long and very long running works making
4459 * blocked draining impractical.
4460 *
4461 * This is solved by allowing the pools to be disassociated from the CPU
4462 * running as an unbound one and allowing it to be reattached later if the
4463 * cpu comes back online.
4464 */
4465
4466static void wq_unbind_fn(struct work_struct *work)
4467{
4468        int cpu = smp_processor_id();
4469        struct worker_pool *pool;
4470        struct worker *worker;
4471
4472        for_each_cpu_worker_pool(pool, cpu) {
4473                WARN_ON_ONCE(cpu != smp_processor_id());
4474
4475                mutex_lock(&pool->attach_mutex);
4476                spin_lock_irq(&pool->lock);
4477
4478                /*
4479                 * We've blocked all attach/detach operations. Make all workers
4480                 * unbound and set DISASSOCIATED.  Before this, all workers
4481                 * except for the ones which are still executing works from
4482                 * before the last CPU down must be on the cpu.  After
4483                 * this, they may become diasporas.
4484                 */
4485                for_each_pool_worker(worker, pool)
4486                        worker->flags |= WORKER_UNBOUND;
4487
4488                pool->flags |= POOL_DISASSOCIATED;
4489
4490                spin_unlock_irq(&pool->lock);
4491                mutex_unlock(&pool->attach_mutex);
4492
4493                /*
4494                 * Call schedule() so that we cross rq->lock and thus can
4495                 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4496                 * This is necessary as scheduler callbacks may be invoked
4497                 * from other cpus.
4498                 */
4499                schedule();
4500
4501                /*
4502                 * Sched callbacks are disabled now.  Zap nr_running.
4503                 * After this, nr_running stays zero and need_more_worker()
4504                 * and keep_working() are always true as long as the
4505                 * worklist is not empty.  This pool now behaves as an
4506                 * unbound (in terms of concurrency management) pool which
4507                 * are served by workers tied to the pool.
4508                 */
4509                atomic_set(&pool->nr_running, 0);
4510
4511                /*
4512                 * With concurrency management just turned off, a busy
4513                 * worker blocking could lead to lengthy stalls.  Kick off
4514                 * unbound chain execution of currently pending work items.
4515                 */
4516                spin_lock_irq(&pool->lock);
4517                wake_up_worker(pool);
4518                spin_unlock_irq(&pool->lock);
4519        }
4520}
4521
4522/**
4523 * rebind_workers - rebind all workers of a pool to the associated CPU
4524 * @pool: pool of interest
4525 *
4526 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4527 */
4528static void rebind_workers(struct worker_pool *pool)
4529{
4530        struct worker *worker;
4531
4532        lockdep_assert_held(&pool->attach_mutex);
4533
4534        /*
4535         * Restore CPU affinity of all workers.  As all idle workers should
4536         * be on the run-queue of the associated CPU before any local
4537         * wake-ups for concurrency management happen, restore CPU affinty
4538         * of all workers first and then clear UNBOUND.  As we're called
4539         * from CPU_ONLINE, the following shouldn't fail.
4540         */
4541        for_each_pool_worker(worker, pool)
4542                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4543                                                  pool->attrs->cpumask) < 0);
4544
4545        spin_lock_irq(&pool->lock);
4546
4547        for_each_pool_worker(worker, pool) {
4548                unsigned int worker_flags = worker->flags;
4549
4550                /*
4551                 * A bound idle worker should actually be on the runqueue
4552                 * of the associated CPU for local wake-ups targeting it to
4553                 * work.  Kick all idle workers so that they migrate to the
4554                 * associated CPU.  Doing this in the same loop as
4555                 * replacing UNBOUND with REBOUND is safe as no worker will
4556                 * be bound before @pool->lock is released.
4557                 */
4558                if (worker_flags & WORKER_IDLE)
4559                        wake_up_process(worker->task);
4560
4561                /*
4562                 * We want to clear UNBOUND but can't directly call
4563                 * worker_clr_flags() or adjust nr_running.  Atomically
4564                 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4565                 * @worker will clear REBOUND using worker_clr_flags() when
4566                 * it initiates the next execution cycle thus restoring
4567                 * concurrency management.  Note that when or whether
4568                 * @worker clears REBOUND doesn't affect correctness.
4569                 *
4570                 * ACCESS_ONCE() is necessary because @worker->flags may be
4571                 * tested without holding any lock in
4572                 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4573                 * fail incorrectly leading to premature concurrency
4574                 * management operations.
4575                 */
4576                WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4577                worker_flags |= WORKER_REBOUND;
4578                worker_flags &= ~WORKER_UNBOUND;
4579                ACCESS_ONCE(worker->flags) = worker_flags;
4580        }
4581
4582        spin_unlock_irq(&pool->lock);
4583}
4584
4585/**
4586 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4587 * @pool: unbound pool of interest
4588 * @cpu: the CPU which is coming up
4589 *
4590 * An unbound pool may end up with a cpumask which doesn't have any online
4591 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4592 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4593 * online CPU before, cpus_allowed of all its workers should be restored.
4594 */
4595static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4596{
4597        static cpumask_t cpumask;
4598        struct worker *worker;
4599
4600        lockdep_assert_held(&pool->attach_mutex);
4601
4602        /* is @cpu allowed for @pool? */
4603        if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4604                return;
4605
4606        /* is @cpu the only online CPU? */
4607        cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4608        if (cpumask_weight(&cpumask) != 1)
4609                return;
4610
4611        /* as we're called from CPU_ONLINE, the following shouldn't fail */
4612        for_each_pool_worker(worker, pool)
4613                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4614                                                  pool->attrs->cpumask) < 0);
4615}
4616
4617/*
4618 * Workqueues should be brought up before normal priority CPU notifiers.
4619 * This will be registered high priority CPU notifier.
4620 */
4621static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4622                                               unsigned long action,
4623                                               void *hcpu)
4624{
4625        int cpu = (unsigned long)hcpu;
4626        struct worker_pool *pool;
4627        struct workqueue_struct *wq;
4628        int pi;
4629
4630        switch (action & ~CPU_TASKS_FROZEN) {
4631        case CPU_UP_PREPARE:
4632                for_each_cpu_worker_pool(pool, cpu) {
4633                        if (pool->nr_workers)
4634                                continue;
4635                        if (create_and_start_worker(pool) < 0)
4636                                return NOTIFY_BAD;
4637                }
4638                break;
4639
4640        case CPU_DOWN_FAILED:
4641        case CPU_ONLINE:
4642                mutex_lock(&wq_pool_mutex);
4643
4644                for_each_pool(pool, pi) {
4645                        mutex_lock(&pool->attach_mutex);
4646
4647                        if (pool->cpu == cpu) {
4648                                spin_lock_irq(&pool->lock);
4649                                pool->flags &= ~POOL_DISASSOCIATED;
4650                                spin_unlock_irq(&pool->lock);
4651
4652                                rebind_workers(pool);
4653                        } else if (pool->cpu < 0) {
4654                                restore_unbound_workers_cpumask(pool, cpu);
4655                        }
4656
4657                        mutex_unlock(&pool->attach_mutex);
4658                }
4659
4660                /* update NUMA affinity of unbound workqueues */
4661                list_for_each_entry(wq, &workqueues, list)
4662                        wq_update_unbound_numa(wq, cpu, true);
4663
4664                mutex_unlock(&wq_pool_mutex);
4665                break;
4666        }
4667        return NOTIFY_OK;
4668}
4669
4670/*
4671 * Workqueues should be brought down after normal priority CPU notifiers.
4672 * This will be registered as low priority CPU notifier.
4673 */
4674static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4675                                                 unsigned long action,
4676                                                 void *hcpu)
4677{
4678        int cpu = (unsigned long)hcpu;
4679        struct work_struct unbind_work;
4680        struct workqueue_struct *wq;
4681
4682        switch (action & ~CPU_TASKS_FROZEN) {
4683        case CPU_DOWN_PREPARE:
4684                /* unbinding per-cpu workers should happen on the local CPU */
4685                INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4686                queue_work_on(cpu, system_highpri_wq, &unbind_work);
4687
4688                /* update NUMA affinity of unbound workqueues */
4689                mutex_lock(&wq_pool_mutex);
4690                list_for_each_entry(wq, &workqueues, list)
4691                        wq_update_unbound_numa(wq, cpu, false);
4692                mutex_unlock(&wq_pool_mutex);
4693
4694                /* wait for per-cpu unbinding to finish */
4695                flush_work(&unbind_work);
4696                destroy_work_on_stack(&unbind_work);
4697                break;
4698        }
4699        return NOTIFY_OK;
4700}
4701
4702#ifdef CONFIG_SMP
4703
4704struct work_for_cpu {
4705        struct work_struct work;
4706        long (*fn)(void *);
4707        void *arg;
4708        long ret;
4709};
4710
4711static void work_for_cpu_fn(struct work_struct *work)
4712{
4713        struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4714
4715        wfc->ret = wfc->fn(wfc->arg);
4716}
4717
4718/**
4719 * work_on_cpu - run a function in user context on a particular cpu
4720 * @cpu: the cpu to run on
4721 * @fn: the function to run
4722 * @arg: the function arg
4723 *
4724 * It is up to the caller to ensure that the cpu doesn't go offline.
4725 * The caller must not hold any locks which would prevent @fn from completing.
4726 *
4727 * Return: The value @fn returns.
4728 */
4729long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4730{
4731        struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4732
4733        INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4734        schedule_work_on(cpu, &wfc.work);
4735        flush_work(&wfc.work);
4736        destroy_work_on_stack(&wfc.work);
4737        return wfc.ret;
4738}
4739EXPORT_SYMBOL_GPL(work_on_cpu);
4740#endif /* CONFIG_SMP */
4741
4742#ifdef CONFIG_FREEZER
4743
4744/**
4745 * freeze_workqueues_begin - begin freezing workqueues
4746 *
4747 * Start freezing workqueues.  After this function returns, all freezable
4748 * workqueues will queue new works to their delayed_works list instead of
4749 * pool->worklist.
4750 *
4751 * CONTEXT:
4752 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4753 */
4754void freeze_workqueues_begin(void)
4755{
4756        struct workqueue_struct *wq;
4757        struct pool_workqueue *pwq;
4758
4759        mutex_lock(&wq_pool_mutex);
4760
4761        WARN_ON_ONCE(workqueue_freezing);
4762        workqueue_freezing = true;
4763
4764        list_for_each_entry(wq, &workqueues, list) {
4765                mutex_lock(&wq->mutex);
4766                for_each_pwq(pwq, wq)
4767                        pwq_adjust_max_active(pwq);
4768                mutex_unlock(&wq->mutex);
4769        }
4770
4771        mutex_unlock(&wq_pool_mutex);
4772}
4773
4774/**
4775 * freeze_workqueues_busy - are freezable workqueues still busy?
4776 *
4777 * Check whether freezing is complete.  This function must be called
4778 * between freeze_workqueues_begin() and thaw_workqueues().
4779 *
4780 * CONTEXT:
4781 * Grabs and releases wq_pool_mutex.
4782 *
4783 * Return:
4784 * %true if some freezable workqueues are still busy.  %false if freezing
4785 * is complete.
4786 */
4787bool freeze_workqueues_busy(void)
4788{
4789        bool busy = false;
4790        struct workqueue_struct *wq;
4791        struct pool_workqueue *pwq;
4792
4793        mutex_lock(&wq_pool_mutex);
4794
4795        WARN_ON_ONCE(!workqueue_freezing);
4796
4797        list_for_each_entry(wq, &workqueues, list) {
4798                if (!(wq->flags & WQ_FREEZABLE))
4799                        continue;
4800                /*
4801                 * nr_active is monotonically decreasing.  It's safe
4802                 * to peek without lock.
4803                 */
4804                rcu_read_lock_sched();
4805                for_each_pwq(pwq, wq) {
4806                        WARN_ON_ONCE(pwq->nr_active < 0);
4807                        if (pwq->nr_active) {
4808                                busy = true;
4809                                rcu_read_unlock_sched();
4810                                goto out_unlock;
4811                        }
4812                }
4813                rcu_read_unlock_sched();
4814        }
4815out_unlock:
4816        mutex_unlock(&wq_pool_mutex);
4817        return busy;
4818}
4819
4820/**
4821 * thaw_workqueues - thaw workqueues
4822 *
4823 * Thaw workqueues.  Normal queueing is restored and all collected
4824 * frozen works are transferred to their respective pool worklists.
4825 *
4826 * CONTEXT:
4827 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4828 */
4829void thaw_workqueues(void)
4830{
4831        struct workqueue_struct *wq;
4832        struct pool_workqueue *pwq;
4833
4834        mutex_lock(&wq_pool_mutex);
4835
4836        if (!workqueue_freezing)
4837                goto out_unlock;
4838
4839        workqueue_freezing = false;
4840
4841        /* restore max_active and repopulate worklist */
4842        list_for_each_entry(wq, &workqueues, list) {
4843                mutex_lock(&wq->mutex);
4844                for_each_pwq(pwq, wq)
4845                        pwq_adjust_max_active(pwq);
4846                mutex_unlock(&wq->mutex);
4847        }
4848
4849out_unlock:
4850        mutex_unlock(&wq_pool_mutex);
4851}
4852#endif /* CONFIG_FREEZER */
4853
4854static void __init wq_numa_init(void)
4855{
4856        cpumask_var_t *tbl;
4857        int node, cpu;
4858
4859        /* determine NUMA pwq table len - highest node id + 1 */
4860        for_each_node(node)
4861                wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4862
4863        if (num_possible_nodes() <= 1)
4864                return;
4865
4866        if (wq_disable_numa) {
4867                pr_info("workqueue: NUMA affinity support disabled\n");
4868                return;
4869        }
4870
4871        wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4872        BUG_ON(!wq_update_unbound_numa_attrs_buf);
4873
4874        /*
4875         * We want masks of possible CPUs of each node which isn't readily
4876         * available.  Build one from cpu_to_node() which should have been
4877         * fully initialized by now.
4878         */
4879        tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4880        BUG_ON(!tbl);
4881
4882        for_each_node(node)
4883                BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4884                                node_online(node) ? node : NUMA_NO_NODE));
4885
4886        for_each_possible_cpu(cpu) {
4887                node = cpu_to_node(cpu);
4888                if (WARN_ON(node == NUMA_NO_NODE)) {
4889                        pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4890                        /* happens iff arch is bonkers, let's just proceed */
4891                        return;
4892                }
4893                cpumask_set_cpu(cpu, tbl[node]);
4894        }
4895
4896        wq_numa_possible_cpumask = tbl;
4897        wq_numa_enabled = true;
4898}
4899
4900static int __init init_workqueues(void)
4901{
4902        int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4903        int i, cpu;
4904
4905        WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4906
4907        pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4908
4909        cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4910        hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4911
4912        wq_numa_init();
4913
4914        /* initialize CPU pools */
4915        for_each_possible_cpu(cpu) {
4916                struct worker_pool *pool;
4917
4918                i = 0;
4919                for_each_cpu_worker_pool(pool, cpu) {
4920                        BUG_ON(init_worker_pool(pool));
4921                        pool->cpu = cpu;
4922                        cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4923                        pool->attrs->nice = std_nice[i++];
4924                        pool->node = cpu_to_node(cpu);
4925
4926                        /* alloc pool ID */
4927                        mutex_lock(&wq_pool_mutex);
4928                        BUG_ON(worker_pool_assign_id(pool));
4929                        mutex_unlock(&wq_pool_mutex);
4930                }
4931        }
4932
4933        /* create the initial worker */
4934        for_each_online_cpu(cpu) {
4935                struct worker_pool *pool;
4936
4937                for_each_cpu_worker_pool(pool, cpu) {
4938                        pool->flags &= ~POOL_DISASSOCIATED;
4939                        BUG_ON(create_and_start_worker(pool) < 0);
4940                }
4941        }
4942
4943        /* create default unbound and ordered wq attrs */
4944        for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4945                struct workqueue_attrs *attrs;
4946
4947                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4948                attrs->nice = std_nice[i];
4949                unbound_std_wq_attrs[i] = attrs;
4950
4951                /*
4952                 * An ordered wq should have only one pwq as ordering is
4953                 * guaranteed by max_active which is enforced by pwqs.
4954                 * Turn off NUMA so that dfl_pwq is used for all nodes.
4955                 */
4956                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4957                attrs->nice = std_nice[i];
4958                attrs->no_numa = true;
4959                ordered_wq_attrs[i] = attrs;
4960        }
4961
4962        system_wq = alloc_workqueue("events", 0, 0);
4963        system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4964        system_long_wq = alloc_workqueue("events_long", 0, 0);
4965        system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4966                                            WQ_UNBOUND_MAX_ACTIVE);
4967        system_freezable_wq = alloc_workqueue("events_freezable",
4968                                              WQ_FREEZABLE, 0);
4969        system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4970                                              WQ_POWER_EFFICIENT, 0);
4971        system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4972                                              WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4973                                              0);
4974        BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4975               !system_unbound_wq || !system_freezable_wq ||
4976               !system_power_efficient_wq ||
4977               !system_freezable_power_efficient_wq);
4978        return 0;
4979}
4980early_initcall(init_workqueues);
4981